
AUTOMATED ANOMALY DETECTION ON EUROPEAN XFEL

KLYSTRONS

A. Sulc, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany

A. Eichler, T. Wilksen, Deutsches Elektronen-Synchrotron, Hamburg, Germany

Abstract

High-power multi-beam klystrons represent a key compo-

nent to amplify RF to generate the accelerating field of the

superconducting radio frequency (SRF) cavities at European

XFEL. Exchanging these high-power components takes time

and effort, thus it is necessary to minimize maintenance and

downtime and at the same time maximize the device’s opera-

tion. In an attempt to explore the behavior of klystrons using

machine learning, we completed a series of experiments on

our klystrons to determine various operational modes and

conduct feature extraction and dimensionality reduction to

extract the most valuable information about a normal op-

eration. To analyze recorded data we used state-of-the-art

data-driven learning techniques and recognized the most

promising components that might help us better understand

klystron operational states and identify early on possible

faults or anomalies.

INTRODUCTION

European XFEL is currently operating 25 klystrons. They

play a crucial role in the acceleration and operation of the

European XFEL. They function as radio frequency (RF)

power amplifiers, providing high-power RF signals that are

used to accelerate the charged particles to high energies

as they travel through the linear accelerator structure. The

performance and reliability of the klystrons directly impact

the accelerator’s ability to deliver the desired beam energy,

intensity, and stability to the experiment. Klystrons that are

not functioning optimally can lead to fluctuations in the RF

power, resulting in beam energy variations, reduced beam

intensity, or even beam loss. Failure of a klystron can cause

a complete interruption in the accelerator’s operation, as the

loss of RF power will prevent the particle beam from being

accelerated, leading to downtime for the accelerator facility

and disrupting ongoing experiments.

At the same time, klystrons are highly complex devices,

with many interdependent components and parameters. Di-

agnosing and predicting potential failures in them can be

very challenging because they have relatively high stability

and mostly operate as black boxes from a signal viewpoint.

In this work, we leverage machine learning techniques

for anomaly detection to better understand klystron opera-

tional states and identify potential faults before they lead to

downtime. We then employ a specialized one-class anomaly

loss [1] which is an unsupervised machine learning approach

that reduces the dimensionality of the inputs to isolate key

characteristics distinguishing normal functions. By train-

ing models on this reduced feature set, we can recognize

anomalies and incipient failures based solely on klystron

signals that we retrieve from DOOCS [2] and collect with

DxMAF [3], providing a data-driven means of maximizing

uptime for these delicate and expensive devices.

RELATED WORK

The first fully digital version of the Klystron Lifetime

Management (KLM) system was developed by Butkowski et

al. [4] to maximize the lifetime of klystron tubes used in the

X-Ray Free Electron Laser (XFEL) at DESY and has been

successfully running since then. In their setting at European

XFEL, klystrons are linear-beam vacuum tubes that operate

at 1.3 GHz and 10 MW power to accelerate electron bunches

for the European XFEL. A crucial component is the con-

tinuous operation of klystrons for at least 20 years, thus the

klystron lifetime needs to exceed 60,000 hours. The KLM

itself is a digital system that detects exceptional events like

arcing, RF breakdowns, etc., and takes preventive actions

(interrupt the drive) to avoid potential complications leading

to longer downtime. In the implementation of [4], it is cru-

cial to have a fast and reliable FPGA implementation that

handles protection functions such as reflection limitation,

forward/input power correspondence, and energy monitor-

ing within 300 nanoseconds. The KLM system serves as an

effective preventive measure to avoid klystron damage from

exceptional events during operation. Our research aims to go

a step further; by detecting potential issues at an even earlier

stage before they manifest as urgent events, we can provide

more lead time to anticipate problems and take preventive

action.

In [5] authors propose an anomaly detection approach

using a neural network model to predict breakdowns on

superconducting radio frequency (SRF) cavities at the Euro-

pean XFEL. They experiment with two models: one trained

with a semi-supervised anomaly loss (SAL) [6] and another

with binary cross-entropy loss (BCE). The SAL model uses

a small set of labeled anomalous data along with a larger set

of normal data, while the BCE model is trained in a fully

supervised manner on the labeled data and requires balance

in training data.

Our approach is similar to [5], but we use the unsuper-

vised one-class loss [1] (OC) instead of the SAL [6], as we

lack labeled anomalous cases. The model is trained solely

on standard waveform modes, allowing it to learn normal

patterns and detect deviations as anomalies without labels.

The one-class loss’s sensitivity can potentially enhance the

klystron lifetime and reliability by alarming operators based

on training to sensitive modes of klystron signals character-

izing the state. Additionally, we obtain a latent variable en-
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coding the klystron state and potential drift(s) as the model’s

output embedding of the klystron state changes.

METHOD

One Class Loss

Deep OC classification [1] is a loss function that aims to

train a model to inputs belonging to a specific class(es) by

learning solely from training data containing examples of

that class. This approach differs from traditional classifi-

cation problems where the training data includes examples

from all classes, and where the goal is to distinguish between

the classes. The objective of OC loss is to model the charac-

teristics of the single class of interest which is dominating

the inputs, rather than distinguishing it from other classes.

Consider a function 5\ : R# ↦→ R" (a neural network).

The objective of OC is to minimize the distance between a

fixed (randomly chosen) hypersphere center c ∈ R" and the

projection 5\ of most (non-anomalous points) x,

arg min
\
‖ 5\ (x) − c‖2
︸          ︷︷          ︸

anomaly score B (x)

, (1)

where parameters \ of 5 are optimized to project x to c.

The OC loss is an anomaly score B. If 5\ has bias parameters,

fix biases and c to avoid trivial solution [1], where biases

converge to c.

Furthermore, the 5\ (x) encodes x’s state based on dis-

tance and position, thus outputs can be visualized and ana-

lyzed via T-SNE [7] as a state embeddings.

Architecture

The architecture consists of an input layer that takes a

sequence of 205 features, followed by an LSTM layer with

either 32 or 64 hidden units (") to capture temporal depen-

dencies in the input sequence. The LSTM layer’s output is

then mapped by a linear layer to real numbers, which is the

final model embedding, see Eq. 1.

Inputs

States of the klystrons are expressed by the following

waveforms: FD.F1 is forward power at the first klystron arm,

FD.F2 is forward power at the second klystron arm, FD.FI

is forward power at klystron input, FD.R1 is reflected power

at first klystron arm, FD.R2 is reflected power at second

klystron arm, and FD.RI is reflected power at klystron input.

Each waveform consists of 2048 amplitude and phase values.

Pre-processing First, we transform the amplitude and

phase into in-phase and quadrature components (IQ). Then

we sub-sample waveforms, taking only every 10th value to

lower computational requirements. Our experiments show

only FD.RI is essential without losing too much recognition

ability. Each waveform is normalized to zero mean and unit

standard deviation.
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Figure 1: Anomaly scores B of the event that took place on

Mar. 7th 2023 (top) and Feb. 1st 2024 (bottom) Top: Notice

the bump around 9:13:16 which increases the B until the

klystron is shut down (after 9:23:45). Right: The anomaly

score fluctuates quite significantly over an extended period

(10:24:26 - 15:03:06). There is a peak around 14:30, which

precedes severe disruption of observed signals.

RESULTS

We selected two events that were detected post mortem as

anomalous with our detection system, from which one led

to a fatal failure of klystron (Feb. 1st 2024).

Event on Mar. 7th 2023

The probable cause of this issue is multipacting, where

electrons emitted from the cathode or other surfaces within

the vacuum envelope of the klystron A13 can become trapped

in a resonant trajectory, repeatedly striking the cavity walls.

This process can begin suddenly and escalate rapidly, cre-

ating a high density electron cloud that can absorb energy

from the RF field, leading to excessive heating, outgassing,

and ultimately RF breakdown in the klystron.

Our algorithm notices the first issue at 08:38:21, where

there is a slight bump in B, see Fig. 1 (top). Furthermore,

at around 9:13:16, there is a noticeable jump of B followed

by a steady increase in score. An unexpected state change

is observed in the FD.FI signal, as it is also visible from

the phase in Fig. 2 at that time. After this bump, which

peaks approximately around 9:14:00, there is a noticeable

change in the phase. When we take a detailed look at the

T-SNE embedding of the vectors 5 in that time range, we

can divide the space into three separate clusters according

to Fig. 4 (left): blue states corresponding to normal state(s),

green points which are waveforms that are projected by 5

away from the blue points, and red states which are states

that follow after the peak (a klystron drift).

Event on Feb. 1st 2024

The A16 klystron experienced a catastrophic failure, be-

ing unable to sustain the required high voltage, likely due

to excessive dark current. The reflected power levels fluc-

tuate erratically, another potential symptom of dark current
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Figure 2: The phase of the event that took place on Mar. 7th 2023. Each column is one waveform FD.RI of one pulse.
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Figure 3: Amplitude and phase of FD.RI of the event from Feb. 1st 2024.

issues. Despite attempts to mitigate arcing events, the arc-

ing persisted, eventually leading to permanent damage to

the klystron tube. Physical disassembly and inspection of

internal components is required for comprehensive failure

analysis after klystron replacement.

With the trained algorithm, one can observe mild fluc-

tuations of B, see right Fig. 1. For instance, approximately

periods 11:18 - 11:35, 13:02 - 13:19, and finally a noticeable

peak around 14:30 which might indicate a bigger problem

before the station stops sending signals (after 15:09). By

looking at the input signals in Fig. 3, we can see that there are

several mode changes (approximately 10:26 - 11:18, 11:35

- 11:52, 13:19 - 13:36), this is also visible in two distinct

Mar. 7th 2023 Feb. 1st 2024
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Figure 4: T-SNE Embedding shows a reduced projection

of the network from " dimensions onto 2D while distance

is preserved. The colors of the left image encode different

B levels (red between (0.04, 0.06), blue between (0, 0.04)

and green (0.06,∞). Similarly on the right figure, red color

encodes B above 0.007.

clusters in the T-SNE embedding in right Fig. 4. What is

however quite noticeable is variation in the first third of the

phase, where values fluctuate quite significantly.

CONCLUSION

In this work, we demonstrated the application of unsu-

pervised deep one-class classification with an LSTM model

for sequential anomaly detection in the operational signals

of high-power klystrons at the European XFEL facility. By

training solely on normal waveform data, the model learns

to characterize standard klystron behavior and identify de-

viations as potential anomalies or faults. We presented two

case studies of actual events - a suspected multipacting issue

on Mar. 7th 2023, and a catastrophic klystron failure on

Feb. 1st 2024. Our algorithm identified precursors, flagging

anomalous waveform patterns before the issues escalated

to system failures or downtime which were assessed by the

experts.
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