
Nuclear Instruments and Methods in Physics Research A 1081 (2026) 170838

A
0

Contents lists available at ScienceDirect

Nuclear Inst. and Methods in Physics Research, A

journal homepage: www.elsevier.com/locate/nima

Developing a network discovery protocol for the constellation control and

data acquisition framework
Stephan Lachnit , on behalf of the EDDA collaboration
Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany

A R T I C L E I N F O

Keywords:
DAQ
DCS
Test beam
Software development
Network protocols

 A B S T R A C T

Qualifying new detectors in test beam environments presents a challenging setting that requires stable
operation of diverse devices, often employing multiple data acquisition systems. Changes to these setups
are frequent, such as using different reference detectors depending on the facility. Managing this complexity
necessitates a system capable of controlling the data taking, monitoring the experimental setup, facilitating
seamless configuration, and easy integration of new devices.

One aspect of such systems is network configuration. Many systems require fixed IP addresses for all
machines participating in the data acquisition, which adds complexity for users.

In this paper, a network protocol for network discovery tailored towards network-distributed control and
data acquisition systems is described.
1. Introduction

The characterization and testing of detectors during their develop-
ment is essential for the success of particle physics experiments. One
environment for such tests is test beams, where a particle detector is
tested using particles provided by a particle accelerator. To study the
performance of the detector, reference measurements of the particles
are needed, which is typically achieved using other detectors provided
by the test beam facility. This results in a dynamic environment where
the components for the measurement frequently change.

Each detector requires a readout system to read the data from the
detector. These readout systems are highly specific to the detector
itself and often come with specialized Data Acquisition (DAQ) software,
forming a DAQ system. In dynamic environments different DAQ sys-
tems for the respective detectors have to be operated synchronously to
take data. This requires a control system, which provides a common
interface to the different DAQ systems.

Since the DAQ systems for these detectors usually run on separate
machines, such a control system has to incorporate network commu-
nication. Existing control systems like EUDAQ2 [1] or DAQling [2]
require fixed IP addresses for the setup. As a result, the first configura-
tion step during a test beam after the physical setup is often configuring
IP addresses and copying them to a script or configuration file.

This paper describes an alternative approach using zero-configur-
ation networking to discover components of the control system in a
local network automatically.

E-mail address: stephan.lachnit@desy.de.

2. Zero-configuration networking

Requiring IP addresses to be fixed is not necessary in local net-
works. Zero-configuration networking (often called zeroconf, network
discovery, or service discovery) describes technologies that enable an
automatic network setup without prior knowledge of other IP ad-
dresses. It has existed in some form at least since the mid-1980s with
AppleTalk [3].

In the 2000s, several zero-configuration networking protocols
emerged such as Apple’s Bonjour [4] or Universal Plug and Play
(UPnP) [5] based on the User Datagram Protocol (UDP) [6].

Data over UDP can be transmitted via unicasts, multicasts, or broad-
casts. Unicasts transport data from one peer to another. Multicasts
transport data from one peer to all peers that have explicitly joined
the multicast group to which the data was sent. This multicast group is
a special IP address that has to be defined by network protocols, similar
to ports. Broadcasts transport data to all peers in a local network. Both
UDP multicasts and broadcasts are thus suitable for zero-configuration
networking.

In 2013, DNS-based Service Discovery (DNS-SD) [7] based on Bon-
jour was standardized and is now the dominant network discovery
protocol. It is the underlying technology behind most network printers
via Bonjour, Spotify Connect [8], the Matter IoT protocol [9], and many
other applications. It is mostly used in conjunction with multicast DNS
(mDNS) [10], which uses UDP multicasts. DNS-SD is natively supported
https://doi.org/10.1016/j.nima.2025.170838
Received 21 March 2025; Received in revised form 26 May 2025; Accepted 5 July
vailable online 19 July 2025
168-9002/© 2025 The Authors. Published by Elsevier B.V. This is an open access a
2025

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/nima
https://www.elsevier.com/locate/nima
https://orcid.org/0000-0001-9834-7819
mailto:stephan.lachnit@desy.de
https://doi.org/10.1016/j.nima.2025.170838
https://doi.org/10.1016/j.nima.2025.170838
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nima.2025.170838&domain=pdf
http://creativecommons.org/licenses/by/4.0/

S. Lachnit Nuclear Inst. and Methods in Physics Research, A 1081 (2026) 170838
Fig. 1. Sequence diagram for CHIRP.

in Linux (avahi), MacOS (Bonjour), and Windows (part of dnsapi
since Windows 10).

Many programs with a limited scope implement custom discovery
protocols based on UDP since the implementation can be faster than us-
ing the different native interfaces which differ substantially. Embedded
solutions are not suitable since running multiple mDNS responders on
a machine can lead to issues since queries might be answered multiple
times with inconsistent responses.

3. Constellation

Constellation [11] is a network-distributed control and data acqui-
sition framework for small-scale experiments and experimental setups
with volatile and dynamic constituents such as test beam environments
or laboratory test stands. The central components of a Constellation net-
work are so-called satellites, which implement instrument-controlling
code or other components that should follow the Constellation op-
eration synchronously. Satellites operate autonomously, meaning no
central control instance is required to be active at all times.

Since Constellation aims to provide a flexible framework that is easy
to use for operators and due to the autonomy of the satellites, a network
discovery protocol that avoids requiring fixed IP addresses is necessary.
This protocol and its implementation will be described in the following
section.

4. The protocol

4.1. Requirements

The main task of the protocol is to provide a way to discover
satellites with a Constellation. This has to work both as an early joiner
(discover satellites joining later) and as a late joiner (discover already
existing satellites).

In a lab, multiple independent experiments might take place on the
same local network. Thus, the protocol needs to provide an identifier to
separate between experiments such that only satellites of one particular
experiment can be discovered. A unique identifier for instances and an
identifier for the type of service is also required.
2
Since multiple satellites might run on the same machine, network
ports for specific services cannot be predefined, since only one appli-
cation can bind a port.1 Services have to use an ephemeral port, which
is a free port assigned by the operation system. The network discovery
protocol thus also needs to provide the port of the service.

4.2. Specifications

The protocol is called Constellation Host Identification and Recon-
naissance Protocol (CHIRP) and is written as an IETF RFC-style docu-
ment [12].

CHIRP uses UDP broadcasts on port 7123. When a satellite is
started, it broadcasts an offer for each service it provides with the
corresponding port number. To discover existing satellites, a request can
be broadcast, to which satellites reply with an offer. Further, satellites
should broadcast a depart message when shutting down. Fig. 1 shows
a sequence diagram of this logic.

Each host participating in CHIRP requires a 16-octet universally
unique identifier (UUID). Each host also belongs to a group, which
is identified by a 16-octet UUID. A host should only react to CHIRP
messages from its corresponding group. The bit width of the host and
group UUIDs was chosen to allow using MD5 hashes of arbitrary length
names.

A CHIRP message has a fixed size of 42 octets. The first six octets
are the protocol header, consisting of the five ASCII letters for the
protocol (CHIRP) and one octet for the protocol version (0x01):

 +---+---+---+---+---+------+
 | C | H | I | R | P | 0x01 |
 +---+---+---+---+---+------+

The body of a CHIRP message consists of a 1-octet message type,
a 16-octet group identifier, a 16-octet host UUID, a 1-octet service
identifier, and a 2-octet port number in network byte order (big-
endian):

 +------+------------+-----------+---------+------+
 | type | group UUID | host UUID | service | port |
 +------+------------+-----------+---------+------+

The message type can either be a request (0x01), an offer (0x02),
or a depart message (0x03). Possible values for the service identifier
are not specified in CHIRP itself but in the corresponding protocols
for the services to avoid updating the protocol when a new service is
introduced.

4.3. Implementation

CHIRP has been implemented independently in C++ and Python
[13], as well as for the ESP32 microchip [14]. The protocol and its
implementations have been tested in test beam environments.

Usually, only one program can bind a specific network port. To
allow multiple satellites on the same machine to use CHIRP on port
7123, the SO_REUSEADDR socket option for UDP was enabled.

One challenge faced during the implementation was machines with
multiple active network interfaces. Using the default broadcast address
(255.255.255.255) does not result in broadcasts sent to all network
interfaces, which resulted in some services not being found. A solution
for this is to iterate over all network interfaces and broadcast using the
respective interface-specific broadcast addresses.

In Fig. 2 a screenshot of a user interface for Constellation is shown.
The screenshot was taken during a test beam where eight satellites were
used in total. The user interface used CHIRP to discover the satellites
that were running on three different machines across the local network.

1 This is not true for UDP but does apply to TCP, which is used for all
network communication in Constellation besides the network discovery.

S. Lachnit Nuclear Inst. and Methods in Physics Research, A 1081 (2026) 170838
Fig. 2. Screenshot of a user interface for Constellation.

Neither the satellites nor the user interface required any configuration
of IP addresses.

5. Summary & outlook

A network discovery protocol has been developed for a network-
distributed control and data acquisition framework named Constel-
lation. The protocol allows to discover constituents of the network
without requiring prior knowledge of their IP addresses using UDP
broadcasts as underlying network technology. The protocol includes a
group identifier which allows to carry out multiple separate setups in
the same local network. It also foresees dynamic allocation of network
ports to allow running multiple instances on the same machine. Dis-
covery can be achieved both as an early joiner and a late joiner to a
network through a request and offer pattern.

Further improvements to the protocol are planned after extensive
use in practice. Replacing UDP broadcasts with multicasts allows for
use in networks where broadcasting is restricted from the router and
reduces network traffic to non-participating machines. Using arbitrary
length names instead of fixed length UUIDs improves the readability of
log messages regarding the protocol. Lastly, leveraging a standardized
serialization format like MessagePack [15] instead of defining bytes
directly will result in simplified code paths.
3
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] Y. Liu, M. Amjad, P. Baesso, D. Cussans, J. Dreyling-Eschweiler, R. Ete, I.
Gregor, L. Huth, A. Irles, H. Jansen, K. Krueger, J. Kvasnicka, R. Peschke, E.
Rossi, A. Rummler, F. Sefkow, M. Stanitzki, M. Wing, M. Wu, EUDAQ2 – a
flexible data acquisition software framework for common test beams, J. Instrum.
14 (10) (2019) P10033, http://dx.doi.org/10.1088/1748-0221/14/10/P10033,
arXiv:1907.10600.

[2] M. Boretto, W. Brylinski, G. Lehmann Miotto, E. Gamberini, R. Sipos, V.V.
Sonesten, DAQling: an open-source data acquisition framework, EPJ Web Conf.
245 (2020) 01026, http://dx.doi.org/10.1051/epjconf/202024501026.

[3] Wikipedia contributors, AppleTalk – Wikipedia, 2025, URL https://en.
wikipedia.org/w/index.php?title=AppleTalk&oldid=1272692778. (Accessed 06
March 2025).

[4] Apple Inc., Bonjour, 2025, URL https://developer.apple.com/bonjour/. (Accessed
06 March 2025).

[5] International Organization for Standardization, ISO/IEC 29341: UPnP Device
Architecture, 2017, URL https://www.iso.org/standard/69286.html.

[6] J. Postel, User Datagram Protocol, 1980, http://dx.doi.org/10.17487/RFC0768,
RFC 768.

[7] S. Cheshire, M. Krochmal, DNS-Based Service Discovery, 2013, http://dx.doi.org/
10.17487/RFC6763, RFC 6763.

[8] Spotify A.B., Spotfy Connect ZeroConf API Documentation, 2025,
URL https://developer.spotify.com/documentation/commercial-hardware/
implementation/guides/zeroconf. (Accessed 06 March 2025).

[9] Connectivity Standards Alliance, Matter Discovery Documentation, 2025,
URL https://handbook.buildwithmatter.com/howitworks/discovery/. (Accessed
06 March 2025).

[10] S. Cheshire, M. Krochmal, Multicast DNS, 2013, http://dx.doi.org/10.17487/
RFC6762, RFC 6762.

[11] The Constellation authors, Constellation: The autonomous control and data acqui-
sition system for dynamic experimental setups, 2025, URL https://constellation.
pages.desy.de/. (Accessed 06 March 2025).

[12] The Constellation authors, Constellation Host Identification and Reconnais-
sance Protocol, 2025, URL https://constellation.pages.desy.de/protocols/chirp.
html. (Accessed 06 March 2025).

[13] The Constellation authors, Constellation software repository, 2025, URL https:
//gitlab.desy.de/constellation/constellation. (Accessed 06 March 2025).

[14] The Constellation authors, MicroSat software repository, 2025, URL https://
gitlab.desy.de/constellation/microsat. (Accessed 06 March 2025).

[15] S. Furuhashi, MessagePack, 2025, URL https://msgpack.org/. (Accessed 06 March
2025).

http://dx.doi.org/10.1088/1748-0221/14/10/P10033
http://arxiv.org/abs/1907.10600
http://dx.doi.org/10.1051/epjconf/202024501026
https://en.wikipedia.org/w/index.php?title=AppleTalk&oldid=1272692778
https://en.wikipedia.org/w/index.php?title=AppleTalk&oldid=1272692778
https://en.wikipedia.org/w/index.php?title=AppleTalk&oldid=1272692778
https://developer.apple.com/bonjour/
https://www.iso.org/standard/69286.html
http://dx.doi.org/10.17487/RFC0768
http://dx.doi.org/10.17487/RFC6763
http://dx.doi.org/10.17487/RFC6763
http://dx.doi.org/10.17487/RFC6763
https://developer.spotify.com/documentation/commercial-hardware/implementation/guides/zeroconf
https://developer.spotify.com/documentation/commercial-hardware/implementation/guides/zeroconf
https://developer.spotify.com/documentation/commercial-hardware/implementation/guides/zeroconf
https://handbook.buildwithmatter.com/howitworks/discovery/
http://dx.doi.org/10.17487/RFC6762
http://dx.doi.org/10.17487/RFC6762
http://dx.doi.org/10.17487/RFC6762
https://constellation.pages.desy.de/
https://constellation.pages.desy.de/
https://constellation.pages.desy.de/
https://constellation.pages.desy.de/protocols/chirp.html
https://constellation.pages.desy.de/protocols/chirp.html
https://constellation.pages.desy.de/protocols/chirp.html
https://gitlab.desy.de/constellation/constellation
https://gitlab.desy.de/constellation/constellation
https://gitlab.desy.de/constellation/constellation
https://gitlab.desy.de/constellation/microsat
https://gitlab.desy.de/constellation/microsat
https://gitlab.desy.de/constellation/microsat
https://msgpack.org/

	Developing a network discovery protocol for the constellation control and data acquisition framework
	Introduction
	Zero-Configuration Networking
	Constellation
	The Protocol
	Requirements
	Specifications
	Implementation

	Summary & Outlook
	Declaration of competing interest
	References

