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The development of generative models for quantum machine learning has faced challenges such as
trainability and scalability. A notable example is the quantum restricted Boltzmann machine (QRBM),
where non-commuting Hamiltonians make gradient evaluation computationally demanding, even on
fault-tolerant devices. In this work, we propose a semi-quantum restricted Boltzmann machine
(sgRBM), a model designed to overcome difficulties associated with QRBMs. The sqRBM Hamiltonian
commutes in the visible subspace while remaining non-commuting in the hidden subspace, enabling
us to derive closed-form expressions for output probabilities and gradients. Our analysis shows that,
for learning a given distribution, a classical model requires three times more hidden units than an
sgRBM. Numerical simulations with up to 100 units validate this prediction. With reduced resource
demands, sqRBMs provide a feasible framework for early quantum generative models.

Boltzmann machines (BM) are a prominent example of energy-based
machine learning models inspired by statistical physics"”. They have uni-
versal approximation properties’, and are widely applied in areas such as
collaborative filtering, dimensionality reduction, pattern recognition and
generative modeling'”’. BMs consist of binary visible and hidden units, with
an energy function defined by pairwise interactions and individual biases.
This energy function takes the form of an Ising Hamiltonian, a model from
statistical physics that assigns lower energy to more probable configurations.
Each training step requires preparing a Gibbs state that describes the joint
probability distribution of visible and hidden units. This results in BM
training to be computationally demanding’.

Contrastive divergence (CD) is a widely used approximation method
to accelerate training of BMs’. However, CD provides only a rough estimate
of the true gradients, often leading to unstable convergence and limiting the
practical applicability of BMs'’. While several improvements have been
proposed' ", efficient training of BMs remains an open challenge in
machine learning research.

Quantum computing offers opportunities to facilitate the training of
BMs. Researchers have proposed multiple polynomial scaling quantum
algorithms for Gibbs state preparation”. Utilizing quantum hardware for
Gibbs state preparation could not only improve the training process but
also offer a sampling advantage for BMs. Consequently, quantum
computing could significantly increase the practical relevance of BMs.
Moreover, the ability to prepare a Gibbs state on quantum computers
enables generalizing the Hamiltonian of BMs with non-commuting
terms, potentially enhancing the model’s representational power. A
model defined by a non-commuting Hamiltonian, referred to as a

quantum Boltzmann machine (QBM)", is part of a broader class of
algorithms within the field of quantum machine learning.

Quantum machine learning aims to enhance the capabilities of
machine learning models with access to quantum computers. In the
domain of generative modeling, the majority of proposals in the field
have been based on parametrized quantum circuits such as quantum
generative adversarial networks'’ or quantum circuit Born machines'.
Recent studies have revealed that these models encounter trainability
issues, such as barren plateaus'”"*, rendering them impractical. Although
certain QBM constructions are similarly affected by these limitations",
evidence suggests that alternative QBM formulations can successfully
circumvent such issues™.

Apart from challenges related to trainability, a major challenge for
QBM:s is the gradient estimation. The gradients of a QBM, which is defined
by a generic non-commuting Hamiltonian, are known to be computa-
tionally intractable'’. To overcome this challenge, various frameworks
impose constraints on the Hamiltonian'**"**. These approaches commonly
avoid training non-commuting terms, treating them instead as hyper-
parameters. Although this constraint makes training cheaper, it inherently
restricts the model’s representational power.

From a different perspective, ref. 23 has introduced a training algo-
rithm based on the variational quantum imaginary time evolution. This
approach enables training of generic QBMs; however, it encounters scal-
ability issues of variational algorithms"’.

Last but not least, recent results have shown that fully-visible QBMs
(models with no hidden units) can be trained sample-efficiently’**.
Many studies have followed this result to show the capabilities of
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Fig. 1 | Summary of main results. This work introduces semi-quantum restricted
Boltzmann machines (sqRBM) as an intermediate model, satisfying the relation

QRBM 2 sqRBM 2 RBM. sqRBMs generalize RBMs by rendering the hidden units
quantum through the use of non-commuting Hamiltonians. In Theorem 2, we show

sqRBM,, ,,,

[ Classical visible unit
@ Classical hidden unit
@ Quantum hidden unit

RBM,, 3m

that sqRBM,, ,,, = RBM,, 3,,,, where n and m denote the number of visible and hidden
units, respectively, with both models having the same number of parameters. In
pedestrian terms, RBMs require three times as many hidden units as sqRBMs to
learn the same target distribution.

fully-visible QBMs on learning from classical and quantum data®.

While fully-visible QBMs are more expressive than their classical
counterparts, their lack of hidden units considerably limits their
applicability to many practical tasks™.

Consequently, the computational cost of QBM training is funda-
mentally tied to the choice of Hamiltonian, highlighting a trade-off between
tractability and expressiveness. In this work, we introduce semi-quantum
restricted Boltzmann machines (sqRBM) designed for efficient gradient
computation while enabling the training of non-commuting terms. This is
achieved by defining a Hamiltonian that is diagonal in the subspace of
visible units, while containing non-commuting terms in the subspace of
hidden units. In this way, it serves as an intermediate model between
RBMs and quantum restricted Boltzmann machines (QRBM) such that
QRBM 2 sqRBM 2 RBM as illustrated in Fig. 1. This inclusion refers to
model structure, not expressive power per hidden unit or per parameter.
Being diagonal in the subspace of visible units allows sqRBM to provide a
framework to explore the impact of non-commuting terms on learning
from classical data.

In order to investigate the practical importance of sqRBMs, we
establish a direct correspondence between RBMs and sqRBMs. In particular,
Theorem 2 shows that an sqRBM,,,, is expressively equivalent to an
RBM,, 3,,» where n and m denote the number of visible and hidden units,
respectively. This result implies that an sqRBM requires only one-third of
the hidden units to match the representational power of an RBM.

While this may appear to be a linear improvement, its practical impact
is amplified in quantum settings. The cost of quantum Gibbs state pre-
paration scales polynomially, often with a high polynomial degree in the
number of units"’. Therefore, reducing the number of hidden units from 3m
to m can lead to a substantial reduction in quantum resource requirements,
including circuit depth and qubit count. This makes sqRBMs a promising
alternative for fault-tolerant quantum devices.

We also present numerical results across multiple datasets and models
with up to 100 units, supporting the theoretical claims and illustrating the
practical viability of sqRBMs. A summary of the main results is provided
in Fig. 1.

Results

Theoretical intuition

Challenges in training generic QBMs stem from non-trivial estimation of
model gradients'’. As outlined in Methods, consider a QBM defined by a
parametrized non-commuting Hamiltonian of the form H = _,6,H;, where
0; are real-valued trainable parameters and H; are low-weight Pauli-strings.
In this setting, one needs to compute terms of the form dye~" and
Tr[A,0, 1], where A, is a diagonal projection operator. The structure of
such gra&ient expressions is formalized in Proposition 4. Observe that the
term dy e~ admits a series expansion as follows:

following expression

Tr [AvaglefH} =—Tr [AvefHHJ
— 2 Te [ [H,H]] o
—oTr [Ae ™ [H, [H,H]]]

Next, we observe that if [A,, H] = 0 (while noting that [H;, H] # 0 still holds),
the second term in Eq. (2) simplifies to:

Tr [Ae 7 [H,H,]| = Tr [A,e "HH;] — Tr [A, e "H,H]
= Tr [HA,e "H,] — Tr [A,e”"HH|
= Tr[Ae "HH] — Tr [A,e”"HH|
= 07

(€)

where we leverage the commutation rules and the cyclic property of the
trace. This can be repeated for the rest of the terms in Eq. (2) that contain
commutators to observe that only Tr[A,e "H;] results in a non-zero value.
Similarly, notice that Tr[0, e H] = — Tr[e~H H,] for all models, indepen-
dent of the Hamiltonian definition. Then, the computation of QBM
gradients can be simplified, although the Hamiltonian still contains non-
commuting terms.

Recall that we assumed [A,, H] =0 to obtain simplified gradients for
non-commuting Hamiltonians. Let us define A, for a QBM with # visible
and m hidden units in the Pauli basis as

A, = (é;([+ (—1)”12)) ® I®™, 4)

i=1

Then, we observe that the costly gradient computation of QBMs can be
avoided by choosing a non-commuting Hamiltonian that commutes with
Pauli-Z only over the visible units, while the remaining terms of the
Hamiltonian can be defined with an arbitrary Pauli operator set. We define
such a model as a semi-quantum restricted Boltzmann machine (sqRBM).

Semi-quantum Boltzmann machines

Definition 1. (Semi-quantum RBM). A semi-quantum restricted Boltz-
mann machine with » visible and m hidden units, denoted sqRBM,, ,,,, is
described by a parameterized Hamiltonian of the form H = H, + Hy, + Hp,.
The three terms of the Hamiltonian are defined as follows:

ag_e_H =
i (]) n 7 7 Wil m > p
e"(-H;—5[H H] —¢[H,[HH]] +---). Hvzziaiaw Hh:PXV:V Z:lbjon+j7
= €Wh =

We provide the details of the derivation in the Supplementary Note 3. Then, Wi n om )
we rewrite Tr[A,d,e "] by substituting the derivative of the matrix Hpo= > 2> wf]ipaizaﬁ o

exponential term. Exploiting the linearity of the trace, we obtain the Pew, i=1j=1
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Table 1 | Classification of various model

Model Wh Parameters
RBM,,.m {z} n+m@n+1)
sgRBM,, X, z} n+2m(n+1)
sqRBM,, {Y, 2z} n+2m@n+1)
sqRBM,, x,v,z} n+3m(n+1)

where a € R”, b € R and w € R are the parameter vectors
of the model. W, is a non-commuting set of one-qubit Pauli operators that
non-trivially act only on the hidden units.

Notice that if one chooses Wy, = {X}, W, = {Y} or W, ={Z}, His a
commuting Hamiltonian, and these models are equivalent to an RBM.
There are three possible non-commuting choices for an sqRBM
W, =X, Z) W, =1{Y, Z}or W, = (X, Y, Z}). Paulisets W, = {X, Z}
and W, = {Y, Z} result in two equivalent models that differ by a change of
basis. Please refer to the Supplementary Note 2 for definitions of Pauli
operators. We provide various models with their number of parameters in
Table 1.

One can leverage the similarity of sqRBMs to RBMs in order to obtain a
closed-form expression for the output probabilities as well as their gradients.
For an sqRBM, contributions of X, Y, and Z terms are equivalent. Let us
denote the state (not to be confused with a quantum state) of the hidden
units for a given visible unit configuration v with ngP (v) such that

¢/ () =b] + Z( D'w, (6)

where P € {X, Y, Z}. Then, we define the following vector that combines the
states of all possible three Pauli operators:

oM =g ¢o) ¢w]. @)

This leads to Proposition 1, which describes the output probabilities of
sqRBMs.

Proposition 1. (Output probabilities of sqRBM). The unnormalized
output probabilities of an sqRBM,, ,,, are as follows:

B, = (H e<l>”“f) (H cosh(||d>j(v)||2)>, ®)
i=1 =1

where v € {0, 1}" and @,(v) is the vector of hidden states as described in
Eq. (7). Then, the normalized output probabilities are given as

Py =h/ Y by ©9)

The proof is provided in the Supplementary Note 4. Next, we provide
the gradients of sqRBMs following the result of Proposition 1.

Proposition 2. (Gradients of sqRBM). An sqRBM,, ,, with the output
probability distribution p can be trained to minimize the negative log-
likelihood with respect to the target probability distribution g using the
following gradient rule:

Gradients of the parameters for the field terms acting on the visible
units are given as

L= 4, <(—1)"" -> (—UV"PV) :

(10)

Gradients of the parameters for the field terms acting on the hidden units are
given as

¢ )
=3 g tanh Il )1l )

+ qu thanhQ@j(v)Hz)pv

(11)

Gradients of the parameters for the interaction terms acting on both visible
and hidden units are given as

. S
gt == a1 ”q;(—)”tanhowj(v)nz)

£Ya Y A

[1D;(W)11,

(12)
L tanh (110,01, ),

The proof is provided in the Supplementary Note 5. Notice that both
the gradients and output probabilities for RBM and sqRBM contain sum-
mations over all visible configurations, which grow exponentially in input
size. This causes both of these models to be intractable for large input sizes
on classical computers.

So far, we have focused on BM variants with restricted connectivity.
Incorporating lateral connections within visible and hidden layers increases
the computational cost of the training procedure'’. Although additional
connectivity enhances the expressive power of BMs, computational com-
plexity limits their practical applicability. However, training fully-connected
QBMs without a significant computational overhead may be discovered
within the quantum computing framework. Motivated by this opportunity,
we introduce a fully-connected sqBM.

Definition 2. (Semi-quantum BM). A semi-quantum Boltzmann machine
(sqBM) with n visible and m hidden units is denoted sgBM,, ,,,. An sqBM is a
generalization of an sqRBM with lateral connections in the visible and
hidden layers, which is described by a parameterized Hamiltonian of the
form H = H, + H}, + H,. The three terms of the Hamiltonian are defined
as follows:

Wil n+m  k Wyl n4+m—1 ndm
Hy= IONALE D DD DY

kew,, \ i=n+1 leWw, i=n+1 j=i+1

k.l
91] i0

>, (13)

Wil n ntm

Hint:ZZZQZkt ]’

keWw, i=1j=n+1

where W, is a non-commuting set of one-qubit Pauli operators that non-
trivially act only on the hidden units.

Ultimately, the results from Egs. (2) and (3) lead to a simplified
expression for the gradients of a generic sgBM. Importantly, satisfying the
condition [A,, H] =0 does not impose restrictions on the connectivity
between units. Then, one obtains the following closed-form expression for
the gradients that is significantly cheaper to compute than generic QBM
gradients.

Proposition 3. (Gradients of sqBM). An sqBM,,,, can be trained to
minimize the negative log-likelihood with respect to the target probability
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distribution q using the following gradient rule:

Tr[A,e HH,]  Trle 7 H)]

0 L =— E , 14
K ~ D TrA, e~ H] Tr[e~H] (14)
——
positive phase negative phase

where 0, is any real-valued parameter of the model, when the Hamiltonian
terms are grouped such that H=>",0,H,.

The proof is provided in the Supplementary Note 6. Notice that Pro-
position 3 provides the recipe to compute the gradients of either an sqRBM
or the more general sqBM on a quantum computer. In this work, we study
the relationship between RBMs and sqRBMs; therefore, in the remainder of
the work, we will not consider sqBMs and leave their study as future work.

Expressive equivalence
The output probabilities derived in Proposition 1 exhibit a structural
resemblance between classical RBMs and their semi-quantum counterparts.
This naturally raises the question: can we establish a formal correspondence
between these models? Specifically, do their functional forms, and conse-
quently their expressivity, coincide under certain conditions?

To explore this, let us consider an sqRBM,, ; with a single hidden qubit.
For simplicity, we set all field terms acting on the visible units to zero. Then,
using Eq. (8), the unnormalized output probability is given by

B, = cosh(y/¢1 ()" + 97 (1? + ¢/ (), (15)

whose Taylor expansion generates a polynomial with monomials in the
span

span {1 (V)7 ¢y (V)I$7(v)™ |i,j, k € Ny}, (16)
as shown in the Supplementary Note 2.

Now consider a classical RBM,, ; with three hidden units. Its unnor-
malized output probability takes the form

p, = cosh (gbf(v)) cosh ((pf(v)) cosh (gbf(v)), (17)
whose Taylor expansion yields monomials of the form
span {7 (V)" (V)95 ()™ |i.j k € Ny }. (18)

As shown in Supplementary Note 2, these functional forms coincide when
&%, ¢", ¢” in the sqRBM are treated analogously to independent linear maps
in the RBM. This implies that the two models can generate the same class of
functions over visible configurations. Moreover, both models use the same
number of parameters. This correspondence is formalized below in Theo-
rem 1 and 2.

Theorem 1. (Expressive equivalence of sqRBM,,; and RBM,, |y, |). Let
W, C {X, Y, Z} beaset of Pauli operators. Then, an sqRBM,, ; with a single
hidden qubit and operator set W, is expressively equivalent to an
RBM,, yy, | with [W}]| classical hidden units. That is, both models can
represent the same class of functions over visible configurations v € {0, 1}",
up to a reparameterization of the corresponding linear maps.

The proof follows Eq. (16) and (18), and it is provided in the Supple-
mentary Note 8. Following Theorem 1, one can generalize the statement to
multiple hidden units for sqRBMs and obtain Theorem 2.

Theorem 2. (Expressive equivalence of sqRBM,,,, and RBM,, ;. .,,,). Let
Wy, € {X,Y,Z} be a set of Pauli operators. Then, an sqRBM,, ,,, with m
hidden qubits and operator set W, is expressively equivalent to an
RBM,, 1y, . With [W}| - m classical hidden units. That is, both models can

represent the same class of functions over visible configurations v € {0, 1}",
up to a reparameterization of the corresponding linear maps.

Proof.. The result follows directly from Theorem 1. Each hidden qubit in
the sqRBM contributes a factor of the form cosh(|| @(v)||,), where O(v) €
R4l is a vector of linear functions corresponding to the Pauli operators in
W, As shown in Theorem 1, each such term is expressively equivalent to a
product of |[W, | classical cosh activations.

Since the hidden units in both models contribute multiplicatively and
independently (cf. Proposition 1), the expressive equivalence carries over
additively across hidden units. Therefore, an sqRBM,, ,,, with m hidden
qubits is expressively equivalent to an RBM,, |y, |.,,» Up to a reparameter-
ization of the linear maps that define the activations.

The consequence of Theorem 2 is that an sqRBM,, ,,, with the operator
pool W), can solve the tasks thatan RBM,, )y, |.,, can solve equally well with
the same number of parameters. In other words, these models have the same
expressivity. In the next section, we support Theorem 2 with numerical
simulations.

Numerical results

In this section, we provide numerical results to support our theoretical
findings. We perform exact numerical simulations to train various RBM and
sqRBM models. We use four distinct datasets, which are defined as follows:

simplified-BAS dataset: #-bit uniform probability distribution over the
bitstrings that correspond to vertical or horizontal lines on a 2 x #/2 grid.
O(n?) dataset: n-bit uniform probability distribution over randomly
chosen 7’ bitstrings.

Cardinality dataset: n-bit uniform probability distribution over the
bitstrings that have n/2 cardinality.

Parity dataset: -bit uniform probability distribution over the bitstrings
that have even parity.

We train all models 100 times with parameters randomly initialized
from a uniform distribution between [—1, 1] using the AMSGRAD
optimizer’® with the hyperparameters {lr = 0.1, 3; = 0.9, 8, = 0.999} and Dy,
as the loss function. We have not performed hyperparameter optimization
as all models converge within a reasonable number of iterations. We
empbhasize that all results can be improved with dedicated hyperparameter
optimization. Our goal in this work is not to find the best performing model
but to treat all models the same way.

We employ an RBM and two quantum models: sqRBM{X, Z} and
sqRBM{X, Y, Z}. These quantum models are defined by two sets of operators
for the hidden units, W, = {X, Z} and W,, = {X, Y, Z}, respectively. Since
we minimize the Kullback-Leibler divergence Dy;, we report values of
another metric, namely total variation distance (TVD(q||p) = % llp —qlly)
for both RBM and sqRBM models across the described datasets in Fig. 2. As
a reference point for practical purposes, we report the TVD = 0.2 line. It can
be seen that all models can go below the TVD = 0.2 line given that they have
sufficient number of hidden units.

In general, the number of hidden units required to achieve a good
approximation depends on the dataset. More specifically, the support of a
probability distribution is a good measure of difficulty. In Fig. 2, the datasets
are ordered in increasing difficulty from left to right. There, we observe
that one needs a larger value of m for all models as the support of the
dataset increases. In practice, it is considered that a dataset has
supp(p) € O(poly(n)), therefore, it is expected that m € O(poly(n)) suf-
fices to learn a distribution with good precision.

Our findings across the considered datasets indicate that
sqRBM{X, Y, Z} requires fewer hidden units to reach the reference point
compared to sqRBM({X, Z}. Similarly, sqRBM{X, Z} requires fewer hidden
units to reach the reference point compared to RBM. However, all models
are able to reach the same low values of TVD, provided they have a sufficient
number of hidden units. Theorem 2 predicts sqRBM,, ,,,{X, Z} to perform
equally as well as RBM,, ,,,, (with 2mm hidden units in the RBM) and similarly
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simplified-BAS Dataset Cardinality Dataset

O(n?) Dataset Parity Dataset

n=2~8

n=2~8

o
=)
=

o
o
=

\Y
=
 AAiAaaas

----- TVD =0.2

Fig. 2 | Training results. We train three models (RBM (orange square markers),
sqRBM{X, Z} (blue rotated square markers) and sqRBM{X, Y, Z} (green circle
markers)) over four datasets with three different input sizes (n € {8, 10, 12}) and
various number of hidden units in the range m € [1, 90]. We report the total variation
distance (TVD) measured after training all models 100 times with different initial
parameters. The solid lines report the average, while the shades indicate the standard

I IR
50 66 82
m

@=3sqRBM {X, 7} =@=sqRBM {X,Y,Z}

L
18 34
@ RBM

deviation. Each column reports results for a different dataset, ordered in increasing
difficulty from left to right. The target probability distribution for O(n?) dataset is
varied for each run, using the same 100 seed for all models. The same target prob-
ability distribution is used for the other datasets in all runs. The TVD = 0.2 (black
dashed line) is plotted as a reference point.

for sqRBM,, ,,{X, Y, Z} to perform equally as well as RBM,,3,,. We
emphasize that the models have the same number of parameters for these
settings. We numerically verify Theorem 2 by computing the ratios of the
number of hidden units that are sufficient for each model to achieve
TVD <0.2 in Fig. 3. As expected, the minimum number of hidden units m,
that is sufficient to go below the threshold varies with dataset and input size.
Overall, results align with the prediction of Theorem 2 across four datasets
and varying input sizes.

Discussion

In this work, we introduce semi-quantum restricted Boltzmann machines
(sqRBM), a subclass of quantum Boltzmann machines (QBM). The sqRBM
Hamiltonian acts with arbitrary non-commuting Pauli operators on hidden
units, whereas operators for visible units are restricted to a commuting set.
The structure provided by the Hamiltonian allows us to circumvent the
expensive computation of the positive phase in Proposition 4 and enables us
to derive the analytical output probabilities and gradients in Proposition 1
and Proposition 2.

In the field of quantum machine learning, efficient evaluation of gra-
dients remains a major challenge. Expressive models based on para-
meterized quantum circuits exhibit trainability issues, often linked to barren
plateaus of the loss landscape'’. Barren plateaus lead to an exponential
increase in the number of samples required to evaluate gradients as the
system size grows. This significantly limits the scalability of circuit-based
quantum machine learning models, making it difficult to demonstrate their
practical viability.

QBMs offer a promising alternative to circuit-based approaches.
However, when the entanglement entropy between visible and hidden units
obeys the volume law, generic QRBM models are susceptible to barren
plateaus'’. Importantly, sqRBMs do not have entanglement between visible
and hidden units; therefore, this problem is naturally mitigated, and the
gradients can be estimated with polynomially many samples from the Gibbs
state. Moreover, the similarity between RBM and sqRBM gradients also
suggests the absence of vanishing gradients. For completeness, we provide
numerical results that confirm this conjecture in the Supplementary Note 9.

Expressivity of QBMs is directly related to their Hamiltonian. A
popular choice in the literature is to employ the transverse field Ising model
(TFIM)" due to its similarity to the classical Ising model. However, QBMs
based on TFIM have been reported to exhibit only marginal improvement in
learning capacity compared to BMs, while generic Hamiltonians demon-
strate significant improvement™. Our results help explain the poor perfor-
mance of such models and provide a strategy to build more expressive ones.

Let us consider a QRBM based on the TFIM Hamiltonian. Such a
model is defined by adding transverse X fields to visible and hidden units of
the RBM Hamiltonian. In our notation, this can be expressed as W, =
W, = {X, Z}and W,,, = {ZZ}. Recall that the state of the j-th hidden unit

int

is described with | |CDj(v)| |2 (see Eq. (8)). Then, for a TFIM Hamiltonian, one

obtains \/gbjz »)? + (b;()z, where bf is the parameter of the transverse X

field of the TFIM Hamiltonian on the j-th hidden unit. Then, it follows that
the contribution of the transverse field is independent of the visible unit
configuration v and can not significantly change the model’s expressivity.
Hence, the output probability distributions of such QBMs closely resemble
those of classical models. One could improve the expressivity of such QBM
models by including ZX terms in the Hamiltonian to have W, = W, =
{X,Z}and W,,, = {ZZ, ZX}. Note that such a model isa QRBM and not an
sqRBM. Therefore, its gradients are not efficiently computable.

The practical feasibility of machine learning models depends both on
their learning capacity and the computational resources required for
training and sampling. The computational cost of training an RBM,, ,,, using
exact analytical gradients, as well as sampling from a trained model, scales as
O(exp(n + m)) on a classical computer’'. However, training costs can be
significantly reduced by leveraging classical techniques such as contrastive
divergence (CD)’. Analogously, given the similarity in the output prob-
ability expressions of sqRBM and RBM, a CD-based training algorithm for
sqRBM may be developed as well. However, since sqRBM is defined through
a non-commuting Hamiltonian, an efficient CD algorithm would still
require access to a quantum computer. This could be achieved by quantum
algorithms that can condition the visible or hidden subspaces of a Gibbs
state on the quantum computer, similar to how the CD algorithm works in
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simplified-BAS Dataset Cardinality Dataset

O(n?) Dataset Parity Dataset

i 30[ 1 ol ]
10f 1 10f 1t 1
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£ 5f 1 5F 1 1 1 40 ]
: T w 1 10f 1
i L 1 | 20f ]
0 0 oL 17, |
e 4 1 4f 1 4f 1 4f ]
=3t 1 3 S8 1 3 .
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- 1+ m:m:m:‘;‘ - 1F - = -
6 8 10 12 6 8 10 12 6 8 10 12 6 8 10 12
n n n n
B-RBM ~@—sqRBM {X, 7} =@=sqRBM {X,Y, 7}

Fig. 3 | Minimum number of hidden units required to learn target probability
distributions on average. We report the minimum number of hidden units m
required to achieve total variation distance, TVD < 0.2 on average, over four datasets
for various input sizes (n € {6, 8, 10, 12}) using three models (RBM (orange square
markers), sqRBM {X, Z} (blue rotated square markers) and sqRBM{X, Y, Z} (green

circle markers)) as in Fig. 2. In the bottom panel we provide the ratio of mgpy to m of
the other models. The difficulty of each dataset results in a different scaling behavior.
Recall that RBM has the same number of parameters and expressivity according to
Theorem 2 as sqRBM {X, Z} for the ratio mgpy = 2m and similarly sqRBM{X, Y, Z}
for mppy = 3m.

visible units:

hidden units:

Fig. 4 | Connectivity graph of restricted Boltzmann machines (RBM). An RBM
model has connections only between visible and hidden units. Lateral connections
(e.g., visible to visible) are not permitted.

the classical setting. We leave the study of CD algorithms to train sqRBMs
for future work.

While the training cost of both RBMs and sqRBMs can be reduced
using approximate methods, sampling remains a major bottleneck. Several
quantum algorithms have been proposed to prepare Gibbs states with
polynomial complexity in the number of units'*"*”, but these costs often
involve high-degree scaling. This makes the number of hidden units a
critical resource constraint in quantum implementations.

In this context, the reduced hidden-layer size of sqRBMs, enabled by
their enhanced expressivity through non-commuting hidden interactions,
translates into meaningful efficiency gains. As shown in our equivalence
result, sqRBMs can achieve the same representational power as RBMs using
only one-third as many hidden units. This leads to a nontrivial reduction in
quantum resource requirements, including qubit count and circuit depth,
which are key limiting factors in fault-tolerant settings.

More broadly, sqRBMs represent an intermediate regime between
classical RBMs and fully quantum BMs. By maintaining a classical interface
to the visible units while exploiting quantum structure in the hidden layer,
sqRBMs may offer a more feasible route for early quantum generative
modeling. These models could serve as effective testbeds for evaluating the
capabilities of quantum Gibbs samplers, or as components in hybrid
classical-quantum architectures for feature learning and structured data
modeling.

One of the goals of quantum machine learning is to process
both classical and quantum data efficiently. Although sqRBMs are
quantum models, they only support classical data as input because their
Hamiltonian is commuting within the subspace of visible units. Addition-
ally, there are proposals in the literature for QBMs that are suitable for
quantum data™.

In future work, adding lateral connections between hidden units could
be utilized to further enhance the expressivity of sqRBMs. To this end, we
introduce the Definition 2 of sgBM that has additional connectivity within
visible and hidden units. However, increased connectivity within hidden
units may result in entanglement-induced barren plateaus'’. Another pro-
mising extension to improve the expressivity of sqRBMs is to incorporate
additional hidden layers, similar to deep Boltzmann machines’. More
broadly, given that RBMs belong to the class of undirected graphical models,
it is natural to conjecture that similar expressive equivalence results hold for
other graphical models, such as quantum and classical Markov random
fields (MRF)™. In particular, a partially observed MRF parameterized by
Pauli-Z and Pauli-X terms may be equivalent to a classical MRF with more
hidden variables, suggesting a pathway for future research on structured
quantum models.

Methods
Model definitions
A Boltzmann machine (BM) can be described by a Hamiltonian H and its
corresponding Gibbs state p. BMs consist of two types of units: visible and
hidden. Visible units are the ones that are observed and used for input/
output purposes, while hidden units form the latent dimension, giving the
model its representation power. We denote the number of visible units with
n and the number of hidden units with .
The Hamiltonian that describes BMs can be written as a sum of three
terms as follows:
H=H,+ H, + Hy,, (19)
where H, and Hj, act on visible and hidden units, respectively, while H;,
represents the interaction between visible and hidden units. Consequently,
the corresponding Gibbs state p of H is given as
p=ePfljz  Z=TrlePH) (20)
where Z is the partition function that ensures normalization (Tr[p] =1)
and f is the inverse temperature, which we set as =1 to simplify
subsequent equations. In this work, we focus on restricted BM configurations,
allowing interactions only between visible and hidden units. We denote the
number of visible units with 7 and the number of hidden units with m. A
visualization of the restricted BM (RBM) configuration can be seen in Fig. 4.
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The probability distribution of the model, denoted with p, can be
obtained by marginalizing over hidden units, such that
p, = TrApl 1)

where v € {0, 1}" is a length 7 bitstring and A, is a projective measurement
with respect to the computational basis of the visible units given as
A, = VI ® Loy (22)

Of particular interest, let us define a Pauli string of length n + m as the
tensor product of operators from the set of Pauli matrices, including the
identity {I, X, Y, Z} (see the Supplementary Note 2 for definitions). A k-body
operator acts on k many qubits non-trivially, meaning it has k many non-
identity operators in the Pauli string representation. We write the n + m-

qubit Pauli string of the Pauli-Z operator acting on the i-th qubit as an
example

=1 - RIVZRIQ- - QL
S—— ~——

i—1 n+m—i

(23)

We provide a formal definition of a classical restricted Boltzmann machine
(RBM) as follows:

Definition 3. (Restricted Boltzmann machine (RBM)). A restricted
Boltzmann machine with # visible and m hidden units, denoted as RBM,, .,
is described by a parameterized Hamiltonian according to Eq. (19). The
three terms of the Hamiltonian are defined as follows:

(24)

n m
— ZZ 7 7
Hy = ZZW,;]‘ 03 Ohtjs
i=1j=1

where a € R”, b€ R™ and w € R" are the parameter vectors of
the model.

The Hamiltonian of an RBM,, ,,, corresponds to a classical Ising model
and contains only commuting operators (Y(i, ), |0%,0%0% +| =0).An
RBM,,,,, can be extended to a quantum model by incorporating non-
commuting operators in the Hamiltonian. We refer to a generic model with
a non-commuting Hamiltonian as a quantum restricted Boltzmann
machine (QRBM).

Definition 4. (Quantum restricted Boltzmann machine (QRBM)). A
quantum restricted Boltzmann machine with # visible and # hidden units,
denoted as QRBM,,,,,, is described by a parameterized Hamiltonian
according to Eq. (19). The three terms of the Hamiltonian are defined as
follows:

Wl n Whl m

P
HV = Z Zafaf7 Hh Z Zb n+17
PeW, i=1 PeW, j=1
(25)
Wil 0 m pQ p Q
Hint= Z ZZWIJ i Jn+]7

(P,QeW;, i=1j=1

where a € R™!" b ¢ RMiI™ and w e RMWul ™™ are the parameter
vectors of the model. W,,, W, and W, are the sets of Pauli operators that
describe the model and |WV| denotes the cardinality of set W.

A generic QRBM contains all possible one- and two-body Pauli
operators when W, = W, = {X,Y,Z} and W, = W, ® W,,. A com-
mon choice in the literature is the set that corresponds to the transverse field
Ising model, such that W, = W, = {X, Z} and W,, = {ZZ}". Notice that

int —

the definition of QRBM also includes the RBM when W, = W, =
and W, . = {ZZ}.

{Z}

int —

Training Boltzmann machines

Boltzmann machines can be trained by minimizing the negative log-like-
lihood, which is defined as

=- qu logpw

(26)

where p and q are the probability distributions of the model and the target,
respectively (>_,g,=>_,p,=1). Minimizing the negative log-likelihood is
equivalent to minimizing Dx;, which is given as

%wm=2mm%)
=—> gq,logp, +» _q,logq,.

Then, gradients of both RBMs and QRBMs with respect to the negative log-
likelihood can be obtained using a single formula that has two parts: positive
phase and negative phase. The negative phase is obtained by measuring
expectation values over the Gibbs state of the model, while the positive phase
requires projective measurements on the visible unit subspace. Although
these terms may look different in the classical machine learning literature,
we keep the naming convention. The following proposition is a restatement
of a result from Ref. 14.

27)

Proposition 4. (Gradients of QRBM). A QRBM,,,, can be trained to
minimize the negative log-likelihood with respect to the target probability
distribution g using the following gradient rule:

Tr[A,0ge "] Tr[dge "]
0g L = - .
o Z T Tr[A, e~ 1] Trle H] |’ (28)
—,_/ —_———
positive phase negative phase

where 6, € 0 is any real-valued parameter of the model, when the
Hamiltonian terms are grouped such that H=}_,0,H; and 0 € {a, b, w}.

The proof is provided in the Supplementary Note 7. In the case of a
commuting Hamiltonian (e.g, RBM), the gradients of the negative log-
likelihood with respect to the parameters take a fairly simple form. This
follows the fact that if [0, H, H] = 0, then 9, e~ = e7H(—H,), where
H;=09H and H =Y"6:H;. Then, the gradiehts can be computed by
measuring the expectation values of the Hamiltonian terms on the Gibbs
state of the model. Although this appears relatively straightforward, pre-
paring the Gibbs state is still exponentially expensive with respect to the
system size n + m on a classical computer. For this reason, in practice,
alternative methods are often employed to avoid this step. One of the most
popular approaches is called contrastive divergence (CD)’.

For a generic non-commuting Hamiltonian, computing gradients
becomes expensive, primarily because the derivative of the Hamiltonian
does not commute with itself ([0 H, H]0), requiring explicit computation
ofdge —H, As a result, evaluating the positive phase is costly, even when the
Gibbs state can be prepared efficiently. Consequently, a generic QRBM
cannot be trained efficiently using standard gradient descent. In contrast,
sqRBM overcomes this limitation, enabling a more tractable training
process.

Data availability
The data that is generated in the numerical experiments of this study is
available in Ref. 35.

Communications Physics| (2025)8:413


www.nature.com/commsphys

https://doi.org/10.1038/s42005-025-02353-1

Article

Code availability
The code to reproduce results of this study is available in ref. 36.
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