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The development of generative models for quantum machine learning has faced challenges such as
trainability and scalability. A notable example is the quantum restricted Boltzmann machine (QRBM),
where non-commuting Hamiltonians make gradient evaluation computationally demanding, even on
fault-tolerant devices. In this work, we propose a semi-quantum restricted Boltzmann machine
(sqRBM), amodel designed to overcomedifficulties associatedwithQRBMs. The sqRBMHamiltonian
commutes in the visible subspace while remaining non-commuting in the hidden subspace, enabling
us to derive closed-form expressions for output probabilities and gradients. Our analysis shows that,
for learning a given distribution, a classical model requires three times more hidden units than an
sqRBM. Numerical simulations with up to 100 units validate this prediction. With reduced resource
demands, sqRBMs provide a feasible framework for early quantum generative models.

Boltzmann machines (BM) are a prominent example of energy-based
machine learning models inspired by statistical physics1,2. They have uni-
versal approximation properties3, and are widely applied in areas such as
collaborative filtering, dimensionality reduction, pattern recognition and
generativemodeling4–7. BMs consist of binary visible and hidden units, with
an energy function defined by pairwise interactions and individual biases.
This energy function takes the form of an Ising Hamiltonian, a model from
statistical physics that assigns lower energy tomoreprobable configurations.
Each training step requires preparing a Gibbs state that describes the joint
probability distribution of visible and hidden units. This results in BM
training to be computationally demanding8.

Contrastive divergence (CD) is a widely used approximation method
to accelerate training of BMs9. However, CDprovides only a rough estimate
of the true gradients, often leading to unstable convergence and limiting the
practical applicability of BMs10. While several improvements have been
proposed11,12, efficient training of BMs remains an open challenge in
machine learning research.

Quantum computing offers opportunities to facilitate the training of
BMs. Researchers have proposed multiple polynomial scaling quantum
algorithms for Gibbs state preparation13. Utilizing quantum hardware for
Gibbs state preparation could not only improve the training process but
also offer a sampling advantage for BMs. Consequently, quantum
computing could significantly increase the practical relevance of BMs.
Moreover, the ability to prepare a Gibbs state on quantum computers
enables generalizing the Hamiltonian of BMs with non-commuting
terms, potentially enhancing the model’s representational power. A
model defined by a non-commuting Hamiltonian, referred to as a

quantum Boltzmann machine (QBM)14, is part of a broader class of
algorithms within the field of quantum machine learning.

Quantum machine learning aims to enhance the capabilities of
machine learning models with access to quantum computers. In the
domain of generative modeling, the majority of proposals in the field
have been based on parametrized quantum circuits such as quantum
generative adversarial networks15 or quantum circuit Born machines16.
Recent studies have revealed that these models encounter trainability
issues, such as barren plateaus17,18, rendering them impractical. Although
certain QBM constructions are similarly affected by these limitations19,
evidence suggests that alternative QBM formulations can successfully
circumvent such issues20.

Apart from challenges related to trainability, a major challenge for
QBMs is the gradient estimation. The gradients of a QBM, which is defined
by a generic non-commuting Hamiltonian, are known to be computa-
tionally intractable14. To overcome this challenge, various frameworks
impose constraints on the Hamiltonian14,21,22. These approaches commonly
avoid training non-commuting terms, treating them instead as hyper-
parameters. Although this constraint makes training cheaper, it inherently
restricts the model’s representational power.

From a different perspective, ref. 23 has introduced a training algo-
rithm based on the variational quantum imaginary time evolution. This
approach enables training of generic QBMs; however, it encounters scal-
ability issues of variational algorithms17.

Last but not least, recent results have shown that fully-visible QBMs
(models with no hidden units) can be trained sample-efficiently20,24.
Many studies have followed this result to show the capabilities of
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fully-visible QBMs on learning from classical and quantum data25–28.
While fully-visible QBMs are more expressive than their classical
counterparts, their lack of hidden units considerably limits their
applicability to many practical tasks29.

Consequently, the computational cost of QBM training is funda-
mentally tied to the choice of Hamiltonian, highlighting a trade-off between
tractability and expressiveness. In this work, we introduce semi-quantum
restricted Boltzmann machines (sqRBM) designed for efficient gradient
computation while enabling the training of non-commuting terms. This is
achieved by defining a Hamiltonian that is diagonal in the subspace of
visible units, while containing non-commuting terms in the subspace of
hidden units. In this way, it serves as an intermediate model between
RBMs and quantum restricted Boltzmann machines (QRBM) such that
QRBM ⊇ sqRBM ⊇ RBM as illustrated in Fig. 1. This inclusion refers to
model structure, not expressive power per hidden unit or per parameter.
Being diagonal in the subspace of visible units allows sqRBM to provide a
framework to explore the impact of non-commuting terms on learning
from classical data.

In order to investigate the practical importance of sqRBMs, we
establish adirect correspondencebetweenRBMsand sqRBMs. Inparticular,
Theorem 2 shows that an sqRBMn,m is expressively equivalent to an
RBMn,3m, where n and m denote the number of visible and hidden units,
respectively. This result implies that an sqRBM requires only one-third of
the hidden units to match the representational power of an RBM.

While thismay appear to be a linear improvement, its practical impact
is amplified in quantum settings. The cost of quantum Gibbs state pre-
paration scales polynomially, often with a high polynomial degree in the
number of units13. Therefore, reducing the number of hidden units from3m
tom can lead to a substantial reduction in quantum resource requirements,
including circuit depth and qubit count. This makes sqRBMs a promising
alternative for fault-tolerant quantum devices.

We also present numerical results across multiple datasets andmodels
with up to 100 units, supporting the theoretical claims and illustrating the
practical viability of sqRBMs. A summary of the main results is provided
in Fig. 1.

Results
Theoretical intuition
Challenges in training generic QBMs stem from non-trivial estimation of
model gradients14. As outlined in Methods, consider a QBM defined by a
parametrized non-commuting Hamiltonian of the formH =∑iθiHi, where
θi are real-valued trainable parameters andHi are low-weight Pauli-strings.
In this setting, one needs to compute terms of the form ∂θi e

�H and
Tr ½Λv∂θi e

�H �, whereΛv is a diagonal projection operator. The structure of
such gradient expressions is formalized in Proposition 4. Observe that the
term ∂θi e

�H admits a series expansion as follows:

∂θi e
�H ¼

e�H �Hi � 1
2 H;Hi

� �� 1
6 H; H;Hi

� �� �þ � � �� �
:

ð1Þ

Weprovide the details of the derivation in the SupplementaryNote 3. Then,
we rewrite Tr ½Λv∂θi e

�H � by substituting the derivative of the matrix
exponential term. Exploiting the linearity of the trace, we obtain the

following expression

Tr Λv∂θi e
�H

h i
¼� Tr Λve

�HHi

� �
� 1

2
Tr Λve

�H H;Hi

� �� �
� 1

6
Tr Λve

�H H; H;Hi

� �� �� �
þ � � �

ð2Þ

Next, we observe that if [Λv,H] = 0 (while noting that [Hi,H]≠ 0 still holds),
the second term in Eq. (2) simplifies to:

Tr Λve
�H H;Hi

� �� � ¼ Tr Λve
�HHHi

� �� Tr Λve
�HHiH

� �
¼ Tr HΛve

�HHi

� �� Tr Λve
�HHiH

� �
¼ Tr Λve

�HHiH
� �� Tr Λve

�HHiH
� �

¼ 0;

ð3Þ

where we leverage the commutation rules and the cyclic property of the
trace. This can be repeated for the rest of the terms in Eq. (2) that contain
commutators to observe that only Tr[Λve

−HHi] results in a non-zero value.
Similarly, notice that Tr ½∂θi e�H � ¼ �Tr ½e�HHi� for all models, indepen-
dent of the Hamiltonian definition. Then, the computation of QBM
gradients can be simplified, although the Hamiltonian still contains non-
commuting terms.

Recall that we assumed [Λv, H] = 0 to obtain simplified gradients for
non-commuting Hamiltonians. Let us define Λv for a QBM with n visible
and m hidden units in the Pauli basis as

Λv ¼
On
i¼1

1
2
ðI þ ð�1ÞviZÞ

 !
� I�m: ð4Þ

Then, we observe that the costly gradient computation of QBMs can be
avoided by choosing a non-commuting Hamiltonian that commutes with
Pauli-Z only over the visible units, while the remaining terms of the
Hamiltonian can be defined with an arbitrary Pauli operator set. We define
such a model as a semi-quantum restricted Boltzmann machine (sqRBM).

Semi-quantum Boltzmann machines

Definition 1. (Semi-quantum RBM). A semi-quantum restricted Boltz-
mann machine with n visible and m hidden units, denoted sqRBMn,m, is
described by a parameterizedHamiltonian of the formH =Hv+Hh+Hint.
The three terms of the Hamiltonian are defined as follows:

Hv ¼
Pn
i¼1

aZi σ
Z
i ; Hh ¼

PjWhj

P2Wh

Pm
j¼1

bPj σ
P
nþj;

Hint ¼
PjWhj

P2Wh

Pn
i¼1

Pm
j¼1

wZ;P
i;j σ

Z
i σ

P
nþj;

ð5Þ

Fig. 1 | Summary of main results. This work introduces semi-quantum restricted
Boltzmann machines (sqRBM) as an intermediate model, satisfying the relation
QRBM ⊇ sqRBM ⊇ RBM. sqRBMs generalize RBMs by rendering the hidden units
quantum through the use of non-commutingHamiltonians. In Theorem 2, we show

that sqRBMn,m≡ RBMn,3m, where n andm denote the number of visible and hidden
units, respectively, with both models having the same number of parameters. In
pedestrian terms, RBMs require three times as many hidden units as sqRBMs to
learn the same target distribution.
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where a 2 Rn, b 2 RjWhj�m and w 2 RjWhj�n�m are the parameter vectors
of themodel.Wh is a non-commuting set of one-qubit Pauli operators that
non-trivially act only on the hidden units.
Notice that if one chooses Wh ¼ fXg, Wh ¼ fYg or Wh ¼ fZg, H is a
commuting Hamiltonian, and these models are equivalent to an RBM.
There are three possible non-commuting choices for an sqRBM
(Wh ¼ fX;Zg,Wh ¼ fY;ZgorWh ¼ fX;Y ;Zg). Pauli setsWh ¼ fX;Zg
andWh ¼ fY ;Zg result in two equivalentmodels that differ by a change of
basis. Please refer to the Supplementary Note 2 for definitions of Pauli
operators. We provide various models with their number of parameters in
Table 1.

One can leverage the similarity of sqRBMs toRBMs inorder to obtain a
closed-formexpression for the output probabilities aswell as their gradients.
For an sqRBM, contributions of X, Y, and Z terms are equivalent. Let us
denote the state (not to be confused with a quantum state) of the hidden
units for a given visible unit configuration v with ϕPj ðvÞ such that

ϕPj ðvÞ ¼ bPj þ
Xn
i¼1

ð�1ÞviwZ;P
i;j ; ð6Þ

where P∈ {X,Y, Z}. Then, we define the following vector that combines the
states of all possible three Pauli operators:

ΦjðvÞ ¼ ϕXj ðvÞ ϕYj ðvÞ ϕZj ðvÞ
h i

: ð7Þ

This leads to Proposition 1, which describes the output probabilities of
sqRBMs.

Proposition 1. (Output probabilities of sqRBM). The unnormalized
output probabilities of an sqRBMn,m are as follows:

~pv ¼
Yn
i¼1

e�ð�1Þvi aZi

 ! Ym
j¼1

coshðjjΦjðvÞjj2Þ
 !

; ð8Þ

where v ∈ {0, 1}n and Φj(v) is the vector of hidden states as described in
Eq. (7). Then, the normalized output probabilities are given as

pv ¼ ~pv=
X
v

~pv: ð9Þ

The proof is provided in the Supplementary Note 4. Next, we provide
the gradients of sqRBMs following the result of Proposition 1.

Proposition 2. (Gradients of sqRBM). An sqRBMn,m with the output
probability distribution p can be trained to minimize the negative log-
likelihood with respect to the target probability distribution q using the
following gradient rule:

Gradients of the parameters for the field terms acting on the visible
units are given as

∂aiL ¼
X
v

qv ð�1Þvi �
X
v

ð�1Þvi pv
 !

: ð10Þ

Gradients of theparameters for thefield terms acting on thehiddenunits are
given as

∂bPj L ¼ �
X
v

qv
ϕPj ðvÞ

jjΦjðvÞjj2
tanh jjΦjðvÞjj2

� �

þ
X
v

qv
X
v

ϕPj ðvÞ
jjΦjðvÞjj2

tanh jjΦjðvÞjj2
� �

pv:

ð11Þ

Gradients of the parameters for the interaction terms acting on both visible
and hidden units are given as

∂wZ;P
i;j
L ¼ �

X
v

qvð�1Þvi
ϕPj ðvÞ

jjΦjðvÞjj2
tanh jjΦjðvÞjj2

� �

þ
X
v

qv
X
v

ð�1Þvi
ϕPj ðvÞ

jjΦjðvÞjj2
tanh jjΦjðvÞjj2

� �
pv:

ð12Þ

The proof is provided in the Supplementary Note 5. Notice that both
the gradients and output probabilities for RBM and sqRBM contain sum-
mations over all visible configurations, which grow exponentially in input
size. This causes both of these models to be intractable for large input sizes
on classical computers.

So far, we have focused on BM variants with restricted connectivity.
Incorporating lateral connections within visible and hidden layers increases
the computational cost of the training procedure12. Although additional
connectivity enhances the expressive power of BMs, computational com-
plexity limits their practical applicability.However, training fully-connected
QBMs without a significant computational overhead may be discovered
within the quantum computing framework.Motivated by this opportunity,
we introduce a fully-connected sqBM.

Definition 2. (Semi-quantum BM). A semi-quantum Boltzmannmachine
(sqBM)withn visible andmhidden units is denoted sqBMn,m. An sqBM is a
generalization of an sqRBM with lateral connections in the visible and
hidden layers, which is described by a parameterized Hamiltonian of the
form H =Hv+Hh+Hint. The three terms of the Hamiltonian are defined
as follows:

Hv ¼
Pn
i¼1

θZi σ
Z
i þ Pn�1

i¼1

Pn
j¼iþ1

θZ;Zi;j σZi σ
Z
j ;

Hh ¼
PjWhj

k2Wh

Pnþm

i¼nþ1
θki σ

k
i þ

PjWhj

l2Wh

Pnþm�1

i¼nþ1

Pnþm

j¼iþ1
θk;li;j σ

k
i σ

l
j

 !
;

Hint ¼
PjWhj

k2Wh

Pn
i¼1

Pnþm

j¼nþ1
θZ;ki;j σ

Z
i σ

k
j ;

ð13Þ

whereWh is a non-commuting set of one-qubit Pauli operators that non-
trivially act only on the hidden units.

Ultimately, the results from Eqs. (2) and (3) lead to a simplified
expression for the gradients of a generic sqBM. Importantly, satisfying the
condition [Λv, H] = 0 does not impose restrictions on the connectivity
between units. Then, one obtains the following closed-form expression for
the gradients that is significantly cheaper to compute than generic QBM
gradients.

Proposition 3. (Gradients of sqBM). An sqBMn,m can be trained to
minimize the negative log-likelihood with respect to the target probability

Table 1 | Classification of various model

Model Wh Parameters

RBMn,m {Z} n+m (n+ 1)

sqRBMn,m {X, Z} n+ 2m (n+ 1)

sqRBMn,m {Y, Z} n+ 2m (n+ 1)

sqRBMn,m {X, Y, Z} n+ 3m (n+ 1)
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distribution q using the following gradient rule:

∂θiL ¼ �
X
v

qv �Tr½Λve
�HHi�

Tr½Λve�H �|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
positive phase

þTr½e�HHi�
Tr½e�H �|fflfflfflfflfflffl{zfflfflfflfflfflffl}

negative phase

0
BBB@

1
CCCA; ð14Þ

where θi is any real-valued parameter of the model, when the Hamiltonian
terms are grouped such that H =∑iθiHi.

The proof is provided in the Supplementary Note 6. Notice that Pro-
position 3 provides the recipe to compute the gradients of either an sqRBM
or the more general sqBM on a quantum computer. In this work, we study
the relationship between RBMs and sqRBMs; therefore, in the remainder of
the work, we will not consider sqBMs and leave their study as future work.

Expressive equivalence
The output probabilities derived in Proposition 1 exhibit a structural
resemblance between classical RBMs and their semi-quantumcounterparts.
This naturally raises the question: canwe establish a formal correspondence
between these models? Specifically, do their functional forms, and conse-
quently their expressivity, coincide under certain conditions?

To explore this, let us consider an sqRBMn,1 with a single hiddenqubit.
For simplicity, we set all field terms acting on the visible units to zero. Then,
using Eq. (8), the unnormalized output probability is given by

~pv ¼ coshð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕX1 ðvÞ2 þ ϕY1 ðvÞ2 þ ϕZ1 ðvÞ2

q
Þ; ð15Þ

whose Taylor expansion generates a polynomial with monomials in the
span

span ϕX1 ðvÞ2iϕY1 ðvÞ2jϕZ1 ðvÞ2k j i; j; k 2 N0


 �
; ð16Þ

as shown in the Supplementary Note 2.
Now consider a classical RBMn,3 with three hidden units. Its unnor-

malized output probability takes the form

~pv ¼ cosh ϕZ1 ðvÞ
� �

cosh ϕZ2 ðvÞ
� �

cosh ϕZ3 ðvÞ
� �

; ð17Þ

whose Taylor expansion yields monomials of the form

span ϕZ1 ðvÞ2iϕZ2 ðvÞ2jϕZ3 ðvÞ2k j i; j; k 2 N0


 �
: ð18Þ

As shown in Supplementary Note 2, these functional forms coincide when
ϕX, ϕY, ϕZ in the sqRBM are treated analogously to independent linearmaps
in the RBM. This implies that the twomodels can generate the same class of
functions over visible configurations. Moreover, both models use the same
number of parameters. This correspondence is formalized below in Theo-
rem 1 and 2.

Theorem 1. (Expressive equivalence of sqRBMn,1 and RBMn;jWhj). LetWh � fX;Y ;Zg be a set of Pauli operators. Then, an sqRBMn,1 with a single
hidden qubit and operator set Wh is expressively equivalent to an
RBMn;jWhj with jWhj classical hidden units. That is, both models can
represent the same class of functions over visible configurations v∈ {0, 1}n,
up to a reparameterization of the corresponding linear maps.

The proof follows Eq. (16) and (18), and it is provided in the Supple-
mentary Note 8. Following Theorem 1, one can generalize the statement to
multiple hidden units for sqRBMs and obtain Theorem 2.

Theorem 2. (Expressive equivalence of sqRBMn,m and RBMn;jWhj�m). LetWh � fX;Y ;Zg be a set of Pauli operators. Then, an sqRBMn,m with m
hidden qubits and operator set Wh is expressively equivalent to an
RBMn;jWhj�m with jWhj �m classical hidden units. That is, both models can

represent the same class of functions over visible configurations v∈ {0, 1}n,
up to a reparameterization of the corresponding linear maps.

Proof.. The result follows directly from Theorem 1. Each hidden qubit in
the sqRBM contributes a factor of the form coshðk ΦðvÞk2Þ, whereΦðvÞ 2
RjWhj is a vector of linear functions corresponding to the Pauli operators in
Wh. As shown in Theorem 1, each such term is expressively equivalent to a
product of jWhj classical cosh activations.

Since the hidden units in both models contribute multiplicatively and
independently (cf. Proposition 1), the expressive equivalence carries over
additively across hidden units. Therefore, an sqRBMn,m with m hidden
qubits is expressively equivalent to an RBMn;jWhj�m, up to a reparameter-
ization of the linear maps that define the activations.

The consequence of Theorem 2 is that an sqRBMn,mwith the operator
poolWh can solve the tasks that an RBMn;jWhj�m can solve equally well with
the samenumber of parameters. In otherwords, thesemodels have the same
expressivity. In the next section, we support Theorem 2 with numerical
simulations.

Numerical results
In this section, we provide numerical results to support our theoretical
findings.Weperformexactnumerical simulations to train variousRBMand
sqRBMmodels. We use four distinct datasets, which are defined as follows:

simplified-BAS dataset: n-bit uniform probability distribution over the
bitstrings that correspond to vertical or horizontal lines on a 2 × n/2 grid.
Oðn2Þ dataset: n-bit uniform probability distribution over randomly
chosen n2 bitstrings.
Cardinality dataset: n-bit uniform probability distribution over the
bitstrings that have n/2 cardinality.
Parity dataset: n-bit uniform probability distribution over the bitstrings
that have even parity.

We train all models 100 times with parameters randomly initialized
from a uniform distribution between [−1, 1] using the AMSGRAD
optimizer30with the hyperparameters {lr = 0.1,β1 = 0.9, β2 = 0.999} andDKL

as the loss function. We have not performed hyperparameter optimization
as all models converge within a reasonable number of iterations. We
emphasize that all results can be improved with dedicated hyperparameter
optimization. Our goal in this work is not tofind the best performingmodel
but to treat all models the same way.

We employ an RBM and two quantum models: sqRBM{X, Z} and
sqRBM{X,Y,Z}. These quantummodels are definedby two sets of operators
for the hiddenunits,Wh ¼ fX;Zg andWh ¼ fX;Y;Zg, respectively. Since
we minimize the Kullback-Leibler divergence DKL, we report values of
another metric, namely total variation distance (TVDðqjjpÞ ¼ 1

2 jjp� qjj1)
for both RBMand sqRBMmodels across the described datasets in Fig. 2. As
a reference point for practical purposes, we report the TVD= 0.2 line. It can
be seen that all models can go below the TVD= 0.2 line given that they have
sufficient number of hidden units.

In general, the number of hidden units required to achieve a good
approximation depends on the dataset. More specifically, the support of a
probability distribution is a goodmeasure of difficulty. In Fig. 2, the datasets
are ordered in increasing difficulty from left to right. There, we observe
that one needs a larger value of m for all models as the support of the
dataset increases. In practice, it is considered that a dataset has
suppðpÞ 2 OðpolyðnÞÞ, therefore, it is expected that m 2 OðpolyðnÞÞ suf-
fices to learn a distribution with good precision.

Our findings across the considered datasets indicate that
sqRBM{X, Y, Z} requires fewer hidden units to reach the reference point
compared to sqRBM{X, Z}. Similarly, sqRBM{X, Z} requires fewer hidden
units to reach the reference point compared to RBM. However, all models
are able to reach the same lowvalues ofTVD, provided they have a sufficient
number of hidden units. Theorem 2 predicts sqRBMn,m{X, Z} to perform
equally aswell as RBMn,2m (with 2mhidden units in the RBM) and similarly
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for sqRBMn,m{X, Y, Z} to perform equally as well as RBMn,3m. We
emphasize that the models have the same number of parameters for these
settings. We numerically verify Theorem 2 by computing the ratios of the
number of hidden units that are sufficient for each model to achieve
TVD < 0.2 in Fig. 3. As expected, the minimum number of hidden unitsm,
that is sufficient to go below the threshold varies with dataset and input size.
Overall, results align with the prediction of Theorem 2 across four datasets
and varying input sizes.

Discussion
In this work, we introduce semi-quantum restricted Boltzmann machines
(sqRBM), a subclass of quantumBoltzmannmachines (QBM). The sqRBM
Hamiltonian acts with arbitrary non-commuting Pauli operators on hidden
units, whereas operators for visible units are restricted to a commuting set.
The structure provided by the Hamiltonian allows us to circumvent the
expensive computation of the positive phase in Proposition 4 and enables us
to derive the analytical output probabilities and gradients in Proposition 1
and Proposition 2.

In the field of quantum machine learning, efficient evaluation of gra-
dients remains a major challenge. Expressive models based on para-
meterized quantumcircuits exhibit trainability issues, often linked to barren
plateaus of the loss landscape17. Barren plateaus lead to an exponential
increase in the number of samples required to evaluate gradients as the
system size grows. This significantly limits the scalability of circuit-based
quantummachine learningmodels, making it difficult to demonstrate their
practical viability.

QBMs offer a promising alternative to circuit-based approaches.
However, when the entanglement entropy between visible and hidden units
obeys the volume law, generic QRBM models are susceptible to barren
plateaus19. Importantly, sqRBMs do not have entanglement between visible
and hidden units; therefore, this problem is naturally mitigated, and the
gradients can be estimatedwith polynomiallymany samples from theGibbs
state. Moreover, the similarity between RBM and sqRBM gradients also
suggests the absence of vanishing gradients. For completeness, we provide
numerical results that confirm this conjecture in the SupplementaryNote 9.

Expressivity of QBMs is directly related to their Hamiltonian. A
popular choice in the literature is to employ the transverse field Isingmodel
(TFIM)14 due to its similarity to the classical Ising model. However, QBMs
basedonTFIMhavebeen reported to exhibit onlymarginal improvement in
learning capacity compared to BMs, while generic Hamiltonians demon-
strate significant improvement26. Our results help explain the poor perfor-
mance of suchmodels and provide a strategy to buildmore expressive ones.

Let us consider a QRBM based on the TFIM Hamiltonian. Such a
model is defined by adding transverseX fields to visible and hidden units of
the RBM Hamiltonian. In our notation, this can be expressed as Wv ¼
Wh ¼ fX;Zg andW int ¼ fZZg. Recall that the state of the j-th hidden unit
is describedwith jjΦjðvÞjj2 (see Eq. (8)). Then, for aTFIMHamiltonian, one

obtains
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕZj ðvÞ2 þ ðbXj Þ

2
q

, where bXj is the parameter of the transverse X

field of the TFIMHamiltonian on the j-th hidden unit. Then, it follows that
the contribution of the transverse field is independent of the visible unit
configuration v and can not significantly change the model’s expressivity.
Hence, the output probability distributions of such QBMs closely resemble
those of classical models. One could improve the expressivity of such QBM
models by including ZX terms in the Hamiltonian to have Wv ¼ Wh ¼
fX;Zg andW int ¼ fZZ;ZXg.Note that such amodel is aQRBMandnot an
sqRBM. Therefore, its gradients are not efficiently computable.

The practical feasibility of machine learning models depends both on
their learning capacity and the computational resources required for
training and sampling. The computational cost of training anRBMn,musing
exact analytical gradients, aswell as sampling froma trainedmodel, scales as
OðexpðnþmÞÞ on a classical computer31. However, training costs can be
significantly reduced by leveraging classical techniques such as contrastive
divergence (CD)9. Analogously, given the similarity in the output prob-
ability expressions of sqRBM and RBM, a CD-based training algorithm for
sqRBMmaybedevelopedaswell.However, since sqRBMisdefined through
a non-commuting Hamiltonian, an efficient CD algorithm would still
require access to a quantum computer. This could be achieved by quantum
algorithms that can condition the visible or hidden subspaces of a Gibbs
state on the quantum computer, similar to how the CD algorithm works in

Fig. 2 | Training results. We train three models (RBM (orange square markers),
sqRBM{X, Z} (blue rotated square markers) and sqRBM{X, Y, Z} (green circle
markers)) over four datasets with three different input sizes (n ∈ {8, 10, 12}) and
various number of hiddenunits in the rangem∈ [1, 90].We report the total variation
distance (TVD) measured after training all models 100 times with different initial
parameters. The solid lines report the average, while the shades indicate the standard

deviation. Each column reports results for a different dataset, ordered in increasing
difficulty from left to right. The target probability distribution for Oðn2Þ dataset is
varied for each run, using the same 100 seed for all models. The same target prob-
ability distribution is used for the other datasets in all runs. The TVD = 0.2 (black
dashed line) is plotted as a reference point.
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the classical setting. We leave the study of CD algorithms to train sqRBMs
for future work.

While the training cost of both RBMs and sqRBMs can be reduced
using approximate methods, sampling remains a major bottleneck. Several
quantum algorithms have been proposed to prepare Gibbs states with
polynomial complexity in the number of units12,13,32, but these costs often
involve high-degree scaling. This makes the number of hidden units a
critical resource constraint in quantum implementations.

In this context, the reduced hidden-layer size of sqRBMs, enabled by
their enhanced expressivity through non-commuting hidden interactions,
translates into meaningful efficiency gains. As shown in our equivalence
result, sqRBMs can achieve the same representational power as RBMs using
only one-third as many hidden units. This leads to a nontrivial reduction in
quantum resource requirements, including qubit count and circuit depth,
which are key limiting factors in fault-tolerant settings.

More broadly, sqRBMs represent an intermediate regime between
classical RBMs and fully quantumBMs. Bymaintaining a classical interface
to the visible units while exploiting quantum structure in the hidden layer,
sqRBMs may offer a more feasible route for early quantum generative
modeling. These models could serve as effective testbeds for evaluating the
capabilities of quantum Gibbs samplers, or as components in hybrid
classical-quantum architectures for feature learning and structured data
modeling.

One of the goals of quantum machine learning is to process
both classical and quantum data efficiently. Although sqRBMs are
quantum models, they only support classical data as input because their
Hamiltonian is commuting within the subspace of visible units. Addition-
ally, there are proposals in the literature for QBMs that are suitable for
quantum data33.

In future work, adding lateral connections between hidden units could
be utilized to further enhance the expressivity of sqRBMs. To this end, we
introduce the Definition 2 of sqBM that has additional connectivity within
visible and hidden units. However, increased connectivity within hidden
units may result in entanglement-induced barren plateaus19. Another pro-
mising extension to improve the expressivity of sqRBMs is to incorporate
additional hidden layers, similar to deep Boltzmann machines6. More
broadly, given thatRBMsbelong to the class of undirected graphicalmodels,
it is natural to conjecture that similar expressive equivalence results hold for
other graphical models, such as quantum and classical Markov random
fields (MRF)34. In particular, a partially observed MRF parameterized by
Pauli-Z and Pauli-X terms may be equivalent to a classical MRF with more
hidden variables, suggesting a pathway for future research on structured
quantum models.

Methods
Model definitions
A Boltzmann machine (BM) can be described by a Hamiltonian H and its
corresponding Gibbs state ρ. BMs consist of two types of units: visible and
hidden. Visible units are the ones that are observed and used for input/
output purposes, while hidden units form the latent dimension, giving the
model its representation power.We denote the number of visible units with
n and the number of hidden units with m.

The Hamiltonian that describes BMs can be written as a sum of three
terms as follows:

H ¼ Hv þHh þ Hint; ð19Þ

where Hv and Hh act on visible and hidden units, respectively, while Hint

represents the interaction between visible and hidden units. Consequently,
the corresponding Gibbs state ρ of H is given as

ρ ¼ e�βH=Z; Z ¼ Tr ½e�βH �; ð20Þ

where Z is the partition function that ensures normalization (Tr[ρ] = 1)
and β is the inverse temperature, which we set as β = 1 to simplify
subsequent equations. In thiswork,we focuson restrictedBMconfigurations,
allowing interactions only between visible and hidden units. We denote the
number of visible units with n and the number of hidden units with m. A
visualization of the restricted BM (RBM) configuration can be seen in Fig. 4.

Fig. 4 | Connectivity graph of restricted Boltzmann machines (RBM). An RBM
model has connections only between visible and hidden units. Lateral connections
(e.g., visible to visible) are not permitted.

Fig. 3 | Minimum number of hidden units required to learn target probability
distributions on average. We report the minimum number of hidden units m
required to achieve total variation distance, TVD < 0.2 on average, over four datasets
for various input sizes (n ∈ {6, 8, 10, 12}) using three models (RBM (orange square
markers), sqRBM {X, Z} (blue rotated square markers) and sqRBM{X, Y, Z} (green

circlemarkers)) as in Fig. 2. In the bottompanel we provide the ratio ofmRBM tom of
the othermodels. The difficulty of each dataset results in a different scaling behavior.
Recall that RBM has the same number of parameters and expressivity according to
Theorem 2 as sqRBM {X, Z} for the ratiomRBM = 2m and similarly sqRBM{X, Y, Z}
for mRBM = 3m.
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The probability distribution of the model, denoted with p, can be
obtained by marginalizing over hidden units, such that

pv ¼ Tr ½Λvρ�; ð21Þ

where v ∈ {0, 1}n is a length n bitstring and Λv is a projective measurement
with respect to the computational basis of the visible units given as

Λv ¼ jvihvj � 12m ;2m : ð22Þ

Of particular interest, let us define a Pauli string of length n+m as the
tensor product of operators from the set of Pauli matrices, including the
identity {I,X,Y,Z} (see the SupplementaryNote 2 for definitions). A k-body
operator acts on kmany qubits non-trivially, meaning it has kmany non-
identity operators in the Pauli string representation. We write the n+m-
qubit Pauli string of the Pauli-Z operator acting on the i-th qubit as an
example

σZi ¼ I � � � � � I|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
i�1

� Z � I � � � � � I|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
nþm�i

: ð23Þ

We provide a formal definition of a classical restricted Boltzmannmachine
(RBM) as follows:

Definition 3. (Restricted Boltzmann machine (RBM)). A restricted
Boltzmannmachine with n visible andm hidden units, denoted as RBMn,m,
is described by a parameterized Hamiltonian according to Eq. (19). The
three terms of the Hamiltonian are defined as follows:

Hv ¼
Pn
i¼1

aZi σ
Z
i ; Hh ¼

Pm
j¼1

bZj σ
Z
nþj;

Hint ¼
Pn
i¼1

Pm
j¼1

wZ;Z
i;j σZi σ

Z
nþj;

ð24Þ

where a 2 Rn, b 2 Rm and w 2 Rnm are the parameter vectors of
the model.

The Hamiltonian of an RBMn,m corresponds to a classical Isingmodel
and contains only commuting operators (8ði; jÞ; σZi ; σ

Z
i σ

Z
nþj

h i
¼ 0). An

RBMn,m can be extended to a quantum model by incorporating non-
commuting operators in theHamiltonian.We refer to a genericmodel with
a non-commuting Hamiltonian as a quantum restricted Boltzmann
machine (QRBM).

Definition 4. (Quantum restricted Boltzmann machine (QRBM)). A
quantum restricted Boltzmannmachine with n visible andm hidden units,
denoted as QRBMn,m, is described by a parameterized Hamiltonian
according to Eq. (19). The three terms of the Hamiltonian are defined as
follows:

Hv ¼
PjWv j

P2Wv

Pn
i¼1

aPi σ
P
i ; Hh ¼

PjWhj

P2Wh

Pm
j¼1

bPj σ
P
nþj;

Hint ¼
PjW intj

ðP;QÞ2W int

Pn
i¼1

Pm
j¼1

wP;Q
i;j σPi σ

Q
nþj;

ð25Þ

where a 2 RjWv j�n, b 2 RjWhj�m and w 2 RjW intj�n�m are the parameter
vectors of the model.Wv,Wh andW int are the sets of Pauli operators that
describe the model and jWj denotes the cardinality of setW.

A generic QRBM contains all possible one- and two-body Pauli
operators when Wv ¼ Wh ¼ fX;Y ;Zg and W int ¼ Wv �Wh. A com-
mon choice in the literature is the set that corresponds to the transversefield
Isingmodel, such thatWv ¼ Wh ¼ fX;Zg andW int ¼ fZZg14.Notice that

the definition of QRBM also includes the RBM when Wv ¼ Wh ¼ fZg
andW int ¼ fZZg.

Training Boltzmann machines
Boltzmann machines can be trained by minimizing the negative log-like-
lihood, which is defined as

L ¼ �
X
v

qv log pv; ð26Þ

where p and q are the probability distributions of the model and the target,
respectively (∑vqv =∑vpv = 1). Minimizing the negative log-likelihood is
equivalent to minimizing DKL, which is given as

DKLðqjj pÞ ¼
X
v

qv log
qv
pv

� 


¼ �
X
v

qv log pv þ
X
v

qv log qv:
ð27Þ

Then, gradients of both RBMs andQRBMswith respect to the negative log-
likelihood can be obtained using a single formula that has two parts: positive
phase and negative phase. The negative phase is obtained by measuring
expectation values over theGibbs state of themodel,while thepositive phase
requires projective measurements on the visible unit subspace. Although
these terms may look different in the classical machine learning literature,
we keep the naming convention. The following proposition is a restatement
of a result from Ref. 14.

Proposition 4. (Gradients of QRBM). A QRBMn,m can be trained to
minimize the negative log-likelihood with respect to the target probability
distribution q using the following gradient rule:

∂θiL ¼ �
X
v

qv
Tr½Λv∂θi e

�H �
Tr½Λve�H �|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
positive phase

� Tr½∂θi e�H �
Tr½e�H �|fflfflfflfflfflffl{zfflfflfflfflfflffl}

negative phase

0
BBB@

1
CCCA; ð28Þ

where θi ∈ θ is any real-valued parameter of the model, when the
Hamiltonian terms are grouped such that H =∑iθiHi and θ ∈ {a, b, w}.

The proof is provided in the Supplementary Note 7. In the case of a
commuting Hamiltonian (e.g., RBM), the gradients of the negative log-
likelihood with respect to the parameters take a fairly simple form. This
follows the fact that if ½∂θiH;H� ¼ 0, then ∂θi e

�H ¼ e�Hð�HiÞ, where
Hi ¼ ∂θiH and H =∑iθiHi. Then, the gradients can be computed by
measuring the expectation values of the Hamiltonian terms on the Gibbs
state of the model. Although this appears relatively straightforward, pre-
paring the Gibbs state is still exponentially expensive with respect to the
system size n + m on a classical computer. For this reason, in practice,
alternative methods are often employed to avoid this step. One of the most
popular approaches is called contrastive divergence (CD)9.

For a generic non-commuting Hamiltonian, computing gradients
becomes expensive, primarily because the derivative of the Hamiltonian
does not commutewith itself (½∂θiH;H�≠0), requiring explicit computation
of ∂θi e

�H . As a result, evaluating the positive phase is costly, even when the
Gibbs state can be prepared efficiently. Consequently, a generic QRBM
cannot be trained efficiently using standard gradient descent. In contrast,
sqRBM overcomes this limitation, enabling a more tractable training
process.

Data availability
The data that is generated in the numerical experiments of this study is
available in Ref. 35.
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Code availability
The code to reproduce results of this study is available in ref. 36.
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