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Inhalt und Struktur

Diese Arbeit ist in zwei Hauptteile strukturiert, Part I, welche die Themen und Resultate
der Publikation präsentiert und erklärt, welche in Part II erneut abgedruckt sind.

Part I: Exposition

Chapter 2: Learning Paradigms

Chapter 3: Consistent Semi-Supervised
Learning on Sparse Graphs

Chapter 4: Robust and Sparse Supervised
Learning

Part II: Prints

—

Chapters P1 and P2

Chapters P3 to P5

Einleitung und Motivation

Das Gebiet des maschinellen Lernens entstand in den 1950er Jahren, motiviert durch
die Idee, einen Computer Algorithmen und Muster entdecken zu lassen, ohne sie ex-
plizit von Hand finden zu müssen. Nach der Anfangsphase und mehreren “AI-winters”
[SG96] haben zahlreiche wichtige Entwicklungen – z. B. die Wiederentdeckung der “Back-
propagation”, welche ursprünglich auf [Kel60; Ros62] zurückgeht und dann in [RHW86]
popularisiert wurde, siehe z. B. [Sch22] – zur Relevanz der Lernmethoden beigetragen.
Die Fortschritte im Bereich von Computer-Hardware, zusammen mit der Verfügbarkeit
großer Datenmengen, haben schließlich den Enthusiasmus für maschinelles Lernen der
letzten Jahre entfacht. Während “deep” Learning Methoden, d. h. Techniken, die
mehrere neuronale Layer verwenden, wie sie ursprünglich in [Ros58] vorgeschlagen wur-
den, die prominentesten Beispiele sind, gibt es eine ganze Familie von lernbasierten
Strategien, welche aktiv in Bereichen wie Computer Vision [Cha+21], Sprachverar-
beitung [Khu+23] oder für medizinische Zwecke [She+22] angewendet werden. In dieser
Arbeit konzentrieren wir uns hauptsächlich auf datenbasierte Ansätze, angewendet auf
Klassifizierungsaufgaben, wobei die konkrete Modalität der gegebenen Daten unsere
Strategie bestimmt. Wir konzentrieren uns auf überwachtes Lernen – der Datensatz
besteht nur aus Eingabe-Ausgabe-Paaren, d. h., er ist vollständig gelabelt – und halb-
überwachtes Lernen – die Daten sind nur teilweise gelabelt.

Beide datenbasierten Methoden waren vor allem in den letzten 20 Jahren sehr erfolgre-
ich. Allerdings weisen die manchmal rein heuristischen Lernstrategien auch gravierende
Nachteile auf. Beim überwachten Lernen ist man oft an der Generalisierung eines Klas-
sifizierers interessiert, d. h. wie akkurat ist das Ergebnis auf ungesehenen Eingaben,
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die nicht Teil der Trainingsdaten sind. In [GSS14] wurde entdeckt, dass die Ausgaben
des Klassifizierers durch kleine, scheinbar unsichtbare Störungen, die als adversarial at-
tacks bekannt sind, vollständig verfälscht werden können. Allgemeiner führt uns dieses
Phänomen zum Thema Robustheit unter Eingabestörungen. Nehmen wir an, dass ein
Mensch und eine Maschine eine Eingabe x als vom Typ c einstufen würden. In einer
eher vagen, aber anschaulichen Formulierung lautet die wichtigste Implikation, die wir
für eine Eingabe x̄ erhalten wollen

x̄ liegt nahe an x,

x̄ wird von einem Menschen noch als c eingestuft

}

⇒ die Maschine stuft x̄ als c ein.

Neben adversarial Examples gehört dazu auch das Ändern der Auflösung von Bildern,
welche die Klassifizierung durch einen Menschen nicht verändern, sofern sie hinreichend
klein sind. In jedem Fall zeigt das Vorhandensein dieser Störungen kritische Schwächen
der Lernmethoden auf und erfordert ein besseres theoretisches Verständnis der verwen-
deten Modelle. An dieser Stelle wird die mathematische Grundlage des Fachgebiets
relevanter und es kommen Eigenschaften ins Spiel, die über die Klassifizierungsleistung
hinausgehen und die in dieser Arbeit diskutiert werden.

Im halb-überwachten Setting betrachten wir graphbasierte Algorithmen, wie sie ur-
sprünglich in [ZGL03] mit dem Graph-Laplace vorgeschlagen wurden. Das Hauptprob-
lem, das wir in dieser Arbeit hervorheben, wurde zuerst in [NSZ09] beobachtet, näm-
lich dass die Klassifizierungsleistung paradoxerweise mit steigender Dimension der Daten
deutlich abnimmt. Es stellte sich heraus, dass die mit dem Graph-Laplace erhaltenen Lö-
sungen über den gesamten Datensatz hinweg konstant sind, wenn die Dimension größer
als zwei ist, was mit dem Sobolev Einbettungssatz [AF03] in Verbindung gebracht werden
kann. Dieses Problem zeigt sich vor allem, wenn die Zahl der unbeschrifteten Daten-
punkte gegen unendlich geht, was uns zu der Frage der Konsistenz für halb-überwachte
Algorithmen führt.

Ein Problem, das für überwachte und halb-überwachte Algorithmen gleichermaßen
gilt, ist der hohe Bedarf an Rechenressourcen. Das Training eines neuronalen Netzes
erfordert in der Regel den Einsatz von GPUs über einen langen Zeitraum. Dies macht
den Prozess einerseits für weniger leistungsfähige Maschinen oder sogar mobile Geräte
undurchführbar und erzeugt andererseits große Mengen an CO2-Emissionen [Hoe+21].
Für graphbasiertes, halb-überwachtes Lernen müssen zunächst Entfernungen zwischen
vielen Datenpunkten berechnet werden, um Kantengewichte zu erhalten, was eine kost-
spielige Aufgabe ist. Außerdem skaliert die Rechenkomplexität verschiedener Probleme
auf einem gegebenen Graphen mit der Anzahl der Kanten. Beispielsweise skaliert die
Laufzeit von Dijkstras Algorithmus zur Berechnung kürzester Pfade in einem Graphen
bereits linear mit der Anzahl der Kanten. In dieser Arbeit ist das Schlüsselwort zur Re-
duzierung der Rechenlast in beiden Fällen Dünnbesetztheit. Das Konzept von dünnbe-
setzten Matrizen ist tief in der numerischen linearen Algebra verwurzelt [Lan52; GV13]
und besteht im Wesentlichen darin, Nullen in einer Matrix auszunutzen, um die Berech-
nungszeit zu beschleunigen. Bei neuronalen Netzen kann dies dadurch erreicht werden,
dass die Gewichtsmatrizen der Layer dünnbesetzt sein müssen. Bei Graphen bedeutet
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eine dünnbesetzte Konnektivitätsmatrix einfach, dass nur eine kleine Anzahl an Kanten
aktiv ist, was ebenfalls die Rechenkosten reduziert.

Beiträge in dieser Arbeit Anknüpfend an die zuvor genannten Themen befasst
sich diese Arbeit mit Konsistenz, Robustheit und Dünnbesetztheit von überwachten und
halb-überwachten Lernalgorithmen.

Für letztere betrachten wir hauptsächlich das sogenannte Lipschitz-Learning [NSZ09],
für die wir Konvergenz und Konvergenzraten für diskrete Lösungen zu Lösungen im
Kontinuum zeigen, wenn die Anzahl der Datenpunkte gegen unendlich geht. Dabei
arbeiten wir mit Annahmen, welche sehr dünnbesetzte und daher rechnerisch attraktive
Graphen zulässt.

Bei überwachtem Lernen befassen wir uns mit der Robustheit gegen adversarial At-
tacks und Auflösungsänderungen. Im ersten Fall schlagen wir einen effizienten Algo-
rithmus vor, der die Lipschitz-Konstante [Lip77] eines neuronalen Netzes bestraft und
ein damit robustes Netz trainiert. Im Multiresolution-Setting analysieren wir die Rolle
von neuronalen Fourier-Operatoren, wie sie in [Li+21] vorgeschlagen wurden, und ihre
Verbindung zu normalen Faltungsoperatoren [Fuk80]. Im Hinblick auf die Rechenkom-
plexität des Trainings neuronaler Netze schlagen wir einen auf Bregman Iterationen
basierenden Algorithmus [Osh+05] vor, der dünnbesetzte Gewichtsmatrizen während
des gesamten Trainings ermöglicht. Zusätzliche analysieren wir die Konvergenz der
stochastische Adaption der ursprünglichen Bregman Iterationen.

Struktur der Exposition In Chapter 2 stellen wir die Lernparadigmen und Grund-
begriffe vor, die in dieser Arbeit verwendet werden. Anschließend stellen wir in Chapter 3
die Themen zur Konsistenz beim halb-überwachten Lernen auf Graphen vor. Nach einer
erläuternden Einführung heben wir die Hauptbeiträge von [LIP-I; LIP-II] hervor. Dabei
versuchen wir Redundanz zu den Publikationen in Part II zu vermeiden und dennoch
einen verständlichen Kontext zu ermöglichen. In Chapter 4 kommentieren wir die The-
men zum überwachten Lernen. Nach einer zusätzlichen Einleitung enthält das Kapitel
drei Abschnitte, in denen die Arbeiten [FNO; CLIP; BREG-I] einzeln vorgestellt werden.
Schließlich werden in Chapter 5 die Inhalte der gesamten Arbeit zusammengefasst und
mögliche zukünftige Richtungen aufgezeigt.

Publikationen und Beitragsauflistung

Die folgenden Arbeiten sind Teil dieser Dissertation und werden in Part II erneut abge-
druckt.

[LIP-II] L. Bungert, J. Calder, and T. Roith. “Uniform convergence rates for Lip-
schitz learning on graphs.” In: IMA Journal of Numerical Analysis 43.4
(2022), pp. 2445–2495. doi: 10.1093/imanum/drac048.
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[LIP-I] T. Roith and L. Bungert. “Continuum limit of Lipschitz learning on graphs.”
In: Foundations of Computational Mathematics 23.2 (2023), pp. 1–39. doi:
10.1007/s10208-022-09557-9.

[CLIP] L. Bungert, R. Raab, T. Roith, L. Schwinn, and D. Tenbrinck. “CLIP:
Cheap Lipschitz training of neural networks.” In: Scale Space and Varia-
tional Methods in Computer Vision: 8th International Conference, SSVM
2021, Proceedings. Springer. 2021, pp. 307–319. doi: 10.1007/978-3-030-

75549-2_25.

[BREG-I] L. Bungert, T. Roith, D. Tenbrinck, and M. Burger. “A Bregman learning
framework for sparse neural networks.” In: Journal of Machine Learning
Research 23.192 (2022), pp. 1–43.

[FNO] S. Kabri, T. Roith, D. Tenbrinck, and M. Burger. “Resolution-Invariant
Image Classification based on Fourier Neural Operators.” In: Scale Space
and Variational Methods in Computer Vision: 9th International Conference,
SSVM 2023, Proceedings. Springer. 2023, pp. 307–319. doi: 10.1007/978-

3-031-31975-4_18.

Die folgenden Preprints sind kein Teil dieser Arbeit, geben aber zusätzliche Einsichten
in die behandelten Themen.

[LIP-III] L. Bungert, J. Calder, and T. Roith. Ratio convergence rates for Euclidean
first-passage percolation: Applications to the graph infinity Laplacian. 2022.
arXiv: 2210.09023.

[BREG-II] L. Bungert, T. Roith, D. Tenbrinck, and M. Burger. Neural Architecture
Search via Bregman Iterations. 2021. arXiv: 2106.02479.

Im Folgenden führen wir TRs Beiträge zu den oben genannten Publikationen auf.

[LIP-I]: Diese Arbeit baut auf den Erkenntnissen von TRs Masterarbeit auf. Es
ist allerdings wichtig anzumerken, dass die Resultate signifikant erweitert wurden und
konzeptionell stärker als die der Masterarbeit sind, siehe dazu Abschnitt 3.3 in der Dis-
sertation. TR adaptierte die Kontinuum-Limit-Theorie für den L∞-Fall, erarbeitet die
meisten Beweise und schrieb einen großen Teil des Papers. In Zusammenarbeit mit LB,
identifizierte er entscheidende Gebiets-Annahmen, welche es erlauben auch mit nicht-
konvexen Gebieten zu arbeiten und bewies Konvergenz für angenäherte Randbedingun-
gen.

[LIP-II]: In Zusammenarbeit mit LB, arbeitete TR an den Konvergenzbeweisen,
basierenden auf den Ideen von JC. Zusammen mit LB und JC bewies er das Hauptre-
sultat und die verschiedenen Lemmata, die darauf hinführen. Hierbei beschäftigte er
sich vor allem mit der Adaption der Theorie für AMLEs auf den Graph-Fall, was das
entscheidende Element für die ganze Arbeit ist. Weiterhin, trug er zur Gestaltung und
Implementierung der numerischen Experimente, die im Paper durchgeführt wurden bei.
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[CLIP]: TR erarbeitete den Algorithmus, der im Paper vorgeschlagen wird, zusam-
men mit LB, basierend auf dessen Idee. Zusammen mit LS, RR und DT führte er die
numerischen Beispiele durch und schrieb große Teile des Quellcodes. Weiterhin schrieb
er entscheidende Teile des Papers, wobei DT das Dokument Korrektur lies und klarer
formulierte.

[BREG-I]: TR erweiterte LBs Idee, Bregman Iterationen für dünnbesetztes Training
einzusetzen, konzipiert durch DT. Zusammen mit MB und LB erarbeitete er die Kon-
vergenzbeweise der stochastischen Bregman Iteration. Hier schlug er auch eine fundierte
Initialisierungsstrategie vor. Weiterhin führte er die numerischen Beispiele durch und
schrieb den größten Teil des Quellcodes.

[FNO]: Diese Arbeit beruht auf SKs Masterarbeit und verwendet die ursprünglichen
Ideen MBs, zu Auflösungsinvarianz mithilfe von FNOs. Im Paper erarbeitete TR die
Beweise zur Wohldefiniertheit und Fréchet-Differenzierbarkeit, zusammen mit SK. Er
schrieb große Teile des Papers und des Source-Codes, wobei DT bei der Korrektur der
publizierten Version mitgeholfen hat. Hierbei führte er die numerischen Studien zusam-
men mit SK durch.
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Preface

This work is structured into two main parts, Part I the presentation and explanation of
the topics and results presented in Part II, the peer-reviewed articles.

Part I: Exposition

Chapter 2: Learning Paradigms

Chapter 3: Consistent Semi-Supervised
Learning on Sparse Graphs

Chapter 4: Robust and Sparse Supervised
Learning

Part II: Prints

—

Chapters P1 and P2

Chapters P3 to P5

Part I consists of five chapters, of which the first two give an introduction and explain
the paradigms of unsupervised, semi-supervised and supervised learning. The next two
chapters are split up thematically, concerning the topics of semi-supervised and super-
vised learning, respectively. Here, a short overview provides the necessary framework,
allowing us to explain the main contributions. The last chapter presents the conclusion.
In Part II the following publications are reprinted:

[LIP-II] L. Bungert, J. Calder, and T. Roith. “Uniform convergence rates for Lip-
schitz learning on graphs.” In: IMA Journal of Numerical Analysis 43.4
(2022), pp. 2445–2495. doi: 10.1093/imanum/drac048.

[LIP-I] T. Roith and L. Bungert. “Continuum limit of Lipschitz learning on graphs.”
In: Foundations of Computational Mathematics 23.2 (2023), pp. 1–39. doi:
10.1007/s10208-022-09557-9.

[CLIP] L. Bungert, R. Raab, T. Roith, L. Schwinn, and D. Tenbrinck. “CLIP:
Cheap Lipschitz training of neural networks.” In: Scale Space and Varia-
tional Methods in Computer Vision: 8th International Conference, SSVM
2021, Proceedings. Springer. 2021, pp. 307–319. doi: 10.1007/978-3-030-

75549-2_25.

[BREG-I] L. Bungert, T. Roith, D. Tenbrinck, and M. Burger. “A Bregman learning
framework for sparse neural networks.” In: Journal of Machine Learning
Research 23.192 (2022), pp. 1–43.
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[FNO] S. Kabri, T. Roith, D. Tenbrinck, and M. Burger. “Resolution-Invariant
Image Classification based on Fourier Neural Operators.” In: Scale Space
and Variational Methods in Computer Vision: 9th International Conference,
SSVM 2023, Proceedings. Springer. 2023, pp. 307–319. doi: 10.1007/978-

3-031-31975-4_18.

The following two works that are not part of this thesis but provide an additional insight.

[LIP-III] L. Bungert, J. Calder, and T. Roith. Ratio convergence rates for Euclidean
first-passage percolation: Applications to the graph infinity Laplacian. 2022.
arXiv: 2210.09023.

[BREG-II] L. Bungert, T. Roith, D. Tenbrinck, and M. Burger. Neural Architecture
Search via Bregman Iterations. 2021. arXiv: 2106.02479.

TR’s Contribution

Here we list TR’s contribution to the publications included in the thesis.

[LIP-I]: This work builds upon the findings in TR’s master’s thesis [Roi21]. It is
however important to note that the results constitute a significant extension and are
conceptually stronger than the ones in [Roi21], see Section 3.3. TR adapted the con-
tinuum limit framework to the L∞ case, worked out most of the proofs and wrote a
significant part of the paper. In collaboration with LB, he identified the crucial do-
main assumptions that allow to work on non-convex domains and proved convergence
for approximate boundary conditions.
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of the paper, where DT proofread and clarified the final document.

[BREG-I]: TR expanded LB’s ideas of employing Bregman iteration for sparse train-
ing, conceptualized by DT. Together with MB and LB, he worked out the convergence
analysis of stochastic Bregman iterations. Here, he also proposed a profound sparse
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Chapter 1

Introduction

The field of machine learning emerged in the 1950s [Sam59; Ros58], motivated by the
idea of letting a computer discover algorithms and patterns without having to explic-
itly arrange them by hand. After the initial phase and multiple “AI-winters” [SG96],
numerous important developments—e.g., the rediscovery of the backpropagation algo-
rithm, originally due to [Kel60; Ros62] and then popularized in [RHW86], see, e.g.,
[Sch22]—contributed to the relevance of learning methods. The advances in computer
hardware, together with the availability of large amounts of data, finally allowed the ma-
chine learning enthusiasm of recent years to spark. While “deep” learning methods—i.e.,
techniques involving many stacked neural layers as originally proposed in [Ros58]—are
the most prominent examples, there is a whole zoo of learning-based strategies that are
actively applied in fields like computer vision [Cha+21], natural language processing
[Khu+23] or healthcare [She+22]. In this work, we mainly focus on data-driven ap-
proaches, applied to classification tasks, where the concrete modality of the given data
determines our approach. Namely, we focus on supervised—the dataset consists only of
input-output pairs, i.e., is fully labeled—and semi-supervised—the data is only partially
labeled—learning tasks.

For both regimes especially the last 20 years have seen great success of these data-
driven methods. However, the sometimes purely heuristic learning strategies also exhibit
serious drawbacks. In the supervised setting, one is usually interested in the generaliza-
tion behavior of a learned classifier, i.e., how good is the performance on unseen inputs
which are not part of the given training data. Unfortunately, in [GSS14] it was discov-
ered, that this performance can be completely corrupted, by small, seemingly invisible
perturbations known as adversarial attacks. More generally, this phenomenon leads us
to the issue of input robustness. Given some input x, suppose that a human and some
machine would classify this input to be of type c. In a rather vague but demonstrative
formulation, the key implication we want to obtain for an input x̄ is

x̄ is close to x,

x̄ is still classified as c by a human

}

⇒ the machine classifies x̄ as c.

Next to adversarial examples this also includes resolution changes of images, which do
not change the classification by a human, if they are reasonably small. In any case, the
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Chapter 1. Introduction

existence of these perturbations exhibits critical flaws of learning methods and calls for
a better theoretical understanding of the employed models. This is where the math-
ematical foundation of the field becomes more relevant and properties apart from the
classification performance come into play, which are discussed within this thesis.

For the semi-supervised setting, we consider graph-based algorithms as originally pro-
posed in [ZGL03] with the graph Laplacian. The main problem we highlight in this
thesis was first observed in [NSZ09], namely that the classification performance deters
significantly with increasing dimensionality of the data. In fact, it turned out that so-
lutions obtained by the standard graph Laplacian tend to be constant over the whole
dataset, whenever the dimension is larger than two, which can be related to the Sobolev
embedding theorem [AF03]. This issue is prevalent in the infinite data limit, where a
priori we consider the case, when the amount of unlabeled data points goes to infinity,
which leads us to the question of consistency for semi-supervised algorithms.

An issue that is shared across the supervised and semi-supervised settings is the high
demand for computational resources. Training a neural network usually involves the use
of GPUs for long amounts of time. On the one hand, this makes the process infeasible
for less powerful machines or even mobile devices and on the other hand, generates
questionable amounts of CO2 emissions [Hoe+21]. For graph-based semi-supervised
learning one first needs to compute distances between many data points, to obtain edge
weights, which itself is a costly task. Furthermore, the computational complexity of
various tasks on a given graph scales with the number of edges. For example, the
run time for Dijkstra’s algorithm to compute shortest paths on a graph, already scales
linearly with the amount of edges [Dij22]. In this thesis, the keyword to reduce the
computational load in both cases, is sparsity. The concept of sparse matrices routes
deeply into the field of numerical linear algebra [Lan52; GV13] and basically consists of
exploiting zeros in a matrix to speed up the computation time. For neural networks,
this can be incorporated by enforcing the weight matrices of the layers to be sparse.
For graphs, sparsity of the connectivity matrix simply means that we have only a small
amount of active edges, which also reduces the computational cost.

Contributions in This Work Taking up the previously mentioned subjects, this
thesis is concerned with consistency, robustness and sparsity of supervised and semi-
supervised learning algorithms.

For the latter, we mainly consider the so-called Lipschitz learning task [NSZ09] for
which we prove convergence and convergence rates for discrete solutions to their contin-
uum counterpart in the infinite data limit. Here, we always work in a framework that
allows for very sparse and therefore computationally feasible graphs.

In the supervised regime, we deal with input-robustness w.r.t. adversarial attacks
and resolution changes. In the first case, we propose an efficient algorithm, penaliz-
ing the Lipschitz constant [Lip77] of a neural network, which trains an adversarially
robust network. For the multi-resolution setting, we analyze the role of Fourier neural
operators as proposed in [Li+21] and their connection to standard convolutional neural
layers [Fuk80]. Concerning the computational complexity of neural network training,
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we propose an algorithm based on Bregman iterations [Osh+05] that allows for sparse
weight matrices throughout the training. We also provide the convergence analysis for
the stochastic adaption of the original Bregman iterations.

Structure of the Exposition In Chapter 2 we introduce the learning paradigms and
basic notions used throughout this thesis. We then present the topics on consistency
for semi-supervised learning on graphs in Chapter 3. After an explanatory introduction,
we highlight the main contributions of [LIP-I; LIP-II]. Here, we try to have as little
redundancy to the prints in Part II as possible, while still allowing for an understandable
context. In Chapter 4 we comment on the supervised part of this thesis. After an
additional introduction, the chapter contains three sections presenting the works [FNO;
CLIP; BREG-I] individually. Finally, in Chapter 5 we summarize the contents of the
whole thesis and provide possible future directions.

4



Chapter 2

Learning Paradigms

Throughout this thesis, we assume to be given data Xn ⊂ X ⊂ Rd consisting of n data
points. We consider the task of learning a function f : X̃ → Y from the given data,
where Y denotes the output space. In our case, the set X̃ ⊂ X is usually chosen either
as the set of data points Xn or as the whole space X . The two most important cases for
us are listed below.

• Classification: The function f assigns a label to each x ∈ X̃ out of C ∈ N

possible classes, i.e. Y = {1, . . . , C}. In some architectures, the last layer of the
neural network is given as a vector y ∈ RC . Typically, this vector is a probability
vector, i.e.,

y ∈ ∆C :=

{

z ∈ [0, 1]C :
C∑

i=1

zi = 1

}

.

This can be enforced via the softmax function [Bri90] softmax : RC → RC

softmax(z)i :=
exp(zi)

∑C
j=1 exp(zj)

which was actually introduced by Boltzmann in [Bol68]. This allows the interpre-
tation that the ith entry of fθ(x) ∈ ∆C models the probability that x belongs to
class i. In order to obtain a label, one can simply choose the maximum entry, i.e.
argmaxi=1,...,C fθ(x)i.

• Image denoising: The function f outputs a denoised version of an input image.
Here we have X = Y = RK×N×M , where

– K ∈ N is the number of color channels,

– N, M denote the width and height of the image.

The learning paradigms, we consider in this thesis, differ by their usage of labeled data.
We review the concepts in the following.
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or by applying a softmax to obtain a probability vector, i.e., f : Xn → ∆C

f(x) := softmax (f1(x), . . . , fc(x)) .

In Chapter 3 we focus on graph-based learning algorithms, however we refer to [Zhu05]
for an overview of semi-supervised learning algorithms.
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Chapter 3

Consistent Semi-Supervised
Learning on Sparse Graphs

This chapter considers the consistency of graph-based semi-supervised learning methods
and contextualizes the topics provided in the prints [LIP-I; LIP-II]. We are given par-
tially labeled data, where the task is to obtain a labeling on the whole graph. Considering
learning algorithms, we are especially interested in the following aspects:

• Consistency: What is the behavior in the infinite data limit?

• Sparsity: How does sparsity of the graph weights affect this behavior?

Section 3.1: Graph-Based SSL and Consistency

Section 3.2 Lipschitz Extensions and the Infinity Laplacian

Section 3.3: [LIP-I] Section 3.4: [LIP-II]

In [LIP-I] we first consider Γ-convergence of discrete L∞ functionals to their continuum
counterpart, which also yields convergence of minimizers. This notion of convergence
shapes our understanding of asymptotic consistency in the first part of this chapter. The
proofs allow for very sparse graphs, however they only directly apply to the Lipschitz
extension task, which does not admit unique solutions. We refer to Section 3.3 for more
details.

The issue of non-uniqueness is addressed in [LIP-II], which considers uniform con-
vergence of graph infinity harmonic functions to their continuum counterpart. These
functions are in fact special solutions of the extension task in [LIP-I], namely so-called
absolutely minimizing Lipschitz extensions, which are—under certain assumptions—
unique. Again, we are able to work with a very mild scaling assumption that allows
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Definition 3.2 (Weighted Graphs). For a finite set Ωn and a weight function
wn : Ωn × Ωn → R, the tuple (Ωn, wn) is called a weighted graph.

Other Notions of Graphs Typically, a graph is defined as a pair (Ωn, E) where E
denotes the set of edges. Here, one has two cases:

• Undirected graph: E = {{x, y} : there is an edge between x ∈ Ωn and y ∈ Ωn},
i.e., s E ⊂ 2Ωn and each edge is undirected, since {x, y} = {y, x}.

• Directed graph: E = {(x, y) : there is an edge from x to y}, i.e., E ⊂ Ωn×Ωn and
each edge is directed, i.e., in general (x, y) ∈ E ; (y, x) ∈ E.

Additionally, one then considers a weight function W : E → R assigning a weight to
each edge, and defines the triple (Ωn, E, W ) as a weighted graph. However, we note
that all this information can be represented much more elegantly by a weight function
w : Ωn ×Ωn → R. A directed edge set E ⊂ Ωn ×Ωn can be equivalently expressed by a
weight function w : Ωn×Ωn → R where w(x, y) 6= 0 if and only if (x, y) ∈ E, a weighting
W : E → R naturally transfers to w. In the case of an undirected graph, one simply
requires the weight function to be symmetric, i.e., w(x, y) = w(y, x) for all x, y ∈ Ωn.
Furthermore, in the above definition, the set Ωn does not enter the definition up to the
ordering of its n ∈ N elements. Therefore, a graph could be entirely represented by a
weight function w : {1, . . . , n} × {1, . . . , n} → R. However, since the definition of w will
incorporate information about points Ωn ⊂ Rd we use the notation (Ωn, wn) for graphs
in the following.

Kernels and the Graph Scale In most of our applications the data Ωn is given as
a subset of Rd and in fact we are interested in the limit n → ∞, where Ωn fills out a
domain Ω̃ ⊂ Rd. In the continuum, we consider local operators incorporating changes
of functions u : Ω̃ → R at an infinitesimal small scale. Since interactions on a graph
are inherently non-local in the Euclidean sense, we need to localize them in the limit
n→∞. A popular choice of weight function that guarantees this behavior is

w(x, y) = ηε(|x− y|)

where ηε : [0,∞)→ [0,∞] is a kernel function depending on a scaling parameter ε ∈ R+.
The parameter ε is also referred to as the graph scale and informally speaking determines
the scale of the graph interactions. The smaller ε the smaller the interaction radius of
points in Ωn should be. In our specific setting of L∞ problems, it is typical to choose

ηε(·) =
1

cη ε
η

( ·
ε

)

where η is a non-increasing kernel and cη is a constant depending on the kernel. Typical
examples of kernels include

• (constant weights) η(t) = 1[0,1](t),
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• (exponential weights) η(t) = exp(−t2/(2σ2))1[0,1](t),

• (singular) η(t) = 1
tp 1[0,1](t) with p > 0.

In the above examples, we ensured that each weight function has a compact support,
by multiplying it with 1[0,1]. This allows us to directly connect the sparsity of the graph
with the scale ε.

Remark 3.3. In the continuum limit one needs to consider the value

ση = sup
t∈R+

t η(t),

which is assumed to be finite. Considering graph problems in Lp for p < ∞ the corre-
sponding value is given as

σ(p)
η =

∫

R+
η(t) td+pdt (3.1)

which was first employed in [GS15] for p = 1 and then in [ST19] for general p < ∞.
With the slight modification

σ̃(p)
η =

∫

R+
η(t)p td+pdt,

we see that
p

√

σ̃
(p)
η degenerates to ση in the limit p→∞. △

Remark 3.4. In [LIP-I] we choose cη = 1 and therefore ση then appears in the limit
functional. In [LIP-II] we rescale the kernel, i.e., cη = ση which allows us to work with
non-rescaled operators in the limit. △

Remark 3.5. In order to obtain continuum limits in the case, p < ∞ one usually
employs a factor of 1/εp+d in front of the graph weights [GS15; ST19]. In Section 3.2.2
we see that this factor degenerates to 1/ε in the case p→∞. The intuition here is that
problems in L∞ do not treat mass in a quantitative but rather a qualitative manner.
Therefore, factors like εd which appear because of integrals in Rd do not contribute for
p =∞. △

Sparse Graphs An important practical aspect connected to the graph scale is the
sparsity of the graph, which is given by the numbers of non-zero elements in the weight
matrix W ∈ Rn×n

Wij := w(xi, xj) xi, xj ∈ Ωn,

where we assume an ordering Ωn = {x1, . . . , xn}. In order to have a computationally
feasible problem, this matrix should have very few non-zero elements. Assuming that
the kernel η has compact support, w.l.o.g. supp(η) ⊂ [0, 1] we observe that the sparsity
is directly influenced by the graph scale ε. Namely, |xi − xj | > ε⇒Wij = 0, see Fig. 3.1.
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Figure 3.1.: Dependence of the number of non-zero edges on the scaling parameter ε.
Here, we sample n = 103 points uniformly in the cube [0, 1]d and only
connect vertices xi, xj ∈ Ωn if |xi − xj | < ε. The plots show the behavior
for d = 2, 10, 20.

Therefore, from a practical point of view ε should be chosen relatively small. However,
showing consistency of graph-based SSL algorithms often requires scaling assumptions
that permit the desired length scales [GS15; ST19; Cal19]. In Section 3.3 we give
concrete examples of such scaling assumptions. Note, that in the case p < ∞ these
scaling assumptions are, however, not an artifact of the proof technique. They are
provably optimal and arise through the problem formulation. One of the main goals of
[LIP-I; LIP-II] was to show convergence and rates at the smallest possible length scale,
which was indeed achieved.

Remark 3.6. In many practical applications, graph weights connecting all points within
an ε-ball of Euclidean distance are inferior to k-nearest neighbor (knn) graphs [Cal+20;
FCL22; CT22]. While most consistency results employ the ε-ball setting, recently, the
authors in [CT22] were able to show convergence rates for knn graphs. In this thesis
we focus on the ε-ball setting, however it is an interesting open question to transfer the
results of [LIP-I; LIP-II; LIP-III] to the knn setting. △

3.1.2. The p-Laplacian: Continuum and Graph

The archetype of learning methods we consider in the following is the so-called Laplacian
learning, which had one of its first appearances in [ZGL03]. The associated problem was
given as

min
u:Ωn→R

∑

x,y∈Ωn

wn(x, y)2 (u(y)− u(x))2 ,

subject to u(x) = g(x) for all x ∈ On.

(3.2)

Here, we always assume non-negative weights wn : Ωn×Ωn → [0,∞). The intuitive idea
behind this method is that it minimizes a discrete approximation of the Dirichlet energy
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and should therefore enforce a certain kind of “smoothness” of the solution u. In [ZS05] it
was proposed to generalize the idea of the graph Dirichlet energy in Eq. (3.2) to arbitrary
1 ≤ p < ∞, which lead to the p-Laplacian on the graph. While our contributions in
[LIP-I; LIP-II; LIP-III] mainly consider the case of p = ∞, the case p < ∞ serves as a
motivation for the whole discussion. Therefore, we briefly review the p-Laplacian in the
continuum setting and then discuss the situation on the graph.

Continuum Setting We follow the exposition in [Lin17]. Let Ω ⊂ Rd be a bounded
domain, then we consider the p-Dirichlet energy for functions u ∈W 1,p(Ω),

Ep,ρ(u) :=

∫

Ω
|∇u|p ρ(x)2 dx, (3.3)

where ρ : Ω → R is some given function. In the setting of [GS15; ST19] ρ denotes the
density of data distribution as in Section 3.1. For ρ ≡ 1 we simply write Ep,1 = Ep. The
associated variational problem is given in the following.

Problem 3.7 (Variational Formulation). For p ∈ [1,∞) find u ∈ W 1,p(Ω) such
that

Ep,ρ(u) ≤ Ep,ρ(v)

for all v, such that (u− v) ∈W 1,p
0 (Ω).

Assume for simplicity that ρ ≡ 1 and that u ∈ W 1,p(Ω) is a minimizer of the above
problem, then its first variation must vanish, i.e., for all φ ∈ C∞

0 (Ω) one has
∫

Ω
〈|∇u|p∇u,∇φ〉 dx = 0. (3.4)

A function u ∈ W 1,p(Ω) satisfying Eq. (3.4) is called a weak solution of the p-Laplace
equation. In fact, if u is smooth enough, one can infer that

∆pu := div(|∇u|p−2∇u) = 0 (3.5)

where ∆p is called the p-Laplacian. Boundary conditions on ∂Ω given by a function
g ∈ W 1,p(Ω) can be incorporated by considering the set Ug := {u ∈ W 1,p(Ω) : u − g ∈
W 1,p

0 (Ω)}. We state the following classical result, which can for example be found in
[Lin17].

Theorem 3.8 (Existence and Uniqueness). For p ∈ (1,∞) and g ∈ W 1,p(Ω)
there exists a unique minimizer u ∈ Ug of the p-Dirichlet energy, i.e.,

argminu∈Ug
Ep(u) = u.
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Moreover, u is a weak solution of the p-Laplace equation and there exists a function
ũ ∈ C(Ω) such that u = ũ a.e. in Ω. If g ∈ C(Ω) and Ω is sufficiently smooth, then
ũ|∂Ω = g|∂Ω.

Proof. The proof can be found in [Lin17, Thm. 2.16].

Local Minimization Property Let u solve Problem 3.7 on the whole domain Ω for
given boundary values g ∈ W 1,p(Ω) and let V ⊂⊂ Ω be a sufficiently regular subset.
Then we have that

Ep(u) =

∫

V
|∇u|p dx +

∫

Ω\V
|∇u|p dx.

Now consider Problem 3.7 restricted on V with boundary values given by u|∂V and
denote by v the solution of this sub-problem on V . Since u = v on ∂V we can extend v
onto Ω by setting v = u in Ω \ V , which yields a function v ∈ W 1,p(Ω). Therefore, we
obtain

Ep(v) =

∫

V
|∇v|p dx +

∫

Ω\V
|∇u|p dx ≤

∫

V
|∇u|p dx +

∫

Ω\V
|∇u|p dx = Ep(u).

Since u is unique this yields u|V = v|V , and therefore we know that any solution on Ω
solves Problem 3.7 also on any “nice” subset, with the boundary values given by itself.
In Section 3.2 we see that for p = ∞ this local minimization property does not hold
automatically and has to enforced additionally. The underlying reason here is, that
integrals are set-additive, but suprema are not, which is similarly explained in [ACJ04].

Laplacian Learning A natural extension of the problem given in Eq. (3.3) is obtained
by considering the target functional

Ewn
p (u) :=

∑

x,y∈Ωn

wn(x, y)p |u(y)− u(x)|p ,

which we refer to as the graph p-Dirichlet energy. Indeed, we notice structural similarities
to the p-Dirichlet energy Ep in Eq. (3.3), replacing the integral by a finite sum and
derivatives by weighted finite differences

wn(x, y)p |u(y)− u(x)|p .

This naturally leads to the following minimization problem.

Problem 3.9 (Graph Energy Minimization). Given a weighted graph (Ωn, wn)
and a labeling function g : On → R, for On ⊂ Ωn we consider the problem

min
u:Ωn→R

Ewn
p (u) subject to u(x) = g(x) for all x ∈ On.
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Since every function u : Ωn → R can be identified with a vector u ∈ Rn, the above
problem is in fact an optimization problem in Rn. The functional Ewn

p : Rn → R is
bounded from below by 0, continuous, convex and in the case p > 1 even differentiable.
However, one can prove unique existence with techniques very similar to the continuum
case in [Lin17]. We give the adapted proof below for completeness. The important
property to establish uniqueness is that the graph is connected to the boundary, i.e.,
for every x ∈ Ωn there exists a path x = γ1, . . . , γm = o ∈ Ωn with w(γi+1, γi) >
0 connecting x to a point o ∈ On in the boundary. This is very intuitive, since on
any connected component that does not communicate with the boundary, an arbitrary
constant minimizes the “graph gradient”.

Theorem 3.10 (Existence and Uniqueness). Let (Ωn, wn) be a graph with non-
negative weights, which is connected to its boundary On ⊂ Ωn. Then Problem 3.9
admits a unique solution u : Ωn → R.

Proof. The proof is an adaption from the continuum case in [Lin17, Thm. 2.16]. We
start by proving uniqueness. Let E = {(x, y) : wn(x, y) > 0} be the set of all active
edges and denote by ∇wnu ∈ R|E|

(∇wnu)(x,y) := wn(x, y) (u(y)− u(x))

the “graph gradient” on E, where we have that

Ewn
p (u) =

∑

(x,y)∈E

wn(x, y)p |u(y)− u(x)|p =
∑

(x,y)∈E

∣
∣
∣(∇wnu)(x,y)

∣
∣
∣

p
= ‖∇wnu‖pp .

Let u1, u2 be two solutions of Problem 3.9, i.e., Ewn
p (u1) = Ewn

p (u2). Since u1, u2 fulfill
the boundary conditions, this also holds for 1/2 (u1 + u2) and therefore Ewn

p (u1) ≤
Ewn

p (1/2(u1 + u2)).
Assume that there exists (x̄, ȳ) ∈ E such that ∇wnu1(x̄, ȳ) 6= ∇wnu2(x̄, ȳ), then we

have that

Ewn
p (u1) ≤ Ewn

p

(
u1 + u2

2

)

=

∥
∥
∥
∥

∇wnu1(x, y) +∇wnu2(x, y)

2

∥
∥
∥
∥

p

p

<
1

2

∑

(x,y)∈E\{(x̄,ȳ)}

(

|∇wnu1(x, y)|p + |∇wnu2(x, y)|p
)

+
1

2

(

|∇wnu1(x̄, ȳ)|p + |∇wnu2(x̄, ȳ)|p
)

=
1

2

(

Ewn
p (u1) + Ewn

p (u2)
)

= Ewn
p (u1),

which is a contradiction. Here, we employed the strict convexity of t 7→ |t|p, which
implies

∣
∣t + t̄

∣
∣p ≤ 2p−1

(|t|p +
∣
∣t̄
∣
∣p
)
, where the inequality is sharp if t 6= t̄. Therefore, we

obtain that ∇wnu1 = ∇wnu2, which yields

u1(y)− u1(x) = u2(y)− u2(x) for all (x, y) ∈ E. (3.6)
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Since (Ωn, wn) is connected to On for any x ∈ Ωn we can find a path x = γ1, . . . , γm = o
connecting x to a point o ∈ On. By definition wn(γi+1, γi) > 0 for all i = 1, . . . , m − 1
and therefore using Eq. (3.6) we obtain

u1(γi)− u1(γi+1) = u2(γi)− u2(γi+1) for all i = 1, . . . , m− 1.

which together with the boundary conditions u1(o) = u2(o) = g(o) yields

u1(x) = u1(γ1) = u1(γ1)− u1(γ2) + u1(γ2)

= u1(γ1)− u1(γ2) + u1(γ2)− u1(γ3) + u1(γ3) = . . .

=

[
m−1∑

i=1

u1(γi)− u1(γi+1)

]

+ u1(o)

=

[
m−1∑

i=1

u2(γi)− u2(γi+1)

]

+ u2(o)

= u2(x).

Since x ∈ Ωn was arbitrary, we get u1 = u2.
To show existence, we do not need to assume that the graph is connected to the boundary.
On every connected component V ⊂ Ωn that is not connected to O we can set u(x) = c
for all x ∈ V , where c ∈ R is an arbitrary constant. We can select all edges in V , i.e.,
EV := E ∩ V ×2 and since V was a connected component—i.e., it does not have active
edges to vertices outside of V —we can also split up the functional

Ewn
p (u) =

∑

(x,y)∈E\EV

|∇wnu(x, y)|p +
∑

(x,y)∈EV

|∇wnu(x, y)|p

︸ ︷︷ ︸

=0

=
∑

(x,y)∈E\EV

|∇wnu(x, y)|p

where the contribution on the connected component is zero, since we set u to be constant
here. Therefore, w.l.o.g. we can assume that Ωn is connected to the boundary, since
any component not connected to the boundary does not contribute to the problem. Let
now u : Ωn → R be a function and for x ∈ Ωn let γ ∈ Ω×m

n be a path to a point in the
boundary ox ∈ On, then we have that

|u(x)|p ≤ C

(
mx−1∑

i=1

|u(γi)− u(γi+1)|p + |g(ox)|p
)

≤ C
(

Ewn
p (u) + |g(ox)|p

)

where C > 0 is a generic constant—not depending on u—that also accounts for the

factor
(

min(x,y)∈E wn(x, y)
)−1

. Summing over all x ∈ Ωn yields

‖u‖pp =
∑

x∈Ωn

|u(x)|p ≤ C



n Ewn
p (u) +

∑

x∈Ωn

|g(ox)|p




≤ C

(

Ewn
p (u) + ‖g‖pp

)

.
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Let now uj denote a sequence such that

Ewn
p (uj) ≤ I + 1/j, where I := inf

u:u=g on On

Ewn
p (u).

Then we have that

‖uj‖pp ≤ C (Ewn
p (uj) + ‖g‖pp) ≤ C (I + 1/j + ‖g‖pp) ≤ C̃

j ∈ N, i.e., uj is a uniformly bounded sequence of vectors in the finite dimensional space
Rn, and therefore there exists a subsequence—which we do not relabel—that converges
to some u∗ ∈ Rn. Since the functional Ewn

p : Rn → R is continuous, we obtain that

Ewn
p (u∗) = lim

j→∞
Ewn

p (uj) = I,

which yields existence.

The Graph Laplacian In the continuum case one considers the Euler–Lagrange equa-
tion for the functional Ep, which yields the p-Laplacian, see Section 3.1.2. Analogously,
the optimality conditions for the graph p-Dirichlet energy Ewn

p : Rn → R for p > 1 yield

∇uEwn
p (u) = 0,

where for x ∈ Ωn we have
(

∇uEwn
p (u)

)

x
=: ∆wn

p u(x) =
∑

y∈Ωn

wn(x, y)p |u(y)− u(x)|p−2 (u(y)− u(x)) ,

which is referred to as the graph p-Laplacian operator. This yields the following problem.

Problem 3.11 (Graph p-Laplacian). Given a weighted graph (Ωn, wn) and a la-
beling function g : On → R with On ⊂ Ωn, find a function u : Ωn → R such that

∆wn
p u = 0, in Ωn \ On,

u = g on On.

Since the functional Ewn
p has a unique minimizer subject to the constraints given by g and

the graph p-Laplacian is derived via optimality conditions, one expects that Problem 3.9
and Problem 3.11 are equivalent. This is formulated in the following theorem.

Theorem 3.12 (Existence and Uniqueness). Let (Ωn, wn) be a graph with non-
negative weights, that is connected to its boundary On ⊂ Ωn. Then there exists a
unique solution u : Ωn → R to Problem 3.11, which is also the unique minimizer of
Problem 3.9.

Proof. This statement can be proven similarly to [ETT15, Thm. 5.3].
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in the case p > d. We note that p-harmonic functions are actually more regular also in
the case p ≤ d, beyond the implication of the Sobolev embedding theorem. However,
this regularity does not help for the continuum limits [NSZ09; AL11; El +16].

The most relevant result for our contribution in [LIP-I] is the Γ-convergence statement
of [GS15], which considers a clustering task, via the TV functional. Here, the authors
show

1

εnn2
Ewn

1
Γ−−−→ ση E1,ρ

where the constant ση is defined as in Eq. (3.1). We review details on Γ-convergence in
Section 3.3. The important insight here, is that the graph scaling εn must not tend to
zero too fast, which is guided by the following intuition:

• Problems on the graph are non-local, communication between points takes place
on a finite scale.

• In the limit we want to obtain a local problem, communication takes place at an
infinitesimal small scale.

• If the graph scale εn tends to zero too fast, there is not enough communication
between vertices, or even worse the graph becomes disconnected.

The optimal scaling obtained in [GS15] for d ≥ 3 is given as

lim
n→∞

(
log n

n

)1/d

ε−1
n = 0, (3.7)

i.e., εn must go to zero slower than
(

(log n)
n

)1/d
. This scaling is optimal, in the sense that

the graph is disconnected with high probability if εn < λ
(

log n
n

)1/d
, see [GS15]. The

main difference here, is however, that the considered clustering task does not directly
involve a given labeling on the setOn ⊂ Ωn. This setting was considered in [ST19], where
also a generalization of the Γ-convergence statement to the case p ≥ 1 was provided.
Furthermore, the authors consider the constrained model by incorporating the boundary
conditions into the functional

Ewn,cons
p (u) :=

{

Ewn
p (u) if u = g on On,

∞ else.

In order to show Γ-convergence of the constrained functionals, an additional upper bound
on the scaling has to be assumed. This means that the graph scaling must not tend to
zero too slowly, namely

n εp
n

n→∞−−−→ 0.

Together, with Eq. (3.7) this then implies

n−1/d ≪ εn ≪ n−1/p

which is only possible if p > d. Therefore, one again obtains well-posedness of the
constrained problem, if p is large enough.
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see [Jen93]. We observe that the weighting ρ only enters via its support, therefore we
do not explicitly consider it in the following and instead assume Ω = supp(ρ) and only
write E∞. The functional E∞ is weak∗-lower semi-continuous over W 1,∞(Ω), (see, e.g.,
[BJW01, Thm. 2.6]). In the classical theory developed by Jensen in [Jen93] one considers
the following problem, which tries to minimize the sup-norm of the gradient as described
by Jensen.

Problem 3.14 (Gradient Sup-Norm Problem). For an open domain Ω ⊂ Rd,
find a function u ∈W 1,∞(Ω) such that

‖∇u‖∞ ≤ ‖∇v‖∞ for every v with (u− v) ∈W 1,∞
0 (Ω).

This problem can be seen as the limit problem for p→∞ of Problem 3.7. Additionally,
imposing boundary conditions with g : ∂Ω→ R, [Jen93] then draws the connection to so-
called Lipschitz extensions, which are the driving concept in this section. We introduce
a more general viewpoint—that does not require the notion of a gradient—later on, but
first introduce the variational problem.

The Lipschitz Constant As noticed in [Jen93] working with the Lipschitz constant
and the sup-norm of the gradient requires a careful treatment of the distance function.
Let Ω̃ be a set and let d(·, ·) be a semi-metric on Ω̃, that is d(·, ·) fulfills the requirement
of a metric up to triangle inequality. Then we define the Lipschitz constant of a function
u : V → R on a subset V ⊂ Ω̃ as

Lipd(u; V ) := sup
x,y∈V,x6=y

|u(x)− u(y)|
d(x, y)

.

If d(·, ·) denotes the Euclidean distance we omit the subscript, i.e., Lip|·−·| = Lip. Ad-
ditionally, we can introduce the space of Lipschitz functions Lipd(V ) on V via u ∈
Lipd(V )⇔ Lipd(u; V ) <∞.

Remark 3.15 (Lipschitz and Sobolev functions). If Ω ⊂ Rd is sufficiently regular—
e.g., it has Lipschitz boundary—then we have that

Lip(Ω) = W 1,∞(Ω),

where this identity is of course to be understood in the sense of equivalence classes in
Lp spaces. We refer to [Eva18] for a proof of this result. △

The above remark already relates Lipschitz with W 1,∞ functions. Often however, we
need a quantitative comparison between the Lipschitz constant and the sup-norm of the
gradient of a function. Here, it is essential which distance is chosen for the Lipschitz
constant. For an open domain Ω ⊂ Rd and u ∈W 1,∞ we have the inequality

‖∇u‖∞ ≤ sup
x 6=y

|u(x)− u(y)|
|x− y|
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which can be proven via the definition of the gradient. For the reverse inequality, one
has to take the geometry of the domain into account, namely for x, y ∈ Ω we have that

|u(x)− u(y)| ≤ ‖∇u‖∞ dΩ(x, y) (3.8)

see, e.g., [BB11, Prop9.3, Rem. 7]. Here,

dΩ(x, y) = inf

{∫ 1

0
|γ̇(t)| dt : γ ∈ C1([0, 1], Ω) with γ(0) = x, γ(1) = y

}

denotes the geodesic distance on Ω. If Ω is convex, we have that dΩ(x, y) = |x− y| for
every x, y ∈ Ω and therefore Eq. (3.8) yields Lip(u) = ‖∇u‖∞. This identity generalizes
to non-convex domains, namely LipdΩ

(u) = ‖∇u‖∞, see [Bun23, Eq. 2.12] or [BDM89,
P. 23]. Additionally, it is often necessary to define a distance measure on the closure of
Ω ⊂ Rd. In order to have a geodesic on Ω one can simply consider dΩ, see, e.g., [LIP-II],
which then yields the length space (Ω, dΩ). In the classical theory developed in [Jen93]
one alternatively considers

d̃Ω(x, y) := lim inf
(x̃,ỹ)→(x,y)

dΩ(x̃, ỹ).

The differences between these notions are demonstrated in the following example. Also
note, that in general d̃Ω is only a semi-metric on Ω since it is lacking a triangle inequality.

Example 3.16. For I = [−π, c] ∪ [c, π] with c = π/6 we consider the domain
⋃

θ∈I

B1 ((cos(θ), sin(θ))

which is visualized in Fig. 3.4 and the points x = (2 c, 1), y = (2 c,−1). The line
segment between x and y contains the point z = (2 c, 0), however z /∈ Ω. One can
show that the geodesic has the length dΩ(x, y) = 4 cos(π/6) + π ≈ 6.606 which is the
length of the dotted path in Fig. 3.4. However, we observe that

Ω =
⋃

θ∈I

B1 ((cos(θ), sin(θ))

and in particular z ∈ B1 ((c, c)), therefore dΩ(x, y) = 2.

Solutions to the Gradient Sup-Norm Problem Before generalizing the theory
of Lipschitz extension to arbitrary metric spaces, we first note, that one can explicitly
construct solutions of Problem 3.14. Namely, for given g ∈ Lip(∂Ω) the functions

g(x) := inf
y∈∂Ω

g(y) + Lipd̃
Ω

(g; ∂Ω) · d̃Ω(x, y)

g(x) := sup
y∈∂Ω

g(y)− Lipd̃
Ω

(g; ∂Ω) · d̃Ω(x, y)
(3.9)
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Problem 3.18 (Lipschitz Extensions). Let (Ω̃, d) be a metric space and O ⊂ Ω̃
be a bounded subset. For a given Lipschitz function g : O → R find a Lipschitz
function u : Ω̃→ R such that

Lipd(u; Ω̃) = Lipd(g;O).

A function u : Ω̃→ R with this property is called Lipschitz extension of g to Ω̃.

In this setting, one can again explicitly construct solutions of the Lipschitz extension
task. They are not unique, however, one has an upper and a lower bound. In fact, these
solutions are a generalization of the concept in Eq. (3.9).

Lemma 3.19. In the setting of Problem 3.18, we have that the

• Whitney (or maximal) extension: g(x) := infy∈O g(y) + Lipd(g;O) · d(x, y)
and the

• McShane (or minimal) extension: g(x) := supy∈O g(y)−Lipd(g;O) ·d(x, y)

defined for x ∈ Ω̃ are Lipschitz extensions of g to Ω̃. Moreover, let u : Ω̃→ R be any
Lipschitz extension of g, then we have that

g ≤ u ≤ g.

Proof. We refer to [Whi92] and [McS34] for the proofs of the respective result.

As demonstrated in Example 3.20, there are cases where g 6= g and therefore, Lipschitz
extensions are not unique in general. Furthermore, [ACJ04] points out that the Whitney
and McShane extension do not allow for a comparison principle, which can also be
observed in Example 3.20.

Example 3.20. Consider the set Ω̃ = [−1, 1] and O = {−1, 0, 1} with

g1(x) := 0,

g2(x) := 1/2 (x− |x|),
g3(x) := −g2.

Then we have that g2 ≤ g1 on O but

g2 > g1 in (0, 1),

see Fig. 3.5 for a visualization. Analogously, we have that g3 ≥ g1 on O but

g3 < g1 in (0, 1).
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Figure 3.5.: The maximal extension does not admit a comparison principle, as demon-
strated in Example 3.20.

Absolutely Minimizing Extension Sending p → ∞ in the variational formulation
of the p-Laplace equation yields the Lipschitz extension task, which however does not
admit unique solutions. So the question arises, which property is lost in the limit case.
For p <∞ one has the local minimization property, as explained in Section 3.1.3. This
lead Aronsson to introduce the concept of absolutely minimizing Lipschitz extension in
[Aro67], by additionally enforcing the minimizing property on every subset. A function
u ∈W 1,∞ is called absolutely minimal, iff

ess sup
x∈V

|∇u| ≤ ess sup
x∈V

|∇v| for every open V ⊂ Ω (3.10)

and every function v such that (u − v) ∈ W 1,∞
0 . In fact in [Aro67] it is also shown,

that for up denoting the solution of the corresponding p-Dirichlet problem, we have that

up
p→∞−−−→ u∞, which is absolutely minimal. In [ACJ04] it was shown, that one has an

equivalent formulation involving the Lipschitz constant. For a given Lipschitz function
g : Ω→ R we have that u∞ with (u∞ − g) ∈W 1,∞

0 (Ω) fulfills Eq. (3.10) iff

Lip(u∞; V ) ≤ Lip(v; V ) for every V ⊂ Ω

and every function v such that (u− v) ∈W 1,∞
0 (V ), see [Aro67]. In this thesis, we work

with a notion of absolute minimizers, which is equivalent to the above formulation for
convex domains in Rd. However, for our applications, it is more convenient to formulate
the problem for abstract length spaces.

Problem 3.21 (AMLEs). Let (Ω̃, d) be a length space, O ⊂ Ω̃ a closed subset and
g : O → R a Lipschitz function. Find an extension u ∈ C(Ω̃) such that u = g on O
and

Lipd(u; V ) = Lipd(u, ∂V ) for all open and connected sets V ⊂ Ω̃ \ O. (3.11)
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also follows [Lin17] to some extent. Intuitively, the∞-Laplace operator gives the second
derivative of u into the direction of its gradient. The associated infinity Laplace equation
takes the following form.

Problem 3.24. Let Ω ⊂ Rd be an open and bounded domain and g ∈ W 1,∞, then
the task is to find u such that

∆∞u = 0 in Ω,

u = g on ∂Ω.

At first glance, the definition of the ∞-Laplacian only makes sense for functions of class
C2. However, as shown in [Yu06; Aro68] if u ∈ C2(Ω) fulfills ∆∞u = 0 in Ω, then
either ∇u 6= 0 in the whole domain or it is constant. However, one can easily construct
boundary values g that are not constant but force the solution u to have critical points
inside the domain, see, e.g., [Lin16]. Therefore, one requires a different concept, where
one typically employs viscosity solutions. For the ∞-Laplacian, this strategy was first
used in [BDM89], where the term viscosity is motivated by similar concepts for the
Burgers’ equation [Bur48]. First we consider subsolutions, where we take any φ ∈ C2(Ω)
that touches u from above at any x ∈ Ω, i.e.,

u < φ in Ω \ {x} and u(x) = φ(x). (3.12)

Since φ is C2 we can shift the application of ∆∞ onto this function and then say u is a
subsolution if for any φ fulfilling Eq. (3.12) we have

−∆∞φ(x) ≤ 0.

Note, that the∞-Laplacian is only evaluated at the touching point x ∈ Ω. Analogously,
we say u is a supersolution if for any φ touching from below we have −∆∞φ(x) ≥ 0. If
u is both a sub- and a supersolution, we say it is a solution in the viscosity sense.

Remark 3.25. The concept of viscosity solutions can similarly be applied to the p-
Laplacian or even a more general class of differential operators, see [Lin17]. We also
note, that one has the consistency result, that if u ∈ C2 is a viscosity solution, we also
have that ∆∞u = 0 in the classical sense. △
Solving the ∞-Laplace equation in the viscosity sense is in fact equivalent to being
absolutely minimizing, which we state in the following theorem taken from [ACJ04]

Theorem 3.26 ([ACJ04, Thm. 4.13]). A function u ∈ C(Ω) fulfills ∆∞u = 0 in
Ω in the viscosity sense iff it is an absolutely minimizing function on Ω.

In Problem 3.24 we only consider the case where boundary values are given on ∂Ω.
However, for our application we would rather have a Dirichlet condition on the setO ⊂ Ω,
since it often does not make sense to prescribe boundary values on ∂Ω. Therefore, we
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assume Neumann boundary conditions on this boundary and then consider the problem

∆∞u = 0 in Ω \ O,

∂u

∂ν
= 0 on ∂Ω \ O,

u = g on O.

(3.13)

In the case that Ω is smooth and convex, from [ASS11, Lem. 3.1] we have that u ∈ C(Ω)
is an AMLE of g : O → R to Ω iff it fulfills Eq. (3.13).

We can now also address the question of uniqueness, where we state the following
famous result of Jensen [Jen93].

Theorem 3.27 ([Jen93]). Let u, v ∈ C(Ω) be two viscosity solutions of the ∞-
Laplacian, then we have

max
Ω

(u− v) = max
∂Ω

(u− v).

Originally proven by Jensen in [Jen93], there exists a very simple proof by Armstrong
and Smart [AS10] employing the comparison with cones which we detail in the following
paragraph.

Comparison with Cones As shown in [ACJ04] the concept of absolutely minimizing
extensions is equivalent to so-called comparison with cones. For some metric d(·, ·) a
cone function is defined as

x 7→ a d(x, z) + c

where z ∈ Ω denotes the origin or cone tip, a ≥ 0 its opening angle and c ∈ R some
offset. The property we consider in the following, basically asks if a function u is smaller
than a cone on the boundary of some set V not including the tip z, then it should be
smaller also in the interior of the domain. This means for any a ≥ 0, c ∈ R and z /∈ V
we have the implication

[u ≤ a d(·, z) + c on ∂V ] ⇒ [u ≤ a d(·, z) + c in V ] .

One can omit the explicit use of the offset c ∈ R and equivalently consider the property

max
∂V

(u− a d(·, z)) = max
V

(u− a d(·, z)) . (3.14)

In the Euclidean case, cone functions are infinity harmonic away from their cone tip, since
they are constant in the direction of their gradient. We make the explicit computation
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below

∂xi
|x− z| = xi − zi

|x− z|

∂xixj
|x− z| = −(xi − zi) (xj − zj)

|x− z|3
for i 6= j,

∂2
xi
|x− z| = 1

|x− z|3
∑

j 6=i

(xj − zj)2,

⇒ ∆∞ |x− z| =
∑

i

(xi − zi)
2

|x− z|5
∑

j 6=i

(xj − zj)2

−
∑

i6=j

(xi − zi)
2 (xj − zj)2

|x− z|5
= 0.

In the Euclidean case as in [ACJ04] one says a function fulfills comparison with cones from
above, if it fulfills Eq. (3.14) in Ω for every subset V ⊂⊂ Ω, every a ≥ 0 and z ∈ Rn \V .
We say u fulfills comparison with cones from below if −u fulfills comparison from above.
If it fulfills both comparisons from above and below, we say it fulfills comparison with
cones. Here, [ACJ04, Prop. 2.1] shows the following equivalence to being absolutely
minimizing, which however mainly focuses on the Euclidean case. Our setting slightly
deviates from the Euclidean one, where in [LIP-II] we consider the following notion.

Definition 3.28 ([LIP-II, Def. 4.1]). We shall say that an upper semicontinuous
function u ∈ USC(Ω) satisfies CDF from above in Ω \ O, if for each relatively open
and connected subset V ⊂ Ω \ O, any x0 ∈ Ω \ V and a ≥ 0 we have

max
V

(u− a dΩ(x0, ·)) = max
∂relV

(u− a dΩ(x0, ·)).

Similarly, we say u ∈ LSC(Ω) satisfies CDF from below in Ω\O, if for each relatively
open and connected subset V ⊂ Ω \ O, any x0 ∈ Ω \ V and a ≥ 0 we have

min
V

(u + a dΩ(x0, ·)) = min
∂relV

(u + a dΩ(x0, ·)).

We say u ∈ C(Ω) satisfies CDF if it satisfies CDF from above and below.

This definition is a special case of the notion in [JS06]. Therein, the authors also show
the equivalence to the absolutely minimizing property, which we state in the following.

Theorem 3.29 ([JS06, Prop. 4.1]). A function u ∈ C(Ω) is absolutely minimizing
iff it fulfills comparison with cones in Ω.

Therefore, we can rewrite Problem 3.21 employing the comparison with cones condition.
Our metric space is given as (Ω, dΩ), where Ω ⊂ Rn is some open set in the Euclidean
sense, therefore we have a separable length space, where Theorem 3.23 yields existence
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of solutions for Problem 3.21. Concerning uniqueness, we refer to [Per+09] which were
the first to prove uniqueness in the length space setting. For a more general result, we
refer to [NS12]. In our work, we obtain uniqueness by a careful adaption of the proof in
[AS10].

Proposition 3.1 ([LIP-II, Prop. 4.11]). Consider the metric space (Ω, dΩ), then
Problem 3.21 has at most one solution.

3.2.2. Graph Lipschitz Extensions

We now consider the limit p → ∞ of Problem 3.9 in the graph case. Analogously to
Section 3.2.1 we derive

lim
p→∞

(

Ewn
p (u)

)1/p
= max

x,y∈Ωn

wn(x, y) |u(y)− u(x)| =: Ewn
∞ (u)

which extends the graph p-Dirichlet energy to the case p =∞. Again, we notice struc-
tural similarities to the continuum version E∞.

Remark 3.30. Informally speaking, the functional Ewn
∞ combines elements of a gradient

and a Lipschitz constant. Assuming that wn(x, y) relates to 1/ |x− y| we see that the
finite difference approximation resembles a Lipschitz constant. However, in the limit
n→∞ the weighting wn(x, y) has a localizing property which fits the interpretation of
a gradient better. △
This functional yields the graph Lipschitz extension problem.

Problem 3.31 (Graph Energy Minimization). Given a weighted graph (Ωn, wn)
and a labeling function g : On → R, for On ⊂ Ωn we consider the problem

min
u:Ωn→R

Ewn
∞ (u) subject to u(x) = g(x) for all x ∈ On.

Since the weighting function wn : Ωn×Ωn → R
+
0 does not induce a metric, Problem 3.31

does not directly fit the framework of the abstract Lipschitz extension in Problem 3.18.
However, we can consider paths in (Ωn, wn), connecting arbitrary x, y ∈ Ωn, i.e., γ ∈
Ω×k

n , x = γ1, . . . , γk = y such that

wn(γi, γi+1) > 0 for all i = 1, . . . , k − 1,

for which we define the length as

|γ| =
k−1∑

i=1

wn(γi, γi+1)−1.

This yields the metric space (Ωn, dwn), where dwn : Ωn × Ωn → R is defined as

dwn(x, y) := min {|γ| : γ is a path in (Ωn, wn) from x to y} . (3.15)
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Remark 3.32. We note that it is important to only consider non-negative weights,
otherwise any loop with a negative “length” would decrease the length of the whole path
arbitrarily. Restricting ourselves to non-negative weights, we can easily see that the
minimum in Eq. (3.15) is indeed attained. △
With this definition, we can consider the Lipschitz extension task of g : On → R to Ωn

within the metric space (Ωn, dwn), i.e., within the setting of Problem 3.18. Therefore,
the question arises, whether the minimization problem in Problem 3.31 is equivalent to
the metric Lipschitz extension problem, for which we have the following lemma.

Lemma 3.33. For a graph (Ωn, wn) with non-negative weights and a function u :
Ωn → R we have that

Ewn
∞ (u) = Lipdwn

(u).

Furthermore, for On ⊂ Ωn and a function g : On → R and we have that

g = u on On ⇒ Lipdwn
(g;On) ≤ Lipdwn

(u).

Proof. Step 1: We show that Lipdwn
(u) ≤ Ewn

∞ (u).
We can choose a path γ ∈ Ω×k

n such that

Lipdwn
(u) =

u(γ1)− u(γk)

|γ| .

The path γ allows to compare vertices γ1, γk ∈ Ωn that are not necessarily neighbors in
the graph. However, each consecutive vertices in the path are neighbors in the graph
and therefore we have

wn(γi, γi+1) |u(γi+1)− u(γi)| ≤ Ewn
∞ (u) for all i = 1, . . . , k − 1. (3.16)

We now employ an elementary result for numbers ai ∈ R
+
0 , bi ∈ R+, i = 1, . . . m ∈ N,

namely

[ai · bi ≤ c ∈ R for i = 1, . . . , m] ⇒
∑m

i=1 ai
∑m

i=1 b−1
i

≤ c (3.17)

which can be seen as follows

ai · bi ≤ c for i = 1, . . . , m,

⇒ ai ≤ b−1
i · c for i = 1, . . . , m,

⇒
m∑

i=1

ai ≤
(

m∑

i=1

b−1
i

)

· c,

⇒
∑m

i=1 ai
∑m

i=1 b−1
i

≤ c.
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This then yields

|u(γ1)− u(γk)|
|γ| ≤

∑k−1
i=1 |u(γi)− u(γi+1)|

|γ| =

∑k−1
i=1 |u(γi)− u(γi+1)|
∑k−1

i=1 wn(γi, γi+1)−1
≤ Ewn

∞ (u)

where in the last inequality we employed Eq. (3.17) together with Eq. (3.16).
Step 2: We show that Lipdwn

(u) ≥ Ewn
∞ (u).

Let x, y ∈ Ωn, then we know that dw(x, y) ≤ wn(x, y)−1 and therefore

|u(x)− u(y)|wn(x, y) ≤ |u(x)− u(y)|
dw(x, y)

≤ max
x̄,ȳ∈Ωn

|u(x̄)− u(ȳ)|
dw(x̄, ȳ)

= Lipdwn
(u).

Since this holds for arbitrary x, y ∈ Ωn we have that

Ewn
∞ (u) = max

x,y∈Ωn

|u(x)− u(y)|wn(x, y) ≤ Lipdwn
(u).

Step 3: We show that Lipdwn
(g;On) ≤ Lipdwn

(u).
If g = u on O this simply follows since the maximum for the Lipschitz constant of u is
taken over a larger set. Indeed, we have that

Lipdwn
(u) = max

x,y∈Ωn

|u(x)− u(y)|
dw(x, y)

≥ max
x,y∈On

|u(x)− u(y)|
dw(x, y)

= max
x,y∈On

|g(x)− g(y)|
dw(x, y)

= Lipdwn
(u;On).

This lemma shows that the abstract Lipschitz extension task considered on the metric
space (Ωn, dwn) and the Graph ∞-Dirichlet minimization task are indeed equivalent.
Therefore, we also have that the Whitney and McShane extensions

g(x) = inf
y∈On

g(y) + dwn(x, y)

g(x) = sup
y∈On

g(y)− dwn(x, y)

are solutions on the graph. Analogously, the problem does not admit unique solutions.

Absolutely Minimizing Graph Extensions Similarly to Section 3.2.1 we can now
consider absolutely minimizing extensions. However, the problem in Problem 3.21 uses a
notion of a boundary and it is not directly clear how to infer this concept to the discrete
set Ωn. Therefore, we define what we mean by “boundary” on a graph.

Definition 3.34. Let (Ωn, wn) be a weight graph and let V ⊂ Ωn be a subset, then
we define

• the exterior boundary as ∂ext := {x ∈ Ωn \ V : wn(x, y) > 0 for some y ∈ V },
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• the interior boundary as ∂int := {x ∈ V : wn(x, y) > 0 for some y ∈ Ωn \ V }.

The closure of V is then defined as V
ext

:= V ∪∂ext and the interior as
◦

V
int

:= V \∂intV .

We note that it is not possible to define a topology on Ωn that would yield the above
notions. Namely, the only admissible topology in our case would be the discrete topology,
i.e., 2Ωn . In this topology the only closed sets are ∅ and Ωn which is not useful for the
applications in the following. Using the Kuratowski closure axioms [Kur22] we remark
that the exterior closure on the graph is a so-called pre- or Čech closure, [ČFK66]. For
a set X , a mapping cl : 2X → 2X is called Čech closure, if the following conditions hold,

• cl(∅) = ∅ (cl preserves the empty set),

• V ⊂ cl(V ) for all V ⊂ X (cl is extensive),

• cl(V1 ∪ V2) = cl(V1) ∪ cl(V2) for all V1, V2 ⊂ X (cl preserves binary unions).

Lemma 3.35. The exterior closure on a weighted graph (Ωn, wn) is a preclosure or
Čech closure.

Proof. We first see that ∅ext
= ∅ and that V ⊂ V

ext
for every subset V ⊂ Ωn, i.e., the

above defined closure preserves the empty set and is extensive. Furthermore, for two
sets V1, V2 ⊂ Ωn we have that

x ∈ ∂ext(V1 ∪ V2)

⇔ [x /∈ V1 ∪ V2] ∧ [∃y ∈ V1 ∪ V2 : wn(x, y)] 6= 0

⇔ [x /∈ V1 ∪ V2] ∧
(

[∃y ∈ V1 : wn(x, y) 6= 0] ∨ [∃y ∈ V2 : wn(x, y) 6= 0]

)

⇔
[

x ∈ ∂extV1 \ V2

]

∨
[

x ∈ ∂extV2 \ V1

]

⇔ x ∈ (∂extV1 ∪ ∂extV2) \ (V1 ∪ V2).

We have shown that ∂ext(V1 ∪ V2) = (∂extV1 ∪ ∂extV2) \ (V1 ∪ V2). Therefore, we have
that

V1 ∪ V2
ext

= V1 ∪ V2 ∪ ∂ext(V1 ∪ V2)

= V1 ∪ V2 ∪ ((∂extV1 ∪ ∂extV2) \ (V1 ∪ V2))

= V1 ∪ ∂extV1 ∪ V2 ∪ ∂extV2

= V1
ext ∪ V2

ext
.

This shows that the closure preserves binary unions and therefore we have shown, that
it is indeed a Čech closure.
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for every z ∈ Ωn \V and every a ≥ 0. We say that u fulfills comparison with distance
function from below (CDFB) on a subset U ⊂ Ωn if for every V ⊂ U we have

min
V

ext
(u + a dwn(·, z)) = min

∂extV
(u + a dwn(·, z)) (CDFB)

for every z ∈ Ωn \ V and every a ≥ 0.

Analogously to the continuum case, we say that a function fulfills comparison with
distance functions, if it fulfills both, (CDFA) and (CDFB).

The Graph ∞-Laplacian We can also obtain the limit of the Graph p-Laplace op-
erator via the following calculation,

∆wn
p u(x) = 0

⇔
∑

y∈Ωn

wn(x, y)p |u(y)− u(x)|p−2 (u(y)− u(x)) = 0

⇔
∑

y:u(x)≤u(y)

wn(x, y)p(u(y)− u(x))p−1 =

∑

y:u(x)>u(y)

wn(x, y)p(u(x)− u(y))p−1.

Taking the terms on the left and right-hand side to the power of 1/p and then sending
p→∞ yields

max
y:u(x)≤u(y)

wn(x, y)(u(y)− u(x)) = max
y:u(x)>u(y)

wn(x, y)(u(x)− u(y))

⇔ max
y∈Ωn

wn(x, y)(u(y)− u(x)) = − min
y∈Ωn

wn(x, y)(u(y)− u(x)).

This calculation motivates the definition of the graph infinity Laplacian

∆wn
∞ u(x) := max

y∈Ωn

wn(x, y)(u(y)− u(x)) + min
y∈Ωn

wn(x, y)(u(y)− u(x)),

which then allows to formulate the associated problem as an extension of Problem 3.11.

Problem 3.38 (Graph ∞-Laplacian). Given a weighted graph (Ωn, wn) and a
labeling function g : On → R with On ⊂ Ωn, find a function u : Ωn → R such that

∆wn
∞ u = 0, in Ωn \ On,

u = g on On.

To establish existence of solutions of the problem above, one can employ the Per-
ron method [Per23]. Alternatively, one can establish the equivalence to so-called lex-
minimizers and show existence as in [Kyn+15, Thm. 3.3]. Uniqueness is a consequence
of the following theorem from [Cal19], which is similar to the uniqueness result of Jensen
in Theorem 3.27.
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Theorem 3.39 ([Cal19, Thm. 3.1]). Let (Ωn, wn) be a graph connected to the
boundary On ⊂ Ωn and consider u, v : Ωn → R such that

∆wn
∞ u ≤ 0 ≤ ∆wn

∞ v in Ωn \ On.

Then we know that

max
Ωn

(u− v) = max
On

(u− v)

Relations Between the Graph Lipschitz Extensions We now establish the con-
nection between the different notions of Lipschitz extensions on the graph. Compared
to the continuum case, we do not establish the full equivalences, but only the necessary
implications required for the convergence proofs in [LIP-II]. Namely, in [LIP-II] we show
that if u solves the graph ∞-Laplace, then it is a graph AMLE and fulfills comparison
with graph distance functions.

Lemma 3.40 ([LIP-II, Thm. 3.2, Prop. 3.8]). Let (Ωn, wn) be a weighted
connected graph and g : On → R be a given function for On ⊂ Ωn. Furthermore, let
u : Ωn → R be graph infinity harmonic on Ωn \ On with boundary conditions given
by g, i.e., u solves Problem 3.38 then we have that

• u is a graph AMLE, i.e., u solves Problem 3.36,

• u fulfills comparison with cones.

Proof. Both of the statements are proven in [LIP-II]. Let u be such that

∆wn
∞ u = 0 in Ωn \ On

u = g on On.

From [LIP-II, Prop. 3.8] we have that u is a graph AMLE. Furthermore, form [LIP-II,
Thm. 3.2] we have that u fulfills comparison with cones. In fact, [LIP-II, Thm. 3.2],
shows a more refined statement, namely that

−∆wn
∞ u ≤ 0⇒ u fulfills (CDFA),

−∆wn
∞ u ≥ 0⇒ u fulfills (CDFB).
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3.3. Gamma Convergence: [LIP-I]

In this section, we present the main results of [LIP-I]. This work considers the limit
of the basic Lipschitz extension from the graph Problem 3.31 to the continuum case
Problem 3.18. As detailed in the previous sections, both of these problems do not admit
unique solutions, but it is still meaningful to study the convergence in the infinite data
limit. We start by specifying the setting and recalling the concept of Γ-convergence and
then state the main results.

Main Contributions in [LIP-I] We first prove Γ-convergence of the functionals Ewn
∞

to their continuum counterpart E∞. This result can be seen as the extension of the results
in [GS15; ST19] to the case p = ∞. Here, we employ a different type of metric as we
detail in the following. Furthermore, we identify the optimal graph scaling, which in
this case is derived in a deterministic manner. The key difference to [GS15; ST19] is
that we can work with any point clouds and not only i.i.d. points. The inherent reason
is that L∞ problems only consider mass in a qualitative not in a quantitative way. We
then establish a compactness result, that allows us to infer convergence of minimizers.
Finally, we apply this theory to the ground state problem.

Parts of this work were motivated by the findings in TR’s master thesis [Roi21]. The
convergence result in the latter, was however not fully established and therefore [LIP-I]
constitutes a non-trivial expansion and also correction. We want to highlight two major
differences:

• The domain Ω in [Roi21] was assumed to be convex. This restriction was omitted
in [LIP-I] by identifying a class of locally convex domains, that prevent internal
sharp corners.

• We are able to work with asymptotic boundary conditions, i.e., the boundary
conditions for each graph problem do need to be the same as in the continuum.
They only need to approximate them in some sense.

3.3.1. Setting and Preliminaries

We detail the concrete setting of [LIP-I] and provide some background on the employed
notions.

Γ-Convergence Originally, the concept of Γ-convergence dates back to De Giorgi
[DF75] as a type of variational convergence. We refer to [Bra02; Dal12] for a detailed
overview on this notion and related topics. While Γ-convergence was successfully em-
ployed in a pure continuum setting for a longer time (see, e.g., [Mod77]), it was more
recently used to prove convergence from a discrete to a continuum functional [CGL10;
BY12; VB+12].
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Definition 3.41 ([DF75]: Γ-convergence). Let X be a metric space and let Fn :
X → [−∞,∞] be a sequence of functionals. We say that Fn Γ-converges to the
functional F : X → [−∞,∞] if

(i) (liminf inequality) for every sequence (x)n∈N ⊂ X converging to x ∈ X we
have that

lim inf
n→∞

Fn(xn) ≥ F (x);

(ii) (limsup inequality) for every x ∈ X there exists a sequence (x)n∈N ⊂ X
converging to x and

lim sup
n→∞

Fn(xn) ≤ F (x).

The most relevant reference for [LIP-I] was the disruptive work presented by García
Trillos and Slepčev in [GS15], which is also commented on in Section 3.1. Among other
important ideas and notions, we want to highlight two ingredients that directly influenced
[LIP-I]:

• Γ-convergence on a common metric space, that allows to compare graph functions
with continuum functions.

• The proof strategy of first considering the discrete to non-local convergence and
then non-local to continuum.

Employing Γ-convergence the authors in [ST19] were able to prove convergence of min-
imizers of the graph p-Dirichlet problem. Here, one can employ the convenient result
that Γ-convergence implies convergence of minimizers.

Lemma 3.42 ([Bra02, Thm. 1.21] Convergence of Minimizers). Let X be a
metric space and Fn : X → [0,∞] a sequence of functionals Γ-converging to F →
X : [0,∞] which is not identically +∞. If there exists a relatively compact sequence
(xn)n∈N such that

lim
n→∞

(

Fn(xn)− inf
x∈X

Fn(x)

)

= 0,

then we have that

lim
n→∞

inf
x∈X

Fn(x) = min
x∈X

F (x)

and any cluster point of (xn)n∈N is a minimizer of F .
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where the second term does not vanish, because in general On * O. We assume that
we have a Lipschitz continuous function g : Ω → R such that for each n the boundary
conditions are given by the function gn = g|On . In total, we then need to control the
graph resolution

δn := max{dH(Ωn, Ω), dH(On,O)}.

This then allows us to formulate our scaling assumption, namely we require that the
graph resolution tends to zero faster than the graph scaling

δn

εn
−→ 0, n→∞, (3.19)

which has similarly employed in [Pen99b; Pen99a]. This is the weakest possible assump-
tion that ensures connectivity of the graph in the limit n→∞. However, compared to
Eq. (3.7) it is more of deterministic nature, since we do not assume anything on how Ωn

is created. In case of a i.i.d. point cloud, one can show that

δn ∼
(

log n

n

)1/d

,

almost surely as n→∞, see [Pen99a], which is the setting in [GS15].

Assumptions on the Domain As we mention in the introduction, we do not need
to restrict ourselves to convex domains. However, for our convergence results, it is
important that the geodesic distance

dΩ(x, y) = inf {len(γ) : γ : [a, b]→ Ω is a curve with γ(a) = x, γ(b) = y} ,

converges to the Euclidean distance if x goes to y. We formulate this in the following
assumption

lim
δ↓0

sup

{
dΩ(x, y)

|x− y| : x, y ∈ Ω, |x− y| < δ

}

≤ 1. (3.20)

The inherent reason that we need to enforce this, is that edges in the graph are allowed
to communicate via their direct Euclidean distance, even if this line does not lie in Ω.
While it would be easier to also consider the geodesic distance on the graph, this is
unrealistic in many applications since we do not have access to the concrete shape of Ω.
Most importantly, Eq. (3.20) prohibits sharp internal corners in the domain, see Fig. 3.8.
Furthermore, note that we consider the geodesic distance dΩ on the open domain Ω, not
on its closure. Therefore, we also exclude situations of a touching boundary, as in
Fig. 3.4. In [LIP-I] we also provide examples of domains fulfilling this condition.
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Lemma 3.44 ([LIP-I, Lem. 2]). For two probability measures µ, ν ∈ P(Ω), a
measurable map T : Ω→ Ω which fulfills

(i) ν << T#µ,

(ii) T#µ << ν,

and for a measurable function u : Ω→ R we have that

ν - ess sup
x∈Ω

u(x) = µ - ess sup
y∈Ω

u(T (y)).

We want to compare the discrete measure µn = 1
n

∑

x∈Ωn
δx to the target measure µ. In

this setting, a closest point projection pn : Ω→ Ωn

pn(x) ∈ argminy∈Ωn
|x− y|

fulfills the assumption of Lemma 3.44. This allows us to extend the functional Ewn
∞ in

Problem 3.31 to L∞ via

Ewn
∞ (u) =

{

Ewn
∞ (u) if u = u ◦ pn, for some u : Ωn → R,

∞ else ,
(3.21)

which was similarly done in [GS15; ST19]. Additionally, we incorporate the constraint
on On in Problem 3.31 via

Ewn,cons
∞ (u) :=

{

E(u) if u = g on On,

∞ else,

with the analogous extension to L∞ as in Eq. (3.21). We can now state the first main
result of [LIP-I] that provides the Γ-convergence of the graph functionals.

Theorem 3.45 (Discrete to continuum Γ-convergence). Let Ω ⊂ Rd be a do-
main satisfying (3.20), let the kernel fulfill (K1)-(K3), then for any null sequence
(εn)n∈N ⊂ (0,∞) which satisfies the scaling condition (3.19) we have

En,cons
∞

Γ−→ ση Econs. (3.22)

The main proof strategy here is similar to the one in [GS15; ST19]. Namely, one defines
the non-local functional

Eε
∞(u) :=

1

ε
ess sup
x,y∈Ω

{ηε(|x− y|) |u(x)− u(y)|} , ε > 0

for which we show that for any sequence εn → 0 we have

Eεn
∞

Γ−→ ση E∞,
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see [LIP-I, Thm. 4]. For the liminf inequality of the discrete functionals, one has to
take special care of points x, y ∈ Ωn where ηεn(|pn(x)− pn(y)|) = 0. We want to bound
Ewn

∞ from below by Eεn
∞ for which we have to permit significant communication of x

and y whenever pn(x) and pn(y) do not communicate. This can be done, (temporarily
assuming η is constant on [0, t]) by introducing a smaller length scale ε̃ such that

(i) |pn(x)− pn(y)| > tεn ⇒ |pn(x)− pn(y)| /εn < |x− y| /ε̃,

(ii) limn→∞ ε̃/ε = 1.

As shown in [LIP-I] the choice ε̃ = ε−2δ/t fulfills (i). So in order to fulfill (ii) we obtain
the scaling condition

lim
n→∞

δn

εn
= 0⇒ lim

n→∞

εn − 2δn/t

εn
= 1− 2

t
lim

n→∞

δn

εn
= 1.

This then allows us to prove the liminf inequality since Ewn
∞ (un) ≥ ε̃n

εn
E ε̃n

∞ (un) holds.
The limsup inequality can then be shown by choosing the constant sequence, with some
additional care for the changing constraint set On.

3.3.3. Convergence of Minimizers

The convenient aspect of Γ-convergence is, that under additional compactness properties
it directly shows convergence of minimizers, [Bra02, Thm. 8]. This yields the second
main result in [LIP-I].

Theorem 3.46 ([LIP-I, Thm. 2]). Let Ω ⊂ Rd be a domain satisfying (3.20), let
the kernel fulfil (K1)-(K3), and (εn)n∈N ⊂ (0,∞) be a null sequence which satisfies
the scaling condition (3.19). Then any sequence (u)n∈N ⊂ L∞(Ω) such that

lim
n→∞

(

En,cons
∞ (un)− inf

u∈L∞(Ω)
En,cons

∞ (u)

)

= 0

is relatively compact in L∞(Ω) and

lim
n→∞

En,cons
∞ (un) = min

u∈L∞(Ω)
ση Econs

∞ (u).

Furthermore, every cluster point of (un)n∈N is a minimizer of Econs.

In order to show the compactness in the above theorem, one employs the following
lemma.

Lemma 3.47 ([LIP-I, Lem. 4]). Let (Ω, µ) be a finite measure space and K ⊂
L∞(Ω; µ) be a bounded set w.r.t. ‖·‖L∞(Ω;µ) such that for every ε > 0 there exists
a finite partition {Vi}ni=1 of Ω into subsets Vi with positive and finite measure such
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that

µ - ess sup
x,y∈Vi

|u(x)− u(y)| < ε ∀u ∈ K, i = 1, . . . , n, (3.23)

then K is relatively compact.

Remark 3.48. The proof of this statement employs ideas from [DS88, Lem. IV.5.4] and
appeared similarly in TR’s master thesis. However, therein the statement was slightly
wrong, which was corrected in [LIP-I]. △
This lemma is the used to show that if a sequence un fulfills

sup
n∈N

Ewn,cons
∞ (un) <∞,

then it is relatively compact.

3.3.4. Application to Ground States

The convergence results of the previous paragraphs can be applied to the ground states
problem. Namely, for a p-homogeneous functional E—i.e., E(cu) = |c|p E(u) for c ∈ R—
we consider the following problem

min

{

E(u) : inf
v∈argmin E

‖u− v‖ = 1

}

,

as studied in [BKB20]. In our setting, if g ≡ 0 then the functionals Ewn,cons
∞ and Econs

∞

are 1-homogeneous. In [LIP-I, Thm. 5] we first show that the up to a global sign unique
ground state of Econs

∞ is a multiple of the distance function

dO(x) = inf
y∈O

dΩ(x, y).

We then employ the Γ-convergence results to show the convergence of discrete ground
states to the above continuum one.

Theorem 3.49 ([LIP-I, Thm. 6]: Convergence of Ground States). Under the
conditions of [LIP-I, Thm. 1] let the sequence (un)n∈N ⊂ L∞(Ω) fulfill

un ∈ argmin {Ewn,cons
∞ (u) : u ∈ L∞(Ω), ‖u‖Lp = 1} .

Then (up to a subsequence) un → u in L∞(Ω) where

u ∈ argmin {Econs
∞ (u) : u ∈ L∞(Ω), ‖u‖Lp = 1}

and it holds

lim
n→∞

Ewn,cons
∞ (un) = ση Econs

∞ (u). (3.24)
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3.4. Uniform Convergence of AMLEs: [LIP-II]

In the previous section, we consider the limit of the Lipschitz extension task. The major
limitations of this work are:

• The considered problem does not admit unique solutions. The Γ-convergence
framework does not directly allow us to select certain minimizers, e.g., AMLEs,
and consider the respective limit to continuum AMLEs.

• We can only show qualitative convergence results. It is not directly possible to
prove quantitative statements and convergence rates.

These drawbacks are the main motivation for the work presented in this section. We
first state the main contributions and then provide details below.

Main Contributions in [LIP-II] We prove a quantitative convergence results for
discrete AMLEs to their continuum counterpart. Convergence was already established
in [Cal19], however employing a more restrictive scaling assumption and only allowing
for smooth kernels η, which was due to the viscosity techniques employed. By using the
AMLE characterization of infinity harmonic functions, we are able to show convergence
rates under the weakest scaling assumption and allowing for very general kernels. This is
done via a using a comparison principle on a homogenized length scale. The key insight,
we obtain in this work, is that convergence rates for graph distance functions imply rates
for AMLEs. Finally, we examine some numerical convergence rates.

3.4.1. Setting

Conceptually, the basic setting is very similar to the previous one in Section 3.3. We
highlight some minor differences in the paragraphs below.

Assumptions on the Kernel We employ (K2) and (K3) from [LIP-I] and set tη = 1
for simplicity. However, we do not need to assume continuity in 0, i.e. (K1). Instead,
we additionally require the following assumption:

(K4) We assume that there exists t0 ∈ (0, 1], chosen as the largest number with this
property with ση = t0η(t0).

Assuming (K2) to (K4) allows for the so-called singular weights

η(t) =
1

tp
1[0,1](t)

with p ∈ (0, 1]. As noted in [LIP-II] the above assumption is not redundant, since for
example the function

η(t) =
1

t
1

t−1
+2

1[0,1](t), t > 0,

violates (K4), while fulfilling (K2) and (K3).
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Assumptions on the Domain Again we take the concept from [LIP-I], where we
assume asymptotic convexity. We alter the Eq. (3.20) slightly to be more quantitative.
We assume that there exists a function φ : [0,∞) → [0,∞) with limh↓0

φ(h)
h = 0 and

rΩ > 0 such that

dΩ(x, y) ≤ |x− y|+ φ(|x− y|), for all x, y ∈ Ω : |x− y| ≤ rΩ. (3.25)

Furthermore, for ε > 0 we define σφ(ε) = sup0<s≤ε
φ(s)

s . Note that we now employ the
geodesic distance dΩ, i.e., paths can also lie on the boundary of Ω.

Assumptions on the Labeling Function The assumption on the labeling for each
sub-problem is weakened even further. Namely, we do not assume the labels for each
discrete problem to be given by the continuum constraint g : O → R. Instead, we require

(C1) supn∈N Lipn(gn;On) <∞ and LipΩ(g;O) <∞,

(C2) there exists C > 0 such that for all z ∈ O it holds that |gn(πOn(z))− g(z)| ≤ Cδn.

This assumption on the labeling function, is also connected to the no-noise and infinite
data limit, see, e.g., [Hof+20].

3.4.2. Convergence Results

In [LIP-I] the proof strategy relied on Γ-convergence. In [LIP-II] we use the comparison
with cones characterization of AMLEs together with comparison principles for the infin-
ity Laplace operator. An important strategy is to consider the homogenized operator

∆τ
∞u(x) =

1

τ2

(

inf
y∈Bτ (x)

(u(y)− u(x)) + sup
y∈Bτ (x)

(u(y)− u(x))

)

(3.26)

on the length scale τ > 0, which is typically larger than the graph scale ε. The results in
the following are non-asymptotic, for which also our scaling assumption reads as follows,

ε ≤ rΩ,

ε

τ
<

1

2
,

σφ(ε) +
δn

ε
≤ t0

4 + 2σφ(ε)

(

1− 2
ε

τ

)

,

(3.27)

for some n ∈ N. We detail the concrete appearance of the operator ∆τ
∞ in the following

paragraphs, and first state the main general result. We employ the notation a . b, which
means that a ≤ C b for some constant C > 0 depending only on g and η, but not on n, ε
or δ.
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Theorem 3.50 ([LIP-II, Thm. 2.2]). Let τ > 0, let the kernel and data fulfill
(K2) to (K4), (C1) and (C2) and let (3.25) and (3.27) hold. Let un : Ωn → R solve
Problem 3.36, and u : Ω→ R solve Problem 3.21.

1. It holds

sup
Ωn

|u− un| = sup
Ω

|u− un| . τ +
3

√

δn

ετ
+

ε

τ2
+

φ(ε)

ετ
.

2. If infΩ |∇u| > 0, then it even holds

sup
Ωn

|u− un| = sup
Ω

|u− un| . τ +
δn

ετ
+

ε

τ2
+

φ(ε)

ετ
.

Here, un : Ω→ R denotes the piecewise constant extension of un, as in (3.21).

We observe that in the case where |∇u| is bounded away from zero, the rate improves,
which is due to a perturbation we briefly mention in the following. The parameter τ
appears due to our proof strategy and does not have a concrete meaning for the final
problem. An immediate consequence is that for an arbitrary τ > 0, we obtain

sup
Ωn

|u− un| < τ

by sending δn, εn to zero as n→∞ employing the weakest scaling assumption δn ≪ εn.
Since τ > 0 was arbitrary, this already yields convergence of discrete AMLEs under the
weakest scaling assumption [LIP-II, Cor. 2.3]. In order to obtain the convergence rates
involving only δ and ε we can “optimize” over τ . We first consider the small length scale
regime, which in our case includes any graph scaling such that ε . δ

5/9
n . In that case we

can choose τ = ((δn + φ(ε))/ε)1/4 to obtain

sup
Ωn

|u− un| = sup
Ω

|u− un| .
(

δn + φ(ε)

ε

) 1
4

.

If |∇u| is bounded away from zero, this can be improved to

sup
Ωn

|u− un| = sup
Ω

|u− un| .
(

δn + φ(ε)

ε

) 1
2

.

where we consider the regime ε . δ3/5. In the convex case, i.e., φ ≡ 0 we therefore
directly obtain the rates

inf
Ω
|∇u| = 0 :

(

δn

δ
5/9
n

) 1
4

= δ
1
9
n ,

inf
Ω
|∇u| > 0 :

(

δn

δ
3/5
n

) 1
2

= δ
1
5
n ,
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see [LIP-II, Cor. 2.4]. In fact the convexity assumption is too strict, instead we just have
to require that φ(ε) . εp for some power of p ∈ R+ that does not deteriorate the rate.
This is done in [LIP-II, Cor. 2.5, 2.6], where also a better rate is obtained by allowing
for larger length scales. In the following, we sketch the main ingredients of the proof.
While in the Γ-convergence case we employ the hierarchy

“discrete → non-local → continuum”,

our scheme now has the form

“discrete → homogenized non-local ← continuum”.

We discuss the two directions below and then discuss how to “meet in the middle”.

Non-Local to Continuum In this paragraph, we comment on how to relate contin-
uum AMLEs to the homogenized operator in Eq. (3.26). Here, it is convenient to copy
the following definitions from [LIP-II],

T τ u(x) := sup
BΩ(x,τ)

u, Tτ u(x) := inf
BΩ(x,τ)

u, (3.28)

S+
τ u :=

1

τ
(T τ u− u), S−

τ u :=
1

τ
(u− Tτ u), (3.29)

so that we can write ∆τ
∞u = 1

τ

(
S+

τ u− S−
τ u
)
. The astonishing property of this operator

is the so-called “max-ball” lemma. If u ∈ USC(Ω) fulfills comparison with distance
functions from above, then we have that the function T τ u fulfills

−∆τ
∞T τ u ≤ 0, in Ω2τ

O , (3.30)

analogously if u ∈ LSC(Ω) fulfills CDF form below we have

−∆τ
∞Tτ u ≥ 0, in Ω2τ

O . (3.31)

Here, we denote by ΩO = Ω \ O and additional employ the inner parallel set,

Ωτ
O := {x ∈ Ω : distΩ(x,O) > τ}. (3.32)

Both, Eqs. (3.30) and (3.31) are shown in [LIP-II, Lem. 4.6], again borrowing concepts
from [AS10]. In fact, the proof is a simple consequence of the comparison with cones
characterization. The strategy works as follows:

• Consider the ball B(x, 2τ).

• For any y ∈ B(x, 2τ) we have that

u(y) = u(x) + u(y)− u(x) = u(x) +
u(y)− u(x)

dΩ(x, y)
dΩ(x, y)

≤ u(x) +
T 2τ u(x)− u(x)

dΩ(x, y)
dΩ(x, y).
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• Consider the set V := B(x, 2τ) \ {x} where on its boundary we can substitute the
denominator by 2τ to obtain

u(y) ≤ u(x) +
T 2τ u(x)− u(x)

2τ
dΩ(x, y) for y ∈ ∂V.

• Employing comparison with distance functions, this inequality holds on the whole
set V , therefor we can take the maximum over B(x, τ) and see

T τ u(x) ≤ T 2τ u(x)− u(x)

2τ
τ =

1

2
(T 2τ u(x) + u(x)).

• Rearranging the terms yields

0 ≥ −
(

T 2τ u + u− 2T τ u
)

= − (T τ T τ u + u− 2T τ u)

≥ − (T τ T τ u + Tτ T τ u− 2T τ u) = −τ2∆τ
∞T τ u

It is interesting that the inequality is exact, i.e., we do not need to introduce an error
term of order τ . This observation allows us to pass from the continuum setting to the
non-local one.

Discrete to Non-Local Compared to the previous paragraph, passing from the dis-
crete problem to the non-local one is more challenging. Analogously to the continuum
case, where we considered the operators T τ , Tτ we now define the functions

uτ
n(x) := sup

BΩ(x,τ)∩Ωn

un, (un)τ (x) := inf
BΩ(x,τ)∩Ωn

un, x ∈ Ω. (3.33)

Concerning the connection between the discrete problem and the non-local operator, we
state the following main result from [LIP-II].

Theorem 3.51 ([LIP-II, Thm. 5.13]). Assume that (K2) to (K4) and (3.25)
and (3.27) hold. Let un : Ωn → R solve the graph infinity Laplacian equation
Problem 3.36. Then there exists a constant C > 0 such that for all x0 ∈ Ω2τ+3δn

O it
holds

−∆τ
∞uτ

n(x0) ≤ Lipn(gn)C

(
δn

ετ
+

ε

τ2
+

φ(ε)

ετ

)

, (3.34a)

−∆τ
∞(un)τ (x0) ≥ −Lipn(gn)C

(
δn

ετ
+

ε

τ2
+

φ(ε)

ετ

)

. (3.34b)

The above statement again only holds true on a inner parallel set, like [LIP-II, Lem. 4.6].
We later employ Lipschitz properties to obtain a result on the whole domain. Similarly,
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in the proof we first consider vertices x0 ∈ Ω2τ+3δn

O ∩Ωn together with pτ
n(x0), p2τ

n such
that

uτ
n(x0) = sup

BΩ(x0,τ)∩Ωn

un = un(pτ
n(x0)),

u2τ
n (x0) = sup

BΩ(x0,2τ)∩Ωn

un = un(p2τ
n (x0)).

Plugging in the definition of ∆τ
∞ we then obtain the inequality

−τ2∆τ
∞uτ

n(x0) ≤ 2un(pτ
n(x0))− un(p2τ

n (x0))− un(x0).

Here, we would now like to employ comparison with graph distance functions for a similar
strategy as in the continuum case. However, the choice of the set such that we have a
desirable inequality on its boundary is not trivial. This is due to the fact, that for uτ

n

we take the supremum over a Euclidean ball, but we want to apply comparison with
graph distance function. As in [LIP-I] we observe that our arguments need more care,
whenever the Euclidean and the graph distance meet. We remark how the situation
changes from the comparison with cones application in the continuum, where we assume
that φ ≡ 0 for simplicity, the concrete details are given in [LIP-II, Sec. 5.2]:

• We know that u2τ
n maximizes on B(2τ, x0).

• Since dwn(x0, w) ≤ |x0 −w| we only need to shrink the graph ball by εn to ensure,
that its closure lies in B(2τ, x0). This means we can consider

B = {w ∈ Ωn : dwn(x0, w) ≤ 2τ − ε}

and we have that B ⊂ B(2τ, x0).

• In the continuum case, we knew that every point y ∈ ∂B(2τ, x0) had exactly
distance 2τ from x0. This value is not as simple in the graph case, we need to
consider the value

D = inf
y∈Ωn\B(x0,2τ−ε)

dwn(x0, y) ≥ 2τ − ε.

• Employing comparison with graph distance functions we then obtain

un(w) ≤ un(x0) +
un(p2τ

n (x0))− un(x0)

D
dwn(x0, w) (3.35)

for all vertices w ∈ Ωn with dwn(x0, w) ≤ 2τ − ε.

• We now choose w = pτ
n(x0), however can not simply control the distance to x0 by

τ instead we have the value

N = sup
y∈B(x0,τ)∩Ωn

dwn(x0, y)
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and obtain

2un(pτ
n(x0)) ≤ 2un(x0) + (un(p2τ

n (x0))− un(x0))
2N

D

= 2un(x0) + (un(p2τ
n (x0))− un(x0))

(

1− 1 +
2N

D

)

= un(x0) + un(p2τ
n (x0)) + (un(p2τ

n (x0))− un(x0))2

(
N

D
− 1

2

)

.

• Employing the Lipschitz estimates from [LIP-II, Sec. 5.1] we obtain

2un(pτ
n(x0)) ≤ un(x0) + un(p2τ

n (x0) + C Lipn τ(gn)

(
N

D
− 1

2

)

.

In our work we employ a concrete upper bound on the graph function [LIP-II, Lem. 5.5]
which tells us that for any x, y ∈ Ωn we have

dwn(x, y) ≤
(

1 +
4δn

t0ε
+

2φ(δn)

t0ε

)

dΩ(x, y) + τηε

where
τη := sup

0<t≤t0

{

σηη(t)−1 − t
}

.

Plugging in this concrete error term, we then obtain the estimate

2un(pτ
n(x0)) ≤ un(x0) + un(p2τ

n (x0)) + Lipn(gn)C

(
δnτ

ε
+ ε + τ

φ(ε)

ε

)

.

Rearranging this inequality then gives the first statement in [LIP-II, Thm. 5.13]. The
second one can be proven analogously. Quantitatively, we remark that the term

N

D
− 1

2
=

sup
y∈B(x0,τ)∩Ωn

dwn(x0, y)

inf
y∈Ωn\B(x0,2τ−ε) dwn(x0, y)

− 1

2
(3.36)

determines the leading term in the estimate and therefore the rate. This coined the
phrase:

“Rates for graph distance functions imply rates for graph AMLEs”.

Meeting in the Middle The previous paragraphs allow us to relate the continuum
and the discrete solution to the non-local operator. The question is now, how we can put
these estimates together. Here, we employ the maximum principle for the operator ∆τ

∞,
from [Sma10, Thm. 2.6.5]. Namely, if for a constant C ≥ 0 two functions w, v : Ωτ

O → R

satisfy

−∆τ
∞w ≤ C ≤ −∆τ

∞v in V ⊂ Ωτ
O, (3.37)
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then it holds

sup
Ωτ

O

(w − v) = sup
Ωτ

O
\V

(w − v).

In our case the function w is chosen as uτ
n, V = Ω2τ̃n

O with τ̃n := τ + 3
2δn and

Lipn(gn)C

∣
∣
∣
∣

δn

ετ
+

ε

τ2
+

φ(ε)

ετ

∣
∣
∣
∣ =: Cn,τ ,

and therefore the left inequality in (3.37) holds true. We now would like to chose v = Tτ u
however, we know that −∆τ

∞Tτ u ≥ 0. In order to obtain the desired inequality, we
employ a perturbation trick. First we see that [Sma10, Lem. 2.6.4] tells us that for a
bounded function v : Ωτ

O → R with −∆τ
∞v ≥ 0 on Ω2τ

O , there exists δ0 > 0 such that for
any 0 ≤ δ ≤ δ0 the function w := v − δv2 satisfies

−∆τ
∞w ≥ −∆τ

∞v + δ(S−
τ v)2 on Ω2τ

O .

In the case that |∇u| is bounded away from 0 we can choose w := Tτ u− Cn,τ

α2 (Tτ u)2 with
α = infΩ |∇u| > 0, which yields

−∆τ
∞w ≥ −∆τ

∞Tτ u +
Cn,τ

α2
(S−

τ Tτ u)2 in Ω2τ
O .

Since u is lower semi-continuous we can choose y0 with dΩ(x, y0) such that

S−
τ Tτ u(x) =

1

τ
(u(y0)− Tτ Tτ u(x)) =

1

τ
(u(y0)− T2τ u(x))

≥ 1

τ

(

u(y0)− (u(y0)− τ inf
Ω
|∇u|)

)

= α,

and therefore we have −∆τ
∞w ≥ Cn,τ . Furthermore, we see that ‖w − Tτ u‖∞ ≤ c

α2 Cn,τ

for some c > 0, which allows us to make the following estimate

sup
Ωτ̃n

O

(uτ
n − Tτ u) ≤ sup

Ωτ̃n
O

(uτ
n − w) +

c

α2
Cn,τ

≤ sup
Ωτ̃n

O
\Ω2τ̃n

O

(uτ
n − w) +

c

α2
Cn,τ

≤ sup
Ωτ̃n

O
\Ω2τ̃n

O

(uτ
n − Tτ u) + 2

c

α2
Cn,τ .

In the case that α = 0 we need to apply the additional perturbation trick from [Sma10,
Lem. 2.6.3], which traditionally introduces a root of order 3. In total, we then have the
following result. Here we only include the results for the sub-solutions, the respective
other inequality holds analogously and can be found in [LIP-II, Prop. 5.16].

53





Chapter 3. Consistent Semi-Supervised Learning on Sparse Graphs

(i) The rates are generally better than the ones proven in [LIP-II, Thm. 2.2].

(ii) Singular weights give better rates than unit weights.

(iii) The best rate is achieved for the scaling εn ∼ δn, for which our results do not even
proof convergence.

Concerning (i) we note that this does not directly imply that our analysis is not sharp.
Typically, rates for the Aronsson function are better than the ones one can proof in
general, see, e.g., [Sma10]. Regarding point (iii) we want to mention the follow-up work
[LIP-III], which deals with the case εn ∼ δn. Working in the setting of first passage
percolation, we are able to show a rate for the quantity,

∣
∣
∣
∣
∣

E[dεs,Xs(0, se1)]

E[dεs,Xs(0, 2se1)]
− 1

2

∣
∣
∣
∣
∣
,

see [LIP-III, Thm. 2.1]. Here, Xs denote modified Poisson point processes, over which
the expectation is taken. The distance dεs,Xs(0, se1) is basically a graph distance with
unit weights, connecting 0 and the point se1. We observe that this term is reminiscent
of the dominating term Eq. (3.36) we have in [LIP-III]. In fact, employing the same
strategy as displayed in the previous paragraphs, in [LIP-III] we are able to show a rate
in the case εn ∼ δn.
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Chapter 4

Robust and Sparse Supervised
Learning

In this chapter we present the topics discussed in the works [CLIP; FNO; BREG-I] which
are reprinted in Part II. Compared to the previous chapter, we are now in the setting of
supervised learning, as described in Section 2.2. As already mentioned before, we focus
on neural networks fθ : X → Y parameterized by θ ∈ Θ, where Θ is some parameter
space. Here, our two main question arise, namely:

• Input robustness: how robust is x 7→ fθ(x) w.r.t. input perturbations?

• Parameter sparsity: how can we obtain sparse parameters θ ∈ Θ?

Section 4.1: Setting

Section 4.2: [CLIP] Section 4.4: [BREG-I]Section 4.3: [FNO]

Therefore, conceptually we again highlight the keyword sparsity and additionally ro-
bustness. In [CLIP] we consider robustness under adversarial perturbations. Here,
the input is attacked on purpose to confuse a neural network classifier and therefore
worsen its performance. In order to obtain a classifier that is less vulnerable against
such attacks, we propose an optimization strategy that selects parameters yielding a
more robust network. In Section 4.2 we comment on the topic and the contribution in
more detail.

A different kind of input robustness is considered in [FNO]. In the setting of image
classification, images are modeled as functions on a continuum domain that need to be
discretized in order to represent them on a machine. However, this discretization is
usually arbitrary and not inherent to the object of interest. Therefore, it is natural to
assume that the output of the network should be independent of this discretization, also
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referred to as resolution, hence we consider robustness w.r.t. resolution changes. We
remark on this and the publication in Section 4.3.

Concerning computational performance and memory storage of the neural network, we
focus on sparsity of the parameters θ ∈ Θ. In [BREG-I] we propose a sparse optimization
strategy based on Bregman iterations, which employs L1 type penalties to promote
sparsity. The conceptual difference between the existing algorithm and our proposal
is the stochastic component in the gradient. Our theoretical results prove decay in
loss and convergence of the iterates. Finally, we also conduct numerical experiments
that demonstrate the efficiency of the method. We refer to Section 4.4 for a detailed
explanation.

Before we start with the exposition on the mentioned works, we briefly review the com-
mon supervised learning framework. Building upon the basic observations in Chapter 4
we give a slightly more detailed introduction in Section 4.1.

4.1. Setting

We are given a finite training set T ⊂ X × Y. For a family of functions fθ : X → Y
parameterized by θ ∈ Θ, we consider the empirical minimization

min
θ∈θ
L(θ),

where for a function ℓ : Y × Y → R we define

L(θ) :=
1

|T |
∑

(x,y)∈T

ℓ(fθ(x), y). (4.1)

Remark 4.1. Assuming that T is sampled from a joint distribution PX ,Y on X ×Y this
approximates the computationally infeasible population risk minimization problem

inf
θ∈Θ

∫

X ×Y
ℓ(fθ(x), y)dPX ,Y(x, y).

△
In the following we provide two important choices for the function ℓ : Y × Y → R.

Example 4.2 (MSE). For image denoising problems, we often choose X = Y =
[0, 1]N×M , assuming only one color channel for simplicity. In this context the mean
squared L2 error (MSE), defined as

ℓ(ȳ, y) :=
1

N ·M ‖ȳ − y‖2

is commonly employed. This loss function is also used for classification problems.

57



Chapter 4. Robust and Sparse Supervised Learning

Example 4.3 (Cross-Entropy). For classification problems, one often chooses the
cross-entropy or negative log-likelihood loss, [Goo52]. For two discrete probability
distributions, p, q : {1, . . . , C} → R one defines

H(p, q) := −
C∑

c=1

pc · log(qc)

see, e.g., [COR98]. Assuming that Y = ∆C this allows to choose ℓ(ȳ, y) := H(y, ȳ).
If the network only maps to RC one often additionally inserts a soft-max function
Q(y)c := exp(yc)/

∑

c exp(yc) (see [Bol68]) and then sets

ℓ(ȳ, y) := H(y, Q(ȳ)).

In the case, where the output is given as labels y ∈ {1, . . . , C} one defines

ℓ(ȳ, y) := H(yoh, Q(ȳ)) = − log(Q(ȳ))

employing the one-hot notation from Chapter 2.

4.1.1. Network Architectures

In this thesis we focus on feed-forward neural networks, i.e., we consider layers of the
form

Φ(w, W, b)(z) := wz + σ(Wz + b) (4.2)

where w ∈ R models a residual connection, W ∈ Rn×n is a weight matrix, b ∈ Rn a bias
vector and z ∈ Rn is the input. We consider a concatenation of L ∈ N of such layers,
which then forms a neural network

fθ = ΦL ◦ . . . ◦ Φ1

with parameters θ = ((W1, b1, w1) . . . , (WL, bL, wL)) ∈ Θ and layers Φi := Φ(wi, Wi, bi).
If there is no residual part, i.e., w = 0, then we also allow dimensional changes in each
layer, i.e., z ∈ Rn, W ∈ Rm×n, b ∈ Rm.

MLP In the easiest case we consider a perceptron [Ros58], which models a fully con-
nected layer, i.e., every entry Wij of the weight matrix is a parameter that is optimized
in the training process.

Convolutions Especially important for visual tasks are convolutional layers. Here,
we take a kernel k ∈ RM×M and define the application of W = W (k) as

Wz = k ∗ z
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with ∗ denoting the convolution. We refer to Section 4.3 for the concrete definition of
this operation. Typically, the input is of the form z ∈ RKin×N×M , where Kin denotes the
number of input channels. The layer is then a mapping Φ : RKin×N×M → RKout×N×M ,
where Kout denotes the number of output channels, which can be realized by different
kernels kij . The application of W to an input z is defined as

(Wz)j,:,: :=
Kin∑

i=1

kij ∗ z.

ResNets Often we also consider a residual component as displayed in Eq. (4.2) with
the term w z. The idea of adding this residual component was first introduced in [SGS15]
with a learnable parameter w ∈ R and later popularized in [He+16a] by fixing w = 1, see
also [He+16b], which then yields the celebrated ResNet architecture. In the following
applications, we both consider the case where w = 1 is fixed, but also the possibility of
learning the parameter w ∈ R in [BREG-II].

4.1.2. Gradient Computation and Stochastic Gradient Descent

Training a neural network requires solving an optimization problem w.r.t. to the param-
eters θ ∈ Θ. In this work we only focus on first order methods, however both zero [Rie23;
Pin+17; Car+21] and second order methods [Mar10] have been successfully applied in
this context. Employing first order methods, requires evaluating the gradient ∇θL, how-
ever in this scenario it is not common to compute the full gradient but rather to have
a gradient estimator. This estimator is usually obtained by randomly dividing the train
set T into disjoint mini-batches B1 ∪ . . . ∪Bb = T and then successively computing the
gradient of the mini-batch loss,

L(θ; B) :=
1

|Bi|
∑

(x,y)∈Bi

ℓ(fθ(x), y).

Iterating over all batches i = 1, . . . , b is referred to as one epoch. From a mathematical
point of view, this yields stochastic optimization methods, since in each step the true
gradient is replaced by an estimator. In the abstract setting we let (Ω, F,P) be a prob-
ability space and consider a function g : Θ × Ω → Θ as an unbiased estimator of ∇L,
i.e.,

E [g(θ; ω)] = ∇L(θ) for all θ ∈ Θ.

Most notably this method transforms the standard gradient descent update [Cau+47]

θ(k+1) = θ(k) − τ (k)∇L(θ(k)),

to stochastic gradient descent [RM51]

draw ω(k) from Ω using the law of P,

g(k) := g(θ(k); ω(k)),

θ(k+1) := θ(k) − τ (k)g(k).
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Employing these simplifications, we then say that x̄ ∈ X is adversarial, if

d(x, x̄) ≤ ε and fMAP
θ (x) 6= fMAP

θ (x̄),

assuming that fMAP
θ (x) is indeed correct. The parameter ε is called the adversarial

budget and controls how far x̃ can be from the original point x to be still considered
adversarial. Here, we also have to decide how much we trust the metric d(·, ·) as a
measure of closeness.

Types of Adversarial Examples Typically, adversarial examples are created from
the clean image x via some distortion δ ∈ Rs. Together with an application map
T : X × Rs → X one then obtains x̄ = T (x, δ) as the adversarial example. In this
formulation, one can alternatively employ the criterion ‖δ‖ ≤ ε to decide, whether
T (x, δ) is an adversarial example. We only list some approaches below:

• Addition: The most well-known examples are created by T (x, δ) := x + δ, i.e.
x̄ = x + δ. Here, it is important to note that typically images are assumed to have
values between 0 and 1, i.e., X = [0, 1]K×N×M , therefore it is important to also
ensure that x̄ ∈ X .

• Translation and Rotation: Simple geometric transformations—that are un-
noticeable for a human classifier—are quite effective to “fool” neural networks.
Employing translations Tt : X × X → X , one has to choose the behavior on the
boundary such that one obtains a valid image. The same holds true for rotations
Tr : X × [−π, π] → X . In this case, δ ∈ [−π, π] models the angle of the rotation
and yields an admissible adversarial example, if |δ| ≤ ε. Here, we see that this
formulation looses some expressivity. Consider the MNIST dataset [LC10], where
the task is to classify handwritten digits from 0 to 9:

– We see that only ε < π/2 makes sense, otherwise the number “6” could be
always transformed to the number “9” and vice versa.

– However, considering the number “0”, rotations above the angle π/2 can
definitely yield proper adversarial examples x̄.

We refer to [Eng+18] for a study on these types of adversarial examples.

• Change of Basis: As explored in [Guo+18] one can consider a different orthonor-
mal basis of the image space RK×N×M and then perform the attack w.r.t. this
basis. The map T : X × RK×N×M → X first obtains the different representation
of x, then adds the coefficients of δ and then maps back to the original basis.
This is only meaningful, if one restricts certain coefficients of δ to be zero in the
alternative basis. For example, the discrete cosine transform ([ANR74]) has been
applied successfully in this context [Guo+18].

In the following, we restrict ourselves to the additive case and only consider examples
x̄ = x + δ.
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Finding Adversarial Examples Employing a loss function ℓ : Y × Y → R the task
of finding adversarial examples x̄ = x + δ ∈ X can be relaxed via solving the problem

max
x̄∈X :d(x,x̄)≤ε

ℓ(y, fθ(x̄)) (4.3)

where y = fθ(x). Solving this problem is referred to as attacking the network f . More
precisely, this is a so-called untargeted attack, since we do not prescribe x̄ to produce
any special output as long as it confuses the network. Opposed to this, there are so
called targeted attacks. Here, we pick cadv 6= fMAP

θ (x) and then want to find x̄ such that
fMAP

θ (x̄) = cadv, which yields the problem

min
x̄∈X :d(x,x̄)≤ε

ℓ(cadv
oh , fθ(x̄)).

Conceptually, this problem is similar to Eq. (4.3) and differs only by a change of sign
and a different reference label. A popular method to solve Eq. (4.3) is the projected sign
gradient ascent iteration [KGB+16],

x̄(k+1) = Projd(x̄(k) + τ sign(∇x̄ℓ(fθ(x), fθ(x̄(k))))).

Here, Projd denotes the projection onto the set X ∩ Bd,ε(x), where Bd,ε(x) is the ball
with radius ε around x, w.r.t. to the distance d. Performing only one step of this
iteration yields the fast gradient sign method [GSS14]. There is a wide variety of these
so-called gradient-based open-box attacks [Yua+19], i.e., methods that assume that the
gradient of the model is available. In more realistic scenarios, this might not be the case.
Attacks that do not employ the actual gradient of the model to attack are called closed
box attacks [Ily+18], which are not part of this thesis.

Defending against Adversarial Attacks We consider the question of finding pa-
rameters θ ∈ Θ such that the corresponding model fθ is adversarially robust, i.e., is less
vulnerable to attacks. Therefore, we want the attack problem in Eq. (4.3) to be hard to
solve. This intuition leads to the optimization problem

min
θ∈Θ

∑

(x,y)∈T

max
x̄:d(x,x̄)≤ε

ℓ(fθ(x̄), y),

which is known as the adversarial training formulation [KGB17; Mad+18]. From a
distributionally robust optimization point of view, this problem relates to

min
θ∈Θ

max
P̃ :D(PX ,Y ,P̃ )≤ε

∫

X ×Y
ℓ(fθ(x), y) dP̃ (x, y)

where D denotes some distance on the space of probability distributions, see [BGM23].
Employing a batched gradient descent type iteration for the variable θ, one then has to
solve a problem of the form Equation (4.3) in every step, which can again be approxi-
mated via gradient ascent on the input variable x.
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Lipschitz Training of Neural Networks Adversarial robustness is closely related
to the Lipschitzness of a network fθ. Namely, for inputs x, x̄ ∈ X that are close, we also
want the outputs of fθ to be close. In other words, we want to find a small constant
L > 0 such that

‖fθ(x)− fθ(x̄)‖Y ≤ L ‖x− x̄‖X ,

where we typically use an Lp norm for both ‖·‖X and ‖·‖Y . The smallest constant
fulfilling this inequality is the Lipschitz constant Lip(fθ). If this constant is small,
one can expect that small input perturbations do not affect the classification output
significantly.

Remark 4.6. Apart from adversarial robustness, having an upper bound on the Lip-
schitz constant of a neural network is also important for other applications, see, e.g.,
[Arn+23; Has+20; ACB17]. △
In our work, we employ the Lipschitz constant as a regularizer and consider the problem

min
θ
L(θ) + λ Lip(fθ) (4.4)

for a parameter λ > 0. Computing the Lipschitz constant of neural networks is an
NP-hard problem [SV18], therefore many works rely on the estimate

Lip(fθ) ≤
L∏

l=1

Lip(Φl) ≤ Cσ

L∏

l=1

‖Wl‖ , (4.5)

where here ‖·‖ denotes some matrix norm and Cσ > 0 depends on the Lipschitz constants
of the activation functions, see [ALG19; Gou+20; Kri+20; RKH19]. This inequality is
not sharp and usually overestimates the Lipschitz constant, as we see in the following
example taken from [CLIP].

Example 4.7. We consider a feed-forward neural network fθ : R → R with one
hidden layer,

Φ1(z) := ReLU(W1z) := (max{z, 0}, max{−z, 0})T , W1 := (1,−1),

Φ2(z) := W2z := z1 + z2, W2 := (1, 1)T ,

fθ := Φ2 ◦ Φ1.

For x ∈ R we have that

x ≥ 0 ⇒ Φ1(x) = (x, 0)T ⇒ fθ(x) = x,

x ≤ 0 ⇒ Φ1(x) = (0,−x)T ⇒ fθ(x) = −x,

and therefore fθ = |·|, which yields that Lip(fθ) = 1. However, employing the spectral
norm for the weight matrices, we see that

‖W1‖ · ‖W2‖ =
√

2
√

2 = 2.
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Plugging the estimate of Eq. (4.5) into Eq. (4.4) therefore potentially over regularizes the
problem. While this increases the stability of the network, it can worsen its classification
performance.

Contribution in [CLIP] In [CLIP] we propose a strategy to solve Eq. (4.4) approxi-
mately, without the estimate in Eq. (4.5). The basic idea consists of approximating the
Lipschitz constant on a finite set and using this approximation as a regularizer. Further-
more, we analyze the original model in Eq. (4.4) where we study existence of solutions,
the influence of the parameter λ and the limits λ→ 0, λ→∞, see Section 4.2.2. Finally,
we demonstrate the efficiency of the method by applying it to some simple toy problems,
see Section 4.2.3.

4.2.1. Cheap Lipschitz Training

We approximate the Lipschitz constant on a finite set XLip ⊂ X × X via

Lip(fθ;XLip ) := max
(x,x̄)∈XLip

‖fθ(x)− fθ(x̄)‖Y
‖x− x̄‖X

≈ Lip(fθ).

Disregarding the non-differentiable points of θ 7→ Lip(fθ;XLip ) and employing the above
approximation, allows us to solve the problem in Eq. (4.4) via stochastic gradient descent
on the variable θ.

Remark 4.8. Let f, g : X → Y be two differentiable functions. If f(x̄) > g(x̄) for
some x̄ ∈ X , then we know that there exists some ǫ > 0 such that f(x) > g(x) for all
x ∈ Bǫ(x̄). We have that f ∨ g = max{f, g} = f in Bǫ(x̄) and therefore x 7→ f(x)∨ g(x)
is differentiable in x̄. If f(x̄) = g(x̄) then f∨g could be non-differentiable at x̄. However,
in practice we employ automatic differentiation, where in this case one of the functions
is chosen, say f , and the gradient at x̄ is computed as ∇f . △
The strength of this approach is dependent on the quality of the set XLip. In [CLIP]
we propose to iteratively update the set via a gradient ascent type scheme. Namely, we
initialize XLip as a random perturbation of a subset of the given data. In each step, we
then update the points as follows:

• Consider L(x, x̄) := ‖fθ(x)− fθ(x̄)‖ / ‖x− x̄‖, x, x̄ ∈ X .

• For each (x, x̄) ∈ XLip perform the update

x← x + τ L(x, x̄)∇xL(x, x̄),

x̄← x̄ + τ L(x, x̄)∇x̄L(x, x̄),

for a parameter τ > 0.

This scheme performs gradient ascent on the Lipschitz constant, see [CLIP, Alg. 1]. For
each mini-batch B ⊂ T we first update the set XLip and then update the parameters via

θ ← θ − η ∇θ (L(θ; B) + λ Lip(fθ,XLip))
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which yields the algorithm presented in [CLIP, Alg. 2]. Similar to [Sha+19b] one can
reuse the gradients computed for ∇x for the computation of ∇θ. This fact yields the
attribute cheap in the Lipschitz training algorithm.

4.2.2. Analysis of Lipschitz Regularization

In [CLIP] we analyze some basic properties of the original regularization problem in
Eq. (4.4). We repeat the assumptions made therein.

Assumption 1. We assume that the loss function ℓ : Y × Y → R ∪ {∞} satisfies:

a) ℓ(y, ȳ) ≥ 0 for all y, ȳ ∈ Y,

b) y 7→ ℓ(y, ȳ) is lower semi-continuous for all ȳ ∈ Y.

Assumption 2. We assume that the map θ 7→ fθ(x) is continuous for all x ∈ X .

Assumption 3. We assume that there exists θ ∈ Θ such that

1

|T |
∑

(x,y)∈T

ℓ(fθ(x), y) + λ Lip(fθ) <∞.

Employing only Assumption 2 one can show that the map θ 7→ Lip(fθ) is lower semi-
continuous, [CLIP, Lem. 1].

Existence If Θ is a compact subset of a reflexive Banach space or finite, one can show
that there exist solutions of the problem in Eq. (4.4). In the general case, one needs to
add a norm term, that ensures boundedness of a minimizing sequence. The following is
the main existence result, which can be proven by the direct method in the calculus of
variations [Dac07].

Proposition 4.1 ([CLIP, Prop. 1]). Under Assumptions 1 to 3 the problem

min
θ∈Θ

1

|T |
∑

(x,y)∈T

ℓ(fθ(x), y) + λ Lip(fθ) + µ ‖θ‖Θ

has a solution for all values λ, µ > 0. Here, ‖·‖Θ denotes a norm on Θ.

Dependency on the Regularization Parameter Assuming that for every λ > 0
we have a solution θλ ∈ Θ of Eq. (4.4) one can show that

λ 7−→ 1

|T |
∑

(x,y)∈T

ℓ(fθλ
(x), y) is non-decreasing,

λ 7−→ Lip(fθλ
) is non-increasing.
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This statement is the content of [CLIP, Prop. 2], however, the argument is exactly the
same as in [BO13]. The intuition behind this result is that with increasing parame-
ter λ, solutions of Eq. (4.4)—more precisely the corresponding networks—have smaller
Lipschitz constants, i.e., tend to be more constant, which however also diminishes their
expressivity. We formalize the limit cases in the following.

Assuming the realizability condition of [SB14] we know that there exists parameters
θ ∈ Θ such that L(θ) = 0. This means there are parameters that fit the data perfectly.
Considering the limit λ → 0 we obtain convergence to a solution of the unregularized
problem with the smallest Lipschitz constant.

Proposition 4.2 ([CLIP, Prop. 3]). Let Assumptions 1 to 3 and the realizability
assumption [SB14] be satisfied. If θλ → θ† ∈ Θ as λց 0, then

θ† ∈ argmin






Lip(fθ) : θ ∈ Θ,

1

|T |
∑

(x,y)∈T

ℓ(fθ(x), y) = 0







if this problem admits a solution with Lip(fθ) <∞.

Furthermore, we study the effect of sending λ→∞, where we see that the network fθλ

indeed tends to be constant as expected. We can explicitly characterize this constant as
the closest point to barycenter of the output data, that is realizable by a neural network.

Proposition 4.3 ([CLIP, Prop. 4]). Let Assumptions 1 to 3 be satisfied and
assume that

M := {y ∈ Y : ∃θ ∈ Θ, fθ(x) = y, ∀x ∈ X} 6= ∅.

If θλ → θ∞ ∈ Θ as λ→∞, then fθ∞
(x) = ŷ for all x ∈ X where

ŷ ∈ argminy′∈M

1

|T |
∑

y∈TY

ℓ(y′, y).
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How do Neural Networks react to Resolution Changes? In many machine
learning applications, one assumes a fixed input size and therefore a fixed resolution, as-
suming the same scale throughout the data. Formally, networks are defined as mappings
fθ : RK×N×N → ∆C , i.e., they only accept inputs of the fixed resolution N . In order to
understand how this constraint can be weakened, we need to consider the concrete struc-
ture of our networks, which was similarly done in [KLM21; Kab22]. The architectures
we consider are feed-forward networks of the form

fθ = Φclass ◦ S ◦ Φfeature

where

• Φfeature is the so-called feature extractor, which should be applicable independently
of the input dimension,

• S is a function that maps inputs of any size to a fixed output dimension Rs,

• Φclass : Rs → ∆C denotes the classification layer.

The feature extractor usually consists of convolutional layers. As in [Kab22, Ch. 2] we
consider the discrete convolution of two discretized images uN , vN defined as

(uN ∗ vN )(xj) :=
∑

k∈JN

uN (xk) · vN (xj−k) (4.6)

where for negative indices j − k we set xj−k := xj−k+N . This assumes that both uN

and vN live on the same discretization JN . For neural networks, we are interested in
the convolution of an input image u and a kernel θ ∈ RJM . Modeling spatial locality—
and therefore a small support of the kernel—one usually chooses M much smaller than
the resolution. This is for example motivated by the study in [HW62] which explores a
similar methodology for the visual cortex of cats. However, if M < N one can not directly
employ the convolution in Eq. (4.6), since there we assumed the same discretization for
both inputs. In order to account for this dimension mismatch, we consider so-called
spatial zero-padding for kernels θ ∈ RJM

θM→N
k =

{

θk for k ∈ JN ∩ JM ,

0 for k ∈ JN\JM .

Using this method, one can define the convolution for inputs uN of arbitrary input
resolution N ≥M via

C(θ)(uN ) = θM→N ∗ uN .

In [FNO] we refer to this as the spatial implementation of convolution. Up to the behavior
on the boundary, this is in fact the standard implementation in most libraries, especially
in PyTorch. Therefore, a feature extractor consisting of convolutional layers can take
inputs of variable resolution. In fact, ignoring possible resolution changes within the
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extractor—via pooling or strided convolutions—we have that Φfeature(uN ) ∈ R
J
N for any

N ∈ N.
The mapping S can be realized as an adaptive pooling layer, see [Pas+19], which

ensures a fixed output size. This methodology yields a discretization invariant architec-
ture, see [Kab22; KLM21; Li+21]. This means that from a technical point of view, the
network is able to produce outputs for inputs with arbitrary discretization. However, we
are actually interested in a discretization invariant functionality (see [Kab22; KLM21;
Li+21]), which also requires that the output similar for different resolutions.

Input Interpolation The technical possibility to handle different input sizes, as de-
scribed above, usually does not perform well in practice. This is due to the fact that
in the standard spatial implementation of convolution the support of the kernel changes
with varying input dimension, hence the output differs, see Fig. 4.1. If a network is
trained on a fixed input size, the filters are adapted to this size and therefore only create
meaningful responses on this size.

A simple attempt to create a network, such that not only the architecture, but also
the functionality is discretization independent—at least up to a certain degree—is input
interpolation. In this case, our architecture is modified to

f̃θ = fθ ◦ I

where I :
⋃

M∈NRJM → RJN is an interpolation function, that maps inputs of arbitrary
sizes to a fixed discretization IN . Typical choices here include nearest neighbor, bilinear
or bicubic interpolation, see, e.g., [GW87]. Especially relevant in our case, is so-called
trigonometric interpolation, where for v ∈ RJM we define

Itrigo(v) := vM
∆−→N := F −1

(

(Fv)M→N
)

.

Contribution in [FNO] We study the connection between FNOs and CNNs for clas-
sification problems. We identify under which assumption the architectures are equivalent
(see Lemma 4.9), but also where they are not, see Fig. 4.1. Here, we are especially inter-
ested in the multi-resolution case. We show that one layer of an FNO is equivariant with
respect to trigonometric interpolation, Corollary 4.11. This is also underlined by numer-
ical experiments, where we compare the FNO implementation to interpolation methods
and a simple CNN implementation. Furthermore, we show that training equivalent CNN
and FNO layers leads to different results, i.e., while they have the same forward pass,
the gradients w.r.t. their parameters might differ, Lemma 4.10. Moreover, we show
continuity and Fréchet-differentiability of abstract neural layers as operators between
Lp spaces, see Section 4.3.2. Finally, we conduct numerical experiments supporting our
theoretical findings Section 4.3.3.

4.3.1. Fourier Neural Operators

We want to obtain neural networks whose output does not depend on the discretization
of the image u : Ω → RK . This raises the question whether it is possible to find a
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formulation that allows us to work in the infinite dimensional setting. In [Kov+23] this
issue was addressed in the setting of parametric PDEs, where the authors introduced
the concept of neural operators. One layer of a neural operator is given as a mapping
G : Lp(Ω)→ Lq(Ω)

G(u)(x) = σ (Ψ(u)(x)) for a.e. x ∈ Ω, (4.7)

with an affine linear part given by

Ψ(u) = Wu +Ku + b, (4.8)

where

• K : u 7→ ∫

Ω κ(·, y) u(y) dy is a kernel integral operator with kernel κ : Ω× Ω→ R,

• W ∈ R models a residual component,

• and b : Ω→ R models a bias.

By a slight abuse of notation, the activation function σ : R → R acts as a Nemytskii
operator, i.e.,

σ : v 7→ σ(v(·)), (4.9)

see, e.g., [Trö10]. In Section 4.3.2 we analyze continuity and differentiability of a layer
in this abstract form. However, the most relevant case for us, is when K is a convolution
operator, i.e., κ(x, y) = κ(x− y) is a translation invariant kernel. In this special case G
is then known as layer of a Fourier Neural Operator (FNO) as introduced in [Li+21].
We can parameterize the kernel via its Fourier coefficients θ̂k ∈ C,

κθ̂(x) =
∑

k∈I

θ̂k bk(x), (4.10)

where bk(x) = exp (2πi kx) denote the Fourier basis functions. In practice, we assume
that κθ̂ only has a finite amount of non-zero Fourier coefficients. We choose the set
IN := {−⌈(N − 1)/2⌉, . . . , 0, . . . , ⌊(N − 1)/2⌋}d as the index set, as done in [Li+21].

Employing this set with odd N ∈ N, we can easily enforce Hermitian symmetry θ̂k = θ̂−k,
which ensures that Kθ̂ outputs real-valued functions. For now, we assume an odd number
N and deal with the even case later. We note that this number of Fourier coefficients is
completely independent of the spatial input discretization, which is the main advantage
of FNOs.

How to Perform Convolutions with FNOs? In [FNO] we consider the discrete
Fourier transform and its inverse

(Fv)k =
1

λ

∑

j∈JN

vj e−2πi 〈k, j

N 〉, k ∈ IN ,

(

F −1v̂
)

j
=

λ

|JN |
∑

k∈IN

v̂k e2πi 〈k, j

N 〉j ∈ JN ,
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with a normalization constant λ ∈ {1,
√

|JN |, |JN |}. We only consider parameters θ̂ ∈
CIN

sym := F (RJN ), where we can employ the convolution theorem (see, e.g., [Gra14]) to
define

K(θ̂)(v) = F −1
(

θ̂ · Fv
)

for v ∈ R
JN , (4.11)

which is referred to as the FNO or spectral implementation of convolution.

How do FNOs React to Resolution Changes? The number of Fourier coefficients
of θ̂ ∈ CIM

sym is independent of the input resolution. Nevertheless, the point-wise multi-
plication in Eq. (4.11) is only defined for inputs v ∈ RJM , thus the question arises how
FNOs can be adapted to dimension mismatch. Here, we use a conceptually similar idea,
by employing zero-padding. However, the important and major difference is that this
zero-padding is performed in the spectral domain. Assuming that N > M is odd, we
define

θ̂M→N
k =

{

θ̂k for k ∈ IN ∩ IM ,

0 for k ∈ IN\IM ,

and the spectral implementation of convolution for vN ∈ RJN is given as

K(θ̂)(vN ) := K(θ̂M→N )(vN ).

What Is The Difference Between Standard and FNO Implementation? The
difference between the spectral and spatial implementation is best explained in [FNO,
Fig. 1], which we repeat in Fig. 4.1 for convenience. We are given a kernel θ ∈ RJM , its
unnormalized Fourier transform θ̂ = λ F (θ) and an input vN ∈ RJN . If M = N , i.e., all
dimensions match, we observe that spectral and spatial implementation are equivalent,
see the middle row of Fig. 4.1. However, if we consider a higher resolution variant of
the image with N > M , spatial zero-padding results in the kernel being localized in
space and therefore the effect of convolving it with vN changes. On the other hand, for
the spectral implementation, we observe an equivariant behavior. The resolution of the
output changes, but qualitatively the effect of the filter stays the same.

Connection to Interpolation As hinted in Fig. 4.1, when changing the resolution,
the spectral implementation of convolution can be interpreted as a standard convolution
with an interpolated kernel. In fact, we observe that for θ ∈ RJM , θ̂ = λ F (θ) and
vN ∈ RJN we have that

K(θ̂)(vN ) = F −1
(

θ̂M→N · FvN

)

= F −1
(

F F −1θ̂M→N · FvN

)

= F −1
(

FθM
∆−→N · FvN

)

= θM
∆−→N ∗ vN

= C(θM
∆−→N )(vN ).

72



Chapter 4. Robust and Sparse Supervised Learning

h
ig

h
er

re
so

lu
ti

o
n

o
ri

g
in

a
l

lo
w

er
re

so
lu

ti
o
n

Convolution with spectral zero-padding Convolution with spatial zero-padding

Figure 4.1.: The image is taken from [Kab22, Fig. 1]—depicting a red whiskered bulbul
taken from the Birds500 dataset [Pio21]—and visualizes the different effects
of spectral and spatial zero-padding.

Therefore, applying one FNO layer is equivalent to applying a standard CNN layer with
a trigonometric interpolation of the kernel.

Adaption to Even Dimensions Zero-padding of the spectral coefficients only fulfills
Hermitian symmetry in the case where M, N are odd. In order to adapt this to the
even case, we employ so-called Nyquist splitting, see [Bri19]. In all our experiments,
the implementation carefully employs this method, which ensures that the output of the
spectral convolution is real valued. We also refer to [FNO, Sec. 3.3], where the details
on this topic are given.

4.3.2. Analytical Results for FNOs

In this section, we comment on the theoretical findings in [FNO]. We first consider
the abstract neural layer as in Eq. (4.7) for which we show continuity and Fréchet-
differentiability.

Continuity of Neural Layers The results for neural layers in [FNO] mostly rely on
the theory of Nemytskii operators, see, e.g., [Trö10; AP93]. In order to show that the
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layer G is a well-defined mapping from Lp to Lq one first needs to identify an exponent
r ∈ [1,∞] such that the affine part is a mapping Ψ : Lp → Lr. For example, if κ ∈ Ls

with 1/r + 1 = 1/p + 1/s it follows from Young’s convolution inequality that K maps to
Lr, see [Gra14, Thm. 1.2.12]. If then W = 0 and b ∈ Lr we know that Ψ maps to Lr.

To ensure that the Nemytskii operator defines a mapping σ : Lr → Lq, one needs
to assume a growth condition on σ : R → R, see [FNO, Eq. 4] and originally [Trö10].
Under these assumptions, we obtain [FNO, Prop. 1]. Concrete examples fulfilling these
assumptions are given in [FNO] borrowing concepts from [AP93; Trö10]. The most
important activation function that is valid in this setting is the ReLU function

ReLU(x) = max{x, 0}.

Proposition 4.4 ([FNO, Prop. 1]). For 1 ≤ p, q ≤ ∞ let L be an operator layer
given by (4.7) with an activation function σ : R→ R. If there exists r ≥ 1 such that

(i) the affine part defines a mapping Ψ : Lp(Ω)→ Lr(Ω),

(ii) the activation function σ generates a Nemytskii operator σ : Lr(Ω)→ Lq(Ω),

then it holds that L : Lp(Ω) → Lq(Ω). If additionally Ψ is a continuous operator on
the specified spaces and the function σ is continuous, or uniformly continuous in the
case q =∞, the operator L : Lp(Ω)→ Lq(Ω) is also continuous.

Differentiability of Neural Layers We furthermore consider Fréchet differentiabil-
ity of a neural layer w.r.t. the input variable. This can also be transferred to differentia-
bility w.r.t. the parameters as we show in [FNO, Ex. 4]. Conceptually, the main result
we repeat here is similar to the one on continuity of the last paragraph. The major
difference is that we also need to assume differentiability of the activation function, also
assuming a growth condition on its derivative. The ReLU function can therefore not be
chosen in this setting, however the smooth approximation called GELU ([HG16])

GELU(x) := x Φ(x)

where Φ is the CDF of the standard normal distribution, can be employed.

Proposition 4.5 ([FNO, Prop. 2]). For 1 ≤ p, q ≤ ∞, let L be an operator layer
given by (4.7) with affine part Ψ as in (4.8). If there exists r > q, or r = q =∞ such
that

(i) the affine part is a continuous operator Ψ : Lp(Ω)→ Lr(Ω),

(ii) the activation function σ : R→ R is continuously differentiable

(iii) and the derivative of the activation function generates a Nemytskii operator
σ′ : Lr(Ω)→ [Lr(Ω)→ Ls(Ω)] with s = rq/(r − q),
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then it holds that L : Lp(Ω)→ Lq(Ω) is Fréchet-differentiable in any v ∈ Lp(Ω) with
Fréchet-derivative DL(v) : Lp(Ω)→ Lq(Ω)

DL(v)(h) = σ′(Ψ(v)) · Ψ̃(h),

where Ψ̃ denotes the linear part of Ψ, i.e., Ψ̃ = Ψ− b.

Convertibility Between FNOs and CNNs The following lemma formalizes the
intuition that FNOs and CNNs are equivalent in certain settings. Given inputs of a fixed
discretization JN and parameters θ ∈ RJM , the standard convolution implementation
is equivalent to the spectral one w.r.t. the parameters θ̂ = λ F (θM→N ). The subtle but
important point here, is that the number of spectral parameters needs to be equal to
the input size in order to achieve equivalence. In [FNO, Fig. 3] we observe numerically
that the number of used spectral coefficients actually needs to match the input size in
order to achieve equivalence.

Lemma 4.9 ([FNO, Lem. 3]). Let M ≤ N both be odd and let T : RJN → CIN

be defined for θ ∈ RJN as T (θ) = λ F (θ). For any θ ∈ RJM and v ∈ RJN it holds true
that

C(θ)(v) = K(T (θM→N ))(v)

and for any θ̂ ∈ CIM
sym and v ∈ RJN it holds true that

K(θ̂)(v) = C(T −1(θ̂M→N ))(v).

Together with [FNO, Fig. 3] we see that in order to convert a CNN to a FNO we need
a large number of spectral parameters. This is also connected to the fact that spatial
locality can only be expressed using more spectral coefficients. Therefore, one might
think that FNOs are infeasible due to memory requirements. However, it turns out that
directly optimizing over the spectral parameters leads to a comparable performance,
already for a low number of Fourier coefficients, which is reported in the blue curve in
[FNO, Fig. 3]. This hints that training a FNO via gradient descent leads to different
weights, that are not simply a conversion of a similarly trained CNN. The reason for
these differences is that the gradients of spectral and standard convolutional layers, that
have the same forward pass, are not directly convertible via the Fourier transformation.
In fact, one obtains an additional factor, which we formalize in the following lemma.

Lemma 4.10 ([FNO, Lem. 4]). For odd N ∈ N and v, θ ∈ RJN and θ̂ = T (θ) it
holds true that

∇θ̂K(θ̂)(v) =
1

|JN |
T
(

∇θC(θ)(v)
)

.
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Resolution Invariance In the second experiment we study the resolution invariance
of the three discretization independent architectures we considered, namely the naive
CNN adaptation, input interpolation and the FNO implementation. We first train the
convolutional architecture as in the previous paragraph on the FashionMNIST dataset,
that has an input size of 28×28. We resize the input data via trigonometric and bilinear
interpolation—referred to as data sizing—to simulate multi-resolution data. One expects
that the classification performance drops when the data is resized to a smaller size, since
this step looses information. However, resizing the images to higher resolutions should
yield the same performance.

In [FNO, Fig. 4] we see that the simple adaption does not perform well both in the
lower and the higher resolution setting. Employing input interpolation improves the
performance in the lower resolution setting. In the higher resolution regime, we obtain
a constant performance, which is expected. Finally, we see that the FNO—which was
converted from the CNN—performs as well as input interpolation, which justifies the
resolution independence of this architecture.

In the second experiment, we trained a ResNet18 [He+16a] on a former version of
the BIRDS500 dataset [Pio21], with an input size of 112 × 112. Concerning the naive
adaption and the input interpolation, we observe the same behavior as in the previous
example. However, the FNO variant performs slightly worse, which is surprising, es-
pecially in the higher resolution regime. In [FNO] we conclude that this is due to the
dimension changes within the ResNet architectures. These changes occur due to strided
convolutions or pooling operations between the layers. In fact, in order to achieve the
performance as displayed in [FNO, Fig. 4 (b)] we replaced every striding by a trigono-
metric interpolation, which fits better into the FNO framework and vastly improves the
performance. Therefore, we summarize that architecture intern dimension changes—
which are very common in practice—can potentially hinder resolution invariance.
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where the shrinkage operator is defined in Example 4.18. This iteration was employed
in [Nit14; RVV20; Red+16] to train sparse neural networks.

Sparse-to-Sparse Training All the sparsity-based methods mentioned before, start
with dense weight matrices and only decrease the number of parameters during or at
the end of the training process. Our approach yields an iteration, where the network is
sparse throughout the iteration. In fact, we start with only very few non-zero parameters
and only activate necessary weights during training. This paradigm is known as sparse-
to-sparse or evolutionary training [Moc+18; DZ19; Evc+20; DYJ19; Fu+22; Hua+16;
Liu+21].

Contribution in [BREG-I] Our work falls into the regime of sparse-to-sparse train-
ing. However, instead of relying on some heuristic growth strategy, we employ the
concept of inverse scale flows (see Section 4.4.1) which allows us to obtain a optimization-
driven framework, with a time-continuous interpretation. We propose a stochastic vari-
ant of linearized Bregman iterations (Section 4.4.3) and employ it to train a sparse neural
network. We show monotonic decrease of the loss in the stochastic setting—which is not
possible in the case of proximal gradient descent Eq. (4.12)—and convergence of the
iterates under additional convexity assumptions, see Section 4.4.4. Finally, we demon-
strate the numerical efficiency of the method (see Section 4.4.5) and provide interesting
applications for neural architecture search, which was further developed in [BREG-II].

4.4.1. Preliminaries on Convex Analysis and Bregman Iterations

We first review some necessary concepts from convex analysis that allow us to introduce
the framework in [BREG-I]. We refer to [BB18; Roc97; BC11] for a more exhaustive
introduction to these topics. In the following Θ denotes a Hilbert space, and we focus on
a lower semi-continuous regularization functional J : Θ → (−∞,∞]. Here, J is called
lower semi-continuous if J(u) ≤ lim infn→∞ J(un) holds for all sequences (un)n∈N ⊂ Θ
converging to u. Furthermore, we require the functional to be convex.

Definition 4.12. Given a Hilbert space Θ and a functional J : Θ→ (−∞,∞].

1. The functional J is called convex, if

J(λθ + (1− λ)θ) ≤ λJ(θ) + (1− λ)J(θ), ∀λ ∈ [0, 1], θ, θ ∈ Θ. (4.13)

2. The effective domain of J is defined as dom(J) := {θ ∈ Θ : J(θ) 6= ∞} and J
is called proper if dom(J) 6= ∅.

We want to consider functionals J that are convex, but not necessarily differentiable.
Therefore, we define the subdifferential.
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Definition 4.13. The subdifferential of a convex and proper functional J : Θ →
(−∞,∞] at a point θ ∈ Θ is given as

∂J(θ) :=
{

p ∈ Θ : J(θ) + 〈p, θ − θ〉 ≤ J(θ), ∀θ ∈ Θ
}

. (4.14)

If J is differentiable, then the subdifferential coincides with the classical gradient (or
Fréchet derivative). We denote by dom(∂J) := {θ ∈ Θ : ∂J(θ) 6= ∅} and observe that
dom(∂J) ⊂ dom(J).

The Bregman Distance The main algorithm in this section are so-called Bregman
iterations, which make use of the Bregman distance.

Definition 4.14 (Bregman Distance). Let J : Θ → (−∞,∞] be a proper and
convex functional. Then, for θ ∈ dom(∂J), θ ∈ Θ we define

Dp
J(θ, θ) := J(θ)− J(θ)− 〈p, θ − θ〉, p ∈ ∂J(θ). (4.15)

For p ∈ ∂J(θ) and p ∈ ∂J(θ) we define the symmetric Bregman distance as

Dsym
J (θ, θ) := Dp

J(θ, θ) + Dp
J(θ, θ). (4.16)

Intuitively, the Bregman distance Dp
J(θ, θ), measures the distance of J to its linearization

around θ, see Fig. 4.2. If J is differentiable, then the subdifferential is single valued—we
can suppress the super script p—and we obtain

DJ(θ, θ) = J(θ)− J(θ)− 〈∇J(θ), θ − θ〉.

Example 4.15. For Θ = Rd and J = 1
2 ‖·‖

2
2 we see that ∂J(θ) = {θ} and therefore

Dp
J(θ, θ) =

1

2
〈θ, θ〉 − 1

2
〈θ, θ〉 − 〈θ, θ − θ〉

=
1

2
〈θ, θ〉+

1

2
〈θ, θ〉 − 〈θ, θ〉

=
1

2

∥
∥
∥θ − θ

∥
∥
∥

2

2
= J(θ − θ).

We can easily see, that in general this “distance” is neither definite, symmetric nor
fulfills the triangle inequality, hence it is not a metric. However, it fulfills the two
distance axioms

Dp
J(θ, θ) ≥ 0, Dp

J(θ, θ) = 0, ∀θ ∈ Θ, θ ∈ dom(∂J). (4.17)

The same holds for the symmetric Bregman distance, where additionally—as the name
suggests—the symmetry property is fulfilled.
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Figure 4.2.: Visualization of the Bregman distance.

The Proximal Operator Another crucial concept in this section, is the so-called
proximal operator.

Definition 4.16. Let J : Θ→ (−∞,∞] be convex, proper and lower semicontinuous
functional, then we define the proximal operator as

proxJ(θ) := argminθ∈Θ

1

2

∥
∥
∥θ − θ

∥
∥
∥

2
+ J(θ).

If J is a closed function, i.e., its sublevel sets

Nα = {θ ∈ dom J : J(θ) ≤ θ}

are closed for every α ∈ R then we have that the function J̃ = 1
2 ‖θ − ·‖

2 + J(θ) is
closed, proper and strongly convex and therefore has a unique minimizer, see [Roc97,
Thm. 27.1]. Additionally, one often considers a regularization parameter λ > 0 and is
then interested in proxλJ .

Remark 4.17. The optimality conditions for θ = proxλJ(θ) yield

θ − θ ∈ λ ∂J(θ).

For a proper, closed and convex function we obtain

θ = (I + λ∂J)−1(θ)

where (I + λ∂J)−1 is called the resolvent and is a one-to-one mapping (see [PB+14, Ch.
3.2]) which justifies the equality in the above equation. If J is differentiable, then we
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have ∂J = {∇J} and therefore,

proxλJ = (I + λ∇J)−1.

△
In the following, we list two relevant examples for the applications in [BREG-I; BREG-
II].

Example 4.18. If J = ‖·‖ is a norm and λ > 0 then we have that (see, e.g., [PB+14])

proxλJ(θ) = θ − Proj‖·‖∗(θ/λ)

where Proj‖·‖∗ denotes the projection operator w.r.t. the dual norm ‖θ‖∗ =

sup{|〈f, θ〉| : f ∈ Θ∗}. In the case of ℓp norms on Rd we know that

‖θ‖∗p = ‖θ‖q

with 1/p + 1/q = 1 with the notational convention of 1/∞ = 0. Especially relevant
are the cases p ∈ {1, 2}. Here, we then have that

proxλ‖·‖2
(θ) = θ



1−min







λ
∥
∥
∥θ
∥
∥
∥

2

, 1









 =







θ
(

1− λ/
∥
∥
∥θ
∥
∥
∥

2

)

if
∥
∥
∥θ
∥
∥
∥

2
≥ λ,

0 else

and for i = 1, . . . , n,

proxλ‖·‖1
(θ)i = sign(θi) max

{∣
∣
∣θi

∣
∣
∣− λ, 0

}

=







θi − λ if θ > λ,

0 if
∣
∣
∣θi

∣
∣
∣ ≤ λ,

θi + λ if θ < −λ,

the so-called soft shrinkage operator.

Example 4.19 (Group Norms). Another relevant functional J is the group norm
ℓ1,2 that—in the context of sparse neural networks—was first employed by [Sca+17].
Here, we assume that the parameters in θ ∈ Θ can be grouped in a collection of
parameters, i.e., θ = {θ1, . . . , θs}, and we choose

J(θ) =
∑

g∈θ

√
s ‖g‖2 .

In this case the proximal operator is given as

proxλJ(θ)i = θi max

{

1−min

{

λ
√

s

‖θ‖2
, 1

}

, 0

}

.
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Bregman Iterations Our goal is to minimize a function L while simultaneously ob-
taining a low value w.r.t. the functional J . A popular approach considers the regularized
problem

min
θ
L(θ) + λJ(θ) λ > 0,

see, e.g., [Tik43; CP08; DDD04; FS06; FNW07; Cha04; CP11], which however influences
the minimizers of the original problem minθ L(θ). In the derivation of the Bregman
iterations, one can take a different viewpoint. We want to employ an iterative scheme,
where in each step we minimize L while penalizing the distance to the previous iterate.
For a stepping parameter τ and starting from some θ(0) ∈ Θ this yields the update

θ(k+1) = argminθ τL(θ) +
1

2

∥
∥
∥θ − θ(k)

∥
∥
∥

2
= proxτL(θ(k)). (4.18)

This concept is known as the proximal point algorithm [Bre67] as well as the minimizing
movement scheme [De 93]. If L is differentiable, this update can be rewritten as

θ(k+1) = (I + τ∇L)−1θ(k) ⇔ 1

τ

(

θ(k+1) − θ(k)
)

= −∇L(θ(k+1))

which is a implicit Euler discretization ([Eul24]) of the time-continuous gradient flow

∂tθt = −∇L(θt).

We see that the penalization term in Eq. (4.18) is in fact the Bregman distance w.r.t.
the functional 1

2 ‖·‖
2, see Example 4.15. In order to incorporate an arbitrary convex

functional J—and therefore allow each iterate to only slightly deviate w.r.t. the Bregman

distance of J to the previous iterate—we employ Dp(k)

J (·, θ(k)) as a penalization term.
Here, we obtain a update scheme for the subgradients p(k), as follows,

θ = argminθ∈Θ Dp(k)

J

(

θ, θ(k)
)

+ τL(θ) (4.19)

⇔ p(k) + τ∇L(θ) ∈ ∂J(θ). (4.20)

This yields the Bregman iteration of [Osh+05]

θ(k+1) = argminθ∈Θ Dp(k)

J

(

θ, θ(k)
)

+ τL(θ), (4.21a)

p(k+1) = p(k) − τ∇L(θ(k+1)) ∈ ∂J(θ(k+1)). (4.21b)

The nature of Bregman iterations requires starting with an iterate θ(0) that has a low
value in J—preferably J(θ(0)) = 0—and only increase J(θ(k)) gradually in each step.

Remark 4.20. Originally, the iterations were employed for solving inverse problems.
Here, we are given a forward operator A : Θ→ Θ̃ and a noisy measurement f = Aθ + δ
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where δ ∈ Θ̃ models additive noise. The loss function is then of the form

L =
1

2
‖A · −f‖22

for which one can show that the Bregman iterations converge to a solution of

min {J(θ) : Aθ = f} , (4.22)

see, e.g., [Osh+05]. In comparison to this, the concept of adding a regularizing term
with parameter λ > 0, i.e., considering the problem

min
θ
L(θ) + λJ(θ)

actually modifies the minimizers. In this sense, Bregman iterations do not introduce a
bias. However, for applications like image denoising, where A is the identity, this also
implies that the iterations converge back to the noisy image. Therefore, one often has
to employ an early stopping criterion. △

Example 4.21. In order to obtain an intuition of the behavior of Bregman iterations,
we consider an image denoising task. I.e., we are given a noisy image Rn×m ∋ f = u+δ
where δ ∈ Rn×m models additive noise. In order to obtain u ∈ Rn×n from f , we
employ the TV functional [ROF92]

J(u) = TV (u) :=
∑

i,j

√

|ui+1,j − ui,j |2 + |ui,j+1 − ui,j |2

together with the loss function L(u) := 1
2 ‖u− f‖22. We start with an image u(0) such

that TV (u(0)) = 0, i.e., a constant image. In Fig. 4.3 we visualize the iterates at for
different k. At the start, the iterates only display features on a larger scale, while at
the end, they converge back to the smallest possible scale, the noisy data. In order
to obtain an appropriate denoising, one needs to employ a early stopping here. This
fits well to the insight from Eq. (4.22), since here the forward operator is the identity,
i.e.,

{

u :
1

2
‖u− f‖2 = 0

}

= {f}.

It should also be noted that this example only serves a explanatory purpose. In
practice, directly applying Eq. (4.21) for J = TV can become infeasible, since the
first minimization problem is expensive.
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The time continuous flow for τ → 0 is known as the inverse scale space flow [Bur+06;
Bur+07],

{

ṗt = −∇L(θt),

pt ∈ ∂J(θt).

For J = 1
2 ‖·‖

2
2 we see that ∂J(θt) = θt and therefore, we obtain the standard gradient

flow. Hence, the inverse scale space flow is a generalization of the standard gradient
flow.

4.4.2. Linearized Bregman Iterations and Mirror Descent

The minimization step in Eq. (4.21) is infeasible for large scale applications, especially in
our setting for neural networks. Therefore, we employ the idea introduced in [Yin+08;
COS09]. We first linearize the loss function around the previous iterate,

L(θ) ≈ L(θ(k)) +
〈

∇L(θ(k)), θ − θ(k)
〉

.

The next step is to replace J with the strongly convex elastic net regularization

Jδ := J +
1

2δ
‖·‖22 . (4.23)

The minimization step in Eq. (4.21) then transforms to

argminθ∈ΘDp(k)

Jδ

(

θ, θ(k)
)

+ τ
〈

∇L(θ(k)), θ
〉

(4.24)

= argminθ∈Θ J(θ) +
1

2δ
‖θ‖22 − 〈p(k), θ〉+ τ

〈

∇L(θ(k)), θ
〉

= argminθ∈Θ J(θ) +
1

2δ

∥
∥
∥θ − δ

(

p(k) − τ∇L(θ(k))
)∥
∥
∥

2

2
−
∥
∥
∥p(k) − τ∇L(θ(k))

∥
∥
∥

2

2
︸ ︷︷ ︸

constant in θ

= proxδJ

(

δ
(

p(k) − τ∇L(θ(k)
))

.

Note, that here p(k) is a subgradient of Jδ at θ(k), where we derive the subgradient update
rule

p(k+1) := p(k) − τL(θ(k)).

This yields the linearized Bregman iterations

p(k+1) = p(k) − τ∇L(θ(k)), (4.25a)

θ(k+1) = proxδJ(δp(k+1)). (4.25b)

The last line is equivalent to p(k+1) ∈ ∂Jδ(θ(k+1)) for which we obtain the continuous
linearized flow

ṗt = −∇L(θt),

pt ∈ ∂Jδ(θt),

see [Bur+06; Bur+07].
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Connections To Mirror Descent As already noticed in [Vil+23] linearized Bregman
iterations are equivalent to mirror descent in some situations. We show the equivalence
in the following, where we employ similar arguments as in [BT03]. One assumes to be
given a differentiable and strongly convex function h : Θ→ R, i.e.,

h(θ)− h(θ)− 〈∇h(θ), θ − θ〉 ≥ 1

2

∥
∥
∥θ − θ

∥
∥
∥

2

2

for all θ, θ ∈ Θ. The mirror descent update then reads ([NY83; BT03])

θ(k+1) = ∇h∗
(

∇h
(

θ(k)
)

− τ∇L(θ(k))
)

(4.26)

where h∗ denotes the Fenchel conjugate

h∗(p) = sup
θ
〈p, θ〉 − h(θ)

with the gradient (see [BV04])

∇h∗(p) = argmaxθ {〈p, θ〉 − h(θ)〉} .

Therefore, we see that Eq. (4.26) can be written as

θ(k+1) = argmaxθ

{〈

∇h
(

θ(k)
)

− τ∇L(θ(k)), θ
〉

− h(θ)
}

= argmaxθ

{

−Dh(θ, θ(k))− τ
〈

∇L(θ(k)), θ
〉}

= argminθ

{

Dh(θ, θ(k)) + τ
〈

∇L(θ(k)), θ
〉}

which was our starting point to derive linearized Bregman iterations for h = Jδ in
Eq. (4.24). In fact, since it is strongly convex, we can always find a convex functional
J : Θ→ R such that h = J + 1

2 ‖·‖
2
2. Therefore, we see, that Eq. (4.25) is a more general

formulation of Eq. (4.26).

4.4.3. Stochastic and Momentum Variants

We want to employ linearized Bregman iterations to train a neural network. As men-
tioned in Section 4.1.2, we usually do not compute the full gradient of L but rather a
minibatched variant. This yields stochastic Bregman iterations:

draw ω(k) from Ω using the law of P,

g(k) := g(θ(k); ω(k)),

v(k+1) := v(k) − τ (k)g(k),

θ(k+1) := proxδJ(δv(k+1)).

(4.27)

We also abbreviate this scheme as the LinBreg algorithm in the following. The presence
of a stochastic gradient estimator significantly complicates the convergence analysis, as
observed in Section 4.4.4. However, this algorithm can now be efficiently employed to
train a neural network. For the analogous stochastic mirror descent algorithm, we refer
to [Nem+09].
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Momentum Variant Typically, the learning process of a neural network can be im-
proved by introducing a momentum term (see, e.g., [Nes83; Qia99]) in the optimizer.
In our case, this can be achieved by replacing the gradient update on the subgradient
variable. In [BREG-I] we first consider the inertia version of the gradient flow as

{

γv̈t + v̇t = −∇L(θt),

vt ∈ ∂Jδ(θt).

The discretization then reads

m(k+1) = β(k)m(k) + (1− β(k))τ (k)g(k),

v(k+1) = v(k) −m(k+1),

θ(k+1) = proxδJ(δv(k+1)).

(4.28)

Adamized Bregman Iteration We shortly remark that one can replace the momen-
tum update in Eq. (4.28) with an Adam update [KB14]. This then yields an Adamized
version of linearized Bregman iterations, as employed in [BREG-I].

4.4.4. Convergence of Stochastic Bregman Iterations

While various previous works prove convergence of linearized Bregman iterations (see,
e.g., [Osh+05; COS09]), the stochastic setting requires special treatment. In [BREG-I]
we prove the first guarantees for the algorithm in Eq. (4.27). Other work on convergence
of stochastic Bregman iterations, or mirror descent requires a differentiable functional
J , see [DEH21; HR21; ZH18; DOr+21; AKL22]. Since our main motivation is a L1 type
functional, this is not applicable. Therefore, we present the novel convergence analysis
of [BREG-I].

Assumptions on the Gradient Estimator In order to obtain convergence guaran-
tees, we need to assume mainly two properties on the gradient estimator g(·, ·). First,
we assume unbiasedness, which means

E [g(θ; ω)] = ∇L(θ) for all θ ∈ Θ.

The second assumption we need in the following is referred to as bounded variance of
the estimator.

Assumption 4.22 (Bounded variance). We assume that there exists a constant
σ > 0 such that for any θ ∈ Θ it holds

E
[

‖g(θ; ω)−∇L(θ)‖2
]

≤ σ2. (4.29)
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Remark 4.23. We remark, that this property is weaker than the bounded gradient
assumption

E
[

‖g(θ; ω)‖2
]

≤ C

for some constant C > 0. This condition would contradict a strong convexity
assumption—which we employ in Theorem 4.30—as shown in [Ngu+18]. A weaker and
more realistic assumption is the affine variance condition, as used in [Faw+22]

E
[

‖g(θ; ω)−∇L(θ)‖2
]

≤ σ2
0 + σ2

1 ‖∇L(θ)‖2 ,

for constants σ0, σ1. Proving convergence of the stochastic linearized Bregman iterations
under the previous assumption is an interesting open problem. △

Assumptions on the Regularizer and on the Loss Function The assumptions
on the regularization functional J are mild and merely ensure the well-definedness of the
proximal mapping.

Assumption 4.24 (Regularizer). We assume that J : Θ → (−∞,∞] is a convex,
proper, and lower semicontinuous functional on the Hilbert space Θ.

Our assumptions on the loss function L are more restrictive. We require it to be bounded
from below and differentiable, which are both standard assumptions. Additionally, we
require Lipschitz continuity of the gradient, which is commonly employed in optimization
literature.

Assumption 4.25 (Loss function). We assume the following conditions on the loss
function:

• The loss function L is bounded from below and without loss of generality we
assume L ≥ 0.

• The function L is continuously differentiable.

• The gradient of the loss function θ 7→ ∇L(θ) is L-Lipschitz for L ∈ (0,∞):
∥
∥
∥∇L(θ̃)−∇L(θ)

∥
∥
∥ ≤ L

∥
∥
∥θ̃ − θ

∥
∥
∥ , ∀θ, θ̃ ∈ Θ. (4.30)

If the loss function L fulfills the previous assumptions, we are able to prove loss decay of
the iterates, see Theorem 4.29. However, in order to show convergence of the iterates, we
additionally need a convexity assumption. For a differentiable functional J , the authors
in [DEH21] assumed

ν DJ(θ, θ) ≤ DL(θ, θ),
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which for twice differentiable J and L yields

ν ∇2J . ∇2L, ∀θ, θ ∈ Θ.

Plugging in the definition of the Bregman dist DL we obtain

ν DJ(θ, θ) ≤ L(θ)− L(θ)− 〈∇L(θ), θ − θ〉.

In this form, one observes that this is in fact a convexity assumption on L w.r.t. a J
dependent distance, as employed in [BREG-I].

Assumption 4.26 (Strong convexity). For a proper convex function H : Θ → R

and ν ∈ (0,∞), we say that the loss function θ 7→ L(θ) is ν-strongly convex w.r.t. H,
if

L(θ) ≥ L(θ) + 〈∇L(θ), θ − θ〉+ νDp
H(θ, θ), ∀θ, θ ∈ Θ, p ∈ ∂H(θ). (4.31)

Remark 4.27. We have two relevant cases for the choice of H. For H = 1
2 ‖·‖

2 Assump-
tion 4.26 reduces to standard strong ν-convexity. The other relevant case, is H = Jδ,
i.e., we consider convexity w.r.t. to the functional Jδ. △

Remark 4.28. In the setting of training a neural network, where we employ the empir-
ical loss Eq. (4.1), this convexity assumption usually fails. While it is possible to enforce
this conditions only locally around the minimum, this does not significantly improve the
applicability. For future work, it would be desirable to enforce a Kurdyka–Łojasiewicz
inequality, as in [Ben+21] for the deterministic case. △

Loss Decay The first convergence result considers the loss decay of the iterates. Here,
we do not assume convexity of the loss function. Under these assumptions the authors
in [Ben+21; BB18] were able to show the inequality

E
[

L(θ(k+1))
]

+
1

τ (k)
E
[

Dsym
J (θ(k+1), θ(k))

]

+
C

2δτ (k)
E
[∥
∥
∥θ(k+1) − θ(k)

∥
∥
∥

2
]

≤ E
[

L(θ(k))
]

.

In our setting, employing a stochastic gradient estimator, we are able to prove a similar
estimate. We obtain an additional term scaled by σ, which controls the expected squared
difference between the gradient estimator and the actual gradient.

Theorem 4.29 ([BREG-I, Thm. 2]: Loss decay). Assume that Assump-
tions 4.22, 4.24 and 4.25 hold true, let δ > 0, and let the step sizes satisfy τ (k) ≤ 2

δL .
Then there exist constants c, C > 0 such that for every k ∈ N the iterates of (4.27)
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satisfy

E
[

L(θ(k+1))
]

+
1

τ (k)
E
[

Dsym
J (θ(k+1), θ(k))

]

+
C

2δτ (k)
E
[∥
∥
∥θ(k+1) − θ(k)

∥
∥
∥

2
]

≤ E
[

L(θ(k))
]

+ τ (k)δ
σ2

2c
.

(4.32)

Convergence of the Iterates Here, we have two cases respectively proving conver-
gence w.r.t. the L2 distance and the Bregman distance of Jδ. The first assumes strong
convexity with H = 1

2 ‖·‖
2 in Assumption 4.26.

Theorem 4.30 ([BREG-I, Thm. 6]: Convergence in norm). Assume that
Assumptions 4.22, 4.24 and 4.25 and Assumption 4.26 for H = 1

2 ‖·‖
2 hold true and

let δ > 0. Furthermore, assume that the step sizes τ (k) are such that for all k ∈ N:

τ (k) ≤ µ

2δL2
, τ (k+1) ≤ τ (k),

∞∑

k=0

(τ (k))2 <∞,
∞∑

k=0

τ (k) =∞.

The function L has a unique minimizer θ∗ and if J(θ∗) <∞ the stochastic linearized
Bregman iterations (4.27) satisfy the following:

• Letting dk := E
[

Dv(k)

Jδ
(θ∗, θ(k))

]

it holds

dk+1 − dk +
µ

4
τ (k)E

[∥
∥
∥θ∗ − θ(k+1)

∥
∥
∥

2
]

≤ σ

2

(

(τ (k))2 + E
[∥
∥
∥θ(k) − θ(k+1)

∥
∥
∥

2
])

.

(4.33)

• The iterates possess a subsequence converging in the L2-sense of random vari-
ables:

lim
j→∞

E
[∥
∥
∥θ∗ − θ(kj)

∥
∥
∥

2
]

= 0. (4.34)

Here, Jδ is defined as in (4.23).

For the second result we assume convexity w.r.t. the Bregman distance, i.e., we choose
H = Jδ in Assumption 4.26. This induces a relation between the Bregman distance of
J and the loss function L, which has been similarly employed in [DEH21].

Theorem 4.31 ([BREG-I, Thm. 11]: Convergence in the Bregman dis-
tance). Assume that Assumptions 4.22, 4.24 and 4.25 and Assumption 4.26 for
H = Jδ hold true and let δ > 0. The function L has a unique minimizer θ∗ and
if J(θ∗) <∞ the stochastic linearized Bregman iterations (4.27) satisfy the following:
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pointwise multiplication with a binary mask M l ∈ 0, 1nl+1×nl

W l := W̃ l ⊙M l.

Each entry in M l is i.i.d. sampled from a Bernoulli distribution

M l
i,j ∼ B(r).

where the parameter r determines the sparsity,

N(W l) :=

∥
∥
∥W l

∥
∥
∥

0

nl · nl−1
= 1− S(W l)

with N denoting the percentage of used parameters and S the sparsity. In [GB10]
the authors advise to especially control to the variance of the parameter initialization
distribution, for which in [BREG-I] we derive

Var
[

W̃ l
]

=
1

r
Var

[

W̃ l ⊙M l
]

(4.39)

and therefore scale the weights with the sparsity parameter r at initialization.

Choice of Regularizers In all our experiments we choose a L1 type sparsity promot-
ing regularization function functional J . We do not employ any coupling between weight
matrices of different layers, and therefore for θ = ((W1, b1), . . . , (WL, bL)) we have

J(θ) =
L∑

l=1

Jl(Wl)

where J l is chosen according to the layer type. In the easiest case of a fully connected
layer, we can choose

Jl(Wl) := ‖Wl‖1 .

In the case of a convolutional layer we have that W l is determined by convolutional
kernels Ki,j ∈ Rk×k, see Section 4.1.1. Here, we typically employ a group sparsity term
in the form

Jl(Wl) = ‖Wl‖2,1 =
∑

i,j

‖Ki,j‖2 .

The outer sum acts as a L1 regularizer on the instances ‖Ki,j‖. Sparsity, in this sense,
then amounts to having indices (i, j) for which ‖Ki,j‖2 = 0 ⇔ Ki,j = 0, i.e., we prune
away whole convolutional filters. This effect is displayed in [BREG-I, Fig. 1]. We can
also employ group sparsity on fully connected layers, by considering row sparsity of
Wl ∈ Rnl+1,nls

Jl(Wl) =

nl+1∑

i=1

‖Wi,:‖2 =

nl+1∑

i=1

√
√
√
√

nl∑

js=1

W 2
i,j .
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In this setting we have a L1 penalty on the row norms ‖Wi,:‖2 which therefore enforces
whole rows to be zero. This is relevant, if we employ a layer architecture with Ψl(0) = 0,
e.g., using no bias vectors and the ReLU activation function. In this setting, if the ith
row of Wl is zero this effectively means, that the ith neuron in layer l+1 is inactive. This
observation allows the neural architecture search in one of the following paragraphs.

Comments on the Numerical Results We briefly remark on the numerical results
as displayed in [BREG-I, Sec. 4]. In the experiments we employed feed-forward networks
with simple linear, convolutional and residual layers and tested on the three datasets
[Kri09; XRV17; LC10].

The basic comparison between the algorithms SGD, ProxGD and LinBreg shows the
qualitative behavior of each iteration. The sparse initialization does not have any effect
on SGD, since it does not preserve the sparsity in any way. ProxGD rather starts
with many active parameters and reduces this number during the iteration. Only the
discretization of the inverse scale space flow—via Bregman iterations—shows the desired
behavior of gradually adding active parameters. Furthermore, in [BREG-I, Fig. 2] we
can see, that the choice of λ in the regularizer J = λ ‖·‖1 changes the results significantly.
In the light of Eq. (4.22), this is not expected for the standard Bregman iterations with
a convex loss. It is therefore interesting to see, that in our non-convex and stochastic
situation this effect changes.

The momentum variants, as discussed in Section 4.4.3 yield the desired effect of en-
hancing the validation accuracy, and respectively converging faster. However, in each
of the experiments, one can also observe that adding a momentum term has the effect
that more parameters are added faster. On the one hand, this could mean that the
network actually requires more parameters to have a higher accuracy, and a momentum
variant is more likely to increase the number of needed parameters. However, the quan-
titative evaluation on the CIFAR10 dataset [Kri09] shows, that especially the Adamized
version tends to increase the number of used parameters rather aggressively, while only
slightly increasing the performance of the net. The performance here is very similar
to the one of proximal gradient descent. However, the training of a residual network
seems to be slightly better with a standard Lasso implementation. Neglecting the non-
differentiability of the L1 norm, one computes a derivative via automatic differentiation
[Ral81; MDA15] (we employed the autograd library of the PyTorch package [Pas+19]).
In order to obtain true zeros in the weight matrix one then has to employ a thresholding
operation after the training. In some sense, this method is not a proper sparse training
approach, but rather a regularization method with an added pruning step at the end.

Comments on Efficiency One of the major advantages of the Bregman approach,
is that the network is sparse already during the training time. As with all sparse-to-
sparse training approaches, this yields a very small number of active parameters over
all training step. This sparsity can be easily exploited in each forward pass. However,
it is not directly possible to achieve performance gains during the backward pass of the
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network, since in general

W l
ij = 0 ; ∂W l

ij
L(θ) = 0.

In [BREG-I; BREG-II] there are no evaluations on the training time and memory con-
sumption of the Bregman algorithm. This is an interesting open question for future
work. We remark that the computational complexity of the LinBreg algorithm does not
increase significantly, compared to SGD, since the evaluation of the proximal operator
is very efficient for L1 type functionals.

Neural Architecture Search An interesting aspect hinted in [BREG-I] is optimizing
the architecture of a neural network via sparsity. In the example provided in [BREG-I,
Fig. 4] one defines a super-architecture as a multi-layer perceptron with an equal number
of neurons in each layer. Training this task with the LinBreg algorithm reveals the well-
known autoencoder structure [HZ93]. This idea was developed further in [BREG-II],
where also skip connection of a residual architecture were learned. Here, the super-
architecture was given by a dense net [Hua+17], where each skip connection was scaled
by a parameter, which was penalized with a sparsity term. We refer to [CFS23] for similar
experimental result in a different setting, not directly related to sparse optimization.

The driving question for future work, is how to employ the insights from [BREG-II]
to find more complex architectures. Learning an architecture similar to the U-Net as
proposed in [RFB15] is of particular interest here.
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Conclusion

This thesis provided insights into the topics of consistency, sparsity and robustness of
learning algorithms. Thematically, the thesis is split into two main chapters, dealing
with semi-supervised and supervised learning. We summarize both chapters below and
respectively provide an outlook and possible future work.

Consistency of SSL on Sparse Graphs We considered the infinite data limit in
the semi-supervised setting, focusing on the Lipschitz learning task. For all our results
we assumed mild scaling conditions which allow for very sparse graphs. We were first
able to show Γ-convergence in the variational setting. We then proved convergence rates
for AMLEs via a homogenization strategy, which relied on the comparison with cones
principle. The key insight we obtained was, that a rate for graph distance functions
implies a rate for graph AMLEs. This observation was already employed in our follow-
up work in [LIP-III], where convergence rates at an even smaller scale were shown. We
also conducted experiments to validate our theoretical framework in practice. Here, we
observed better results than we were able to prove.

While our framework allows the graph to be very sparse, we are restricted to the case
of ε-ball graphs. Here, it would be interesting to see, how our results can be transferred
to the knn setting as in [CT22]. Furthermore, we only considered the standard Lipschitz
learning task, which tends to forget the data distribution. In [Cal19] a modification was
proposed that makes the problem sensitive to the distribution. The open problem that
arises here is how to adapt the technique in [LIP-II] to show convergence for the modified
problem.

Robust and Sparse SL In the supervised setting, we considered input-robustness
w.r.t. adversarial perturbations and resolution changes. In the first case, we proposed
a defense mechanism to train stable neural networks, based on Lipschitz regularization.
We provided analytical results and numerical experiments that suggest that the strategy
allows us to learn robust networks. The strength of this approach depends on how well
the discrete Lipschitz constant approximates the true one. An interesting future direction
would be to explore different methods to determine the discrete set of Lipschitz pairs.
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E.g., one could additionally learn a generative model that outputs these pair in a faster
and probably even more expressive way than the gradient descent scheme, employed
right now.

For the multi-resolution setting, we analyzed the role of Fourier neural operators. We
first showed certain functional analytic properties of neural layers acting on Lp spaces.
We then established the relation of discretized Fourier layers to standard convolution
operations, both from a theoretical and a practical side. We also highlighted the im-
portance of the trigonometric interpolation in this context. We conducted numerical
tests that suggest the resolution equivariant behavior of FNO layers. Connected to the
previous topic, it would be interesting to study the adversarial robustness of FNOs.
First numerical tests in [Kab22] hint that the vulnerabilities are even worse than in the
standard case.

We considered the question of how to enforce sparsity in neural network weights.
Here, we employed a stochastic variant of Bregman iterations, which allowed us to train
networks that are very sparse throughout the whole optimization. We provided theoretic
convergence guarantees, where the main novelty was the stochasticity introduced into
the iteration. We also showed the numerical efficiency of the method, by training sparse
neural networks performing similarly to their dense counterparts. One open problem
is to weaken the convexity assumption and instead prove the convergence result, by
employing a Kurdyka–Łojasiewicz type inequality as in [Ben+21]. Concerning the neural
architecture search via sparsity as proposed in our work, a further interesting task would
be to learn the U-Net type architecture of [RFB15].
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Abstract

Tackling semi-supervised learning problems with graph-based methods has become a

trend in recent years since graphs can represent all kinds of data and provide a suitable

framework for studying continuum limits, for example, of differential operators. A

popular strategy here is p-Laplacian learning, which poses a smoothness condition

on the sought inference function on the set of unlabeled data. For p < ∞ continuum

limits of this approach were studied using tools from Γ -convergence. For the case

p = ∞, which is referred to as Lipschitz learning, continuum limits of the related

infinity Laplacian equation were studied using the concept of viscosity solutions. In

this work, we prove continuum limits of Lipschitz learning using Γ -convergence. In

particular, we define a sequence of functionals which approximate the largest local

Lipschitz constant of a graph function and prove Γ -convergence in the L∞-topology

to the supremum norm of the gradient as the graph becomes denser. Furthermore,

we show compactness of the functionals which implies convergence of minimizers.

In our analysis we allow a varying set of labeled data which converges to a general

closed set in the Hausdorff distance. We apply our results to nonlinear ground states,

i.e., minimizers with constrained L p-norm, and, as a by-product, prove convergence

of graph distance functions to geodesic distance functions.
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1 Introduction

Several works in mathematical data science and machine learning have proven the

importance of semi-supervised learning as an essential tool for data analysis, see

[17,38–41]. Many classification tasks and problems in image analysis (see, e.g., [17]

for an overview) traditionally require an expert examining the data by hand, and this

so-called labeling process is often a time-consuming and expensive task. In contrast,

one typically faces an abundance of unlabeled data which one would also like to equip

with suitable labels. This is the key goal of the semi-supervised learning problem

which mathematically can be formulated as the extension of a labeling function

g : O→ R

onto the whole data set V := V ∪ O, where O denotes the set of labeled and V the

set of unlabeled data. In most cases, the underlying data can be represented as a finite

weighted graph (V , ω)—composed of vertices V and a weight function ω assign-

ing similarity values to pairs of vertices—which provides a convenient mathematical

framework. A popular method to generate a unique extension of the labeling function

to the whole data set is so- called p-Laplacian regularization, which can be formulated

as minimization task

min
u:V →R

∑

x,y∈V

ω(x, y)p |u(x) − u(y)|p , subject to u = g on O, (1)

over all graph functions u : V → R subject to a constraint given by the labels on O,

see, e.g., [2,22,35,38]. This method is equivalent to solving the p-Laplacian partial

differential equations on graphs [19] and therewith introduces a certain amount of

smoothness of the labeling function. Furthermore, continuum limits of this model

as the number of unlabeled data tends to infinity were studied using tools from Γ -

convergence [22,35,36] and PDEs [14–16] (see Sect. 1.2 for more details).

Still, p-Laplacian regularization comes with the drawback that it is ill-posed if p

is smaller than the ambient space dimension in the sense that the obtained solutions

tend to be an average of the label values rather than properly incorporating the infor-

mation. Extensive studies of this problem were carried out in [35,36]. To overcome

this degeneracy, there are several options: In [16] it was investigated at which rates

the number of labeled data has to grow to obtain a well-posed problem for p = 2

in (1). In [15] it was suggested to replace the pointwise constraint u = g on O with

measure-valued source terms for the graph Laplacian equation. In contrast, in [2] the

authors propose to consider the p-Laplacian regularization for large p. In order to

have well-posedness for general space dimensions, one therefore considers the limit

p → ∞ which leads to the so-called Lipschitz learning problem

min
u:V →R

max
x,y∈V

ω(x, y) |u(x) − u(y)| subject to u = g on O. (2)
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While in the case p < ∞ one has the unique existence of solutions and equivalence of

the p-Laplacian PDE and the energy minimization task, these properties are lost in the

case p = ∞. One distinguished continuum model—in the sense that it admits unique

solutions—connected to this problem is absolutely minimizing Lipschitz extensions

and the associated infinity Laplacian equation (see, e.g., [3–5,20,27,34]). Using the

concept of viscosity solutions, in [14] a convergence result on continuum limits for

the infinity Laplacian equation on the flat torus was established, see again Sect. 1.2

for more details. Still, in [30] the authors suggest that other Lipschitz extensions (next

to the absolutely minimizing) are indeed relevant for machine learning tasks but a

rigorous continuum limit for general Lipschitz extensions has been pending.

The main goal of this paper is to derive a continuum limit for the Lipschitz learning

problems (2) to which end we prove Γ -convergence and compactness of the functional

in (2). We investigate novel smoothness conditions on the underlying domain which are

special for this L∞-variational problem and originate from the discrepancy between

the maximum local Lipschitz constant and the global one. We apply our results to

minimizers of a Rayleigh quotient involving the L∞-norm of the gradient as first

examined in [13]. The concrete outline of this paper can be found in Sect. 1.3.

1.1 Assumptions andMain Result

Let Ω ⊂ Rd , d ∈ N, be an open and bounded domain, and let Ωn ⊂ Ω for n ∈ N
denote a sequence of finite subsets. For each n ∈ N we consider the finite weighted

graph (Ωn, ωn), where ωn : Ωn × Ωn → [0,∞) is a weighting function which in

our context is given as

ωn(x, y) := ηsn (|x − y|) := η(|x − y| /sn).

Here η : [0,∞) → [0,∞) denotes the kernel and sn > 0 the scaling parameter. The

edge set of the graph is implicitly characterized via the weighting function, i.e., for

x, y ∈ Ωn we have

(x, y) is an edge iff ωn(x, y) > 0.

In the following we state standard assumptions on the kernel function η, see, e.g.,

[14,22,35,36],

(K1) η is positive and continuous at 0,

(K2) η is non-increasing,

(K3) supp(η) ⊂ [0, cη] for some cη > 0.

Similar to [22] we define the value ση := ess supt≥0 {η(t) t} which is a positive number

and appears in the Γ -limit.

To incorporate constraints, for each n we denote by On ⊂ Ωn the set of labeled

vertices as shown in (2). Often this set is fixed and therefore independent of n (e.g.,

[14,22,35]; however, see also [15,16] for p-Laplacian learning models with varying

constraint sets). As we see in Lemmas 5 and 6, making this assumption is not necessary
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in our case. We only require that the sets On converge to some closed set O ⊂ Ω in

the Hausdorff distance sufficiently fast, i.e.,

dH (On,O) := max

(

sup
x∈O

inf
y∈On

|x − y|, sup
y∈On

inf
x∈O

|x − y|
)

= o(sn), n → ∞,

(3)

where sn denotes the spatial scaling of the kernel, introduced above. A prototypical

example for the constraint set is O = ∂Ω which corresponds to the problem of

extending Lipschitz continuous boundary values g from ∂Ω to Ω . Considering a

labeling function g : Ω → R which is Lipschitz continuous allows us to restrict it to

the finite set of vertices On . The target functional for the discrete case has the form

En(u) =
1

sn

max
x,y∈Ωn

{

ηsn (|x − y|) |u(x) − u(y)|
}

(4)

for a function u : Ωn → R.

Additionally we define the constrained version of the functional, which incorporates

the labeling function, as follows

En,cons(u) =
{

En(u) if u = g on On,

∞ else.

A typical problem in this context of continuum limits is to find a single metric space

in which the convergence of these functionals takes place. In our case we choose the

normed space L∞(Ω) and thus need to extend the functionals En to L∞(Ω). This

can be achieved by employing the well-established technique (see, e.g., [23]) of only

considering piecewise constant functions. To this end we let pn denote a closest point

projection, i.e., a map pn : Ω → Ωn such that

pn(x) ∈ arg miny∈Ωn
|x − y|

for each x ∈ Ω . While pn is not necessarily uniquely determined, this ambiguity is not

relevant for our analysis. There, it is only important to control the value of |pn(x) − x |
which is independent of the choice of pn . This map has already been employed in [14]

and it allows us to transform a graph function u : Ωn → R to a piecewise constant

function, by considering u ◦ pn ∈ L∞(Ω). This function is constant on each so-

called Voronoi cell int(p−1
n (y)) for y ∈ Ωn . This procedure is similar to the technique

proposed in [22], where an optimal transport map Tn : Ω → Ωn is used for turning

graph functions into continuum functions. Now we can extend the functional En and

En,cons to arbitrary functions u ∈ L∞(Ω) by defining with a slight abuse of notation
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En(u) :=
{

En(u) if ∃u : Ωn → R : u = u ◦ pn,

∞ else.
(5)

En,cons(u) :=
{

En,cons(u) if ∃u : Ωn → R : u = u ◦ pn,

∞ else.
(6)

In order to control how the discrete sets Ωn fill out the domain Ω , we consider the

value

rn := sup
x∈Ω

min
y∈Ωn

|x − y| , (7)

and require that it tends faster to zero than the scaling sn , namely, we assume that

rn

sn

−→ 0, n → ∞. (8)

We are interested in the case that (sn)n∈N ⊂ (0,∞) is a null sequence meaning that

sn → 0 for n → ∞.

Remark 1 In the context of continuum limits one often employs random geometric

graphs, where the discrete sets are obtained as a sequence of points that are i.i.d. w.r.t.

a probability distribution µ ∈ P(Ω). Typically there is no need to use a probabilistic

framework in the L∞ context, since in contrast to the graph p-Dirichlet energy (13),

which is a Monte Carlo approximation of an integral functional, the corresponding

discrete Lipschitz energy (4) approximates an essential supremum. Therefore, only

the support of a probability measure enters our problem. Similar observations are

made in [14,31] where the value rn is also employed to control the discrete sets Ωn .

The Γ -limit of the discrete functionals En turns out to be a constant multiple of the

following continuum functional

E(u) :=
{

ess supx∈Ω |∇u(x)| if u ∈ W 1,∞(Ω),

∞ else.
(9)

A constrained version of this functional can be defined analogously

Econs(u) :=
{

E(u) if u ∈ W 1,∞(Ω) and u = g on O,

∞ else.
(10)

Before stating our main results we need to introduce a final assumption on the domain

Ω which is necessary because of the discrepancy of the Lipschitz constant and the

supremal norm of the gradient of functions on non-convex sets. For this we introduce

the geodesic distance, induced on Ω by the Euclidean distance, which is defined as

dΩ(x, y) = inf {len(γ ) : γ : [a, b] → Ω is a curve with γ (a) = x, γ (b) = y} ,
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where the length of a curve is given by

len(γ ) := sup

{
N−1
∑

i=0

|γ (ti+1) − γ (ti )| : N ∈ N, a = t0 ≤ t1 ≤ · · · ≤ tN = b

}

,

see, e.g., [10, Prop. 3.2]. While on convex domains it holds dΩ(x, y) = |x − y|, we

only need to assume the weaker condition:

lim
δ↓0

sup

{
dΩ(x, y)

|x − y| : x, y ∈ Ω, |x − y| < δ

}

≤ 1. (11)

In Sect. 3 we explore examples of sets which satisfy this condition; however, already

at this point we would like to say that it is satisfied, for instance, for convex sets, for

sets with smooth boundary, or for sets which locally are diffeomorphic to a convex set.

In a nutshell, condition (11) prohibits the presence of internal corners in the boundary.

Furthermore, since it holds dΩ(x, y) ≥ |x − y|, condition (11) requires the geodesic

and the Euclidean distance to coincide locally.

Main results Our two main results state the discrete-to-continuum Γ -convergence of

the functionals En,cons to ση Econs and that sequences of minimizers of the discrete

functionals converge to a minimizer of the continuum functional.

Theorem 1 (Discrete to continuum Γ -convergence) Let Ω ⊂ Rd be a domain satis-

fying (11), let the kernel fulfill (K1)–(K3), and let the constraint setsOn,O satisfy (3),

then for any null sequence (sn)n∈N ⊂ (0,∞) which satisfies the scaling condition (8)

we have

En,cons
Γ−→ ση Econs. (12)

Theorem 2 (Convergence of Minimizers) Let Ω ⊂ Rd be a domain satisfying (11),

let the kernel fulfill (K1)–(K3), let the constraint setsOn,O satisfy (3), and (sn)n∈N ⊂
(0,∞) be a null sequence which satisfies the scaling condition (8). Then any sequence

(un)n∈N ⊂ L∞(Ω) such that

lim
n→∞

(

En,cons(un) − inf
u∈L∞(Ω)

En,cons(u)

)

= 0

is relatively compact in L∞(Ω) and

lim
n→∞

En,cons(un) = min
u∈L∞(Ω)

ση Econs(u).

Furthermore, every cluster point of (un)n∈N is a minimizer of Econs.
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1.2 RelatedWork

The first studies concerning the limit behavior of difference operators on random

graphs were carried out in [33] and the follow-up work [32], which considers the

consistency of spectral clustering on graphs. The main motivation of our paper is the

works [22,35] where the Γ -convergence of the discrete functionals

E
(p)
n (u) =

1

s
p
n n2

∑

x,y∈Ωn

ηsn (|x − y|) |u(x) − u(y)|p (13)

toward a continuum functional of the form

E (p)(u) = ση

∫

Ω

|∇u|p ρ2(x) dx,

for 1 ≤ p < ∞ and u smooth enough, is shown. Here, ρ is the density of the measure

µ according to which the points xi are distributed. The Γ -convergence is considered

w.r.t. the T L p topology, which allows to compare discrete functions u ∈ L p(νn) with

continuum functions u ∈ L p(µ) via an optimal transport ansatz. Here, νn denotes the

empirical measure for the set Ωn , see (21). In particular, the problem they study is

connected to the extension task (1) by considering the constrained functional

E
(p)
n,cons(u) :=

{

E
(p)
n (u) if u(xi ) = g(xi ) for xi ∈ O,

∞ else,

and the associated minimization problem

inf
u∈L p(νn)

E
(p)
n,cons(u). (14)

Here, the constraint set O is assumed to be a fixed collection of finitely many points.

The main result they show ensures that minimizers of the functionals E
(p)
n,cons converge

uniformly toward minimizers of a respective constrained version of E (p) under appro-

priate assumptions on the scaling sn . The motivation for considering the limit p → ∞
for above problems is given in [2], where the graph p-Laplacian for p < d is noticed

to have undesirable properties, namely the solution of problem (14) tends to equal a

constant at the majority of the vertices with sharp spikes at the labeled data. Using a

suitable scaling, this problem does not occur in the case p > d (which is intuitively

connected to the Sobolev embedding W 1,p(Ω) →֒ C0,1−d/p(Ω) for p > d see [1,

Ch. 4]) and, in particular, as pointed out in [30, Sec. 3] one generally hopes for better

interpolation properties in the case p → ∞. However, in this limit the interpretation

of the measure µ and its density changes, namely only its support enters the problem.

The functional E (p) incorporates information about the distribution of the data in the

form of the density ρ. Using standard properties of L p-norms, the limit p → ∞ on
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the other hand reads

µ - ess supx∈Ω |∇u| = lim
p→∞

(

E (p)(u)
)1/p

and thus only the support of the measure µ is relevant. This phenomenon was already

observed in [2,14] which the authors informally described as the limit ‘forgetting’ the

distribution of the data. Furthermore, this observation is consistent with our results,

since the limit n → ∞ is independent of the sequence (xi )i∈N ⊂ Ω as long as it fills

out the domain Ω sufficiently fast, see Theorem 1 for the precise condition. In the

case p < ∞ the minimization task (1) is equivalent to the graph p-Laplace equation,

for which the formal limit p → ∞ leads to the graph infinity Laplace equation

∆∞u = 0 in V \O,

u = g in O,
(15)

where the operator ∆∞ on Ωn is defined as

∆∞u(x) := max
y∈Ωn

ω(x, y)(u(y) − u(x)) + min
y∈Ωn

ω(x, y)(u(y) − u(x)).

One should note that the unique solution of (15) also solves the Lipschitz learning task

(2), see, e.g., [14,30]. A first study concerning the continuum limit of this problem

is carried out in [14]. The main result therein states that the solutions of the discrete

problems converge uniformly to the viscosity solution of the continuum equation,

∆∞u = 0 in Ω,

u = g on O,
(16)

where the continuum infinity Laplacian for a smooth function u is defined as

∆∞u := 〈∇u, D2u∇u〉 =
d

∑

i, j=1

∂i u ∂ j u ∂2
i j u. (17)

The considered domain is the flat torus, i.e., Ω = Rd\Zd and again the constraint set

O is assumed to be fixed and finite. Furthermore, the only requirement on the sequence

of points Ωn ⊂ Ω is characterized by the value rn defined in (7).

Theorem 3 [14, Thm. 2.1] Consider the flat torus Ω = Rd\Zd , let the kernel η ∈
C2([0,∞)) be such that

{

η(s) ≥ 1 for s ≤ 1,

η(s) = 0 for s ≥ 2,
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then for a null sequence (sn)n∈N ⊂ (0,∞) such that

r2
n

s3
n

−→ 0 (18)

and for the sequence un of solutions to problem (15) we have that un → u uniformly,

where u ∈ C0,1(Ω) is the unique viscosity solution of the infinity Laplace equation

(16) on Ω , i.e.,

lim
n→∞

max
x∈Ωn

|un(x) − u(x)| = 0.

Remark 2 We state this result, since it provides the first continuum limit of the infinity

Laplace equation (15) on general graphs. Solutions of this problem constitute a special

subclass of minimizers in the Lipschitz learning task (2). To show that the limit of

solutions of (15) solve the continuum PDE (16) the author in [14] utilizes a consistency

argument which requires smoothness of the kernel η and the relatively strict scaling

condition (18). In contrast, our results consider the general minimization problem (2),

which allows us to work with the weakest scaling condition possible (8)—namely that

the graph is asymptotically connected—and much weaker conditions on the kernel η.

Remark 3 (Convergence Rates) Note that [14] did not establish rates of convergence

for solutions of the graph infinity Laplacian equation (15) and neither do we for general

minimizers of (2). Indeed, Γ -convergence is not a good tool for proving quantitative

rates since it is a very indirect notion of convergence (see also [35,36] which do not

establish convergence rates either). At the same time Γ -convergence typically allows

for much less restrictive conditions on the graph scaling than PDE techniques, cf.

Remark 2. Still, in the recent work [12] we successfully used comparison principle

techniques to show rates of convergence for solutions of the graph infinity Laplacian

equation (15) in a much more general setting than the one considered in [14]. For

showing this it suffices to use quantitative versions of the weak scaling assumption

(8) and the domain regularity condition (11).

Since the solutions of the continuum PDE (16) only exist in the viscosity sense,

the proof of this theorem involves viscosity techniques. The arguments are therefore

fundamentally different to the results for the case p < ∞ in [36]. This is our motivation

to use Γ -convergence also for p = ∞.

1.3 Outline

In Sect. 2 we give an overview of the concepts of Γ -convergence and the closest point

projection. In particular, we derive a transformation rule for supremal functionals

which is the analogue of the well-known integral transformation rule for the change

of variables.

Section 3 is devoted to the proofs of our main results Theorems 1 and 2. Similar

to the strategy in [22], in Sect. 3.1 we first prove Γ -convergence of the non-local
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auxiliary functionals

Es(u) :=
1

s
ess supx,y∈Ω {ηs(|x − y|) |u(x) − u(y)|} , s > 0 (19)

which mimic the non-local structure of the discrete functionals En in (4), to the con-

tinuum functional E in (9). Subsequently, in Sect. 3.2 we use this result for proving

our first main result, discrete to continuum Γ -convergence of the constrained discrete

functionals En,cons. In Sect. 4 we prove compactness of the discrete functionals which

yields our second main result, the convergence of minimizers.

In Sect. 5 we apply our results to a nonlinear eigenvalue problem and prove conver-

gence of discrete ground states to continuum ground states. Furthermore, generalizing

the results in [13], we characterize the latter as geodesic distance function to the

constraint set O.

2 Mathematical Background

This section reviews two important mathematical tools which we use in this paper.

The first one is the concept of Γ -convergence, which allows to deduce convergence of

minimizers from convergence of functionals. The second concept, entirely unrelated

to Γ -convergence, is the closest point projection which we employ in order to turn

graph functions into continuum ones. Furthermore, we derive a supremal version of

the transformation rule.

2.1 0-Convergence

In this section we introduce a convergence concept that is frequently employed in the

theory of variational problems, namely the so-called Γ -convergence. We refer to [8]

for a detailed introduction.

Definition 1 (Γ −convergence) Let X be a metric space and let Fn : X → [−∞,∞]
be a sequence of functionals. We say that Fn Γ -converges to the functional F : X →
[−∞,∞] if

(i) (liminf inequality) for every sequence (xn)n∈N ⊂ X converging to x ∈ X we

have that

lim inf
n→∞

Fn(xn) ≥ F(x);

(ii) (limsup inequality) for every x ∈ X there exists a sequence (xn)n∈N ⊂ X

converging to x and

lim sup
n→∞

Fn(xn) ≤ F(x).
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The notion of Γ -convergence is especially useful, since it implies the convergence of

minimizers under additional compactness assumptions. For convenience we prove the

respective result below, the proof is an adaption of a similar result in [8, Thm. 1.21].

Lemma 1 (Convergence of Minimizers) Let X be a metric space and Fn : X → [0,∞]
a sequence of functionals Γ -converging to F → X : [0,∞] which is not identically

+∞. If there exists a relatively compact sequence (xn)n∈N such that

lim
n→∞

(

Fn(xn) − inf
x∈X

Fn(x)

)

= 0,

then we have that

lim
n→∞

inf
x∈X

Fn(x) = min
x∈X

F(x)

and any cluster point of (xn)n∈N is a minimizer of F.

Proof Using the Γ -convergence of Fn for any y ∈ X we can find a sequence (yn)n∈N ⊂
X such that

lim sup
n→∞

Fn(xn) = lim sup
n→∞

inf
x∈X

Fn(x) ≤ lim sup
n→∞

Fn(yn) ≤ F(y)

and thus

lim sup
n→∞

Fn(xn) ≤ inf
x∈X

F(x) < ∞, (20)

where for the last inequality we use the fact that F is not identically +∞. By assump-

tion the sequence (xn)n∈N is relatively compact, therefore we can find an element

x ∈ X and a subsequence such that xnk
→ x , for which the liminf inequality yields

F(x) ≤ lim inf
n→∞

Fn(x̃n) ≤ lim inf
k→∞

Fnk
(xnk

) ≤ lim sup
n→∞

Fn(xn),

where we employ the sequence

x̃n :=
{

xnk
if n = nk,

x else.

Together with (20) we have that x is a minimizer of F and limn→∞ Fn(xn) = F(x).

Since the above reasoning works for any subsequence converging to some element in

X we have that every cluster point is a minimizer. ⊓⊔

A condition that ensures the existence of a relatively compact sequence of minimizers

is the so-called compactness property for functionals. A sequence of functionals is

called compact if for any sequence (xn)n∈N ⊂ X the property

sup
n∈N

Fn(xn) < ∞
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implies that (xn)n∈N is relatively compact. In Sect. 4 we show that the constrained

functionals En,cons fulfill the compactness property. This strategy is standard in the

context of continuum limits and has already been employed in [22,36].

2.2 The Closest Point Projection

In [22,36] a map Tn : Ω → Ωn is employed in order to transform integrals w.r.t. the

empirical measure, defined as

νn(A) :=
1

|Ωn|
∑

x∈Ωn

δx (A), A ∈ B(Ω), (21)

into integrals w.r.t. a probability measure ν ∈ P(Ω). Here, B(Ω) denotes the Borel

σ -algebra and P(Ω) is the set of probability measures on Ω . One assumes the push-

forward condition

νn = Tn#ν = ν ◦ T −1
n ,

which yields the following transformation,

∑

x∈Ωn

u(x) =
∫

Ω

u(x) dνn(x) =
∫

Ω

u(Tn(x)) dν(x),

for a function u : Ωn → R, see, for example, [6]. Informally speaking the push-

forward condition manifests the intuition that the map Tn has to preserve the weighting

imposed by the empirical measure νn . However, the supremal functionals in our case

only take into account whether a respective set has positive measure or is a null

set. Therefore, the assumptions on the map Tn can be weakened for an analogous

transformation rule. In fact, we only need that the push-forward measure is equivalent

to the original one.

Lemma 2 For two probability measures µ, ν ∈ P(Ω), a measurable map T : Ω → Ω

which fulfills

(i) ν << T#µ,

(ii) T#µ << ν,

and for a measurable function f : Ω → R we have that

ν - ess supx∈Ω f (x) = µ - ess supy∈Ω f (T (y)).

Remark 4 In the case ν = νn we observe that assumption (i) is equivalent to

µ(T −1(x)) > 0 (22)

for all x ∈ Ωn . Furthermore, assumption (ii) is a generalization of the property that

T (Ω) ⊂ Ωn . If (i) and (ii) are fulfilled we call the measures ν and T#µ equivalent.
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Additionally, the statement still holds true for a finite measure µ and a general measure

ν. However, for our application it suffices to consider probability measures.

Proof First we consider a set A ∈ B(Ω) such that ν(A) = 0. For this we have that

sup
x∈Ω\A

f (x) ≥ sup
y∈T −1(Ω\A)

f (T (y)) = sup
y∈Ω\T −1(A)

f (T (y)) = (#)

and since ν(A) = 0 we can use (ii) to infer that µ(T −1(A)) = 0. This implies that

(#) ≥ inf
µ(B)=0

sup
y∈Ω\B

f (T (y)) = µ - ess supy∈Ω f (T (y)).

The null set A was arbitrary and thus taking the infimum over all ν-null sets we obtain

ν - ess supx∈Ω f (x) ≥ µ - ess supx∈Ω f (T (y)).

On the other hand take B ∈ B(Ω) such that µ(B) = 0 then

sup
y∈Ω\B

f (T (y)) = sup
x∈T (Ω\B)

f (x)

and since T −1(T (Ω\B)) ⊃ Ω\B we have that

1 ≥µ(T −1(T (Ω\B))) ≥ µ(Ω\B) = 1

⇒µ(Ω\T −1(T (Ω\B))) = 0

⇒ν(Ω\(T (Ω\B))) = 0.

This implies that

sup
x∈T (Ω\B)

f (x) ≥ inf
ν(A)=0

sup
x∈Ω\A

f (x) = ν - ess supx∈Ω f (x).

Taking the infimum overall µ-null sets completes the proof. ⊓⊔

An important type of mapping Tn in our context is the so-called closest point projection.

Definition 2 (Closest Point Projection) For a finite set of points Ωn ⊂ Ω a map

pn : Ω → Ωn is called closest point projection if

pn(x) ∈ arg miny∈Ωn
|x − y|

for each x ∈ Ω .

Remark 5 Recalling the standard definition of a Voronoi tessellation (see, e.g., [29])

one notices that the control volume associated with the vertex xi ∈ Ωn is given by

int(p−1
n (xi )).
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The use of a closest point projection is very natural for L∞-type scenarios and has, for

example, already been employed in [14] for a similar problem. In particular, we can

see that λd(p−1
n (xi )) > 0 for every vertex xi ∈ Ωn and thus νn << pn#λ

d , where λd

denotes the d-dimensional Lebesgue measure. The second condition pn#λ
d << νn

follows directly from the definition of the map pn and thus the conditions for Lemma 2

are fulfilled. In fact, for each function u ∈ L∞(Ω) such that u = u ◦ pn for some

u : Ωn → R we can employ Lemma 2 to reformulate the extension (5) of the discrete

functional as follows,

En(u) = En(u)

=
1

sn

max
x,y∈Ωn

ηsn (|x − y|) |u(x) − u(y)|

=
1

sn

νn - ess supx,y∈Ω ηsn (|x − y|) |u(x) − u(y)|

=
1

sn

ess supx,y∈Ω ηsn (|pn(x) − pn(y)|) |u(x) − u(y)| . (23)

Note that the weights consider the distance between the nearest vertices to x and

y, respectively, and not the Euclidean distance between x and y. This observation is

important for the estimate in Sect. 3.2.

3 0-Convergence of Lipschitz Functionals

3.1 Non-local to Local Convergence

In this section we show the Γ -convergence of the non-local functionals (19) to the

continuum functional defined in (9) with respect to the L∞ topology. We first prove

the liminf inequality.

Lemma 3 (liminf inequality) Let Ω ⊂ Rd be an open domain and let the kernel fulfill

(K1)–(K3), then for a null sequence (sn)n∈N ⊂ (0,∞) we have

lim inf
n→∞

Esn (un) ≥ ση E(u) (24)

for every sequence (un)n∈N ⊂ L∞(Ω) converging to u ∈ L∞(Ω) in L∞(Ω).

Proof We assume w.l.o.g. that

lim inf
n→∞

Esn (un) < ∞. (25)

We choose a vector h ∈ Rd and estimate the supremum over x, y ∈ Ω by a supremum

over a difference quotient, namely
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Esn (un) = ess supx,y∈Ω ηsn (|x − y|)
|un(x) − un(y)|

sn

≥ η(|h|) ess supx∈Ω

|un(x) − un(x + snh)|
sn

IΩ(x + snh).

In the above transformation we ensured to not enlarge the supremum by multiplying

by the indicator function. Considering the function

vh
n (x) :=

un(x) − un(x + snh)

sn

IΩ(x + snh)

for η(|h|) > 0 we have that

lim inf
n→∞

∥
∥
∥vh

n

∥
∥
∥

L∞
≤ C

which follows directly form (25). Thus, by the sequential Banach–Alaoglu theorem,

the sequence (vh
n )n∈N possesses convergent subsequences. For any such subsequence

(vh
nk

)k∈N there exists vh ∈ L∞ such that

vh
nk

⇀∗vh

in the weak∗ topology of L∞, i.e., for every w ∈ L1(Ω) we have

∫

Ω

vh
nk

w dx →
∫

Ω

vh w dx . (26)

We want to identify the function vh , for which we use a smooth function φ ∈ C∞
c (Ω)

as the test function in (26). We shift the difference quotient of un to a quotient of φ

and hope to obtain the directional derivative in the limit. Since supp(φ) ⊂⊂ Ω , we

can choose n0 large enough such that

x + snh ∈ Ω

for all n ≥ n0 and for all x ∈ supp(φ). Therefore, we get

∫

Ω

vh
nk

(x) φ(x) dx =
∫

Ω

un(x) − un(x + snh(x))

sn

φ(x) dx

=
∫

Ω

un(x)
φ(x) − φ(x − snh)

sn

dx .

Furthermore, for n ≥ n0 we have

∣
∣
∣
∣
un(x)

φ(x) − φ(x − snh)

sn

− u(x)∇φ(x) · (−h)

∣
∣
∣
∣

123



Foundations of Computational Mathematics

≤ ‖un − u‖L∞

∣
∣
∣
∣

φ(x) − φ(x − snh)

sn

∣
∣
∣
∣

+ ‖u‖L∞

∣
∣
∣
∣

φ(x) − φ(x − snh)

sn

− ∇φ(x) · (−h)

∣
∣
∣
∣

≤ |h| ‖un − u‖L∞ ‖∇φ‖L∞

+ ‖u‖L∞

∣
∣
∣
∣

φ(x) − φ(x − snh) + ∇φ(x) · (snh)

sn

∣
∣
∣
∣

n→∞−−−→ 0,

since un converges to u in L∞, φ ∈ C∞
c has a bounded gradient, and since the

difference quotient converges to the directional derivative. Besides the pointwise con-

vergence, we also easily obtain the boundedness of the function sequence, since

∣
∣
∣
∣
un(x)

φ(x) − φ(x − snh)

sn

∣
∣
∣
∣
≤ |h| ‖un‖L∞ ‖∇φ‖L∞

≤ |h| (‖un − u‖L∞ + ‖u‖L∞) ‖∇φ‖L∞ ,

which is uniformly bounded. Thus, we can apply Lebesgue’s convergence theorem to

see that

∫

Rd

vh φ dx = lim
k→∞

∫

Ω

vh
nk

φ dx = −
∫

Rd

u (∇φ · h) dx .

In particular, we can choose hi = c ei , where ei denotes the i th unit vector and the

constant c > 0 is small enough to ensure that η(|hi |) > 0, to obtain

∫

Rd

vhi φ dx = −c

∫

Rd

u ∂iφ dx

for all i ∈ {1, . . . , d} and all φ ∈ C∞
c (Ω). This yields that u ∈ W 1,∞(Ω) and again

for any h such that η(|h|) > 0

∫

Rd

vh φ dx =
∫

Rd

(∇u · h) φ dx .

Using the density of C∞
c (Ω) in L1(Ω) w.r.t. ‖·‖L1 we obtain that

∫

Rd

vh w dx =
∫

Rd

(∇u · h) w dx

for any w ∈ L1(Ω). Since the limit is independent of the subsequence vh
nk

, we obtain

that the weak∗ convergence holds for the whole sequence, i.e., vh
n ⇀∗∇u · h and thus

together with the lower semi-continuity of ‖·‖L∞

lim inf
n→∞

Esn (un) ≥ η(|h|) lim inf
n→∞

∥
∥
∥vh

n

∥
∥
∥

L∞
≥ η(|h|) ‖∇u · h‖L∞ ,
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for every h ∈ Rd such that η(|h|) > 0. Since the inequality is trivially true for

η(|h|) = 0 we obtain

lim inf
n→∞

Esn (un) ≥ sup
h∈Rd

η(|h|) ‖∇u · h‖L∞ .

Considering z ∈ Ω such that ∇u(z) exists and satisfies |∇u(z)| > 0, and taking t ≥ 0

we have that

sup
h∈Rd

η(|h|) ‖∇u · h‖L∞ ≥ η(t)

∥
∥
∥
∥
∇u · t

∇u(z)

|∇u(z)|

∥
∥
∥
∥

L∞
≥ η(t) t |∇u(z)|.

This inequality holds for every t ≥ 0 and almost every z ∈ Ω , since it is again trivially

fulfilled if ∇u(z) exists and is equal to zero. Hence, we obtain

lim inf
n→∞

Esn (un) ≥ ση E(u)

which concludes the proof. ⊓⊔

We proceed by proving the limsup inequality. The most important fact here is that for

u ∈ W 1,∞(Ω) and for almost every x, y ∈ Ω we have the inequality

|u(x) − u(y)| ≤ ‖∇u‖L∞ dΩ(x, y), (27)

where dΩ(·, ·) denotes the geodesic distance on Ω , see [9, P. 269]. Since the non-local

functional Es compares points x, y ∈ Ω that are close together w.r.t. the Euclidean

distance, we need to asymptotically bound the geodesic distance from above by the

Euclidean distance. For this, we assume condition (11), which we repeat here for

convenience:

lim
δ↓0

sup

{
dΩ(x, y)

|x − y| : x, y ∈ Ω, |x − y| < δ

}

≤ 1.

Lemma 4 (limsup inequality) Let Ω ⊂ Rd be a domain satisfying (11), (sn)n∈N ⊂
(0,∞) a null sequence and let the kernel fulfill (K1)–(K3), then for each u ∈ L∞(Ω)

there exists a sequence (un)n∈N ⊂ L∞(Ω) converging to u strongly in L∞(Ω) such

that

lim sup
n→∞

Esn (un) ≤ ση E(u). (28)

Proof If u /∈ W 1,∞ the inequality holds trivially. If u ∈ W 1,∞ we see that

Esn (u) =
1

sn

ess supx,y∈Ω

{

ηsn (|x − y|) |u(x) − u(y)|
}
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≤
1

sn

ess supx,y∈Ω

{

ηsn (|x − y|) dΩ(x, y)
}

‖∇u‖L∞

≤
1

sn

ess supx,y∈Ω

{

ηsn (|x − y|) |x − y| dΩ(x, y)

|x − y|

}

‖∇u‖L∞ .

By (11), for any ε > 0 we can find δ > 0 such that

dΩ(x, y)

|x − y| ≤ 1 + ε, ∀x, y ∈ Ω : |x − y| < δ.

Choosing n ∈ N so large that cηsn < δ, where cη is the radius of the kernel η, we

obtain

Esn (u) ≤ (1 + ε) ess supx,y∈Ω

{

ηsn (|x − y|)
|x − y|

sn

}

‖∇u‖L∞

= (1 + ε) ess supz∈Rd {η(|z|) |z|} ‖∇u‖L∞

= (1 + ε) ση ‖∇u‖L∞ = (1 + ε) ση E(u).

Since ε > 0 was arbitrary, this shows that the constant sequence un := u fulfills the

limsup inequality. ⊓⊔

The previous lemmata directly imply the Γ -convergence of the respective functionals,

which we state below.

Theorem 4 (Non-local to local Γ -convergence) Let Ω ⊂ Rd be a domain satisfy-

ing (11) and let the kernel fulfill (K1)–(K3), then for any null sequence (sn)n∈N ⊂
(0,∞) we have that

Esn

Γ−→ ση E . (29)

Remark 6 Assumption (11) is not satisfied for general non-convex domains, whereas

|u(x) − u(y)| ≤ Lip(u) |x − y|

is. Hence, one might consider replacing the functional E(u) = ση ‖∇u‖L∞ by E(u) =
ση Lip(u) which allows to prove the limsup inequality for arbitrary (in particular, non-

convex) domains. However, as the following example shows, the liminf inequality is

not true for this functional and one has

ση ‖∇u‖L∞ ≤ lim inf
n→∞

Esn (un) ≤ lim sup
n→∞

Esn (un) ≤ ση Lip(u)

where each inequality can be strict.
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Example 1 We consider the non-convex domain Ω = {x ∈ R2 : max(|x1|, |x2|)<1}\
([0, 1] × [−1, 0]) which does not satisfy (11), the function

u(x) =









x
p
1 if x1, x2 ≥ 0,

x
p
2 if x1, x2 ≤ 0,

0 else,

for some power p ≥ 1 and the kernel η(t) = χ[0,1](t) for x ≥ 0. Then one can

compute that

‖∇u‖L∞ = p, Lip(u) = max(
√

2, p), lim
n→∞

Esn (u) =
{√

2, p = 1,

p, p > 1.

The case 1 < p <
√

2 shows that the liminf inequality lim infn→∞ Esn (un) ≥ Lip(u)

is false, in general.

Example 2 (The domain condition (11)) In this example we will study several scenarios

where condition (11) is satisfied. Let us first remark that if one fixes x ∈ Ω then

lim
δ↓0

sup

{
dΩ(x, y)

|x − y| : y ∈ Ω, |x − y| < δ

}

≤ 1.

is always true since Ω is open. Hence, (11) is in fact a condition on the boundary of

the domain.

– If Ω is convex, it holds dΩ(x, y) = |x − y| and hence (11) is trivially true.

– If Ω is locally C1,1-diffeomorphic to a convex set, then (11) is satisfied as well.

By this we mean that for all x ∈ Ω there exists δ > 0, a convex set C ⊂ Rd , and

a diffeomorphism Φ : C → Rd with inverse Ψ such that Bδ(x) ∩ Ω = Φ(C). In

particular, this includes domains with a sufficiently regular boundary. To see this

let x ∈ Ω and y ∈ Bδ(x) ∩ Ω = Φ(C). Because C is convex, we can connect

Ψ (x) and Ψ (y) with a straight line τ(t) = (1 − t)Ψ (x) + tΨ (y) for t ∈ [0, 1]
and consider the curve γ (t) = Φ(τ(t)) ⊂ Φ(C) which lies in Bδ(x) ∩ Ω since τ

lies in C . Hence,

dΩ(x, y) ≤ len(γ ) =
∫ 1

0

|γ̇ (t)| dt ≤
∫ 1

0

|∇Φ(τ(t))| |τ̇ (t)| dt

=
∫ 1

0

|∇Φ(τ(t))| |Ψ (y) − Ψ (x)| dt

=
∫ 1

0

|∇Φ(τ(t))| |∇Ψ (x)| |x − y| dt + o(|x − y|)

≤
∫ 1

0

|∇Φ(τ(t))| |∇Ψ (γ (t))| |x − y| dt

+
∫ 1

0

|∇Φ(τ(t))| |∇Ψ (γ (t)) − ∇Ψ (x)| |x − y| dt + o(|x − y|)
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≤ |x − y| + c |x − y|
∫ 1

0

|∇Φ(τ(t))| |γ (t) − x | dt + o(|x − y|)

= |x − y| + c |x − y|
∫ 1

0

|∇Φ(τ(t))|

× |Φ(τ(t)) − Φ(Ψ (x))| dt + o(|x − y|)

≤ |x − y| + c |x − y|
∫ 1

0

|τ(t) − Ψ (x)| dt + o(|x − y|)

= |x − y| + c |x − y| |Ψ (y) − Ψ (x)|
∫ 1

0

tdt + o(|x − y|)

≤ |x − y| + c |x − y|2 + o(|x − y|),

where we used Lipschitz continuity of Φ,Ψ and ∇Ψ and the fact that Φ is a

diffeomorphism which implies ∇Φ(τ(t)) = (∇Ψ (γ (t)))−1. Note that the constant

c > 0 is changing with every inequality. Dividing by |x − y| and letting |x − y| →
0, we finally get (11).

3.2 Discrete to Continuum Convergence

We now consider the Γ -convergence of the discrete functionals. While in the previous

section we employed an arbitrary null sequence (sn)n∈N ⊂ (0,∞) for the scaling, we

are now limited to certain scaling sequences depending on the sequence of sets Ωn .

In particular, we have to control how fast the scaling sn tends to zero in comparison

with how fast the points in Ωn fill out the domain Ω . The following simple example

illustrates why we have to consider the relationship between sn and Ωn .

Example 3 Let (xn)n∈N ⊂ Rd be an arbitrary sequence of points, then we can choose

sn small enough such that ηsn (|x − y|) = 0 for x, y ∈ Ωn and thus we have that

En(un) = 0 for every n ∈ N. In this situation the liminf inequality does not hold true.

As illustrated in the example above, we need to take special care of points x, y ∈ Ωn ,

where ηsn (|x − y|) = 0. Formulating this problem in terms of the map pn we have to

consider the case where

ηsn (|pn(x) − pn(y)|) = 0.

Using that the kernel has radius cη < ∞ it follows that |pn(x) − pn(y)| > cηsn and

thus

|x − y| = |x − pn(x) + pn(x) − pn(y) + pn(y) − y|
≥ |pn(x) − pn(y)| − 2 ‖Id −pn‖L∞

> cηsn − 2 ‖Id −pn‖L∞ =: cη s̃n .

The idea now is to use this new scaling s̃n for the non-local functionals, where we

have to impose that s̃n > 0 for all n large enough. But more importantly we must
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ensure that the quotient s̃n/sn converges to 1, i.e.,

s̃n

sn

=
sn − 2 ‖Id −pn‖L∞ /cη

sn

= 1 −
2 ‖Id −pn‖L∞ /cη

sn

−→ 1,

which is equivalent to the fact that

‖Id −pn‖L∞

sn

−→ 0.

This argumentation was first applied in [22], where instead of the map pn an optimal

transport map Tn was employed. For a closest point projection pn we know that

‖Id −pn‖L∞ = sup
x∈Ω

dist(x,Ωn) = rn .

which thus yields the scaling assumption (8).

Lemma 5 (liminf inequality) Let Ω ⊂ Rd be a domain, let the constraint sets sat-

isfy (3), and let the kernel fulfill (K1)–(K3), then for any null sequence (sn)n∈N ⊂
(0,∞) which satisfies the scaling condition (8) we have that

lim inf
n→∞

En,cons(un) ≥ ση Econs(u)

for every sequence (un)n∈N ⊂ L∞(Ω) converging to u ∈ L∞(Ω) in L∞(Ω).

Proof W.l.o.g. we assume that lim infn→∞ En,cons(un) < ∞. After possibly passing

to a subsequence, we can, furthermore, assume that un = g onOn . We first show that

the limit function u satisfies u = g on O.

Since η is continuous and positive in 0, we know that there exists 0 < t < cη such

that η(s) > C for all 0 < s < t where C > 0. Furthermore, using (3) we infer that

for all x ∈ O there exists xn ∈ On with |x − xn| = o(sn). In particular, for n large

enough it holds |x − xn| ≤ sn t . This allows us to estimate:

|u(x) − g(x)| ≤ |u(x) − un(x)| + |un(x) − un(xn)|
+ |un(xn) − g(xn)| + |g(xn) − g(x)|

≤ ‖u − un‖L∞(Ω) +
1

C
η(|x − xn|) |un(x) − un(xn)|

+ 0 + Lip(g) |x − xn|

≤ ‖u − un‖L∞(Ω) +
sn

C
En,cons(un) + Lip(g) |x − xn|

≤ ‖u − un‖L∞(Ω) +
sn

C
En,cons(un) + Lip(g)sn t .

Taking n → ∞, using that Esn (un) is uniformly bounded and sn → 0, we obtain

u = g on O.
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The main idea for proving the liminf inequality here is to establish a discrete to

non-local control estimate and then use Lemma 3.

Since we assumed lim infn→∞ En,cons(un) < ∞, we know that un is piecewise

constant for every n ∈ N, in the sense of Sect. 1.1, i.e., un = un ◦ pn for some

un : Ωn → Ω . As shown in (23) we can express En,cons as follows:

En,cons(un) =
1

sn

ess supx,y∈Ω ηsn (|pn(x) − pn(y)|) |un(x) − un(y)| = (#).

In order to apply Lemma 3, we need to transform the weighting that considers the

distance between pn(x) and pn(y) into another one that measures the distance between

x and y.

Case 1 There exists t > 0 such that η is constant on [0, t].
We employ the observation that whenever |pn(x) − pn(y)| > sn t , for the new

scaling s̃n := sn − 2rn/t we have

|x − y|
s̃n

≥
|pn(x) − pn(y)| − 2rn

sn − 2rn/t

=
|pn(x) − pn(y)|

sn

1 − 2rn/ |pn(x) − pn(y)|
1 − 2rn/(tsn)

︸ ︷︷ ︸

>1

>
|pn(x) − pn(y)|

sn

,

where we used that rn = ‖Id −pn‖L∞ . Since η is non-increasing (K2) and η is constant

on [0, t), we get

ηsn (|pn(x) − pn(y)|) ≥ ηs̃n
(|x − y|)

for almost all x, y ∈ Ω . This allows us to further estimate

(#) ≥
1

sn

ess supx,y∈Ω ηs̃n
(|x − y|) |un(x) − un(y)| =

s̃n

sn

Es̃n
(un).

Together with the assumption rn/sn → 0 we obtain that s̃n > 0 for n large enough

and s̃n/sn → 1 which finally justifies the application of Lemma 3, i.e.,

lim inf
n→∞

En,cons(un) ≥ lim inf
n→∞

s̃n

sn

Es̃n
(un) ≥ ση E(u) = ση Econs(u).

Case 2 We now assume the kernel to fulfill (K1)–(K3). The strategy is to find a t > 0

where one can cut off the kernel without changing the value ση. From the continuity

at t = 0 (K1) we have that

lim
t→0

η(t) t = 0
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and thus there exists a t∗ > 0 such that

sup
t∈[0,t∗]

η(t) t ≤ ση.

We define

η̃(t) =
{

η(t) for t > t∗,

η(t∗) for t ∈ [0, t∗],

for which we have ση̃ = ση and thus the first case applies. Namely, using that η is

non-increasing (K2) and hence η ≥ η̃ we obtain

lim inf
n→∞

En,cons(un)

≥ lim inf
n→∞

(
1

sn

ess supx,y∈Ω η̃sn (|pn(x) − pn(y)|) |un(x) − un(y)|
)

≥ ση Econs(u).

⊓⊔

We now consider the limsup inequality for the constrained functionals.

Lemma 6 (limsup inequality) Let Ω ⊂ Rd be a domain satisfying (11) and let the

kernel fulfill (K1)–(K3), then for a null sequence (sn)n∈N ⊂ (0,∞) and a function

u ∈ L∞(Ω) there exists a sequence (un)n∈N ⊂ L∞(Ω) converging to u ∈ L∞(Ω)

in L∞(Ω) such that

lim sup
n→∞

En,cons(un) ≤ ση Econs(u).

Proof If Econs(u) = ∞ the inequality holds trivially. We thus consider u ∈ W 1,∞(Ω)

such that u(x) = g(x) for every x ∈ O and define a recovery sequence as follows:

Let un ∈ L∞(νn) be defined by

un(x) =
{

u(x), x ∈ Ωn\On,

g(x), x ∈ On,

and define un := un ◦ pn , where pn : Ω → Ωn denotes a closest point projection.

Then un ∈ L∞(Ω) and by definition it holds

En,cons(un) = En,cons(un) =
1

sn

max
x,y∈Ωn

ηsn (|x − y|) |un(x) − un(y)| .

We have to distinguish three cases:
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Case 1 Let x, y ∈ Ωn\On , then we can compute, using (27)

|un(x) − un(y)| = |u(x) − u(y)| ≤ dΩ(x, y) ‖∇u‖L∞

and therefore

1

sn

ηsn (|x − y|) |un(x) − un(y)| ≤ ηsn (|x − y|)
|x − y|

sn
︸ ︷︷ ︸

≤ση

dΩ(x, y)

|x − y|
‖∇u‖L∞

≤ ση

dΩ(x, y)

|x − y|
‖∇u‖L∞ .

Case 2 Let x ∈ Ωn\On and y ∈ On . Then for every ỹ ∈ O it holds, using (27)

|un(x) − un(y)| = |u(x) − g(y)|
≤ |u(x) − u(ỹ)| + |u(ỹ) − g(ỹ)|

︸ ︷︷ ︸

=0

+ |g(ỹ) − g(y)|

≤ ‖∇u‖L∞ dΩ(x, ỹ) + Lip(g) |ỹ − y|
≤ ‖∇u‖L∞ dΩ(x, y) + ‖∇u‖L∞ dΩ(y, ỹ) + Lip(g) |ỹ − y|

≤ ‖∇u‖L∞ dΩ(x, y) + ‖∇u‖L∞
dΩ(y, ỹ)

|y − ỹ|
|y − ỹ| + Lip(g) |y − ỹ| .

From this we have, using the same arguments as in the first case, that there is a C > 0

such that

1

sn

ηsn (|x − y|) |un(x) − un(y)| ≤ ση

dΩ(x, y)

|x − y|
‖∇u‖L∞ + C

|y − ỹ|
sn

.

Case 3 Let x, y ∈ On , then for x̃, ỹ ∈ O we have

|un(x) − un(y)| = |g(x) − g(y)|
= |g(x) − u(x̃)| + |u(x̃) − u(ỹ)| + |u(ỹ) − g(y)|
= |g(x) − g(x̃)| + |u(x̃) − u(ỹ)| + |g(ỹ) − g(y)|
≤ Lip(g) |x − x̃ | + ‖∇u‖L∞ dΩ(x̃, ỹ) + Lip(g) |y − ỹ|

and therefore again

1

sn

ηsn (|x − y|) |un(x) − un(y)| ≤ ση

dΩ(x, y)

|x − y|
‖∇u‖L∞

+ Lip(g)

( |y − ỹ| + |x − x̃ |
sn

)

.
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By (11) for every ε > 0 there is n0 ∈ N sufficiently large such that for all n ≥ n0 it

holds

ση

dΩ(x, y)

|x − y|
‖∇u‖L∞ ≤ ση ‖∇u‖L∞ + ε/2,

whenever |x − y| ≤ cηsn . Additionally, thanks to (3) and the compactness of On

and O for every x ∈ On we can choose x̃ ∈ O such that

|x − x̃ |
sn

≤
ε

4 max{C, Lip(g)}

and analogously for y and ỹ. Combining the estimates from all three cases, we obtain

En,cons(un) ≤ max

{

ση ‖∇u‖L∞ +
ε

2
, ση ‖∇u‖L∞ +

3ε

4
, ση ‖∇u‖L∞ + ε

}

= ση ‖∇u‖L∞ + ε

for all n ≥ n0. Finally, this yields

lim sup
n→∞

En,cons(un) ≤ ση Econs(u),

as desired.

For showing that un → u in L∞(Ω) one proceeds similarly: If pn(x) ∈ Ωn\On

one has thanks to (27)

|u(x) − un(x)| = |u(x) − u(pn(x))| ≤ ‖∇u‖L∞ dΩ(x, pn(x))

= ‖∇u‖L∞
dΩ(x, pn(x))

|x − pn(x)|
|x − pn(x)| → 0, n → ∞,

where we also used (11) and |x − pn(x)| ≤ rn → 0. In the case pn(x) ∈ On by (3)

one again finds x̃ ∈ O such that |pn(x) − x̃ | = o(sn). Then by (27) and (11) we have

|u(x) − un(x)| = |u(x) − g(pn(x))|
≤ |u(x) − u(pn(x))| + |u(pn(x)) − g(x̃)

︸︷︷︸

=u(x̃)

| + |g(x̃) − g(pn(x))|

≤ ‖∇u‖L∞
dΩ(pn(x), x)

|pn(x) − x |
|pn(x) − x |

+ ‖∇u‖L∞
dΩ(pn(x), x̃)

|pn(x) − x̃ |
|pn(x) − x̃ | + Lip(g) |pn(x) − x̃ |

→ 0

since |pn(x) − x | ≤ rn → 0 and |pn(x) − x̃ | = o(sn) → 0. Combining both cases

proves ‖u − un‖L∞ → 0 as n → ∞. ⊓⊔
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Remark 7 We note that the proof of the limsup inequality does not use any specific

properties of the scaling, in fact even a sequence of disconnected graphs or the situation

of Example 3 allows for such an inequality.

Remark 8 (Relevance of the Hausdorff convergence) The condition that the Hausdorff

distance of On and O converges to zero as n → ∞ (cf. (3)) implies both that On

well approximates O and vice versa. The first condition is only used in the proof of

the liminf inequality Lemma 5 whereas the second one only enters for the limsup

inequality Lemma 6. Furthermore, the proof of the latter is drastically simplified if

one assumes that On ⊂ O for all n ∈ N, which implies that the second term in the

Hausdorff distance (3) equals zero. In this case, introducing the continuum points

x̃, ỹ ∈ O is not necessary and many estimates in the previous proof become trivial.

Combining Lemmas 5 and 6 we immediately obtain the Γ -convergence of the discrete

functionals to those defined in the continuum, which is the statement of Theorem 1.

Remark 9 (Homogeneous boundary conditions) In the case thatO = ∂Ω and the con-

straints satisfy g = 0 on O any function with Econs(u) < ∞ satisfies u ∈ W
1,∞
0 (Ω).

For this it is well known that functions u ∈ W
1,∞
0 (Ω) can be extended from Ω to

Rd by zero without changing ‖∇u‖L∞ . In this case one can prove the limsup inequal-

ity Lemma 6 and hence also the Γ -convergence Theorem 1 for general open sets Ω

without demanding (11) or even convexity. For this one simply utilizes the estimate

|un(x) − un(y)| = |u(x) − u(y)| ≤ ‖∇u‖L∞ |x − y|

which is true if one extends u by zero on Rd\Ω , multiplies with the kernel, and takes

the supremum.

4 Compactness

We now want to make use of Lemma 1 in order to characterize the behavior of minimiz-

ers of the discrete problems or more generally sequences of approximate minimizers,

as described in the condition of the mentioned lemma. The first result is a general

characterization of relatively compact sets in L∞, the proof uses classical ideas from

[18, Lem. IV.5.4].

Lemma 7 Let (Ω,µ) be a finite measure space and K ⊂ L∞(Ω;µ) be a bounded

set w.r.t. ‖·‖L∞(Ω;µ) such that for every ε > 0 there exists a finite partition {Vi }n
i=1 of

Ω into subsets Vi with positive and finite measure such that

µ - ess supx,y∈Vi
|u(x) − u(y)| < ε ∀u ∈ K , i = 1, . . . , n, (30)

then K is relatively compact.

Proof Let ε > 0 be given and let {Vi }n
i=1 be a partition into sets with finite and positive

measure such that

µ - ess supx,y∈Vi
|u(x) − u(y)| <

ε

3
, ∀u ∈ K , i = 1, . . . , n. (31)
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We define the operator T : L∞(Ω;µ) → L∞(Ω;µ) as

(T u)(x) :=
1

µ(Vi )

∫

Vi

u(y) dµ(y) for x ∈ Vi ,

which is well defined thanks to 0 < µ(Vi ) < ∞ for all i = 1, . . . , n. Using (31) we

observe that for µ-almost every x ∈ Vi

|u(x) − (T u)(x)| ≤
1

µ(Vi )

∫

Vi

|u(x) − u(y)| dµ(y) <
ε

3

and thus ‖u − T u‖L∞(Ω;µ) < ε
3
. Furthermore, T (K ) ⊂ span({IV1 , . . . , IVn }), where

we let IM denote the indicator function of a set M , defined by IM (x) = 0 if x /∈ M and

IM (x) = 1 if x ∈ M . Hence, T has finite-dimensional range and since K is bounded

we have

‖T u‖L∞(Ω;µ) ≤ ‖u‖L∞(Ω;µ) ≤ C ∀u ∈ K

and therefore T (K ) is relatively compact. This implies that there exist finitely many

functions {u j }N
j=1 ⊂ L∞(Ω;µ) such that

T (K ) ⊂
N

⋃

j=1

B ε
3
(T (u j )),

where Bt (u) := {v ∈ L∞(Ω;µ) : ‖u − v‖L∞(Ω;µ) < t} denotes the open ball with

radius t > 0 around u ∈ L∞(Ω;µ). For u ∈ K we can thus find j ∈ {1, . . . , N } such

that T (u) ∈ B ε
3
(T (u j )) and thus

∥
∥u − u j

∥
∥

L∞ ≤ ‖u − T (u)‖L∞ +
∥
∥T (u) − T (u j )

∥
∥

L∞ +
∥
∥T (u j ) − u j

∥
∥

L∞ < ε.

This implies that K is totally bounded and since L∞(Ω;µ) is complete the result

follows from [18, Lem. I.6.15]. ⊓⊔

The previous lemma allows us to prove a compactness result for the non-local

functionals, where we again need the domain Ω to fulfill condition (11).

Lemma 8 Let Ω ⊂ Rd be a bounded domain satisfying (11) and let the kernel η

fulfill (K1)–(K3), and let (sn)n∈N ⊂ (0,∞) be a null sequence. Then every bounded

sequence (un)n∈N ⊂ L∞(Ω) such that
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sup
n∈N
Esn (un) < ∞ (32)

is relatively compact.

Proof We want to apply Lemma 7 in order to see that the sequence is relatively

compact. Therefore, let ε > 0 be given and w.l.o.g. we rescale the kernel such that

η(t) ≥ 1 for t ≤ 1.

Using (11) we can find δ > 0 such that for every x, y ∈ Ω with |x − y| ≤ δ there is

a path γ : [0, 1] → Ω such that γ (0) = x, γ (1) = y and

len(γ ) ≤ (1 + ε) |x − y| .

We divide this path by points 0 = t0 < · · · < ti < · · · < tkn = 1 such that for

zi := γ (ti ) we have that

|zi − zi+1| ≤ sn

for i = 0, . . . , kn , where

kn ≤ ⌊(1 + ε) |x − y| /sn⌋.

Then we have that

|un(x) − un(y)| ≤
kn−1
∑

i=0

|un(zi ) − un(zi+1)|

≤ sn

kn−1
∑

i=0

ηsn (|zi − zi+1|)
|un(zi ) − un(zi+1)|

sn

≤ sn

kn−1
∑

i=0

Esn (un)

≤ sn kn sup
n∈N
Esn (un)

︸ ︷︷ ︸

=:C<∞

≤ C (1 + ε) |x − y| .

Choosing a partition {Vi }N
i=1 of Ω into sets with positive Lebesgue measure such that

diam(Vi ) < min

{

δ,
ε

C (1 + ε)

}
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for i = 1, . . . , N , yields that

ess supx,y∈Vi
|un(x) − un(y)| ≤ C (1 + ε) ess supx,y∈Vi

|x − y|
≤ C (1 + ε) diam(Vi ) < ε.

Since (un)n∈N ⊂ L∞ is bounded in L∞ we can therefore apply Lemma 7 to infer that

the sequence is relatively compact. ⊓⊔

We will use this result in order to prove that the constrained functionals En,cons are

compact, which then directly shows Theorem 2. The intuitive reason that these func-

tionals are compact is the fact that for a domain Ω that fulfills (11) each point x ∈ Ωn

has finite geodesic distance to the setOn . This follows from the fact that the geodesic

diameter of Ω is bounded, as we show in the following lemma.

Lemma 9 Condition (11) implies that the geodesic diameter is finite, i.e.,

diamg(Ω) := sup
x,y∈Ω

dΩ(x, y) < ∞. (33)

Proof For ε > 0 we can use (11) to find δ > 0 such that dΩ(x, y) < |x − y| (1 + ε)

for all x, y ∈ Ω with |x − y| < δ. Since we assume Ω to be bounded we know that

there exists a finite collection {x1, . . . , xN } ⊂ Ω such that

Ω ⊂
N

⋃

i=1

Bδ(xi ).

If two balls at centers xi , x j share a common point z ∈ Ω we see that

dΩ (xi , x j ) ≤ dΩ(xi , z) + dΩ(z, x j )

≤ (1 + ε) |xi − z| + (1 + ε)
∣
∣z − x j

∣
∣

≤ 2(1 + ε)δ.

(34)

For any x, y ∈ Ω assume that there exists a path γ in Ω from x to y. Therefore, also

the image of γ is covered by finitely many balls at centers xk1 , . . . , xkn such that

Bδ(xki
) ∩ Bδ(xki+1

) ∩ Ω �= ∅

for i = 1, . . . , n − 1 with x ∈ Bδ(xk1), y ∈ Bδ(xkn ). Using (34) this yields

dΩ(x, y) ≤ dΩ(x, xk1) +
kn−1∑

i=1

dΩ(xi , xi+1) + dΩ(xkn , y)

≤ 2 (N + 1)(1 + ε)δ

where we used kn ≤ N . Note that the last expression above is independent of x, y

which concludes the proof. ⊓⊔
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Lemma 10 Let Ω ⊂ Rd be a domain satisfying (11), let the kernel fulfill (K1)–(K3),

and (sn)n∈N ⊂ (0,∞) be a null sequence which satisfies the scaling condition (8).

Let (un)n∈N ⊂ L∞(Ω) be a sequence with

sup
n∈N

En,cons(un) < ∞

then it is bounded with respect to ‖·‖∞.

Remark 10 Similar to Remark 9, one can relax condition (11) in Lemma 10 by taking

into account the specific form of the constraint set O ⊂ Ω . Indeed, an inspection of

the following proof shows that it suffices to demand that

sup
x∈Ω

inf
y∈O

dΩ(x, y) < ∞, (35)

which means that O has finite geodesic distance to any point in Ω . In the case that

O = ∂Ω this is always satisfied since Ω is bounded. However, the condition is

violated, e.g., if Ω is an open, infinite but bounded spiral and O a single point at its

center.

Proof W.l.o.g. we assume

η(t) ≥ 1 for t ≤ 1.

Let n0 ∈ N be large enough such that

rn < sn/2, ∀n ≥ n0

and for x0 ∈ Ωn, n ≥ n0 let γ : [0, 1] → Ω be a path in Ω such that γ (0) = x0 and

γ (1) ∈ On . We divide γ by points 0 = t0 < · · · < tkn = 1 such that

|γ (ti ) − γ (ti+1)| = sn − 2rn, i = 0, . . . , kn − 2,
∣
∣γ (tkn ) − γ (tkn+1)

∣
∣ ≤ sn − 2rn,

and by definition of the parameter rn we know that for each i = 0, . . . , kn there exists

a vertex xi ∈ Ωn such that

|xi − γ (ti )| ≤ rn .

Applying the triangle inequality this yields

|xi − xi+1| ≤ |xi − γ (ti )| + |γ (ti ) − γ (ti+1)| + |xi+1 − γ (ti+1)|
≤ 2rn + sn − 2rn ≤ sn,
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and thus ηsn (|xi − xi+1|) ≥ 1 for all i = 0, . . . , kn − 1. By definition of the discrete

functional (6) there exists un : Ω → R with un = un ◦ pn and we can estimate

|un(x0)| ≤
kn−2
∑

i=0

|un(xi ) − un(xi+1)| +
∣
∣un(xkn )

∣
∣

≤ sn

kn−2
∑

i=0

ηsn (|xi − xi+1|) |un(xi ) − un(xi+1)| /sn +
∣
∣g(xkn )

∣
∣

≤ sn (kn − 1) En,cons(un) +
∣
∣g(xkn )

∣
∣ , (36)

where we used un(x) = g(x) for all x ∈ On since En,cons(un) < ∞. It remains to

show that the product sn (kn − 1) is uniformly bounded in n, for which we first observe

that the path γ can be chosen such that

kn − 1 ≤ ⌊diamg(Ω)/(sn − 2rn)⌋

and thus using (8)

sn (kn − 1) ≤ sn

⌊
diamg(Ω)

(sn − 2rn)

⌋

≤ C
1

(1 − 2 rn/sn)
< C̃, ∀n ∈ N,

where we note that diamg(Ω) < ∞ according to Lemma 9. Together with (36) this

yields that there exists a uniform constant C > 0 such that ‖un‖L∞ ≤ C for all

n ∈ N. ⊓⊔

We can now prove that the constrained functionals En,cons are indeed compact.

Lemma 11 Let Ω ⊂ Rd be a domain satisfying (11), let the kernel fulfill (K1)–(K3),

and (sn)n∈N ⊂ (0,∞) be a null sequence which satisfies the scaling condition (8).

Then we have that every sequence (un)n∈N ⊂ L∞(Ω) such that

sup
n∈N

En,cons(un) < ∞

is relatively compact in L∞.

Proof Using the same arguments as in the proof of Lemma 5 we can find a scaling

sequence (s̃n)n∈N ⊂ (0,∞) such that

En(un) ≥
s̃n

sn

Es̃n
(un)

and s̃n/sn −→ 1. We choose C := supn∈N
sn

s̃n
< ∞ to obtain

sup
n∈N
Es̃n

(un) ≤ C sup
n∈N

En(un) = C sup
n∈N

En,cons(un) < ∞.
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Thanks to Lemma 10 the sequence (un)n∈N is bounded in L∞ and thus we can apply

Lemma 8 to infer that (un)n∈N ⊂ L∞(Ω) is relatively compact. ⊓⊔

Together with Lemma 1 this finally yields our second main statement Theorem 2.

Proof of Theorem 2 Let v ∈ L∞(Ω) with Econs(v) < ∞ be arbitrary and (vn)n∈N ⊂
L∞(Ω) be a recovery sequence for v, the existence of which is guaranteed by Lemma

6. By assumption, the sequence un satisfies

lim sup
n→∞

En,cons(un) = lim sup
n→∞

inf
u∈L∞(Ω)

En,cons(u)

≤ lim sup
n→∞

En,cons(vn) ≤ ση Econs(v) < ∞.

Hence, Lemma 11 implies that (un)n∈N ⊂ L∞(Ω) is relatively compact. Lemma 1

then concludes the proof. ⊓⊔

5 Application to Ground States

In this section we apply the discrete-to-continuum Γ -convergence from Theorem 1

to so-called ground states, first studied in [13]. These are restricted minimizers of

the functionals En,cons and Econs on L p-spheres, where we assume that the constraint

satisfies g = 0 on Ω . This makes the functionals En,cons and Econs absolutely 1-

homogeneous.

For absolutely p-homogeneous functionals F : X → R ∪ {∞} on a Banach space

(X , ‖·‖) with p ∈ [1,∞), which per definitionem satisfy

F(cu) = |c|p F(u), ∀u ∈ X , c ∈ R,

ground states are defined as solutions to the minimization problem

min

{

F(u) : inf
v∈arg min F

‖u − v‖ = 1

}

.

Ground states and their relations to gradient flows and power methods are well studied

in the literature, see, e.g., [11,13,21,24–26]. In particular, they constitute minimizers

of the nonlinear Rayleigh quotient

R(u) =
F(u)

infv∈arg min F ‖u − v‖p

and are related to nonlinear eigenvalue problems with the prime example being F(u) =
∫

Ω
|∇u|p dx on X := LΩ where ground states solve the p-Laplacian eigenvalue

problem

λ |u|p−2 u = −∆pu.
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In [13] ground states of the functionals En,cons and Econs were characterized as distance

functions. While there it was assumed thatO = ∂Ω , we will in the following generalize

these results to the case of an arbitrary closed constraint setO ⊂ Ω . Subsequently, we

will use the Γ -convergence, established in Theorem 1, to show discrete-to-continuum

convergence of ground states.

5.1 Relation to Distance Functions

Here, we show that the unique L p ground states of the limit functional Econs coincide

with multiples of the geodesic distance function to the set O. To prove the desired

statement, we need the following lemma, stating that the gradient of the geodesic

distance function is bounded by one.

Lemma 12 Let O ⊂ Ω be a closed set and

dO(x) := inf
y∈O

dΩ(x, y)

be the geodesic distance function ofO, where dΩ(x, y) denotes the geodesic distance

between x, y ∈ Ω . Then it holds

‖∇dO‖L∞ ≤ 1.

Proof Let x, y ∈ Ω be arbitrary. Using the triangle inequality for dΩ we get

dO(y) ≤ dΩ(x, y) + dO(x), ∀x, y ∈ Ω.

If x, y lie in a ball fully contained in Ω , then dΩ(x, y) = |x − y| and we obtain that

dO is Lipschitz continuous on this ball. Rademacher’s theorem then implies that ∇dO
exists almost everywhere in the ball. Since the ball is arbitrary, ∇dO in fact exists

almost everywhere in Ω .

Furthermore, since Ω is open, for x ∈ Ω and t > 0 small enough the ball Bt (x) :=
{y ∈ Rd : |x − y| < t} lies within Ω and it holds dΩ(x, y) = |x − y| for all

y ∈ Bt (x).

Choosing y = x + ta ∈ Bt (x) with a ∈ B1(0) we get

dO(x + ta) − dO(x)

t
≤

dΩ(x, x + ta)

t
=

|at |
t

≤ 1.

Since a was arbitrary, we can conclude |∇dO(x)| ≤ 1 for almost all x ∈ Ω which

implies the desired statement. ⊓⊔

With this lemma we now can prove that the unique ground state (up to scalar

multiples) of the functional Econs is given by the geodesic distance function to O.

The only (weak) assumption which we need here is that dO ∈ L p(Ω) which is

fulfilled, for instance, if Ω has finite geodesic diameter or even only satisfies the

relaxed condition (35), in which case dO ∈ L∞(Ω) holds.
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Theorem 5 Let O be a closed set such that Ω\O is connected and non-empty and

dO ∈ L p(Ω), and let the constraint function satisfy g = 0 on O. For p ∈ [1,∞) the

unique solution (up to global sign) to

min
{

Econs(u) : u ∈ L∞(Ω), ‖u‖L p = 1
}

(37)

is given by a positive multiple of the geodesic distance function dO.

If Ω is convex or O = ∂Ω , the geodesic distance dΩ(x, y) in the definition of dO
can be replaced by the Euclidean |x − y| and dO ∈ L p(Ω) is always satisfied.

Proof The caseO = ∂Ω was already proved in [13]. IfΩ is convex it holds dΩ (x, y) =
|x − y| which is and hence dO is bounded and, in particular, lies in L p(Ω) for all

p ≥ 1.

We first prove that the geodesic distance function dO is a solution of

max
{

‖u‖L p : u ∈ L∞(Ω), Econs(u) = 1
}

. (38)

Since O is closed and bounded, for every x ∈ Ω we can choose yx ∈ O such that

dΩ(x, yx ) ≤ dΩ(x, y) for all y ∈ O. Hence, if u = 0 on O, we can choose y = yx

and obtain from (27) that

|u(x)| ≤ ‖∇u‖L∞ dO(x) (39)

for almost every x ∈ Ω which implies

‖u‖L p ≤ ‖∇u‖L∞ ‖dO‖L p . (40)

Hence, for all u ∈ L∞(Ω) with Econs(u) = 1 one obtains from (40) that

‖u‖L p ≤ ‖dO‖L p .

From Lemma 12 we know that Econs(dO) = ‖∇dO‖L∞ ≤ 1. At the same time

choosing u = dO in (40) shows that in fact Econs(dO) = ‖∇dO‖L∞ = 1 and therefore

dO solves (38).

Regarding uniqueness we argue as follows: Since p < ∞ the inequality (40) is

sharp if (39) is sharp which, using that ‖∇u‖L∞ = Econs(u) = 1, implies that all

solutions u of (38) must fulfill

|u(x)| = dO(x), ∀x ∈ Ω.

If Ω\O is connected, the continuity of u implies that (up to global sign) u(x) = dO(x)

for all x ∈ Ω .

Finally, we argue that (37) and (38) are equivalent: Since dO ∈ L p(Ω) we have

‖dO‖L p < ∞. Then dO/ ‖dO‖L p solves (37) since for any u ∈ L∞(Ω) with ‖u‖L p =
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1 it holds

Econs

(
dO

‖dO‖L p

)

=
Econs(dO)

‖dO‖L p

=
1

‖dO‖L p

=
‖u‖L p

‖dO‖L p

≤ Econs(u),

where we used (40) for the inequality. Analogously, if u solves (37) then

Econs(u) ≤ Econs(dO/ ‖dO‖L p ) = 1/ ‖dO‖L p < ∞.

This follows from the fact that dO �= 0 since Ω\O �= ∅. Then u/Econs(u) solves (38)

since, using again (40), it holds

∥
∥
∥
∥

u

Econs(u)

∥
∥
∥
∥

L p

=
1

Econs(u)
≥

‖dO‖L p

‖u‖L p

= ‖dO‖L p

and dO solves (38). ⊓⊔

Remark 11 In the case p = ∞ the geodesic distance function is still a ground state,

however, not the unique one. In this case, other ground states are given by ∞-Laplacian

eigenfunctions, see, e.g., [7,28,37].

Remark 12 If one drops the condition that Ω\O is connected, ground states coin-

cide with (positive or negative) multiples of the distance function on each connected

component of Ω\O.

Similarly, one can also prove that ground states of the discrete functionals En,cons

coincide with multiples of distance functions toOn with respect to the geodesic graph

distance if Ωn\On is connected in the graph-sense. The result can be found in [13];

however, since we do not need it here, we refrain from stating it.

5.2 Convergence of Ground States

In this section we first show that the Γ -convergence of the functionals En,cons to

σηEcons implies the convergence of their respective ground states. Together with the

characterization from Theorem 5 this implies that discrete ground states converge to

the geodesic distance function.

Theorem 6 (Convergence of Ground States) Under the conditions of Theorem 1 let

the sequence (un)n∈N ⊂ L∞(Ω) fulfill

un ∈ arg min
{

En,cons(u) : u ∈ L∞(Ω), ‖u‖L p = 1
}

.

Then (up to a subsequence) un → u in L∞(Ω) where

u ∈ arg min
{

Econs(u) : u ∈ L∞(Ω), ‖u‖L p = 1
}
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and it holds

lim
n→∞

En,cons(un) = ση Econs(u). (41)

Proof Let u ∈ L∞(Ω) be a ground state of Econs and (vn)n∈N ⊂ L∞(Ω) be a recovery

sequence of u, whose existence is guaranteed by Theorem 1. Since un is a ground state

and En,cons is absolutely 1-homogeneous, we get

En,cons(un) ≤ En,cons

(
vn

‖vn‖L p

)

= En,cons(vn)
1

‖vn‖L p

.

Taking the limsup on both sides yields

lim sup
n→∞

En,cons(un) ≤ ση Econs(u)
1

‖u‖L p

= ση Econs(u) < ∞,

where we used boundedness of Ω to conclude that L∞-convergence implies con-

vergence of the L p-norms. Hence, by Lemma 11 the sequence (un)n∈N possesses a

subsequence (which we do not relabel) which converges to some u∗ ∈ L∞(Ω) with

‖u∗‖L p = 1. Using the previous inequality, the liminf inequality from Lemma 5, and

the fact that u is a ground state we conclude

ση Econs(u
∗) ≤ lim inf

n→∞
En,cons(un)

≤ lim sup
n→∞

En,cons(un)

≤ ση Econs(u)

≤ ση Econs(u
∗).

Hence, u∗ is also a ground state and (41) holds true. ⊓⊔

Using the characterization of ground states as distance functions we obtain the

following

Corollary 1 Under the conditions of Theorems 5 and 6 the sequence (un)n∈N ⊂
L∞(Ω), given by

un ∈ arg min
{

En,cons(u) : u ∈ L∞(Ω), ‖u‖L p = 1
}

,

converges to a multiple of the geodesic distance function dO .

6 Conclusion and FutureWork

In this work we derived continuum limits of semi-supervised Lipschitz learning on

graphs. We first proved Γ -convergence of non-local functionals to the supremal norm

of the gradient. This allowed us to show Γ -convergence of the discrete energies which
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appear in the Lipschitz learning problem. In order to interpret graph functions as

functions defined on the continuum, we employed a closest point projection. We also

showed that the discrete functionals are compact which implies discrete-to-continuum

convergence of minimizers. We applied our results to a nonlinear eigenvalue problem

whose solutions are geodesic distance functions.

Future work will include the generalization of our results to general metric measure

spaces or Riemannian manifolds, which constitute a generic domain for the data in

real-world semi-supervised learning problems. Furthermore, we intend to see how

the application of our results to absolutely minimizing Lipschitz extensions [5] on

graphs unfolds. Namely, we want to gain insight whether it is possible to prove their

convergence toward solutions of the infinity Laplacian equation under less restrictive

assumptions than the ones used in [15].
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Abstract

We propose a learning framework based on stochastic Bregman iterations, also
known as mirror descent, to train sparse neural networks with an inverse scale space
approach. We derive a baseline algorithm called LinBreg, an accelerated version
using momentum, and AdaBreg, which is a Bregmanized generalization of the Adam
algorithm. In contrast to established methods for sparse training the proposed
family of algorithms constitutes a regrowth strategy for neural networks that is
solely optimization-based without additional heuristics. Our Bregman learning
framework starts the training with very few initial parameters, successively adding
only significant ones to obtain a sparse and expressive network. The proposed
approach is extremely easy and efficient, yet supported by the rich mathematical
theory of inverse scale space methods. We derive a statistically profound sparse
parameter initialization strategy and provide a rigorous stochastic convergence
analysis of the loss decay and additional convergence proofs in the convex regime.
Using only 3.4% of the parameters of ResNet-18 we achieve 90.2% test accuracy on
CIFAR-10, compared to 93.6% using the dense network. Our algorithm also unveils
an autoencoder architecture for a denoising task. The proposed framework also
has a huge potential for integrating sparse backpropagation and resource-friendly
training. Code is available at https://github.com/TimRoith/BregmanLearning.
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1. Introduction

Large and deep neural networks have shown astonishing results in challenging ap-
plications, ranging from real-time image classification in autonomous driving, over
assisted diagnoses in healthcare, to surpassing human intelligence in highly complex
games (Amato et al., 2013; Rawat and Wang, 2017; Silver et al., 2016). The main
drawback of many of these architectures is that they require huge amounts of mem-
ory and can only be employed using specialised hardware, like GPGPUs and TPUs.
This makes them inaccessible to normal users with only limited computational re-
sources on their mobile devices or computers (Hoefler et al., 2021). Moreover, the
carbon footprint of training large networks has become an issue of major concern
recently (Dhar, 2020), hence calling for resource-efficient methods.

The success of large and deep neural networks is not surprising as it has been
predicted by universal approximation theorems (Cybenko, 1989; Lu et al., 2017),
promising a smaller error with increasing number of neurons and layers. Besides the
increase in computational complexity, each neuron added to the network architecture
also adds to the amount of free parameters and local optima of the loss.

Consequently, a significant branch of modern research aims for training “sparse
neural networks”, which has lead to different strategies, based on neglecting small
parameters or such with little influence on the network output, see Hoefler et al.
(2021) for an extensive review. Apart from computational and resource efficiency,
sparse training also sheds light on neural architecture design and might answer the
question why certain architectures work better than others.

A popular approach for generating sparse neural networks are pruning tech-
niques (LeCun et al., 1990; Han et al., 2015), which have been developed to sparsify
a dense neural network during or after training by dropping dispensable neurons
and connections. Another approach, which is based on the classical Lasso method
from compressed sensing (Tibshirani, 1996), incorporates ℓ1 regularization into the
training problem, acting as convex relaxation of sparsity-enforcing ℓ0 regulariza-
tion. These endeavours are further supported by the recently stated “lottery ticket
hypothesis” (Frankle and Carbin, 2018), which postulates that dense, feed-forward
networks contain sub-networks with less neurons that, if trained in isolation, can
achieve the same test accuracy as the original network.

An even more intriguing idea is “grow-and-prune” (Dai et al., 2019), which starts
with a sparse network and augments it during training, while keeping it as sparse as
possible. To this end new neurons are added, e.g., by splitting overloaded neurons
into new specimen or using gradient-based indicators, while insignificant parameters
are set to zero by thresholding.
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(a) Iteration 0 (b) Iteration 5 (c) Iteration 20 (d) Iteration 100

Figure 1: Inverse scale space character of LinBreg visualized through feature maps
of a convolutional neural network. Descriptive kernels are gradually added in the
training process.

Many of the established methods in the literature are bound to specific archi-
tectures, e.g., fully-connected feedforward layers (Castellano et al., 1997; Liu et al.,
2021). In this paper we propose a more conceptual and optimization-based ap-
proach. The idea is to mathematically follow the intuition of starting with very few
parameters and adding only necessary ones in an inverse scale space manner, see
Figure 1 for an illustration of our algorithm on a convolutional neural network. For
this sake we propose a Bregman learning framework utilizing linearized Bregman
iterations—originally introduced for compressed sensing by Yin et al. (2008)—for
training sparse neural networks.

Our main contributions are the following:

• We derive an extremely simple and efficient algorithm for training sparse neu-
ral networks, called LinBreg.

• We also propose a momentum-based acceleration and AdaBreg, which utilizes
the Adam algorithm (Kingma and Ba, 2014).

• We perform a rigorous stochastic convergence analysis of LinBreg for strongly
convex losses, in infinite dimensions, and without any smoothness assumptions
on the sparsity regularizer.

• We propose a sparse initialization strategy for the network parameters.

• We show that our algorithms are effective for training sparse neural networks
and show their potential for architecture design by unveiling a denoising au-
toencoder.

The structure of this paper is as follows: In Section 1.1 we explain our baseline
algorithm LinBreg in a nutshell and in Section 1.2 we discuss related work. Sec-
tions 1.3 and 1.4 clarify notation and collect preliminaries on neural networks and
convex analysis, the latter being important for the derivation and analysis of our al-
gorithms. In Section 2 we explain how Bregman iterations can be incorporated into
the training of sparse neural networks, derive and discuss variants of the proposed
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Algorithm 1: LinBreg, an inverse scale space algorithm for training sparse

neural networks by successively adding weights whilst minimizing the loss.

The functional J is sparsity promoting, e.g., the ℓ1-norm.

default: δ = 1

θ ← Section 4.1, v ← ∂J(θ) + 1
δ
θ // initialize

for epoch e = 1 to E do

for minibatch B ⊂ T do

g ← ∇L(θ;B) // Backpropagation

v ← v − τg // Gradient step

θ ← proxδJ (δv) // Regularization

Bregman learning algorithm, including accelerations using momentum and Adam.
We perform a mathematical analysis for stochastic linearized Bregman iterations in
Section 3 and discuss conditions for convergence of the loss function and the param-
eters. In Section 4 we first discuss our statistical sparse initialization strategy and
then evaluate our algorithms on benchmark data sets (MNIST, Fashion-MNIST,
CIFAR-10) using feedforward, convolutional, and residual neural networks.

1.1 The Bregman Training Algorithm in a Nutshell

Algorithm 1 states our baseline algorithm LinBreg for training sparse neural net-
works with an inverse scale space approach. Mathematical tools and derivations
of LinBreg and its variants LinBreg with momentum (Algorithm 2) and AdaBreg
(Algorithm 3), a generalization of Adam (Kingma and Ba, 2014), are presented in
Section 2; a convergence analysis is provided in Section 3.

LinBreg can easily be applied to any neural network architecture fθ, parametrized
with parameters θ ∈ Θ, using a set of training data T , and an empirical loss function
L(θ;B), where B ⊂ T is a batch of training data. LinBreg’s most important ingre-
dient is a sparsity enforcing functional J : Θ → (−∞,∞], which acts on groups of
network parameters as, for instance, convolutional kernels, weight matrices, biases,
etc. Following Scardapane et al. (2017) and denoting the collection of all parameter
groups for which sparsity is desired by G, two possible regularizers which induce
sparsity or group sparsity, respectively, can be defined as

J(θ) = λ
∑

g∈G

‖g‖1, the ℓ1-norm, (1.1)

J(θ) = λ
∑

g∈G

√
ng ‖g‖2, the group ℓ1,2-norm. (1.2)
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Here λ > 0 is a parameter controlling the regularization strength, ng denotes the
number of elements in g, and the factor

√
ng ensures a uniform weighting of all

groups (Scardapane et al., 2017).
LinBreg uses two variables v and θ, coupled through the condition that v ∈

∂Jδ(θ) is a subgradient of the elastic net regularization Jδ(θ) := J(θ) + 1
2δ‖θ‖2

introduced by Zou and Hastie (2005) (see Sections 1.3 and 1.4 for definitions).
The algorithm successively updates v with gradients of the loss and recovers sparse
parameters θ by applying a proximal operator. For instance, if J(θ) = λ‖θ‖1 equals
the ℓ1-norm, the proximal operator in Algorithm 1 coincides with the soft shrinkage
operator:

proxδJ(δv) = δ shrink(v;λ) := δ sign(v) max(|v| − λ, 0). (1.3)

In this case only those parameters θ will be non-zero whose subgradients v have
magnitude larger than the regularization parameter λ. Furthermore, δ > 0 only
steers the magnitude of the resulting weights and not their support. Furthermore, if
J(θ) = 0 then proxδJ(δv) = δv and therefore Algorithm 1 coincides with stochastic
gradient descent (SGD) with learning rate δτ . These two observations explain our
default choice of δ = 1.

In general, the proximal operators of the regularizers above can be efficiently
evaluated since they admit similar closed form solutions based on soft thresholding.
Hence, the computational complexity of LinBreg is dominated by the backprop-
agation and coincides with the complexity of vanilla stochastic gradient descent.
However, note that our framework has great potential for complexity reduction via
sparse backpropagation methods, cf. Dettmers and Zettlemoyer (2019).

The special feature which tells LinBreg apart from standard sparsity regulariza-
tion (Louizos et al., 2017; Scardapane et al., 2017; Srinivas et al., 2017) or pruning
(LeCun et al., 1990; Han et al., 2015) is its inverse scale space character. LinBreg
is derived based on Bregman iterations, originally developed for scale space ap-
proaches in imaging (Osher et al., 2005; Burger et al., 2006; Yin et al., 2008; Cai
et al., 2009b,a; Zhang et al., 2011). Instead of removing weights from a dense trained
network, it starts from a very sparse initial set of parameters (see Section 4.1) and
successively adds non-zero parameters whilst minimizing the loss.

1.2 Related Work

Dense-to-Sparse Training A well-established approach for training sparse neu-
ral network consists in solving the regularized empirical risk minimization

min
θ∈Θ

L(θ;B) + J(θ), (1.4)

where J is a (sparsity-promoting) non-smooth regularization functional. If J equals
the ℓ1-norm this is referred to as Lasso (Tibshirani, 1996) and was extended to
Group Lasso for neural networks by Scardapane et al. (2017) by using group norms.
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We refer to de Dios and Bruna (2020) for a mean-field analysis of this approach.
The regularized risk minimization (1.4) is a special case of Dense-to-Sparse training.
Even if the network parameters are initialized sparsely, any optimization method for
(1.4) will instantaneously generate dense weights, which are subsequently sparsified.
A different strategy for Dense-to-Sparse training is pruning (LeCun et al., 1990; Han
et al., 2015), see also Zhu and Gupta (2017), which first trains a network and then
removes parameters to create sparse weights. This procedure can also be applied
alternatingly, which is referred to as iterative pruning (Castellano et al., 1997). The
weight removal can be achieved based on different criteria, e.g., their magnitude or
their influence on the network output.

Sparse-to-Sparse Training In contrast, Sparse-to-Sparse training aims to grow
a neural network starting from a sparse initialization until it is sufficiently accurate.
This is also the paradigm of our LinBreg algorithm, generating an inverse sparsity
scale space. Other approaches from literature are grow-and-prune strategies (Mo-
canu et al., 2018; Dettmers and Zettlemoyer, 2019; Dai et al., 2019; Liu et al., 2021;
Evci et al., 2020) which, starting from sparse networks, successively add and remove
neurons or connections while training the networks.

Proximal Gradient Descent A related approach to LinBreg is proximal gradient
descent (ProxGD) for optimizing the regularized empirical risk minimization (1.4),
which is an inherently non-smooth optimization problem due to the presence of the
ℓ1-norm-type functional J . Therefore, proximal gradient descent alternates between
a gradient step of the loss with a proximal step of the regularization:

g ← ∇L(θ;B) (1.5a)

θ ← θ − τg (1.5b)

θ ← proxτJ(θ). (1.5c)

Applications for training neural networks and convergence analysis of this algorithm
and its variants can be found, e.g., in Nitanda (2014); Rosasco et al. (2020); Reddi
et al. (2016); Yang et al. (2019); Yun et al. (2020). It differs from Algorithm 1 by the
lack of a subgradient variable and by using the learning rate τ within the proximal
operator. These seemingly minor algorithmic differences cause major differences for
the trained parameters. Indeed, the effect of J kicks in only after several iterations
when the proximal operator has been applied sufficiently often to set some param-
eters to zero, as can be observed in Figure 2, Section 4.2. Furthermore, proximal
gradient descent does not decrease the loss monotonously which we are able to prove
for LinBreg.

Bregman Iterations Bregman iterations and in particular linearized Bregman
iterations have been introduced and thoroughly analyzed for sparse regularization
approaches in imaging and compressed sensing (see, e.g., Osher et al. (2005); Yin
et al. (2008); Bachmayr and Burger (2009); Cai et al. (2009b,a); Yin (2010); Burger
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et al. (2007, 2013)). More recent applications of Bregman type methods in the
context of image restoration are Benfenati and Ruggiero (2013); Jia et al. (2016); Li
et al. (2018). Linearized Bregman iterations for non-convex problems, which appear
in machine learning and imaging applications like blind deblurring, have first been
analyzed by Bachmayr and Burger (2009); Benning and Burger (2018); Benning
et al. (2021). Benning and Burger (2018) also showed that linearized Bregman
iterations for convex problems can be formulated as forward pass of a neural network.
Benning et al. (2021) applied them for training neural networks with low-rank weight
matrices, using nuclear norm regularization. Huang et al. (2016) suggested a split
Bregman approach for training sparse neural networks and Fu et al. (2022) provided
a deterministic convergence result along the lines of Benning et al. (2021). A recent
analysis of Bregman stochastic gradient descent, which is the same as linearized
Bregman iterations, however using strong regularity assumptions on the involved
functions, is done by Dragomir et al. (2021).

Mirror Descent As it turns out, linearized Bregman iterations are largely known
under yet another name: mirror descent. This method was first proposed by Ne-
mirovskij and Yudin (1983) and related to Bregman distances by Beck and Teboulle
(2003). Dragomir et al. (2021) present a literature overview of stochastic mirror
descent. Some months after the release of the preprint version of the present article,
D’Orazio et al. (2021) presented a convergence analysis of stochastic mirror de-
scent a.k.a. Bregman iterations, using a weaker bounded variance condition for the
stochastic gradients, albeit working in a smooth setting. In contrast, our analysis
does not require any smoothness of J .

1.3 Preliminaries on Neural Networks

We denote neural networks, which map from an input space X to an output space
Y and have parameters in some parameter space Θ, by

fθ : X → Y, θ ∈ Θ. (1.6)

In principle X , Y, and Θ can be infinite-dimensional and we only assume that
Θ is a Hilbert space, equipped with an inner product 〈θ̃, θ〉 and associated norm
‖θ‖ =

√

〈θ, θ〉. Given a set of training pairs T ⊂ X × Y and a loss function
ℓ : Y × Y → R we denote the empirical loss associated to the training data by

L(θ) :=
1

|T |
∑

(x,y)∈T

ℓ(fθ(x), y). (1.7)

The empirical risk minimization approach to finding optimal parameters θ ∈ Θ of
the neural network fθ then consists in solving

min
θ∈Θ
L(θ). (1.8)
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If one assumes that the training set T is sampled from some probability measure ρ
on the product space X × Y, the empirical risk minimization is an approximation
of the infeasible population risk minimization

min
θ∈Θ

∫

X×Y
ℓ(fθ(x), y) dρ(x, y). (1.9)

One typically samples batches B ⊂ T from the training set and replaces L(θ) by
the empirical risk of the batch

L(θ;B) :=
1

|B|
∑

(x,y)∈B

ℓ(fθ(x), y), (1.10)

which is utilized in stochastic gradient descent methods.
For a feed-forward architecture with L ∈ N layers of sizes nl we split the variable

θ into weights and biases W l ∈ Rnl,nl−1 , bl ∈ Rnl for l ∈ {1, . . . , L}. In this case we
have

fθ(x) = ΦL ◦ · · · ◦ Φ1(x), (1.11)

where the l-th layer for l ∈ {1, . . . , L} is given by

Φl(z) := σl(W lz + bl). (1.12)

Here σl denote activation functions, as for instance ReLU, TanH, Sigmoid, etc.,
(Goodfellow et al., 2016). In this case, sparsity promoting regularizers are the ℓ1-
norm or the group ℓ1,2-norm

J(θ) = λ

L∑

l=1

‖W l‖1,1, (1.13)

J(θ) = λ
L∑

l=1

√
nl−1 ‖W l‖1,2, (1.14)

which induce sparsity of the weight matrices and of the non-zero rows of weight
matrices, respectively. Here the scaling

√
nl−1 weighs the influence of the l-th layer

based on the number of incoming neurons.

1.4 Preliminaries on Convex Analysis

In this section we introduce some essential concepts from convex analysis which we
need to derive LinBreg and its variants and in order to make our argumentation
more self-contained. For an overview of these topics we refer to Benning and Burger
(2018); Rockafellar (1997); Bauschke and Combettes (2011). A functional J : Θ→
(−∞,∞] on a Hilbert space Θ is called convex if

J(λθ + (1− λ)θ) ≤ λJ(θ) + (1− λ)J(θ), ∀λ ∈ [0, 1], θ, θ ∈ Θ. (1.15)
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We define the effective domain of J as dom(J) := {θ ∈ Θ : J(θ) 6= ∞} and call
J proper if dom(J) 6= ∅. Furthermore, J is called lower semicontinuous if J(u) ≤
lim infn→∞ J(un) holds for all sequences (un)n∈N ⊂ Θ converging to u. First, we
define the subdifferential of a convex and proper functional J : Θ → (−∞,∞] at a
point θ ∈ Θ as

∂J(θ) :=
{
p ∈ Θ : J(θ) + 〈p, θ − θ〉 ≤ J(θ), ∀θ ∈ Θ

}
. (1.16)

The subdifferential is a non-smooth generalization of the derivative and coincides
with the classical gradient (or Fréchet derivative) if J is differentiable. We denote
dom(∂J) := {θ ∈ Θ : ∂J(θ) 6= ∅} and observe that dom(∂J) ⊂ dom(J).

Next, we define the Bregman distance of two points θ ∈ dom(∂J), θ ∈ Θ with
respect to a convex and proper functional J : Θ→ (−∞,∞] as

Dp
J(θ, θ) := J(θ)− J(θ)− 〈p, θ − θ〉, p ∈ ∂J(θ). (1.17)

The Bregman distance can be interpreted as the distance between the linearization
of J at θ and its graph and hence somewhat measures the degree of linearity of the
functional. Note furthermore that the Bregman distance (1.17) is neither definite,
symmetric nor fulfills the triangle inequality, hence it is not a metric. However, it
fulfills the two distance axioms

Dp
J(θ, θ) ≥ 0, Dp

J(θ, θ) = 0, ∀θ ∈ Θ, θ ∈ dom(∂J). (1.18)

By summing up two Bregman distances, one can also define the symmetric Bregman
distance with respect to p ∈ ∂J(θ) and p ∈ ∂J(θ) as

Dsym
J (θ, θ) := Dp

J(θ, θ) + Dp
J(θ, θ). (1.19)

Here, we suppress the dependency on p and p to simplify the notation.
Last, we define the proximal operator of a convex, proper and lower semicontin-

uous functional J : Θ→ (−∞,∞] as

proxJ(θ) := arg min
θ∈Θ

1

2
‖θ − θ‖2 + J(θ). (1.20)

Proximal operators are a key concept in non-smooth optimization since they can be
used to replace gradient descent steps of non-smooth functionals, as done for instance
in proximal gradient descent (1.5). Obviously, given some θ ∈ Θ the proximal
operator outputs a new element θ ∈ Θ which has a smaller value of J whilst being
close to the previous element θ.

2. Bregmanized training of Neural Networks

In this section we first give a short overview of inverse scale space flows which are
the time-continuous analogue of our algorithms. Subsequently, we derive LinBreg
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(Algorithm 1) by passing from Bregman iterations to linearized Bregman iterations,
which we then reformulate in a very easy and compact form. We then derive LinBreg
with momentum (Algorithm 2) by discretizing a second-order in time inverse scale
space flow and propose AdaBreg (Algorithm 3) as a generalization of the popular
Adam algorithm (Kingma and Ba, 2014).

2.1 Inverse Scale Space Flows (with Momentum)

In the following we discuss the inverse scale space flow, which arises as gradient flow
of a loss functional L with respect to the Bregman distance (1.17). In particular,
it couples the minimization of L with a simultaneous regularization through J . To
give meaning to this, one considers the following implicit Euler scheme

θ(k+1) = arg min
θ∈Θ

Dp(k)

J (θ, θ(k)) + τ (k)L(θ), (2.1a)

p(k+1) = p(k) − τ (k)∇L(θ(k+1)) ∈ ∂J(θ(k+1)) (2.1b)

which is know as Bregman iteration. Here, θ(k) is the previous iterate with sub-
gradient p(k) ∈ ∂J(θ(k)), and τ (k) > 0 is a sequence of time steps. Note that the
subgradient update in the second line of (2.1) coincides with the optimality condi-
tions of the first line.

The time-continuous limit of (2.1) as τ (k) → 0 is the inverse scale space flow

{

ṗt = −∇L(θt),

pt ∈ ∂J(θt),
(2.2)

see Burger et al. (2006, 2007) for a rigorous derivation in the context of image
denoising.

If J(θ) = 1
2‖θ‖2 then ∂J(θ) = θ and (2.2) coincides with the standard gradient

flow

θ̇t = −∇L(θt). (2.3)

Hence, the inverse scale space is a proper generalization of the gradient flow and
allows for regularizing the path along which the loss is minimized using J (see
Benning et al. (2021)). For strictly convex loss functions this might seem pointless
since they have a unique minimum anyways, however, for merely convex or even non-
convex losses the inverse scale space allows to ‘select’ (local) minima with desirable
properties.

In this paper, we also propose an inertial version of (2.2) which depends on an
inertial parameter γ ≥ 0 and takes the form

{

γp̈t + ṗt = −∇L(θt),

pt ∈ ∂J(θt).
(2.4)

10
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One can introduce the momentum variable mt := ṗt which solves the differential
equation

γṁt + mt = −∇L(θt).

If one assumes m0 = 0, this equation has the explicit solution

mt = −
∫ t

0
exp

(
s− t

γ

)

∇L(θs)ds

and hence the second-order in time equation (2.4) is equivalent to the gradient
memory inverse scale space flow

{

ṗt = −
∫ t

0 exp
(
s−t
γ

)

∇L(θs)ds,

pt ∈ ∂J(θt).
(2.5)

For a nice overview over the derivation of gradient flows with momentum we refer
to Orvieto et al. (2020).

2.2 From Bregman to Linearized Bregman Iterations

The starting point for the derivation of Algorithm 1 is the Bregman iteration (2.1),
which is the time discretization of the inverse scale space flow (2.2).

Since the iterations (2.1) require the minimization of the loss in every itera-
tion they are not feasible for large-scale neural networks. Therefore, we consider
linearized Bregman iterations (Cai et al., 2009b), which linearize the loss function
by

L(θ) ≈ L(θ(k)) +
〈

g(k), θ − θ(k)
〉

, g(k) := ∇L(θ(k)),

and replace the energy J with the strongly convex elastic-net regularization

Jδ(θ) := J(θ) +
1

2δ
‖θ‖2, δ ∈ (0,∞). (2.6)

Omitting all terms which do not depend on θ, the first line of (2.1) then becomes

θ(k+1) = arg min
θ∈Θ

〈τ (k)g(k), θ〉+ Jδ(θ)− 〈v(k), θ〉

= arg min
θ∈Θ

〈τ (k)g(k), θ〉+ J(θ) +
1

2δ
‖θ‖2 − 〈v(k), θ〉

= arg min
θ∈Θ

1

2δ
‖θ − δ

(

v(k) − τ (k)g(k)
)

‖2 + J(θ)

= proxδJ

(

δ
(

v(k) − τ (k)g(k)
))

. (2.7)

11
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The vector v(k) ∈ ∂Jδ(θ
(k)) is a subgradient of the functional Jδ in the previous

iterate. Using the update

v(k+1) := v(k) − τ (k)g(k)

and combining this with (2.7) we obtain the compact update scheme

g(k) = ∇L(θ(k)), (2.8a)

v(k+1) = v(k) − τ (k)g(k), (2.8b)

θ(k+1) = proxδJ

(

δv(k+1)
)

. (2.8c)

This iteration is an equivalent reformulation of linearized Bregman iterations (Yin
et al., 2008; Cai et al., 2009b,a; Osher et al., 2010; Yin, 2010; Benning and Burger,
2018), which are usually expressed in a more complicated way. Furthermore, it
coincides with the mirror descent algorithm (Beck and Teboulle, 2003) applied to
the functional Jδ.

Note that Yin (2010) showed that for quadratic loss functions the elastic-net
regularization parameter δ > 0 has no influence on the asymptotics of linearized
Bregman iterations, if chosen larger than a certain threshold. This effect is referred
to as exact regularization (Friedlander and Tseng, 2008). The iteration scheme
simply computes a gradient descent in the subgradient variable v and recovers the
weights θ by evaluating the proximal operator of v. This makes it significantly
cheaper than the original Bregman iterations (2.1) which require the minimization
of the loss in every iteration.

Note that the last line in (2.8) is equivalent to v(k+1) satisfying the optimality
condition

v(k+1) ∈ ∂Jδ(θ
(k+1)). (2.9)

In particular, by letting τ (k) → 0 the iteration (2.8) can be viewed as explicit
Euler discretization of the inverse scale space flow (2.2) of the elastic-net regularized
functional Jδ:

{

v̇t = −∇L(θt),

vt ∈ ∂Jδ(θt).
(2.10)

By embedding (2.8) into a stochastic batch gradient descent framework we obtain
LinBreg from Algorithm 1.

2.3 Linearized Bregman Iterations with Momentum

More generally we consider an inertial version of (2.10), which as in Section 2.1 is
given by

{

γv̈t + v̇t = −∇L(θt),

vt ∈ ∂Jδ(θt).
(2.11)

12
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We discretize this equation in time by approximating the time derivatives as

v̈t ≈
v(k+1) − 2v(k) + v(k−1)

(τ (k))2
,

v̇t ≈
v(k+1) − v(k)

τ (k)
,

such that after some reformulation we obtain the iteration

v(k+1) =
τ (k) + 2γ

τ (k) + γ
v(k) − γ

τ (k) + γ
v(k−1) − (τ (k))2

τ (k) + γ
∇L(θ(k)), (2.12a)

θ(k+1) = proxδJ(δv(k+1)). (2.12b)

To see the relation to the gradient memory equation (2.5), derived in Section 2.1,
we rewrite (2.12), using the new variables

m(k+1) := v(k) − v(k+1), β(k) :=
γ

τ (k) + γ
∈ [0, 1). (2.13)

Plugging this into (2.12) yields the iteration

m(k+1) = β(k)m(k) + (1− β(k))τ (k)∇L(θ(k)), (2.14a)

v(k+1) = v(k) −m(k+1), (2.14b)

θ(k+1) = proxδJ(δv(k+1)). (2.14c)

Similar to before, embedding this into a stochastic batch gradient descent framework
we obtain LinBreg with momentum from Algorithm 2. Note that, contrary to
stochastic gradient descent with momentum (Orvieto et al., 2020), the momentum
acts on the subgradients v and not on the parameters θ.

Analogously, we propose AdaBreg in Algorithm 3, which is a generalization of the
Adam algorithm (Kingma and Ba, 2014). Here, we also apply the bias correction
steps on the subgradient v and reconstruct the parameters θ using the proximal
operator of the regularizer J .

3. Analysis of Stochastic Linearized Bregman Iterations

In this section we provide a convergence analysis of stochastic linearized Bregman
iterations. They are valid in a general sense and do not rely on L being an empirical
loss or θ being weights of a neural network. Still we keep the notation fixed for
clarity. All proofs can be found in the appendix.

We let (Ω, F,P) be a probability space, Θ be a Hilbert space, L : Θ → R a
Fréchet differentiable loss function, and g : Θ × Ω → Θ an unbiased estimator of
∇L, meaning E [g(θ;ω)] = ∇L(θ) for all θ ∈ Θ. This and all other expected values
are taken with respect to the random variable ω ∈ Ω which, in our case, models

13
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Algorithm 2: LinBreg with Momentum, an acceleration of LinBreg using

momentum-based gradient memory.

default: δ = 1, β = 0.9

θ ← Section 4.1, v ← ∂J(θ) + 1
δ
θ, m← 0

// initialize

for epoch e = 1 to E do

for minibatch B ⊂ T do

g ← ∇L(θ;B) // Backpropagation

m← β m + (1− β)τ g // Momentum update

v ← v −m // Momentum step

θ ← proxδJ (δv) // Regularization

Algorithm 3: AdaBreg, a Bregman version of the Adam algorithm which

uses moment-based bias correction.

default: δ = 1, β1 = 0.9, β2 = 0.999, ǫ = 10−8

θ ← Section 4.1, v ← ∂J(θ) + 1
δ
θ, m1 ← 0, m2 ← 0

// initialize

for epoch e = 1 to E do

for minibatch B ⊂ T do

k ← k + 1

g ← ∇L(θ;B) // Backpropagation

m1 ← β1m1 + (1− β1) g // First moment estimate

m̂1 ← m1/(1− βk
1 ) // Bias correction

m2 ← β2m2 + (1− β2) g
2 // Second raw moment estimate

m̂2 ← m2/(1− βk
2 ) // Bias correction

v ← v − τ m̂1/(
√
m̂2 + ǫ) // Moment step

θ ← proxδJ (δv) // Regularization

the randomly drawn batch of training in data in (1.10). We study the stochastic
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linearized Bregman iterations

draw ω(k) from Ω using the law of P, (3.1a)

g(k) := g(θ(k);ω(k)), (3.1b)

v(k+1) := v(k) − τ (k)g(k), (3.1c)

θ(k+1) := proxδJ(δv(k+1)). (3.1d)

For our analysis we need some assumptions on the loss function L which are very
common in the analysis of nonlinear optimization methods. Besides boundedness
from below, we demand differentiability and Lipschitz-continuous gradients, which
are standard assumptions in nonlinear optimization since they allow to prove suf-
ficient decrease of the loss. We refer to Benning et al. (2021) for an example of a
neural network the associated loss of which satisfies the following assumption.

Assumption 1 (Loss function) We assume the following conditions on the loss
function:

• The loss function L is bounded from below and without loss of generality we
assume L ≥ 0.

• The function L is continuously differentiable.

• The gradient of the loss function θ 7→ ∇L(θ) is L-Lipschitz for L ∈ (0,∞):

‖∇L(θ̃)−∇L(θ)‖ ≤ L‖θ̃ − θ‖, ∀θ, θ̃ ∈ Θ. (3.2)

Remark 1 Note that the Lipschitz continuity of the gradient in particular implies
the classical estimate (Beck, 2017; Bauschke and Combettes, 2011)

L(θ̃) ≤ L(θ) + 〈∇L(θ), θ̃ − θ〉+
L

2
‖θ̃ − θ‖2, ∀θ, θ̃ ∈ Θ. (3.3)

Furthermore, we need the following assumption, being of stochastic nature,
which requires the gradient estimator to have uniformly bounded variance.

Assumption 2 (Bounded variance) There exists a constant σ > 0 such that for
any θ ∈ Θ it holds

E
[
‖g(θ;ω)−∇L(θ)‖2

]
≤ σ2. (3.4)

This is a standard assumption in the analysis of stochastic optimization methods and
many authors actually demand the more restrictive condition of uniformly bounded
stochastic gradients E

[
‖g(θ;ω)‖2

]
≤ C for all θ ∈ Θ. Remarkably, both assumptions

have been shown to be unnecessary for proving convergence of stochastic gradient
descent of convex (Nguyen et al., 2018) and non-convex functions (Lei et al., 2019).
Generalizing this to linearized Bregman iterations is however completely non-trivial
which is why we stick to Assumption 2.

We also state our assumptions on the regularizer J , which are extremely mild.
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Assumption 3 (Regularizer) We assume that J : Θ → (−∞,∞] is a convex,
proper, and lower semicontinuous functional on the Hilbert space Θ.

All other assumptions will be stated when they are needed.

3.1 Decay of the Loss Function

We first analyze how the iteration (3.1) decreases the loss L. Such decrease prop-
erties of deterministic linearized Bregman iterations in a different formulation were
already studied by Benning et al. (2021); Benning and Burger (2018). Note that for
the loss decay we do not require any sort of convexity of L whatsoever, but merely
Lipschitz continuity of the gradient, i.e., (3.3).

Theorem 2 (Loss decay) Assume that Assumptions 1–3 hold true, let δ > 0, and
let the step sizes satisfy τ (k) ≤ 2

δL
. Then there exist constants c, C > 0 such that for

every k ∈ N the iterates of (3.1) satisfy

E
[

L(θ(k+1))
]

+
1

τ (k)
E
[

Dsym
J (θ(k+1), θ(k))

]

+
C

2δτ (k)
E
[

‖θ(k+1) − θ(k)‖2
]

≤ E
[

L(θ(k))
]

+ τ (k)δ
σ2

2c
,

(3.5)

Corollary 3 (Summability) Under the conditions of Theorem 2 and with the ad-
ditional assumption that the step sizes are non-increasing and square-summable,
meaning

τ (k+1) ≤ τ (k), ∀k ∈ N,
∞∑

k=0

(τ (k))2 <∞,

it holds

∞∑

k=0

E
[

Dsym
J (θ(k+1), θ(k))

]

<∞,

∞∑

k=0

E
[

‖θ(k+1) − θ(k)‖2
]

<∞.

Remark 4 (Deterministic case) Note that in the deterministic setting with σ =
0 the statement of Theorem 2 coincides with Benning et al. (2021); Benning and
Burger (2018). In particular, the loss decays monotonously and one gets stronger
summability than in Corollary 3 since one does not have to multiply by τ (k).

3.2 Convergence of the Iterates

In this section we establish two convergence results for the iterates of the stochas-
tic linearized Bregman iterations (3.1). According to common practice and for
self-containedness we restrict ourselves to strongly convex losses. Obviously, our
results remain true for non-convex losses if one assumes convexity around local
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minima and applies our arguments locally. We note that one could also extend
the deterministic convergence proof of Benning et al. (2021)—which is based on
the Kurdyka– Lojasiewicz (KL) inequality and works for non-convex losses—to the
stochastic setting. However, this is beyond the scope of this paper and conveys less
intuition than our proofs.

For our first convergence result—asserting norm convergence of a subsequence—
we need the condition on the loss function Assumption 1, the bounded variance
condition from Assumption 2 and strong convexity of the loss L:

Assumption 4 (Strong convexity) The loss function θ 7→ L(θ) is µ-strongly
convex for µ ∈ (0,∞), meaning

L(θ̃) ≥ L(θ) + 〈∇L(θ), θ̃ − θ〉+
µ

2
‖θ̃ − θ‖2, ∀θ, θ̃ ∈ Θ. (3.6)

Note that by virtue of (3.3) it holds µ ≤ L if the loss satisfies Assumptions 1 and 4.
Our second convergence convergence result—asserting convergence in the Breg-

man distance of Jδ which is a stronger topology than norm convergence—requires
a stricter convexity condition, tailored to the Bregman geometry.

Assumption 5 (Strong Bregman convexity) The loss function θ 7→ L(θ) sat-
isfies

L(θ̃) ≥ L(θ) + 〈∇L(θ), θ̃ − θ〉+ νDv
Jδ

(θ̃, θ), ∀θ, θ̃ ∈ Θ, v ∈ ∂Jδ(θ), (3.7)

where Jδ for δ > 0 is defined in (2.6). In particular, L satisfies Assumption 4 with
µ = ν/δ.

Remark 5 (The Bregman convexity assumption) Assumption 5 seems to be
quite restrictive, however, in finite dimensions it is locally equivalent to Assump-
tion 4, as we argue in the following. Note that it suffices if the assumptions above
are satisfied in a vicinity of the (local) minimum to which the algorithm converges.
For proving convergence we will use Assumption 5 with θ̃ = θ∗, a (local) minimum,
and θ close to θ∗. Using Lemma 13 in the appendix the assumption can be rewritten
as

L(θ∗) ≥ L(θ) + 〈∇L(θ), θ∗ − θ〉+
ν

2δ
‖θ∗ − θ‖2 + νDp

J(θ∗, θ), p ∈ ∂J(θ)

and we will argue that for θ close to θ∗ the extra term vanishes, i.e. Dp
J(θ∗, θ) = 0.

For this we have to show that p is not only a subgradient at θ but also at θ∗: If p
is a subgradient of J at both points, i.e., p ∈ ∂J(θ) ∩ ∂J(θ∗) we obtain that their
Bregman distance is zero. This can be seen using the definition of the Bregman
distance (1.17):

Dp
J(θ∗, θ) ≥ 0

Dp
J(θ, θ∗) ≥ 0

}

=⇒ 0 ≤ Dp
J(θ∗, θ) + Dp

J(θ, θ∗) = 0.
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In finite dimensions and for J(θ) = ‖θ‖1 =
∑N

i=1 |θi| equal to the ℓ1-norm we

can use that 〈p, θ〉 = J(θ) =
∑N

i=1 sign(θi)θi =
∑N

i=1 |θi| = J(θ) and simplify the
Bregman distance to

Dp
J(θ∗, θ) = J(θ∗)− 〈p, θ∗〉 =

N∑

i=1

|θ∗i | − sign(θi)θ
∗
i =

N∑

i=1

θ∗i (sign(θ∗i )− sign(θi)) .

Obviously, the terms in this sum where θ∗i = 0 vanish anyways. Hence, the expres-
sion is zero whenever the non-zero entries of θ have the same sign as those of θ∗

which is the case if ‖θ−θ∗‖∞ < min {|θ∗i | : i ∈ {1, . . . , N}, θ∗i 6= 0}. Since all norms
are equivalent in finite dimensions, one obtains

Dp
J(θ∗, θ) = 0 for ‖θ − θ∗‖ sufficiently small.

Hence, Assumption 5 is locally implied by Assumption 4 if J(θ) = ‖θ‖1.

We would like to remark that—even under the weaker Assumption 4—one needs
some coupling of the loss L and the regularization functional J in order to obtain
convergence to a critical point. Benning et al. (2021) demand that a surrogate
function involving both L and J admits the KL inequality and that the subgradients
of J are bounded close to the minimum θ∗ of the loss. Indeed, in our theory using
Assumption 4 it suffices to demand that J(θ∗) < ∞. This assumption is weaker
than assuming bounded subgradients but is nevertheless necessary as the following
example taken from Benning et al. (2021) shows.

Example 1 (Non-convergence to a critical point) Let L(θ) = (θ+1)2 for θ ∈
R and J(θ) = χ[0,∞)(θ) be the characteristic function of the positive axis. Then for
any initialization the linearized Bregman iterations (2.8) converge to θ = 0 which is
no critical point of L. On the other hand, the only critical point θ∗ = −1 clearly
meets J(θ∗) =∞.

Theorem 6 (Convergence in norm) Assume that Assumptions 1–4 hold true
and let δ > 0. Furthermore, assume that the step sizes τ (k) are such that for all
k ∈ N:

τ (k) ≤ µ

2δL2
, τ (k+1) ≤ τ (k),

∞∑

k=0

(τ (k))2 <∞,
∞∑

k=0

τ (k) =∞.

The function L has a unique minimizer θ∗ and if J(θ∗) <∞ the stochastic linearized
Bregman iterations (3.1) satisfy the following:

• Letting dk := E
[

Dv(k)

Jδ
(θ∗, θ(k))

]

it holds

dk+1 − dk +
µ

4
τ (k)E

[

‖θ∗ − θ(k+1)‖2
]

≤ σ

2

(

(τ (k))2 + E
[

‖θ(k) − θ(k+1)‖2
])

.

(3.8)
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• The iterates possess a subsequence converging in the L2-sense of random vari-
ables:

lim
j→∞

E
[

‖θ∗ − θ(kj)‖2
]

= 0. (3.9)

Here, Jδ is defined as in (2.6).

Remark 7 (Choice of step sizes) A possible step size which satisfies the condi-
tions of Theorem 6 is given by τ (k) = c

(k+1)p where 0 < c < µ
δL2 and p ∈ (12 , 1].

Remark 8 (Deterministic case) In the deterministic case σ = 0 inequality (3.8)
even shows that the Bregman distances decrease along iterations. Furthermore,
in this case it is not necessary that the step sizes are square-summable and non-
increasing since the term on the right hand side does not have to be summed.

In a finite dimensional setting and using ℓ1-regularization one can even show con-
vergence of the whole sequence of Bregman distances.

Remark 9 With the help of Lemma 13 in the appendix, the quantity Dv(k)

Jδ
(θ∗, θ(k))

which appears in the decay estimate (3.8) can be simplified as follows:

Dv(k)

Jδ
(θ∗, θ(k)) =

1

2δ
‖θ∗ − θ(k)‖2 + Dp(k)

J (θ∗, θ)

=
1

2δ
‖θ∗ − θ(k)‖2 + J(θ∗)− J(θ(k))− 〈p(k), θ∗ − θ(k)〉,

where p(k) := v(k)− 1
δ
θ(k) ∈ ∂J(θ(k)). In the case that J is absolutely 1-homogeneous,

e.g., if J(θ) = ‖θ‖1 equals the ℓ1-norm, this simplifies to

Dv(k)

Jδ
(θ∗, θ(k)) =

1

2δ
‖θ∗ − θ(k)‖2 + J(θ∗)− 〈p(k), θ∗〉,

where we used that for absolutely 1-homogeneous functionals it holds 〈p, θ〉 = J(θ)
for all θ ∈ Θ and p ∈ ∂J(θ). Hence, it measures both the convergence of θ(k) to θ∗

in the norm and the convergence of the subgradients p(k) ∈ ∂J(θ(k)) to a subgradient
of J at θ∗.

Corollary 10 (Convergence in finite dimensions) If the parameter space Θ is
finite dimensional and J equals the ℓ1-norm, under the conditions of Theorem 6 it
even holds limk→∞ dk = 0 which in particular implies limk→∞ E

[
‖θ∗ − θ(k)‖2

]
= 0.

Our second convergence theorem asserts convergence in the Bregman distance
and gives quantitative estimates under Assumption 5, which is a stricter assumption
than Assumption 4 and relates the loss function L with the regularizer; cf. Dragomir
et al. (2021) for a related approach working with C2 functions. The theorem states
that the Bregman distance to the minimizer of the loss can be made arbitrarily small
using constant step sizes. For step sizes which go to zero and are not summable one
obtains a quantitative convergence result.
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Theorem 11 (Convergence in the Bregman distance) Assume that Assump-
tions 1–3 and 5 hold true and let δ > 0. The function L has a unique minimizer
θ∗ and if J(θ∗) < ∞ the stochastic linearized Bregman iterations (3.1) satisfy the
following:

• Letting dk := E
[

Dv(k)

Jδ
(θ∗, θ(k))

]

it holds

dk+1 ≤
[

1− τ (k)ν

(

1− τ (k)
2δ2L2

ν

)]

dk + δ(τ (k))2σ2. (3.10)

• For any ε > 0 there exists τ > 0 such that if τ (k) = τ for all k ∈ N then

lim sup
k→∞

dk ≤ ε. (3.11)

• If τ (k) is such that

lim
k→∞

τ (k) = 0 and

∞∑

k=0

τ (k) =∞ (3.12)

then it holds

lim
k→∞

dk = 0. (3.13)

Here, Jδ is defined as in (2.6).

Corollary 12 (Convergence rate for diminishing step sizes) The error recur-
sion (3.10) coincides with the one for stochastic gradient descent. In particular, for
step sizes of the form τ (k) = c

k
with a suitably small constant c > 0 one can prove

with induction (Nemirovski et al., 2009) that dk = C
k
for some C > 0.

4. Numerical Experiments

In this section we perform an extensive evaluation of our algorithms focusing on
different characteristics. First, we derive a sparse initialization strategy in Sec-
tion 4.1, using similar statistical arguments as in the seminal works by Glorot and
Bengio (2010); He et al. (2015). In Sections 4.2 and 4.3 we study the influence
of hyperparameters and compare our family of algorithms with standard stochas-
tic gradient descent (SGD) and the sparsity promoting proximal gradient descent
method. In Sections 4.4 and 4.5 we demonstrate that our algorithms generate sparse
and expressive networks for solving the classification task on Fashion-MNIST and
CIFAR-10, for which we utilize state-of-the-art CNN and ResNet architectures. Fi-
nally, in Section 4.6 we show that, using row sparsity, our Bregman learning al-
gorithm allows to discover a denoising autoencoder architecture, which shows the
potential of the method for architecture design. Our code is available on GitHub at
https://github.com/TimRoith/BregmanLearning and relies on PyTorch (Paszke
et al., 2019).
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4.1 Initialization

Parameter initialization for neural networks has a crucial influence on the training
process, see Glorot and Bengio (2010). In order to tackle the problem of vanishing
and exploding gradients, standard methods consider the variance of the weights at
initialization (Glorot and Bengio, 2010; He et al., 2016), assuming that for each l
the entries W l

i,j are i.i.d. with respect to a probability distribution. The intuition
here is to preserve the variances over the forward and the backward pass similar to
the variance of the respective input of the network, see Glorot and Bengio (2010,
Sec. 4.2). If the distribution satisfies E

[
W l
]

= 0, this yields a condition of the form

Var
[

W l
]

= α(nl, nl−1) (4.1)

where the function α depends on the activation function. For anti-symmetric acti-
vation functions with σ′(0) = 1, as for instance a sigmoidal function, it was shown
by Glorot and Bengio (2010) that

α(nl, nl−1) =
2

nl · nl−1

while for ReLU He et al. (2016) suggest to use

α(nl, nl−1) =
2

nl

or α(nl, nl−1) =
2

nl−1
.

For our Bregman learning framework we have to adapt this argumentation, taking
into account sparsity. For classical inverse scale space approaches and Bregman
iterations of convex losses, as for instance used for image reconstruction (Osher
et al., 2005) and compressed sensing (Yin et al., 2008; Burger et al., 2013; Osher
et al., 2010; Cai et al., 2009b), one would initialize all parameters equal to zero.
However, for neural networks this yields an unbreakable symmetry of the network
parameters, which makes training impossible, see, e.g., Goodfellow et al. (2016, Ch.
6). Instead, we employ an established approach for sparse neural networks (see, e.g.,
Liu et al. (2021); Dettmers and Zettlemoyer (2019); Martens (2010)) which masks
the initial parameters, i.e.,

W l := W̃ l ⊙M l.

Here, the mask M l ∈ Rnl,nl−1 is chosen randomly such that each entry is distributed
according to the Bernoulli distribution with a parameter r ∈ [0, 1], i.e.,

M l
i,j ∼ B(r).

The parameter r coincides with the expected percentage of non-zero weights

N(W l) :=
‖W l‖0
nl · nl−1

= 1− S(W l), (4.2)
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where S(W l) denotes the sparsity. In the following we derive a strategy to initialize

W̃ l. Choosing W̃ l and M l independent and using E
[

W̃ l
]

= 0 standard variance

calculus implies

Var
[

W l
]

= Var
[

W̃ l ⊙M l
]

= E
[

M l
]2

Var
[

W̃ l
]

+ E
[

W̃ l
]2

Var
[

M l
]

︸ ︷︷ ︸

=0

+Var
[

M l
]

Var
[

W̃ l
]

=

(

E
[

M l
]2

+ Var
[

M l
])

Var
[

W̃ l
]

= E
[

(M l)2
]

Var
[

W̃ l
]

= r Var
[

W̃ l
]

and thus deriving from (4.1) we obtain the condition

Var
[

W̃ l
]

=
1

r
α(nl, nl−1). (4.3)

Instead of having linear feedforward layers with corresponding weight matrices, the
neural network architecture at hand might consist of other groups of parameters
which one would like to keep sparse, e.g., using the group sparsity regularization
(1.2). For example, in a convolutional neural network one might be interested
in having only a few number of non-zero convolution kernels in order to obtain
compact feature representations of the input. Similarly, for standard feedforward
architectures sparsity of rows of the weight matrices yields compact networks with
a small number of active neurons. In such cases one can apply the same arguments
as above and initialize single elements g ∈ G of a parameter group G as non-zero
with probability r ∈ [0, 1] and with respect to a variance condition similar to (4.3):

g = g̃ ·m, m ∼ B(r), (4.4)

Var [g̃] =
1

r
α(g) (4.5)

Note that these arguments are only valid in a linear regime around the initializa-
tion, see Glorot and Bengio (2010) for details. Hence, if one initializes with sparse
parameters but optimizes with very weak regularization, e.g., by using vanilla SGD
or choosing λ in (1.1) or (1.2) very small, the assumption is violated since the sparse
initial parameters are rapidly filled during the first training steps.

The biases are initialized non-sparse and the precise strategy depends on the
activation function. We would like to emphasize that initializing biases with zero is
not a good idea in the context of sparse neural networks. In this case, the neuron
activations would be equal for all “dead neurons” whose incoming weights are zero,
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We train a fully connected net with ReLU activations and two hidden layers (200
and 80 neurons), and use the ℓ1-regularization from (1.13),

J(θ) = λ

L∑

l=1

‖W l‖1,1

In Figure 2 we compare the training results of vanilla SGD, the proposed LinBreg,
and the ProxGD algorithm. Following the strategy introduced in Section 4.1 we
initialize the weights with 1% non-zero entries, i.e., r = 0.01. The learning rate
is chosen as τ = 0.1 and is multiplied by a factor of 0.5 whenever the validation
accuracy stagnates. For a fair comparison the training is executed for three different
fixed random seeds, and the plot visualizes mean and standard deviation of the three
runs, respectively. We show the training and validation accuracies, the ℓ1-norm, and
the overall percentage of non-zero weights. Note that for the validation accuracies
we do not show standard deviations for the sake of clarity.

While SGD without sparsity regularization instantaneously destroys sparsity,
LinBreg exhibits the expected inverse scale space behaviour, where the number of
non-zero weights gradually grows during training, and the train accuracy increases
monotonously. This is suggested by Theorem 2, even though our experimental
setup, in particular the non-smooth ReLU activation functions, is not covered by
the theoretical framework which require at least L-smoothness of the loss functions.

In contrast, ProxGD shows no monotonicity of training accuracy or sparsity
and the validation accuracies oscillate heavily. Instead, it adds a lot of non-zero
weights in the beginning and then gradually reduces them. Obviously, the regular-
ized empirical risk minimization (1.4) implies a trade-off between training accuracy
and sparsity which depends on λ. For LinBreg this trade-off is neither predicted by
theory nor observed numerically. Here, the regularization parameter only induces a
trade-off between validation accuracy and sparsity, which is to be expected.

LinBreg (blue curves) can generate networks whose validation accuracy equals
the one of a full network and use only 80% of the weights. For the largest regular-
ization parameter (magenta curves) LinBreg uses only 10% of the weights and still
does not drop more than half a percentage point in validation accuracy.

4.3 Accelerated Bregman Algorithms

We use the same setup as in the previous section to compare LinBreg with its
momentum-based acceleration and AdaBreg (see Algorithms 1–3). Using the regu-
larization parameter λ = 10−1 from the previous section (see the magenta curves),
Figure 3 shows the validation accuracy of the different networks trained with LinBreg,
LinBreg with momentum, and AdaBreg. For comparison we visualize again the re-
sults of vanilla SGD as gray curve. It is obvious that all three proposed algorithms
generate very accurate networks using approximately 10% of the weights. As ex-
pected, the accelerated versions increase both the validation accuracy and the num-
ber of non-zero parameters faster than the baseline algorithm LinBreg. While after
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parameters whereas for the group sparsity regularization we show the sparsity of
the linear layers and the relative number of non-zero convolutional kernels.

A convolutional layer for a input z ∈ Rcl−1,nl−1,ml−1 is given as

Φl
j(z) = bj +

cl−1∑

i=1

K l
i,j ∗ zi,•,

where K l
i,j ∈ Rk,k denote kernel matrices with corresponding biases bj ∈ Rnl,ml for

in-channels i ∈ {1, . . . , cl−1} and out-channels j ∈ {1, . . . , cl}. Therefore, we denote
by

Nconv :=

∑

l∈Iconv
#{K l

i,j : K l
i,j 6= 0}

∑

l∈Iconv
cl · cl−1

the percentage of non-zero kernels of the whole net where Iconv denotes the index set
of the convolutional layers. Analogously, using a similar term as in (4.2) we denote
by

Nlinear :=

∑

l∈Ilinear
‖W l‖0

∑

l∈Ilinear
nl · nl−1

the percentage of weights used in the linear layers. Finally, we define Ntotal :=
Nconv + Nlinear.

We compare our algorithms LinBreg (with momentum) and AdaBreg against
vanilla training without sparsity, iterative pruning (Han et al., 2015), and the Group
Lasso approach from Scardapane et al. (2017), and train all networks to a compa-
rable sparsity level, given in brackets. The pruning scheme is taken from Han et al.
(2015), where in each step a certain amount of weights is pruned, followed by a
retraining step. For our experiment the amount of weights pruned in each itera-
tion was chosen, so that a specified target sparsity is met. For the Group Lasso
approach, which is based on the regularized risk minimization (1.4), we use two dif-
ferent optimizers. First, we apply SGD applied to the (1.4) and apply thresholding
afterwards to obtain sparse weights, which is the standard approach in the commu-
nity (cf. Scardapane et al. (2017)). Second, we apply proximal gradient descent (1.5)
to (1.4) which yields sparse solutions without need for thresholding. Our Bregman
algorithms were initialized with 1% non-zero parameters, following the strategy
from Section 4.1, all other algorithms were initialized non-sparse using standard
techniques (Glorot and Bengio, 2010; He et al., 2015). For all algorithms we tuned
the hyperparameters (e.g., pruning rate, regularization parameter for Group Lasso
and Bregman) in order to achieve comparable sparsity levels.

Note that it is non-trivial to compare different algorithms for sparse training
since they optimize different objectives, and both the sparsity, the train, and the
test accuracy of the resulting networks matter. Therefore, we show results whose
sparsity levels and accuracies are in similar ranges.
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Table 1 shows that all algorithms manage to compute very sparse networks with
ca. 2% drop in test accuracy on Fasion-MNIST, compared to vanilla dense train-
ing with Adam. Note that we optimized the hyperparameters (regularization and
thresholding parameters) of all algorithms for optimal performance on a valida-
tion set, subject to having comparable sparsity levels. Our algorithms LinBreg and
AdaBreg yield sparser networks with the same accuracies as Pruning and Lasso.

Similar observations are true for Table 2 where we used group sparsity regular-
ization on the convolutional kernels. Here all algorithms apart from pruning yield
similar results, whereas pruning exhibits a significantly worse test accuracy despite
using a larger number of non-zero parameters. The combination of SGD-optimized
Group Lasso with subsequent thresholding yields the best test accuracy using a
moderate sparsity level.

As mentioned above the Lasso and Group Lasso results using SGD underwent
an additional thresholding step after training in order to generate sparse solutions.
Obviously, one could also do this with the results of ProxGD and Bregman which
would further improve their sparsity levels. However, in this experiment we refrain
from doing so in order not to change the nature of the algorithms.

Strategy Optimizer Ntotal in [%] Test Acc Train Acc

Vanilla Adam 100 92.1 100.0
Pruning (5%) SGD 4.7 89.2 92.0

Lasso
SGD + thresh. 3.5 90.1 94.7
ProxGD 4.8 89.4 91.4

Bregman
LinBreg 1.9 89.2 91.1
LinBreg (β = 0.9) 2.7 89.9 93.8
AdaBreg 2.3 90.5 93.6

Table 1: Sparsity levels and accuracies on the Fashion-MNIST data set.

Strategy Optimizer Nlinear in [%] Nconv in [%] Test Acc Train Acc

Vanilla Adam 100 100 92.1 100.0
Pruning (7%) SGD 7.0 6.5 86.9 89.9

GLasso
SGD + thresh. 3.6 4.3 90.3 94.8
ProxGD 3.0 3.7 89.8 91.6

Bregman
LinBreg 3.8 4.2 89.5 93.1
LinBreg (β = 0.9) 3.5 4.7 89.9 93.5
AdaBreg 3.5 2.8 89.4 92.6

Table 2: Group sparsity levels and accuracies on the Fashion-MNIST data set.

4.5 Residual Neural Networks (ResNets)

In this experiment we trained a ResNet-18 architecture for classification on CIFAR-
10, enforcing sparsity through the ℓ1-norm (1.1) and comparing different strategies,

27



Bungert, Roith, Tenbrinck, Burger

as before. Table 3 shows the resulting sparsity levels of the total number of param-
eters and the percentage of non-zero convolutional kernels as well as the train and
test accuracies. Note that even though we used the standard ℓ1 regularization (1.1)
and no group sparsity, the trained networks exhibit large percentages of zero-kernels.

For comparison we also show the unregularized vanilla results using SGD with
momentum and Adam, which both use 100% of the parameters. The LinBreg result
with thresholding shows that one can train a very sparse network using only 3.4% of
all parameters with 3.4% drop in test accuracy. With AdaBreg we obtain a sparsity
level of 14.7%, resulting in a drop of only 1.3%. The combination of Adam-optimized
Lasso with subsequent thresholding yields a 3% sparsity with a drop of 3.6% in test
accuracy, which is the sparsest result in this comparison.

Strategy Optimizer Ntotal in [%] Nconv in [%] Test Acc Train Acc

Vanilla
SGD with momen-
tum

100.0 100.0 92.15 99.8%

Adam 100.0 100.0 93.6 100.0%

Lasso
Adam 99.7 100.0 91.1 100
Adam + thresh. 3.0 15.7 90.0 99.8

Bregman

LinBreg 5.5 24.8 90.9 99.5
LinBreg + thresh. 3.4 16.9 90.2 99.4
LinBreg (β = 0.9) 4.8 21.0 90.4 100.0
LinBreg (β = 0.9) +
thresh.

3.6 17.4 90.0 99.9

AdaBreg 14.7 56.7 92.3 100.0
AdaBreg + thresh. 9.2 42.2 90.5 99.9

Table 3: Sparsity levels and accuracies on the CIFAR-10 data set.

4.6 Towards Architecture Design: Unveiling an Autoencoder

In this final experiment we investigate the potential of our Bregman training frame-
work for architecture design, which refers to letting the network learn its own archi-
tecture. Hoefler et al. (2021) identified this as one of the main potentials of sparse
training.

The inverse scale space character of our approach turns out to be promising for
starting with very sparse networks and letting the network choose its own architec-
ture by enforcing, e.g., row sparsity of weight matrices. The simplest yet widely
used non-trivial architecture one might hope to train is an autoencoder, as used,
e.g., for denoising images. To this end, we utilize the MNIST data set and train
a fully connected feedforward network with five hidden layers, all having the same
dimension as the input layer, to denoise MNIST images. Similar to the experiments
in Section 4.2 we split the dataset in 55,000 images used for training and 5,000
images to evaluate the performance. We enforce row sparsity by using the regular-
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Figure 5: The denoising performance of the trained autoencoder on the test set with
an average SSIM value of ≈ 0.93.

algorithm for our learning framework and also discuss two variants using momentum
and Adam. The effect of incorporating Bregman iterations into neural network
training was investigated in numerical experiments on benchmark data sets. Our
observations showed that the proposed method is able to train very sparse and
accurate neural networks in an inverse scale space manner without using additional
heuristics. Furthermore, we gave a glimpse of its applicability for discovering suitable
network architectures for a given application task, e.g., an autoencoder architecture
for image denoising. We mathematically supported our findings by performing a
stochastic convergence analysis of the loss decay, and we proved convergence of the
parameters in the case of convexity.

The proposed Bregman learning framework has a lot of potential for training
sparse neural networks, and there are still a few open research questions (see also
Hoefler et al. (2021)) which we would like to emphasize in the following.

First, we would like to use the inverse scale space character of the proposed Breg-
man learning algorithms in combination with sparse backpropagation for resource-
friendly training, hence improving the carbon footprint of training (Anthony et al.,
2020). This is a non-trivial endeavour for the following reason: A-priori it is not
clear which weights are worth updating since estimating the magnitude of the gra-
dient with respect to these weights already requires evaluating the backpropagation.
A possible way to achieve this consists in performing a Bregman step to obtain a
sparse support of the weights, performing several masked backpropagation steps to
optimize the weights in these positions, and alternate this procedure.

Second, our experiment from Section 4.6, where our algorithm discovered a de-
noising autoencoder, suggests that our method has great potential for general ar-
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chitecture design tasks. Using suitable sparsity regularization, e.g., on residual
connections and rows of the weight matrices, one can investigate whether networks
learn to form a U-net (Ronneberger et al., 2015) structure for the solution of inverse
problems.

On the analysis side, it is worth investigating the convergence of LinBreg in the
fully non-convex setting based on the Kurdyka– Lojasiewicz inequality and to extend
these results to our accelerated algorithms LinBreg with momentum and AdaBreg.
Furthermore, it will be interesting to remove the bounded variance condition from
Assumption 2, which is known to be possible for stochastic gradient descent if the
batch losses satisfy (3.3), see Lei et al. (2019). Finally, the characterizing the limit
point of LinBreg for non-strongly convex losses as minimizer which minimizes the
Bregman distance to the initialization will be worthwhile.
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Appendix

In all proofs we will use the abbreviation g(k) := g(θ(k);ω(k)) as in (3.1).

A. Proofs from Section 3.1

Proof [Proof of Theorem 2] Using (3.3) one obtains

L(θ(k+1))− L(θ(k))

≤ 〈∇L(θ(k)), θ(k+1) − θ(k)〉+
L

2
‖θ(k+1) − θ(k)‖2

= 〈g(k), θ(k+1) − θ(k)) + 〈∇L(θ(k))− g(k), θ(k+1) − θ(k)〉+
L

2
‖θ(k+1) − θ(k)‖2

=− 1

τ (k)
〈v(k+1) − v(k), θ(k+1) − θ(k)〉

+ 〈∇L(θ(k))− g(k), θ(k+1) − θ(k)〉+
L

2
‖θ(k+1) − θ(k)‖2

= − 1

τ (k)
Dsym

J (θ(k+1), θ(k))− 1

δτ (k)
‖θ(k+1) − θ(k)‖2

+ 〈∇L(θ(k))− g(k), θ(k+1) − θ(k)〉+
L

2
‖θ(k+1) − θ(k)‖2.

Reordering and using the Cauchy–Schwarz inequality yields

L(θ(k+1))− L(θ(k)) +
1

τ (k)
Dsym

J (θ(k+1), θ(k))+
2− Lδτ (k)

2δτ (k)
‖θ(k+1) − θ(k)‖2 ≤

‖∇L(θ(k))− g(k)‖‖θ(k+1) − θ(k)‖.

Taking expectations and using Young’s inequality gives for any c > 0

E
[

L(θ(k+1))
]

− E
[

L(θ(k))
]

+
1

τ (k)
E
[

Dsym
J (θ(k+1), θ(k))

]

+
2− Lδτ (k)

2δτ (k)
E
[

‖θ(k+1) − θ(k)‖2
]

≤ τ (k)δ
σ2

2c
+

c

2δτ (k)
E
[

‖θ(k+1) − θ(k)‖2
]

.

If c is sufficiently small and τ (k) < 2
Lδ

, we can absorb the last term into the left
hand side and obtain

E
[

L(θ(k+1))
]

− E
[

L(θ(k))
]

+
1

τ (k)
E
[

Dsym
J (θ(k+1), θ(k))

]

+
C

2δτ (k)
E
[

‖θ(k+1) − θ(k)‖2
]

≤ τ (k)δ
σ2

2c
,

where C > 0 is a suitable constant. This shows (3.5).
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Proof [Proof of Corollary 3] Using the assumptions on τ (k), we can multiply (3.5)
with τ (k) and sum up the resulting inequality to obtain

τ (K)E
[

L(θ(K))
]

− τ (0)E
[

L(θ(0))
]

+

K−1∑

k=0

(

E
[

Dsym
J (θ(k+1), θ(k))

]

+
C

2δ
E
[

‖θ(k+1) − θ(k)‖2
])

≤ δ
σ2

2c

K−1∑

k=0

(τ (k))2

Since L ≥ 0 we can drop the first term. Sending K → ∞ and using that the step
sizes are square-summable concludes the proof.

B. Proof from Section 3.2

The following lemma allows to split the Bregman distance with respect to the elastic
net functional Jδ into two Bregman distances with respect to the functional J and
the Euclidean norm.

Lemma 13 For all θ̃, θ ∈ Θ and v ∈ ∂Jδ(θ) it holds that

Dv
Jδ

(θ̃, θ) = Dp
J(θ̃, θ) +

1

2δ
‖θ̃ − θ‖2,

where p := v − 1
δ
θ ∈ ∂J(θ).

Proof Since ∂Jδ(θ) = ∂J(θ) + ∂ 1
2δ‖θ‖2, we can write v = p + 1

δ
θ with p ∈ ∂J(θ).

This readily yields

Dv
Jδ

(θ̃, θ) = Jδ(θ̃)− Jδ(θ)− 〈v, θ̃ − θ〉

= J(θ̃) +
1

2δ
‖θ̃‖2 − J(θ)− 1

2δ
‖θ‖2 − 〈p, θ̃ − θ〉 − 1

δ
〈θ, θ̃ − θ〉

= Dp
J(θ̃, θ) +

1

2δ
‖θ̃‖2 − 1

2δ
‖θ‖2 − 1

δ
〈θ, θ̃〉+

1

δ
‖θ‖2

= Dp
J(θ̃, θ) +

1

2δ
‖θ̃ − θ‖2.

The next lemma expresses the difference of two subsequent Bregman distances
along the iteration in two different ways. The first one is useful for proving conver-
gence of (3.1) under the weaker convexity Assumption 4, whereas the second one
is used for proving the stronger convergence statement Theorem 11 under Assump-
tion 5.
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Lemma 14 Denoting dk := E
[

Dv(k)

Jδ
(θ∗, θ(k))

]

the iteration (3.1) fulfills:

dk+1 − dk = −E
[

Dv(k)

Jδ
(θ(k+1), θ(k))

]

+ τ (k)E
[

〈g(k), θ∗ − θ(k+1)〉
]

, (B.1)

dk+1 − dk = E
[

Dv(k+1)

Jδ
(θ(k), θ(k+1))

]

+ τ (k)E
[

〈∇L(θ(k)), θ∗ − θ(k)〉
]

. (B.2)

Proof We compute using the update in (3.1)

Dv(k+1)

Jδ
(θ∗, θ(k+1))−Dv(k)

Jδ
(θ∗, θ(k))

= Jδ(θ
(k))− Jδ(θ

(k+1))− 〈v(k+1), θ∗ − θ(k+1)〉+ 〈v(k), θ∗ − θ(k)〉
= −

(

Jδ(θ
(k+1))− Jδ(θ

(k))− 〈v(k), θ(k+1) − θ(k)〉
)

− 〈v(k), θ(k+1) − θ(k)〉

− 〈v(k+1), θ∗ − θ(k+1)〉+ 〈v(k), θ∗ − θ(k)〉
= −Dv(k)

Jδ
(θ(k+1), θ(k)) + 〈v(k) − v(k+1), θ∗ − θ(k+1)〉

= −Dv(k)

Jδ
(θ(k+1), θ(k)) + τ (k)〈g(k), θ∗ − θ(k+1)〉.

For the second equation we similarly compute

Dv(k+1)

Jδ
(θ∗, θ(k+1))−Dv(k)

Jδ
(θ∗, θ(k))

= Jδ(θ
(k))− Jδ(θ

(k+1))− 〈v(k+1), θ∗ − θ(k+1)〉+ 〈v(k), θ∗ − θ(k)〉
= Jδ(θ

(k))− Jδ(θ
(k+1))− 〈v(k+1), θ∗ − θ(k+1)〉

+ 〈v(k+1), θ∗ − θ(k)〉+ τ (k)〈g(k), θ∗ − θ(k)〉
= Jδ(θ

(k))− Jδ(θ
(k+1))− 〈v(k+1), θ(k) − θ(k+1)〉+ τ (k)〈g(k), θ∗ − θ(k)〉

= Dv(k+1)

Jδ
(θ(k), θ(k+1)) + τ (k)〈g(k), θ∗ − θ(k)〉.

Taking expectations and using that g(k) and θ∗−θ(k) are stochastically independent
to replace g(k) with ∇L(θ(k)) inside the expectation concludes the proof. Note that
this argument does not apply to the first equality since θ(k+1) is not stochastically
independent of θ(k).

Now we prove Theorem 6 by showing that the Bregman distance to the minimizer
of the loss and that the iterates converge in norm to the minimizer.
Proof [Proof of Theorem 6] Using (3.2), Assumption 4, and Young’s inequality we
obtain for any c > 0

〈∇L(θ(k)), θ∗ − θ(k+1)〉
= 〈∇L(θ(k+1)), θ∗ − θ(k+1)〉+ 〈∇L(θ(k))−∇L(θ(k+1)), θ∗ − θ(k+1)〉

≤ L(θ∗)− L(θ(k+1))− µ

2
‖θ∗ − θ(k+1)‖2 +

L2

2c
‖θ(k) − θ(k+1)‖2 +

c

2
‖θ∗ − θ(k+1)‖2.
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Using that L(θ∗) ≤ L(θ(k+1)) we obtain

〈∇L(θ(k)), θ∗ − θ(k+1)〉 ≤ L2

2c
‖θ(k) − θ(k+1)‖2 +

c− µ

2
‖θ∗ − θ(k+1)‖2.

Plugging this into the expression (B.1) for dk+1 − dk yields

dk+1 − dk = −E
[

Dv(k)

Jδ
(θ(k+1), θ(k))

]

+ τ (k)E
[

〈∇L(θ(k)), θ∗ − θ(k+1)〉
]

+ τ (k)E
[

〈g(k) −∇L(θ(k)), θ∗ − θ(k+1)〉
]

≤ −E
[

Dv(k)

Jδ
(θ(k+1), θ(k))

]

+ τ (k)
L2

2c
E
[

‖θ(k) − θ(k+1)‖2
]

+
c− µ

2
τ (k)E

[

‖θ∗ − θ(k+1)‖2
]

+ τ (k)E
[

〈g(k) −∇L(θ(k)), θ∗ − θ(k+1)〉
]

.

Now we utilize that θ∗−θ(k) and g(k)−∇L(θ(k)) are stochastically independent and
that the latter has zero expectation to infer

E
[

〈g(k) −∇L(θ(k)), θ∗ − θ(k+1)〉
]

= E
[

〈g(k) −∇L(θ(k)), θ(k) − θ(k+1)〉
]

+ E
[

〈g(k) −∇L(θ(k)), θ∗ − θ(k)〉
]

= E
[

〈g(k) −∇L(θ(k)), θ(k) − θ(k+1)〉
]

.

Applying Young’s inequality and using Assumption 2 yields

τ (k)E
[

〈g(k) −∇L(θ(k)), θ(k) − θ(k+1)〉
]

≤ δ(τ (k))2

2
σ +

σ

2δ
E
[

‖θ(k) − θ(k+1)‖2
]

.

Plugging this into the expression for dk+1 − dk and reordering we infer that for
τ (k) ≤ µ

2δL2 and c = µ/2 it holds

dk+1 − dk +
µ

4
τ (k)E

[

‖θ∗ − θ(k+1)‖2
]

≤ −E
[

Dp(k)

J (θ(k+1), θ(k))
]

+
δ(τ (k))2

2
σ +

σ

2δ
E
[

‖θ(k) − θ(k+1)‖2
]

,

which yields (3.8). Summing this inequality, using Corollary 3—which is possible
since τ (k) ≤ µ

2δL2 ≤ 1
2δL ≤ 2

δL
—and that the step sizes are square-summable then

shows that
∞∑

k=0

τ (k)E
[

‖θ∗ − θ(k+1)‖2
]

<∞.
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Since
∑∞

k=0 τ
(k) =∞ this means that

min
k∈{1,...,K}

E
[

‖θ∗ − θ(k)‖2
]

→ 0, K →∞.

Hence, for an appropriate subsequence θ(kj) it holds

lim
j→∞

E
[

‖θ∗ − θ(kj)‖2
]

= 0.

Proof [Proof of Corollary 10] Since J is equal to the ℓ1-norm, J admits the triangle
inequality J(θ∗) − J(θ(k)) ≤ J(θ∗ − θ(k)). Furthermore, since d := dim Θ is finite,
it admits the norm inequality J(θ) ≤

√
d‖θ‖ and has bounded subgradients ‖p‖ =

‖ sign(θ)‖ ≤ d for all θ ∈ Θ.
Hence, using Lemma 13 we can estimate

dk = E
[

Dv(k)

Jδ
(θ∗, θ(k))

]

= E
[

Dp(k)

J (θ∗, θ(k))
]

+
1

2δ
E
[

‖θ∗ − θ(k)‖2
]

= E
[

J(θ∗)− J(θ(k))− 〈p(k), θ∗ − θ(k)〉
]

+
1

2δ
E
[

‖θ∗ − θ(k)‖2
]

≤ (
√
d + d)E

[

‖θ∗ − θ(k)‖
]

+
1

2δ
E
[

‖θ∗ − θ(k)‖2
]

.

Hence, since E
[
‖θ∗ − θ(kj)‖2

]
converges to zero according to Theorem 6, the same is

true for the sequence dkj . Furthermore, we have proved that dk+1 − dk ≤ ck, where
ck is a non-negative and summable sequence. This also implies dm ≤ dk +

∑∞
j=k ck

for every m > k.
Since ck is summable and dkj converges to zero there exists k ∈ N and l ∈ N

such that

∞∑

j=k

cj <
ε

2
, dkl <

ε

2
, kl > k.

Hence, we obtain for any m > kl

dm ≤ dkl +

∞∑

j=kl

ck ≤ dkl +

∞∑

j=k

ck < ε.

Since ε > 0 was arbitrary, this implies that dm → 0 as m→∞.

Finally we prove Theorem 11 based on Assumption 5, which asserts convergence
in the Bregman distance.
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Proof [Proof of Theorem 11] The proof goes along the lines of Turinici (2021),
however Assumption 2 is weaker than the assumption posed there.
Item 1: Since proximal operators are 1-Lipschitz it holds

‖θ(k+1) − θ(k)‖ = ‖ proxδJ(δv(k+1))− proxδJ(δv(k))‖ ≤ δ‖v(k+1) − v(k)‖.

Using the Cauchy–Schwarz inequality and this estimate yields

1

τ (k)
E
[

Dv(k+1)

Jδ
(θ(k), θ(k+1))

]

≤ 1

τ (k)
E
[

Dsym
Jδ

(θ(k), θ(k+1))
]

=
1

τ (k)
E
[

〈v(k+1) − v(k), θ(k+1) − θ(k)〉
]

= −E
[

〈g(k), θ(k+1) − θ(k)〉
]

≤
√

E
[
‖g(k)‖2

]
√

E
[
‖θ(k+1) − θ(k)‖2

]

≤ δ
√

E
[
‖g(k)‖2

]
√

E
[
‖v(k+1) − v(k)‖2

]

= δτ (k)E
[

‖g(k)‖2
]

.

It can be easily seen that Assumption 2 is equivalent to

E
[

‖g(k)‖2
]

≤ σ2 + E
[

‖∇L(θ(k))‖2
]

,

which together with the Lipschitz continuity of ∇L from Assumption 1 implies

E
[

Dv(k+1)

Jδ
(θ(k), θ(k+1))

]

≤ δ(τ (k))2
(

σ2 + E
[

‖∇L(θ(k))‖2
])

≤ δ(τ (k))2
(

σ2 + L2E
[

‖θ∗ − θ(k)‖2
])

≤ δ(τ (k))2
(
σ2 + 2δL2dk

)
.

We plug this estimate into (B.2) and utilize Assumption 5 to obtain

dk+1 − dk ≤ δ(τ (k))2
(
σ2 + 2δL2dk

)
+ τ (k)E

[

L(θ∗)− L(θ(k))− νDv(k)

Jδ
(θ∗, θ(k))

]

≤ δ(τ (k))2
(
σ2 + 2δL2dk

)
− τ (k)νE

[

Dv(k)

Jδ
(θ∗, θ(k))

]

= δ(τ (k))2
(
σ2 + 2δL2dk

)
− τ (k)νdk,

which is equivalent to (3.10).
Item 2: For τ (k) sufficiently small (3.10) implies

dk+1 ≤
(

1− τ (k)ν̃
)

dk + δ(τ (k))2σ2

for a constant ν̃ ∈ (0, ν). For any C ∈ R we can reformulate this to

dk+1 − C ≤ (1− τ (k)ν̃)(dk − C) + τ (k)
(

τ (k)δσ2 − ν̃C
)

. (B.3)
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If τk = τ for all k ∈ N is constant and we choose C = τ δσ2

ν̃
, we obtain

(

dk+1 − τ δσ2

ν̃

)

+
≤ (1− τ ν̃)

(

dk − τ δσ2

ν̃

)

+
,

where we passed to the positive part x+ := max(x, 0). Iterating this inequality
yields

(

dk+n − τ δσ2

ν̃

)

+
≤ (1− τ ν̃)n

(

dk − τ δσ2

ν̃

)

+

and hence for τ < 1
ν̃

we get

lim sup
k→∞

dk ≤ τ δσ2

ν̃
.

Demanding τ < εν̃
δσ2 ∧ 1

ν̃
we finally obtain

lim sup
k→∞

dk ≤ ε.

Item 3: We use the reformulation (B.3) with C = ε > 0. Since τ (k) converges to
zero the second term is non-positive for k ∈ N sufficiently large and we obtain

(dk+1 − ε)+ ≤ (1− τ (k)ν̃)(dk − ε)+.

Iterating this inequality yields

(dk+n − ε)+ ≤
k+n−1∏

l=k

(1− τ (l)ν̃)(dk − ε)+.

If k ∈ N is sufficiently large, then τ (l)ν̃ < 1 for all l ≥ k and the product satisfies

k+n−1∏

l=k

(1− τ (l)ν̃) = exp

(
k+n−1∑

l=k

log(1− τ (l)ν̃)

)

≤ exp

(

−
k+n−1∑

l=k

τ (l)ν̃

)

→ 0, n→∞,

where we used log(1−x) ≤ −x for all x < 1 and
∑

k τ
(k) =∞. Since ε was arbitrary

we obtain the assertion.
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