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Z boson events at the Large Hadron Collider can be selected with high purity and are sensitive to a
diverse range of QCD phenomena. As a result, these events are often used to probe the nature of the strong
force, improve Monte Carlo event generators, and search for deviations from standard model predictions.
All previous measurements of Z boson production characterize the event properties using a small number
of observables and present the results as differential cross sections in predetermined bins. In this analysis, a
machine learning method called OMNIFOLD is used to produce a simultaneous measurement of twenty-four
Z þ jets observables using 139 fb−1 of proton-proton collisions at

ffiffiffi

s
p ¼ 13 TeV collected with the

ATLAS detector. Unlike any previous fiducial differential cross-section measurement, this result is
presented unbinned as a dataset of particle-level events, allowing for flexible reuse in a variety of contexts
and for new observables to be constructed from the twenty-four measured observables.
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The production of Z bosons is a standard candle process
at the Large Hadron Collider (LHC), used for various
purposes, such as precision tests of the standard model,
detector calibration, and testing new analysis methods. The
large pp→ Z þ X cross section, in combination with the
easily identifiable Z → ll decay (with l∈ fe; μg), makes
it possible to collect event samples with high purity and
efficiency. When the Z boson is produced at large trans-
verse momentum, it is usually accompanied by an asso-
ciated hadronic recoil that is collimated into one or more
jets. Measurements of Z þ jets production are crucial for
many purposes, including powerful tests of perturbative
quantum chromodynamics (QCD) [1–5] and improvements
of the parameters used in parton shower Monte Carlo
calculations [6,7] and tunes of the underlying event [8,9].
Numerous measurements of Z þ jets production that

probe the kinematic properties of the Z boson and the
associated jets were performed at the Tevatron [10,11]
and at the LHC [12–20], including several dedicated
measurements of the internal structure of the associated
jets [21–24]. Each of these measurements takes the form of
a binned fiducial differential cross section at the particle
level by fully correcting for detector effects using unfolding
methods [25–27].

The most widely used unfolding methods employ forms
of regularized matrix inversion [28–30]. This analysis
presents developments that address four features of tradi-
tional unfolding techniques that potentially limit the future
utility of the published data. First, the target observables
must be specified prior to unfolding and cannot be changed
after the measurement. Second, the binning of the observ-
ables must be fixed at the start of the measurement. Third,
due to the binned nature of existing techniques, most
measurements are done as a function of a single observable,
and only occasionally in bins of two or three observables
(e.g., Refs. [31–34]). Finally, existing methods can
have large uncertainties associated with biases in the
detector response due to mismodeling by the Monte Carlo
simulation of observables other than the ones directly
measured.
Recently proposed machine learning methods address

these challenges directly [35,36]. Such methods use dis-
criminative [35,37–42] or generative [43–51] neural net-
works (NNs) to readily process dozens of input observables
in an unbinned manner. One discriminative approach is
OMNIFOLD [39,40], an iterative method that generalizes to
unbinned data the widely used Lucy-Richardson deconvo-
lution approach [52,53] (also known as iterative Bayesian
unfolding or IBU [28]). This method has recently been
applied to perform the first unbinned studies [54]
of hadronic final states with data from H1 [55,56],
LHCb [57], CMS [58], and STAR [59]. OMNIFOLD learns
a correction (assigned as event weights) to an initial set of
simulated events instead of the more difficult task of
learning to produce new events, as is done in generative
approaches. As these methods are multidimensional, they
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can better account for variable dependency of the detector
response that improves the measurement precision.
This Letter presents unbinned differential cross sections

for Z þ jets events in the dimuon channel Z=γ� → μμ using
the OMNIFOLD method. The result constitutes a precision
measurement in its own right, with multiple novel use cases
as described below, and also serves as a proof-of-principle
application of the OMNIFOLD method to provide an
unbinned, high-dimensional measurement with full covari-
ance for public use. The analysis is performed using the full
Run 2 proton-proton dataset collected by the ATLAS
detector [60] at

ffiffiffi

s
p ¼ 13 TeV, corresponding to an inte-

grated luminosity of L ¼ 139 fb−1. The measurements are
at the particle level, defined by final-state stable particles
with mean lifetime satisfying cτ > 10 mm. The fiducial
volume requires two muons not originating from the
decay of hadrons that each satisfy transverse momenta
pT > 25 GeV and jηj < 2.5 [61]. The final-state muon is
“dressed,” such that collinear radiation of photons within a
cone of ΔR ¼ 0.1 are added to its four momentum.
The muons are further required to have opposite
charges, dimuon invariant mass mμμ ∈ ð81; 101Þ GeV,
and p

μμ
T > 200 GeV. The last criterion selects an unbiased

sample of high-pT jets, allowing jet properties to be
probed in a previously underexplored kinematic regime,
and reduces the size of the dataset, which simplifies
the computational challenge for the unfolding method.
The jets are reconstructed from charged particles with
pT > 0.5 GeV and jηj < 2.5 using the anti-kt algorithm
[62,63] with R ¼ 0.4; charged particles corresponding to
prompt leptons, such as muons from Z → μμ, are excluded
from the jet finding. Charged particles are used due to the
precision with which they can be measured and the
availability of full uncertainties. No additional acceptance
requirements are placed on the jets, as these are implicitly
set by the charged particle selection criteria. The 24
measured event observables are (i) p

μμ
T and yμμ of the

dimuon system that probe the Z boson production kin-
ematics; (ii) the kinematics of the two muons defined by
p
μ1
T , pμ2

T , ημ1, ημ2, ϕμ1, ϕμ2, which probe the Z boson decay
kinematics; (iii) the kinematics of the two leading charged
particle jets defined by p

j1
T , p

j2
T , yj1, yj2, ϕj1, and ϕj2; and

(iv) the masses (mj1, mj2), charged particle multiplicities

(nj1ch, n
j2
ch) and N-subjettiness quantities τj1

1
, τj2

1
, τj1

2
, τj2

2
, τj1

3

and τ
j2
3

[64,65] that probe the substructure of the two
leading charged particle jets.
There is a significant overlap in observables between the

OMNIFOLD analysis and the ones used to produce the
ATLAS A14 parameter set (tune) [8] of the PYTHIA event
generator [66,67]. A natural application of this measure-
ment would hence be to create precise event generator tunes
improving the modeling of the parton showers, hadroniza-
tion and the underlying event. Other uses could include
studies of jet substructure and jet flavor; for example,

selecting jets back to back with the Z boson should yield
quarklike jets, while wide angle radiation would give more
gluonlike jets. Since the measurement is unbinned and
probes a wide pT range of jets, it is straightforward to
switch between observables and study various quantities
as a function of other quantities (e.g., jet m vs pT, n

j1
ch vs

yj1, etc.).
The ATLAS detector has forward-backward symmetric

cylindrical geometry and a near 4π coverage in solid angle.
It includes an inner detector (ID) for charged particle
tracking covering jηj < 2.5 surrounded by a thin solenoid
providing an axial field of 2 T, electromagnetic and hadron
calorimeters, and a muon spectrometer (MS). A two-level
trigger system is used to select events [68]. An extensive
software suite [69] is used for all aspects of data collection,
curation, and analysis.
Data events are collected using single-muon triggers

[70]. Muons are reconstructed by matching charged
particle tracks in the ID and MS, accounting for energy
loss in the calorimeters [71]. They are required to fulfill
medium identification criteria and PflowLoose isolation
[71], and must satisfy jd0j=σd0 < 3 and jz0 sinðθÞj <
0.5 mm for their transverse and longitudinal distances
to the point of closest approach to the beam spot, ensuring
that they originate from the interaction vertex, i.e., the
primary vertex with the highest sum of associated track
p2
T. Charged particle tracks used for jet building are

required to fulfill loose quality criteria, a tight track-to-
vertex matching criterion [72], and must not be used by
the selected muons. Identical kinematic requirements are
applied to the reconstructed quantities as those used to
define the particle-level fiducial volume.
Monte Carlo (MC) simulated samples are used to provide

theoretical predictions both at the reconstructed and particle
level, and to perform the unfolding.Most Z þ jets events that
satisfy the selection originate from the Drell-Yan process.
Two MC samples are used to model this process: a nominal
prediction is provided by MADGRAPH5_AMC@NLO2.6.5

[73–75] interfaced to PYTHIA8.240 (denoted MADGRAPH in
the following), and SHERPA2.2.11 [75,76] provides an alter-
native. Both samples use the NNPDF3.0NNLO parton distribu-
tion functions (PDF) set [77]; additional details for
these samples are given in Ref. [75]. Contributions from
electroweak production of Z þ jets are provided using
HERWIG7.2 [78,79] interfaced with VBFNLO v3.0.0 [80]
using the MMHT2014LO PDF set [81]. Diboson ZV →

Zjj production ismodeled atNLOaccuracyby SHERPA2.2.1or
2.2.2 [76] using NNPDF3.0NNLO. Background contributions
from top processes (tt̄, tV, single top) are modeled by
POWHEGv2 [82] interfaced to PYTHIA8.230. The detector
response is simulated using a dedicated GEANT4-based
model [83] of the ATLAS detector [84]. Simulated inelastic
minimum-bias events are overlaid to model additional pp
collisions in the same and neighboring bunch crossings
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(“pileup”) [84]. Simulated events are reconstructed using the
same procedure as for data.
After the event selection, a pure Z þ jets signal sample is

obtained with a composition of about 95% Drell-Yan, 3%
diboson (primarily ZV → μμjj), and 2% electroweak Zjj.
The fraction of non-Drell-Yan Z þ jets increases with p

μμ
T

and reaches about 10% at pμμ
T > 500 GeV. The fraction of

diboson events is also sensitive tomj1, and reaches∼8% for
mj1 > 45 GeV. The analysis measures inclusive Z þ jets
production and makes no attempt to separate these
processes. Only the Drell-Yan production is used in the
simulation for the unfolding itself, and the full difference
between this and the result in which all Z þ jets
are included is found to be small and taken as a
conservative estimate of the process composition uncer-
tainty. Backgrounds of about 0.2% arise due to the
top processes (mostly tt̄ → μμννjj and tW → μμνjj).
Contributions from events without two muons from the
hard scatter are found to be negligible. The top background
increases in regions with significant jet activity and is esti-
mated to be ∼2% for both p

j1
T > 300 GeV and n

j1
ch > 25.

As the background is small, it is not subtracted in the
measurement; an estimate of its contribution is instead
assigned as an uncertainty.
The OMNIFOLD-based unfolding produces event weights

that are applied to the MADGRAPH Drell-Yan Z þ jets
sample at particle level (see the Appendix). The number
of iterations was fixed to five following a dedicated study
that found unfolding performance plateaued around
that number. The analysis is performed in a phase space
slightly larger (pμμ

T > 190 GeV) than the fiducial volume
(pμμ

T > 200 GeV) in order to reduce migration uncertain-
ties, which also includes the final normalization of the
results such that it provides fiducial cross sections, σfid.
During this step, all OMNIFOLD weights are scaled by a
constant to fulfill the relation Lσfidε=ffid ¼ ndata, where the
overall efficiency ε and fiducial factor ffid is evaluated
using the same MC as used for unfolding, and ndata is the
data count. After normalization, the sum of weights in any
subset of the OMNIFOLD dataset can be interpreted as an
estimate of its associated cross section. The final output of
OMNIFOLD is the original particle-level simulated event
sample with additional event weights that can be used to
define measurements of the cross section of fiducial
subregions (bins) defined by the 24 observables subject
to the precision of the measurement. This includes differ-
ential cross sections of any of the 24 input variables or any
combinations of those observables.
All NNs are constructed in TensorFlow [85,86], with

three hidden layers of 200 nodes each with rectified linear
unit (ReLU) [87] activation functions and a sigmoid final
activation function. Two main challenges were faced
regarding obtaining reliable and accurate NN outputs.
The first is regarding MC event weights of the input
samples, which initially had a large spread and often were

negative that causes issues for the performance. This is
addressed by preprocessing the MC sample such that
negative weights are removed and the spread of weights
is reduced as described in Ref. [88]. The second challenge
is intrinsic to the NNs themselves, as the classifier output
can vary slightly due to the randomly initialized starting
weights. To stabilize the result, an ensemble of 100 NNs are
created for each training, and the weight is taken as the
median of the 100 NN weights.
Uncertainties on the unfolded result are evaluated using

error propagation. Perturbations are introduced to the input
samples by an amount commensurate with the uncertainty
variation in question, and the full analysis (unfolding and
normalization) is repeated, resulting in OMNIFOLD weights
that differ from the nominal weights. The measurement
central value is obtained with the nominal weight, and a
total of 250 variation weights, each used to estimate the
uncertainty.
Systematic uncertainties are split into 25 components

that are each treated as independent. Experimental
sources of uncertainty include systematic bias due to the
following: the muon efficiency and calibration [71], track
reconstruction [72], pileup modeling, and the luminosity
measurement [89]. Theoretical uncertainties are evaluated
for variations of PDF and αs choices [75], QCD scales [75],
and the generator tune [9]. Imperfections inherent to the
choice of Monte Carlo simulation contribute to two sources
of systematic uncertainty: the sensitivity to differences in
the underlying truth distribution of the measured observ-
ables and the sensitivity to mismodeling of detector effects
by the Monte Carlo generator that are not captured by the
chosen input variables. The uncertainty (“unfolding prior”)
for the imperfect particle-level shape of the initial
MC sample is assessed by reweighting the nominal MC
sample at particle level such that it approximately agrees
with data for the 24 observables. This reweighting function
is constructed using a sequence of one-dimensional
Gaussian-kernel functions, iteratively obtained from the
data-to-MC ratio. The obtained data-driven correction is
applied to theMC to obtain an “Asimov dataset” used as the
input to the measurement, and the difference between the
resulting measurement and the corresponding reweighted
particle level MC is taken as the uncertainty. An uncertainty
in the top-quark background is assessed as the full differ-
ence between measurements performed using two Asimov
datasets constructed from MC predictions with and without
the top-quark contribution. To assess the dependence on the
detector response from modeling of features not included in
the unfolding (“hidden variable uncertainty”), the meas-
urement is performed with the alternative Drell-Yan
MC sample with the particle-level shape of the 24 observ-
ables adjusted to match the nominal MC sample (see also
[90–92] for similar procedures). Similarly, modeling of the
non-Drell-Yan components (EW Zjj and ZV) are assessed
as the full difference by performing the measurement with
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and without these components added. Both of these
variations are provided as separate event datasets that
provided varied measurements (two-point uncertainties).
Four types of stochastic uncertainties are assessed:

statistical uncertainties on the data and the MC training
sets are each assessed by bootstrapping [93] (100 and 25
weights, respectively); an uncertainty due to the NN
stability is calculated from the standard error on the median
of weights of the 100 individual NNs; and an additional
uncertainty is assigned for the limited statistics of the
nominal event dataset. Overall, the total uncertainty in most
bins chosen to illustrate the final measurement is between
3% and 5%, but can grow as large as 15% in tails of
distributions. The unfolding uncertainty from the unfolding
prior and hidden variables tends to be the dominant
contributor for many observables, in particular for the
ten jet substructure variables [see Fig. 1(d)].
The measured differential cross sections of pμμ

T and mj1,
in comparison with two MC predictions, are shown in
Fig. 1 along with breakdowns of the associated measure-
ment uncertainties. Plots of the measured spectra, associ-
ated uncertainty breakdown, and correlation matrices for all
of the 24 directly measured observables are provided as
Supplemental Material [94]. The total fiducial measured

cross section is 1808� 42 fb. The differential measure-
ments are significantly more precise than the predictions, in
particular with respect to SHERPA. MADGRAPH generally
models the data better than SHERPA, except for τj2

1
, τj2

2
and

τ
j2
3
. The measurement is publicly available as event datasets

that contain the 24 observables and a series of event
weights that define the measurement and systematic
uncertainties via Refs. [95,96].
Figure 2 presents additional results constructed from the

nominal measurement that highlight its flexibility of use.
Figures 2(a)–2(c) show the differential cross sections of
“derived” variables that were not directly unfolded,
namely τ21 ¼ τ2=τ1 (the most widely used observable
for hadronic W=Z boson identification [64,65]) and
ΔRðll; j1Þ (sensitive to higher-order effects). These
observables are functions of two and eight of the 24 input
variables, respectively. In the inclusive region, τ21 is not
infrared and collinear (IRC) safe and therefore has no fixed-
order perturbative expansion in αS. It has been shown [97]
that τ21 becomes IRC safe when applying a requirement on
τ1, and Fig. 2(b) shows an unprecedented measurement of
τ21 in an IRC-safe fiducial volume defined by τ

j1
1
> 0.1.

Figure 2(d) shows a measurement of the averagemj1 in bins

FIG. 1. Measured differential cross sections compared with particle-level predictions from SHERPA and MADGRAPH for two of the 24
directly measured observables: (a) pμμ

T with its (b) associated uncertainty breakdown, and (c) mj1 with its (d) associated uncertainty
breakdown. For display purposes, binned (marginal) distributions are shown, though the measurement itself is unbinned and 24
dimensional.

FIG. 2. Four measurements of quantities constructed from several of the 24 input observables, along with particle-level predictions
from SHERPA and MADGRAPH: the jet substructure observable τj1

21
¼ τ

j1
2
=τ

j1
1
in (a) the inclusive region and (b) the reduced region defined

by τ
j1
1
> 0.1; (c) ΔR between the dilepton system and the leading jet; and (d) the average mj1 as a function of pj1

T .
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of pj1
T , providing an example of a distribution useful for MC

tuning. All of the derived observables can be calculated
from the OMNIFOLD data event by event and be used to
define bins with associated cross sections and uncertainties,
just as for any of the 24 input variables.
The analysis was validated using a “pseudodata” sample

constructed by reweighting the particle-level quantities in the
alternative MC sample to resemble the real reconstruction-
level data. Two such samples were generated: a high-
statistics sample with weighted events and a datalike sample
with unit weights obtained by bootstrapping the former
sample. The full analysis was performed on the unit-weight
pseudodataset, and the unfolding bias uncertainty was
evaluated by assessing the closure between the OMNIFOLD

result with the particle-level target. Chi-squared compati-
bility tests between the obtained measurements and the
known underlying particle-level distributions for each of the
24þ 2 observables all yielded p values > 0.07, except for
p
j1
T , with a p value of 0.038. A full analysis of the

pseudodataset was also performed using IBU, where each
observable was measured individually with the same binning
and input data. The central values of the IBU measurements
agree well within precision with the OMNIFOLD result. The
IBU experimental, theoretical, unfolding, and statistical
uncertainty components are also similar to those of the
OMNIFOLD measurement in magnitude, shape, and resulting
covariance. IBU also demonstrates a very similar perfor-
mance in the closure test against the target. The total
uncertainty was found overall to be similar, but tends to
be somewhat larger for the OMNIFOLD measurement, pri-
marily due to the NN initialization uncertainty that does not
apply to IBU. The average bin uncertainty across all 24
observables was found to be 3.0% for IBU and 3.9% for
OMNIFOLD. The uncertainty due to hidden variables does
decrease for certain variables, but not generally, which is
likely an indication that the detector response is not strongly
covariate with the variables used for this measurement.
The OMNIFOLD result was then validated by performing

χ2 tests of differential spectra in dedicated kinematic
subregions: high p

μμ
T (pμμ

T > 250 GeV), electroweak-
enhanced (mjj > 200 GeV, Δyjj > 2), and diboson-
enhanced (mj1 > 32 GeV). Chi-squared tests were
performed against the pseudodata target within each sub-
region for all measured and several derived observables. All
results yielded p values greater than 0.05, except for one
observable (mj1) in the electroweak-enhanced region,
which had a p value of 0.02. The result was also validated
in two-dimensional kinematic subregions, e.g., for pμμ

T vs
yμμ, with p values > 0.05. Ablation studies on the input
variables were performed to understand the effect of
removing one or two variables from the unfolding pro-
cedure. These tests indicated that apart from a small
number of cases in which critical variables including
mj1, mj2, p

j1
T , and p

j2
T were removed, removing almost

any of the other twenty-four input variables still yielded
excellent agreement within the quoted unfolding uncer-
tainties. Stress tests were also performed to ensure the result
is robust to nontrivial distortions. These included randomly
and deterministically shifting and stretching the input
spectra. No significant bias in the final result was observed.
The results of the validation tests were used to define a

set of recommendations on how to use the provided
datasets based on phase space coverage in data and
simulation. The OMNIFOLD results are entirely unbinned,
so the chosen binning is for presentation purposes only and
is configurable. When choosing bins, certain best practices
are recommended to help ensure that the number of MC
and data events per bin yield sufficient support for the
unfolding and stable uncertainties. These recommendations
are detailed in the User Guide found in Supplemental
Material [94], and examples of use are provided in the
interactive PYTHON notebooks associated with the pub-
lished unbinned datasets [95].
In conclusion, this Letter presents an unbinned unfolded

cross-section measurement of Z þ jets events using
139 fb−1 of proton-proton collisions at

ffiffiffi

s
p ¼ 13 TeV

collected with the ATLAS detector at the LHC. The 24
observables treated in this analysis are simultaneously
unfolded using the machine learning method OMNIFOLD.
These results demonstrate that collider data can be unfolded
in an unbinned manner and that the result can be reanalyzed
at the event level, allowing researchers significant increased
utility such as adjusting binning and constructing new
observables from the 24 provided ones. This flexibility
makes it possible to probe kinematic regimes and observ-
ables not originally foreseen, which can enable numerous
physics use cases including strong tests of QCD and
detailed tuning of MC event generators.
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End Matter

Appendix—The OMNIFOLD method [39,40] is
illustrated in Fig. 3 and briefly reviewed here. The
approach takes two event samples as input: (1) an MC
sample containing events with both particle-level (x⃗p)
and detector-level (x⃗r) information, and (2) the
reconstructed data, where x⃗ is a list of the 24 event-level
observables: x⃗ ¼ ðpμμ

T ;…; τ
j2
3
Þ. The MC sample encodes

information about the detector response such as energy
and momentum resolution, particle and selection
inefficiencies. The method is based on a multi-
dimensional reweighting: at each step, a smooth
weighting function is obtained using the event
observables x⃗. First, it corrects reconstructed-level MC
to match data with weights ωðxr!Þ. Next, an improved
MC prediction is achieved by propagating ωðx⃗rÞ to the
particle level x⃗p. Then, a new reweighting function νðx⃗pÞ
is obtained by reweighting the particle-level prediction to
the improved one from the previous step. It should be
noted that νðx⃗pÞ itself does not rely on the detector level
input, even if this was crucial in the derivation of it.
Event weights defined by νðx⃗pÞ is then propagated back
through the MC to the detector level, resulting in an
improved prediction to the data compared to the initial
MC. The method is repeated iteratively; the updated

reweighting function becomes a product of the previous
one until a predefined number of iterations are
performed, when the method stops.
The reweighting functions used in OMNIFOLD are based

on the output fðx⃗Þ of NNs trained with a weighted binary
cross-entropy loss function:

L½fðx⃗Þ�¼−

X

i∈A

wi log½fðx⃗iÞ�−
X

i∈B

wi log½1−fðx⃗iÞ�; ðA1Þ

where the wi are event weights for datasets A and B, with
associated (joint) probability densities pAðx⃗Þ and pBðx⃗Þ.
With this choice of loss function, the produced NN
classifier fðx⃗Þ can be used to define the quantity
ωðx⃗Þ≡ fðx⃗Þ=½1 − fðx⃗Þ�, which is known to asymptotically
approach the likelihood ratio pAðx⃗Þ=pBðx⃗Þ [99,100],
assuming A and B are normalized to unity (

P

A wi ¼
P

B wi ¼ 1). This quantity is used to perform the
24-dimensional shape reweighting in the first and third
step of the OMNIFOLD method. The correction in the second
and fourth step is applied to each event i in sample B by
updating the event weights by wi ↦ wiωðx⃗iÞ.
In the first reweighting step of OMNIFOLD, Sample A is

data and Sample B is detector-level MC simulation. Each
event weight wi ¼ 1 for data, while for MC simulation, wi
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is initialized as the nominal MC sample weights. Both
samples are normalized such that

P

i wi ¼ 1, and the MC
event weights are updated for each iteration as described
above. In the second reweighting step of OMNIFOLD,
Samples A and B both have the same events and kinematics
x⃗p, but the weights for A are taken as ωðx⃗rÞ from the
previous step. The reweighting then takes place using only
particle-level quantities.
This analysis does not subtract the background as it is

small (< 0.25%). A natural way to subtract backgrounds as

part of the OMNIFOLD procedure with nontrivial back-
grounds would be to add negatively weighted MC events
to the A dataset, such that in total, A corresponds to data
with background subtracted [40]. The differential accep-
tance and efficiency are accounted for naturally by events
satisfying one of the detector-level or particle-level
event selections, but not both. Events that do not carry
an updated weight from the previous step are assigned the
average weight in their region of phase space x using
Eq. (A1) [40].
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S. Trincaz-Duvoid ,130 D. A. Trischuk ,27 B. Trocmé ,61 A. Tropina,39 L. Truong ,34c M. Trzebinski ,88 A. Trzupek ,88

F. Tsai ,149 M. Tsai ,108 A. Tsiamis ,156,y P. V. Tsiareshka,38 S. Tsigaridas ,159a A. Tsirigotis ,156,z V. Tsiskaridze ,158

E. G. Tskhadadze ,153a M. Tsopoulou ,156 Y. Tsujikawa ,89 I. I. Tsukerman ,38 V. Tsulaia ,18a S. Tsuno ,85

K. Tsuri ,121 D. Tsybychev ,149 Y. Tu ,65b A. Tudorache ,28b V. Tudorache ,28b A. N. Tuna ,62 S. Turchikhin ,58b,58a

I. Turk Cakir ,3a R. Turra ,72a T. Turtuvshin ,39,ii P.M. Tuts ,42 S. Tzamarias ,156,y E. Tzovara ,102 F. Ukegawa ,160

P. A. Ulloa Poblete ,140c,140b E. N. Umaka ,30 G. Unal ,37 A. Undrus ,30 G. Unel ,162 J. Urban ,29b P. Urrejola ,140a

G. Usai ,8 R. Ushioda ,141 M. Usman ,110 Z. Uysal ,83 V. Vacek ,135 B. Vachon ,106 T. Vafeiadis ,37 A. Vaitkus ,98

C. Valderanis ,111 E. Valdes Santurio ,48a,48b M. Valente ,159a S. Valentinetti ,24b,24a A. Valero ,166

E. Valiente Moreno ,166 A. Vallier ,91 J. A. Valls Ferrer ,166 D. R. Van Arneman ,117 T. R. Van Daalen ,142

A. Van Der Graaf ,50 P. Van Gemmeren ,6 M. Van Rijnbach ,37 S. Van Stroud ,98 I. Van Vulpen ,117 P. Vana ,136

M. Vanadia ,77a,77b W. Vandelli ,37 E. R. Vandewall ,124 D. Vannicola ,155 L. Vannoli ,54 R. Vari ,76a E.W. Varnes ,7

C. Varni ,18b T. Varol ,152 D. Varouchas ,67 L. Varriale ,166 K. E. Varvell ,151 M. E. Vasile ,28b L. Vaslin,85

G. A. Vasquez ,168 A. Vasyukov ,39 L.M. Vaughan ,124 R. Vavricka,102 T. Vazquez Schroeder ,37 J. Veatch ,32

V. Vecchio ,103 M. J. Veen ,105 I. Veliscek ,30 L.M. Veloce ,158 F. Veloso ,133a,133c S. Veneziano ,76a A. Ventura ,71a,71b

S. Ventura Gonzalez ,138 A. Verbytskyi ,112 M. Verducci ,75a,75b C. Vergis ,96 M. Verissimo De Araujo ,84b

W. Verkerke ,117 J. C. Vermeulen ,117 C. Vernieri ,147 M. Vessella ,105 M. C. Vetterli ,146,d A. Vgenopoulos ,102

N. Viaux Maira ,140f T. Vickey ,143 O. E. Vickey Boeriu ,143 G. H. A. Viehhauser ,129 L. Vigani ,64b M. Villa ,24b,24a

M. Villaplana Perez ,166 E. M. Villhauer,53 E. Vilucchi ,54 M. G. Vincter ,35 A. Visibile,117 C. Vittori ,37

I. Vivarelli ,24b,24a E. Voevodina ,112 F. Vogel ,111 J. C. Voigt ,51 P. Vokac ,135 Yu. Volkotrub ,87b J. Von Ahnen ,49

E. Von Toerne ,25 B. Vormwald ,37 V. Vorobel ,136 K. Vorobev ,38 M. Vos ,166 K. Voss ,145 M. Vozak ,117

L. Vozdecky ,123 N. Vranjes ,16 M. Vranjes Milosavljevic ,16 M. Vreeswijk ,117 N. K. Vu ,63d,63c R. Vuillermet ,37

O. Vujinovic ,102 I. Vukotic ,40 S. Wada ,160 C. Wagner,105 J. M. Wagner ,18a W. Wagner ,174 S. Wahdan ,174

H. Wahlberg ,92 M. Wakida ,113 J. Walder ,137 R. Walker ,111 W. Walkowiak ,145 A. Wall ,131 E. J. Wallin ,100

T. Wamorkar ,6 A. Z. Wang ,139 C. Wang ,102 C. Wang ,11 H. Wang ,18a J. Wang ,65c P. Wang ,98 R. Wang ,62

R. Wang ,6 S. M. Wang ,152 S. Wang ,63b S. Wang ,14 T. Wang ,63a W. T. Wang ,81 W. Wang ,14 X. Wang ,114a

X. Wang ,165 X. Wang ,63c Y. Wang ,63d Y. Wang ,114a Y. Wang ,63a Z. Wang ,108 Z. Wang ,63d,52,63c Z. Wang ,108

PHYSICAL REVIEW LETTERS 133, 261803 (2024)

261803-18



A. Warburton ,106 R. J. Ward ,21 N. Warrack ,60 S. Waterhouse ,97 A. T. Watson ,21 H. Watson ,60 M. F. Watson ,21

E. Watton ,60,137 G. Watts ,142 B.M. Waugh ,98 J. M. Webb ,55 C. Weber ,30 H. A. Weber ,19 M. S. Weber ,20

S. M. Weber ,64a C. Wei ,63a Y. Wei ,55 A. R. Weidberg ,129 E. J. Weik ,120 J. Weingarten ,50 C. Weiser ,55

C. J. Wells ,49 T. Wenaus ,30 B. Wendland ,50 T. Wengler ,37 N. S. Wenke,112 N. Wermes ,25 M. Wessels ,64a

A.M. Wharton ,93 A. S. White ,62 A. White ,8 M. J. White ,1 D. Whiteson ,162 L. Wickremasinghe ,127

W. Wiedenmann ,173 M. Wielers ,137 C. Wiglesworth ,43 D. J. Wilbern,123 H. G. Wilkens ,37 J. J. H. Wilkinson ,33

D.M. Williams ,42 H. H. Williams,131 S. Williams ,33 S. Willocq ,105 B. J. Wilson ,103 P. J. Windischhofer ,40

F. I. Winkel ,31 F. Winklmeier ,126 B. T. Winter ,55 J. K. Winter ,103 M. Wittgen,147 M. Wobisch ,99 T. Wojtkowski,61

Z. Wolffs ,117 J. Wollrath,162 M.W. Wolter ,88 H. Wolters ,133a,133c M. C. Wong,139 E. L. Woodward ,42 S. D. Worm ,49

B. K. Wosiek ,88 K.W. Woźniak ,88 S. Wozniewski ,56 K. Wraight ,60 C. Wu ,21 M. Wu ,114b M. Wu ,116

S. L. Wu ,173 X. Wu ,57 Y. Wu ,63a Z. Wu ,4 J. Wuerzinger ,112,u T. R. Wyatt ,103 B.M. Wynne ,53 S. Xella ,43

L. Xia ,114a M. Xia ,15 M. Xie ,63a S. Xin ,14,114c A. Xiong ,126 J. Xiong ,18a D. Xu ,14 H. Xu ,63a L. Xu ,63a

R. Xu ,131 T. Xu ,108 Y. Xu ,15 Z. Xu ,53 Z. Xu,114a B. Yabsley ,151 S. Yacoob ,34a Y. Yamaguchi ,141

E. Yamashita ,157 H. Yamauchi ,160 T. Yamazaki ,18a Y. Yamazaki ,86 J. Yan,63c S. Yan ,60 Z. Yan ,105

H. J. Yang ,63c,63d H. T. Yang ,63a S. Yang ,63a T. Yang ,65c X. Yang ,37 X. Yang ,14 Y. Yang ,45 Y. Yang,63a

Z. Yang ,63a W-M. Yao ,18a H. Ye ,114a H. Ye ,56 J. Ye ,14 S. Ye ,30 X. Ye ,63a Y. Yeh ,98 I. Yeletskikh ,39 B. Yeo ,18b

M. R. Yexley ,98 T. P. Yildirim ,129 P. Yin ,42 K. Yorita ,171 S. Younas ,28b C. J. S. Young ,37 C. Young ,147

C. Yu ,14,114c Y. Yu ,63a J. Yuan ,14,114c M. Yuan ,108 R. Yuan ,63d,63c L. Yue ,98 M. Zaazoua ,63a B. Zabinski ,88

E. Zaid,53 Z. K. Zak ,88 T. Zakareishvili ,166 S. Zambito ,57 J. A. Zamora Saa ,140d,140b J. Zang ,157 D. Zanzi ,55

O. Zaplatilek ,135 C. Zeitnitz ,174 H. Zeng ,14 J. C. Zeng ,165 D. T. Zenger Jr. ,27 O. Zenin ,38 T. Ženiš ,29a S. Zenz ,96

S. Zerradi ,36a D. Zerwas ,67 M. Zhai ,14,114c D. F. Zhang ,143 J. Zhang ,63b J. Zhang ,6 K. Zhang ,14,114c L. Zhang ,63a

L. Zhang ,114a P. Zhang ,14,114c R. Zhang ,173 S. Zhang ,108 S. Zhang ,91 T. Zhang ,157 X. Zhang ,63c X. Zhang ,63b

Y. Zhang ,63c Y. Zhang ,98 Y. Zhang ,114a Z. Zhang ,18a Z. Zhang ,63b Z. Zhang ,67 H. Zhao ,142 T. Zhao ,63b

Y. Zhao ,139 Z. Zhao ,63a Z. Zhao ,63a A. Zhemchugov ,39 J. Zheng ,114a K. Zheng ,165 X. Zheng ,63a Z. Zheng ,147

D. Zhong ,165 B. Zhou ,108 H. Zhou ,7 N. Zhou ,63c Y. Zhou ,15 Y. Zhou ,114a Y. Zhou,7 C. G. Zhu ,63b J. Zhu ,108

X. Zhu,63d Y. Zhu ,63c Y. Zhu ,63a X. Zhuang ,14 K. Zhukov ,38 N. I. Zimine ,39 J. Zinsser ,64b M. Ziolkowski ,145

L. Živković ,16 A. Zoccoli ,24b,24a K. Zoch ,62 T. G. Zorbas ,143 O. Zormpa ,47 W. Zou ,42 and L. Zwalinski 37

(ATLAS Collaboration)

1
Department of Physics, University of Adelaide, Adelaide, Australia

2
Department of Physics, University of Alberta, Edmonton, Alberta, Canada

3a
Department of Physics, Ankara University, Ankara, Türkiye

3b
Division of Physics, TOBB University of Economics and Technology, Ankara, Türkiye

4
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73a
INFN Sezione di Napoli, Italy

73b
Dipartimento di Fisica, Università di Napoli, Napoli, Italy
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