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Abstract: The study of non-local operators in gauge theory and holography, such as

line-operators or interfaces, has attracted significant attention. Two-dimensional symmet-

ric product orbifolds are close cousins of higher-dimensional gauge theory. In this work,

we construct a novel family of interfaces in symmetric product orbifolds. These may be

regarded as two-dimensional analogues of Wilson-line operators or Karch-Randall inter-

faces at the same time. The construction of the interfaces entails the choice of boundary

conditions of the seed theory. For a generic seed theory, we construct the boundary states

associated to the interfaces via the folding trick, compute their overlaps and extract the

spectrum of interface changing operators through modular transformation. Then, we spe-

cialise to the supersymmetric four-torus T4 and show that the corresponding interfaces of

the symmetric product orbifold are dual to AdS2 branes in the tensionless limit of type

IIB superstring theory on AdS3 × S
3 ×T4.
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1 Introduction

Symmetric product orbifolds of two-dimensional conformal field theories (CFTs) have been

studied extensively for more than thirty years starting with [1]. They provide families of

two-dimensional CFTs whose central charge grows linearly with the number N of copies

of the underlying seed theoryM. Correlation functions of local operators in these theories

share many features with those of higher-dimensional gauge theories. In particular, they

possess a diagrammatic large N expansion that is very similar to the ’t Hooft expansion of

non-Abelian gauge theories [2]. Just as it is the case for their higher-dimensional cousins,

these features of symmetric product orbifolds are suggestive of their holographic corre-

spondence with string theory in AdS3 backgrounds, as was first suggested in [3–5]. The

work of Eberhardt, Gaberdiel and Gopakumar [6] established that the symmetric product

orbifold of a supersymmetric four-torus is dual to string theory on AdS3 with one unit of
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pure NSNS flux. This has become one of the key examples for a holographic duality and

it is one that could help to uncover the inner workings of the AdS/CFT correspondence.

The study of symmetric product orbifolds has largely focused on the spectrum and

correlation functions of local fields. There are only relatively few papers that deal with

boundary conditions, defects or interfaces, see [7–12]. This is in some contrast with higher-

dimensional gauge theories, and in particular in N = 4 supersymmetric Yang-Mills (SYM)

theory, where the study of e.g. Karch-Randell interfaces and Maldacena-Wilson lines has

received very considerable attention, both for their roles in gauge theory and for the insights

they provide on non-perturbative aspects of string theory in anti-de Sitter (AdS) space.

In this work, we initiate a study of interfaces in symmetric product orbifolds that can be

considered the lower-dimensional cousins of both Karch-Randell interfaces and of Wilson

lines at the same time.

Before we go into the features of the interfaces between symmetric product orbifolds,

it is instructive to briefly recall basic facts about the higher-dimensional analogues. The

Karch-Randall interface connects two maximally SYM theories with gauge groups SU(N+)
and SU(N−) on either side of the interface. It arises from a D3-D5 brane system [13],

where D3 branes end on D5 branes.1 Wilson lines in N = 4 SYM theory possess different

holographic realisations depending on a choice of representation of the gauge group. The

most standard case is that of the fundamental representation in which case the brane

realisation is in terms of a single fundamental string in AdS5. For representations that

arise through the tensor product of k fundamental representations with k of order N ,

which is more relevant in our context, the brane realisation uses D-branes instead, either

D3 or D5 branes depending on whether the representation is symmetric or antisymmetric.2

In both cases, the charge of k fundamental strings is carried by the electric flux of the

D-brane, see e.g. [14] and references therein, in particular [15–18]. Such branes with non-

vanishing electric flux approach the boundary of AdS at an angle that depends on the

amount of flux.

Let us now turn to the two-dimensional case. Certain symmetric product orbifolds

can be thought of as describing excitations of a system of Q1 fundamental strings and Q5

NS5 branes which wrap some four-dimensional compactification manifold, such as T
4 or

K3. We can create a defect in this theory by inserting a probe D1 brane into the dual

AdS3 background. We shall focus on the case in which this probe brane is localised along

an AdS2 inside AdS3. More generally, we can consider (n,1)-strings, i.e. bound states

of a D1 brane and n fundamental strings, see e.g. [19]. As in the case of Wilson lines

reviewed in the previous paragraph, one may think of these (n,1) strings as a D1 brane

with a worldvolume electric field turned on with a strength that is determined by n. When

we allow n fundamental strings to run along the worldvolume of the probe D1 brane,

the number of fundamental strings that appear in the brane realisation of the symmetric

1More precisely, one considers configurations in which q of the N+ D3 branes that realise the SU(N+)

SYM theory end on the D5 brane while N+ − q = N = N− run through it to realise the SU(N−) SYM theory

on the other side.
2Other representations of the gauge group whose Young diagram have more than one row or column

require multiple probe branes.
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product orbifold can jump from one side of the D1 brane junction to the other, just as in

the case of Karch-Randall interfaces in gauge theory.

In contrast to the higher-dimensional theories, string theory on AdS3 with a pure

NSNS-background is famously solvable using a description in terms (non-compact) Wess-

Zumino-Novikov-Witten (WZNW) models. The related WZNW model on the sphere

with hyperbolic target space H+3 was first solved by Teschner [20, 21]. With input from

Teschner’s CFT analysis, Maldacena and Ooguri were able to construct a theory of closed

strings on AdS3 background with pure NSNS flux [22, 23]. A central ingredient of their

work was the inclusion of spectrally flowed representations of the underlying sl(2) affine

Kac-Moody algebra. These were needed in order to describe long strings . The worldsheet

analysis of branes and open strings in these models was initiated in [19] with a classification

of possible brane geometries. Maximally symmetric branes, i.e. branes that preserve the

affine Kac-Moody algebra, can be localised along several different submanifolds. Here, we

shall mainly deal with AdS2 branes. In general, D-branes may be described by boundary

states of the worldsheet CFT which encode all information about the open string spectrum

and the couplings with closed strings. Boundary states for AdS2 branes (along with spher-

ical branes) have been constructed in [24, 25] building upon some preliminary studies in

[26–30]. In agreement with the geometric intuition we recalled above, there is a continuous

family of such boundary states that is parametrized by one real parameter that is related to

the angle at which the AdS2 brane approaches the boundary. Moreover, the branes support

a family of ‘half-winding’ long open strings with arbitrarily large winding number. The

half-winding is related to the fact that the AdS2 brane approaches the asymptotic bound-

ary of AdS3 at two opposite sides which are mapped onto each other by a half-rotation of

AdS3. While the spectrum of open strings on the AdS2 branes is rather rich, they only

couple to a very small subset of the bulk states in the WZNW model, namely to states of

winding number w = 0 only.

The goal of our work is to address the holographic description of AdS2 branes and to

construct the interface between symmetric orbifold theories that is created when an AdS2
brane ends on the boundary of AdS3, see also [9] for a very insightful previous discussion.

More precisely, we construct a family of interfaces between any pair of symmetric product

orbifolds of rank N− and N+ that are parametrised by some integer p = 1, . . . ,min(N−,N+).
The interfaces I

(p)
∣a±⟩ that we define are transmissive in p components of the product theory

and reflective in the remaining ones with a reflective behaviour that depends on the choice

of a boundary conditions a± of the underlying seed conformal field theory M. A precise

definition is given in section 2.2, see eq. (2.38) and the explanation of notation below that

formula. Our description uses the folding trick and hence it describes the interface in terms

of a boundary state of the folded theory, as shown in figure 1. As usual, the boundary state

encodes the entire set of one-point couplings between the interface and bulk fields of the

CFT. From this description of the interfaces, we then determine the annulus amplitude and

thereby the exact spectrum of interface changing operators between any pair of interfaces

in section 2.4. This key result is stated in eqs. (2.54 - 2.59). As is familiar in the context

symmetric product orbifolds since the seminal paper of Dijkgraaf-Moore-Verlinde-Verlinde
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SymN+(M)SymN
−(M)

Interface

folding

SymN
−(M)⊗ SymN+(M)

Interface

as a boundary state

Figure 1. Interface between SymN
−M and SymN

−M as a boundary state of the folded theory.

The red lines indicate reflective boundaries. This figure is for N− = 3, N+ = 4, p = 2.

with pL transmissive boundaries

SymN
−(M)⊗ SymN+(M)

Left side interface

with pR transmissive boundaries

Right side interface

Figure 2. Contribution to the torus partition function in the presence of a pair of interfaces with

parameters N− = 3, N+ = 4, pL = 2, pR = 1. The red lines indicate reflective boundaries. As discussed

in Section 2.4, the full partition function is a symmetrised sum over terms of the type illustrated

in this figure.

[31], it is easiest to state the result in terms of a grand canonical partition function. In the

setup under consideration, this grand canonical partition function involves four chemical

potentials µ± and ρA with A ∈ {L,R}. The first two, i.e. µ− and µ+, correspond to the

order N± of the symmetric product orbifold on the two sides of the interfaces. The other

two chemical potentials, ρL and ρR, are associated with the numbers pL and pR to the left

and the right of the interface changing operator, see figure 2.

A key objective of this paper is to show that the interfaces constructed in section 2.2

provide a holographic description of AdS2 branes (and the open strings thereon) in type

IIB superstring theory on AdS3×S
3×T4. In the presence of k units of NSNS-flux, the dual

CFT is supposed to be given by a marginal deformation of symmetric product orbifold of

T
4. When k = 1, i.e. for minimal amount of NSNS-flux, the dual CFT has been argued to

coincide with the orbifold fixed point [6], without any need for further deformation. As

evidence, Gaberdiel et al. were able to show that the spectrum of the string theory agreed

with that of the symmetric product orbifold CFT. Later, the matching was extended to

string amplitudes and correlation functions. In particular it was understood that the string
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worldsheet in calculations of closed string amplitudes localises to the boundary of the AdS3
target space. This has been exploited to calculate string amplitudes and compare them

with the corresponding correlation functions in the dual CFT, see in particular [32, 33]. The

holographic description of spherical branes in the tensionless limit of type IIB superstring

theory on AdS3 × S
3 ×T4 was addressed in [8]. More concretely, it was found that (some)

spherical branes are dual to special cases of the boundaries in symmetric product orbifolds

that were studied extensively by Belin et al. in [7] by applying standard constructions of

boundary CFT, see in particular [34]. With the exception of appendix C, which contains

some new perspectives on correlation functions in the presence of spherical branes, our work

will focus on AdS2 branes. In the tensionless limit, these possess a few special features

that deserve to be spelled out right away. While for generic values of the level k there

exists a continuous family of AdS2 branes, the tensionless limit of IIB superstring theory

admit a unique AdS2 brane in the AdS3 factor of the target space.3 Quite remarkably,

the couplings of this unique AdS2 brane to (physical) closed string states are trivial. To

understand this, recall that AdS2 branes only couple to bulk states with winding number

w = 0. But the tensionless string has no non-trivial physical states with w = 0 and hence

the AdS2 brane appears transparent to closed strings. We shall discuss below how all these

features emerge from the proposed holographic description. In order to do so we extend the

match of bulk partition functions [6] to the case of AdS2 branes. Our matching of spectra

is based on formulas for the partition function of open strings on AdS2 branes in (global

and) thermal AdS3 backgrounds that we derive in section 3, see in particular eq. (3.34).

For a concise summary of the holographic relation we propose, the reader might also find

the box on page 31 useful.

Let us now briefly outline the plan of this paper. In many respects, section 2 contains

the main new results of this work. After a short review 2.1 of symmetric product orbifolds

that we use to set up notations, section 2.2 constructs the interfaces I
(p)
∣a±⟩. As a small

interlude, we compute the transmissivity and reflectivity of these interfaces in terms of the

parameter p in section 2.3. Then, in section 2.4, we calculate the spectrum of interface

changing operators. While our construction of the interface may seem somewhat artificial,

it is guided by the intention to construct a holographic dual of AdS2 branes in AdS3. To

show that this objective is indeed achieved, at least in the tensionless limit of type IIB

superstrings on AdS3 × S
3 × T4, we discuss the string theory of AdS2 branes in section

3.1. The boundary states of the world sheet theory corresponding to AdS2 branes have

been constructed in [8]. We briefly review this construction and then, in section 3.2, use

it to determine the spectrum of worldsheet boundary excitations associated to open string

states on the AdS2 branes in global AdS3. The result serves as an input to section 3.3,

where we perform an orbifold construction to pass to thermal AdS3. After integration over

the modular parameter of the toroidal worldsheet, we finally obtain the partition function

of open superstrings in thermal AdS3. The two strands of the discussion are merged in

3In [8] the authors constructed two boundary states. Here we only admit one special linear combination

thereof in order to restore the rotations symmetry with respect to half-rotations of AdS3. This additional

feature makes the boundary state unique.
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section 4 where we compare the string partition function with the “single particle” spectrum

of our interface in the symmetric product orbifold of the supersymmetric four-torus to

find complete agreement between these two quantities. The section also contains some

qualitative discussion of correlation functions in the symmetric product orbifold and the

corresponding scattering amplitudes of open and closed strings in the dual string theory.

A more quantitative analysis will appear in forthcoming work. This and other future

directions are discussed in the concluding section 5. The work contains three appendices in

which we provide some explicit calculations to prove formulas that are stated in the main

text.

2 Interfaces of symmetric product orbifolds

The arguably simplest type of interfaces are those that are purely reflecting or purely

transmitting. Purely reflecting interfaces can be obtained by choosing boundary conditions

for the two CFTs which are separated by the interface, resulting simply in a product of

two essentially decoupled boundary theories. In the specific context of symmetric product

orbifolds, a detailed analysis of the spectrum of boundary states has been provided by

[7]. The most prominent example of a purely transmitting interface is the trivial interface

between two identical CFTs. For symmetric product orbifolds, a broader class of purely

transmitting defects was studied in [10].

In this section, we introduce a more general family of interfaces between two different

symmetric product orbifolds SymN±(M) of the same seed theory M that interpolates

between the purely transmitting and purely reflecting extremes. For this purpose, section

2.1 establishes the general notation which we use to describe symmetric product orbifolds.

Section 2.2 gives a precise definition of our interfaces. Section 2.3 serves the purpose of

making our definitions more accessible by demonstrating how to compute the reflectivity

and transmissivity coefficients of our interface. It does not contain any information that

is strictly necessary for the rest of the discussion and may be skipped. Finally, section 2.4

determines partition functions of interface changing operators that act within the class of

interfaces that we have proposed.

2.1 Notation and conventions

This section sets up the necessary notation to work with symmetric product orbifolds

SymN(M) of a CFT M. The Hilbert space of the seed theory M is denoted by HM. It

comes equipped with two commuting actions of the Virasoro algebra along with possibly

further modes of some extended chiral algebra W . Under the action of this chiral algebra,

the state space decomposes into sectors which we label by letters i, j, . . . of the Roman

alphabet. In a unitary CFT, these are lowest weight representations. The partition function

of the seed theoryM is given by

Z(t, t̄) = TrHM[xL0− cM
24 x̄L̄0− cM

24 ], x = e2πit, x̄ = e−2πit̄. (2.1)

Here, cM denotes the central charge of the Virasoro algebra, as usual. With these basic

ingredients of the seed theory set up, we move on to the symmetric product orbifold.
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States of the symmetric product orbifold SymN(M) are obtained by the standard

rules of the orbifold construction. In a first step, we construct twisted sectors Hg for the

N th power M⊗N of the seed theory. These are labelled by group elements g ∈ SN of the

symmetric group. For a given element g, we define the centraliser subgroup

Cg = C
N
g = {σ ∈ SN ∣σgσ−1 = g } ⊆ SN . (2.2)

The twisted sector Hg carries a representation of Cg and, as part of the orbifold procedure,

we are instructed to project to its Cg invariant subspace. The projection can be performed

by averaging over the orbits of Cg. Hence, the torus partition function of the symmetric

product orbifold is given by4

ZN(t, t̄) ∶= 1

N !
∑

g∈SN

∑
h∈Cg

TrHg[hxL0−NcM
24 x̄L̄0−NcM

24 ]. (2.3)

One can straightforwardly express the partition function of the orbifold theory in terms

of the seed theory partition function by directly evaluating the trace. The most elegant

formula for the partition function [31] passes through the grand canonical ensemble

Z(κ; t, t̄) ∶= ∞∑
N=0

κNZN(t, t̄) = exp [ ∞∑
k=1

κkTkZ(t, t̄)] . (2.4)

The terms in the exponent on the right hand side are obtained from the partition function

Z(t, t̄) of the seed theory through application of the following Hecke operators

TkZ(t, t̄) ∶= 1

k
∑
w∣k

w−1∑
j=0

Z ( kt
w2
+
j

w
,
kt̄

w2
+
j

w
) . (2.5)

By expanding the exponent on the right hand side in powers of κ, it is straightforward to

obtain the partition functions ZN of symmetric product orbifolds for any finite integer N .

It is important to discuss formula (2.3) in more detail. We have written the formula

as a sum over all elements g of the symmetric group SN . But many of the twisted sectors

Hg we are summing over give rise to equivalent representations of the chiral algebra. By

construction, two twisted sectors Hg1 and Hg2 give rise to equivalent representations if g1
and g2 belong to the same conjugacy class. We denote the conjugacy class of g ∈ SN by

[g] ∶= {hgh−1 ∶ h ∈ SN } ⊆ SN (2.6)

and more generally

[g1, g2, . . . , gn] ∶= {(hg1h−1, hg2h−1, . . . , hgnh−1) ∶ h ∈ SN}. (2.7)

Famously, the conjugacy classes [g] of the symmetric group SN are in one to one correspon-

dence with integer partitions (w1, . . . ,wℓ) of N = ∑ℓ
r=1wi or, equivalently, Young diagrams

4The normalisation factor is 1/N ! because we divide both by the size of the centraliser ∣Cg ∣ (due to the

averaging over Cg orbits) as well as by the size of the conjugacy class of g.
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Y with N boxes. The correspondence is easy to spell out more explicitly. Any element

g ∈ SN possesses a unique (up to reordering of the factors) decomposition

g = ω1ω2⋯ωℓ (2.8)

into cyclic permutations ωr of length wr such that the cycles constitute a partition {ωr}ℓr=1
of {1, . . . ,N} into ordered sets. The integer partition {wr}ℓr=1 of N is graphically repre-

sented by the Young diagram Yg associated to g ∈ SN . Conversely, any two group elements

that possess a factorisation of the form (2.8) with ℓ cycles of order wr are conjugate to each

other. Given a Young diagram Y with N boxes we can always pick some representative gY
of the corresponding conjugacy class of SN .

With the help of the factorisation (2.8) of the group element g into a product of cyclic

permutations, it is easy to give a more explicit description of the centraliser group CNg .

Concretely, CNg is given by

CNg ∶= {σ = π ℓ∏
r=1

ωνr
r ∣νr ∈ Z and π ∈ Sℓ such that wπr = wr} ≃ N∏

w=1
Smw ⋉Z

mw
w , (2.9)

where the sequence (mw)w∈N is the weight of the diagram Yg i.e. mw is the number of rows

of length w. By the orbit-stabiliser theorem, the order ∣SN ∣ = N ! of the symmetric group

factorises as ∣SN ∣ = ∣CNg ∣ ⋅ ∣Yg ∣, (2.10)

where ∣Yg ∣ denotes the number of elements in the conjugacy class Yg of g. After this

preparation, it is natural to rewrite our formula (2.3) for the partition function of the

symmetric product orbifold as

ZN(t, t̄) = ∑
∣Y ∣=N

TrHgY [ΠgY
0 xL0−NcM

24 x̄L̄0−NcM
24 ] where ΠgY

0 ∶=
1∣CNgY ∣ ∑σ∈CNgY σ. (2.11)

In performing the sum over Young diagrams Y with N boxes, we can pick a single rep-

resentative g = gY ∈ SN and then construct the twisted sector Hg, the centraliser Cg and

the projection Πg
0 for that representative. The result is obviously independent of the rep-

resentative we choose. Thereby, we have rewritten the partition function of the symmetric

product orbifold as a sum over partitions of N rather than group elements g ∈ SN .

In order to illustrate the difference between the formulas (2.3) and (2.11), let us briefly

discuss the example of N = 3. In this case, the symmetric group S3 has six elements and

the original sum in eq. (2.3) runs over all these six elements. But the six group elements

fall into only three conjugacy classes which are associated with the three possible partitions

of N = 3. The conjugacy class for the partition Y = [1,1,1] consists of the unit element

g = e and its centraliser group C3e ≃ S3 ⋉ Z
3
1 is the entire symmetric group S3. Next, let us

consider the partition Y = [1,2]. The associated conjugacy class contains three elements,

namely g1 = (1)(23), g2 = (2)(13) and g3 = (3)(12). Their centraliser subgroups C3gi ≅ Z2

contain two elements each. Finally, for the trivial partition Y = [3], the conjugacy class

consists of the elements ω1 = (123) and ω2 = (132). Their centraliser group, on the other

hand, is now given by C3ωi
≅ Z3.
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In the following, we shall continue to think of the twisted sectorsHg as being associated

with elements g ∈ SN rather than with the Young diagrams Yg. This is correct as long as

we always remember not to sum but to average over the elements of a conjugacy class. Now

given a group element g with the factorisation (2.8) of length ℓ, states of the associated

twisted sector Hg take the form

∣(ψ1, . . . , ψℓ)⟩g where ψr ∈ HM (2.12)

are ℓ states in the seed theory. By abuse of notation, we simply write

∣ψr⟩g instead of ∣(ψr)ℓr=1⟩g. (2.13)

Let us assume that these ℓ states ψr, r = 1, . . . , ℓ of the seed theory have been chosen to be

eigenstates of (L0, L̄0) with eigenvalues (hr, h̄r). Then the twisted sector state (2.12) is an

eigenstate of the symmetric product orbifold Virasoro generators (L0, L̄0) with eigenvalues

hg =
ℓ∑

r=1
( hr
wr

+
cM
24
(wr −

1

wr

)) and h̄g =
ℓ∑

r=1
( h̄r
wr

+
cM
24
(wr −

1

wr

)) . (2.14)

In particular, its spin is given by

Jg = h̄g − hg =
ℓ∑

r=1
( h̄r − hr

wr

) . (2.15)

Only states (2.12) for which the spin is an integer correspond to local operators of the

symmetric product orbifold. In order to find the subset of physical states within the

twisted sector Hg, one needs to impose the projection to Cg invariants, see the construction

in Π0 in eq. (2.11). The action of σ ∈ Cg on twisted sector states (2.12) is given by

σ∣ψr⟩g = ℓ∏
r=1

e
2πi νr

wr
(h̄r−hr)∣ψπr⟩g = ∣e2πiνπr(L̄0−L0)ψπr⟩g. (2.16)

Here, we have represented σ ∈ Cg as a product σ = πων1
1 ⋯ω

νℓ
ℓ

as explained in eq. (2.9).

Furthermore, the Virasoro elements on the right hand side are understood to be those of

the symmetric product orbifold i.e. operators with a spectrum as given in (2.14). The

exponents νr of the single cycles ωr only enter the phase factor, while π permutes the

r labels. In order to help the reader to get used to the notation for symmetric product

orbifolds introduced in this section, we use it in appendix A to compute the torus partition

function.

2.2 Definition of the interfaces

This section constructs a class of interfaces between SymN−(M) and SymN+(M). We

think of these interfaces as separating the upper and lower half of the complex plane with

SymN−(M) living in the lower half plane and SymN+(M) in the upper. The definition of

our interfaces involves selecting a pair of boundary states ∣a±⟩ of the seed theoryM. These

boundary states of the seed theory give rise to a purely reflecting interface, in which all
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the N−[N+] copies of the seed theory in the lower[upper] half plane are simply reflected5

back. This is obviously a bit too trivial to be interesting. Instead, we propose to consider

interfaces in which p ≤ min(N−,N+) components can pass through the interface while the

remaining ones are reflected.

Qualitative overview of the construction. Before we discuss the precise construction

of the interfaces, let us first give a qualitative description of all steps that constitute it.

To spell out a concrete formula for the interfaces I = I
(p)
∣a±⟩, we utilize the folding trick and

describe the interfaces as boundary states of

SymN−(M)⊗ SymN+(M) =MN−+N+/SN− × SN+ . (2.17)

In our construction, we first choose a gauge in which p components in each of the theories

that we want to be transmitting are singled out. This procedure manifestly breaks the

SN− × SN+ symmetry of the folded theory down to SN−−p × Sp × Sp × SN+−p.
After this first gauge choice, we impose the reflecting boundary condition ∣a−⟩ along

N− − p components from the first factor and likewise ∣a+⟩ along N+ − p components from

the second factor. The remaining copies are glued together with transmitting boundary

conditions. Such a boundary condition is stabilised by the subgroup

SN−−p × Sp,diag × SN+−p ⊆ SN−−p × Sp × Sp × SN+−p ⊆ SN− × SN+ (2.18)

and thus the selection of a particular way to transmit the selected p copies of the seed theory

in the lower half plane to p copies in the upper half plane constitutes a second gauge choice

that breaks Sp × Sp to the diagonal subgroup Sp,diag ∶= {(g, g)∣g ∈ Sp} ⊆ Sp × Sp. To restore

the full SN− × SN+ symmetry, we finally need to average over the gauge orbits.

In the construction of boundary states of the folded theories, we can select characters

for each of the three factors of the stabiliser subgroup within the orbifold group SN− ×SN+ .

We denote these characters by (χ−, χp, χ+). The boundary states we are about to construct

are denoted by ∣p, a±;χ±, χp⟩ = ∣p, a±;χ±, χp⟩N±M . (2.19)

We shall often drop the sub- and superscripts that refer to the bulk data. In addition,

throughout most of our discussion we will set the characters χ±, χp to be trivial, drop them

from the arguments and write

∣p, a±;N±⟩ = ∣p, a±;χ± = 1, χp = 1⟩N±M . (2.20)

The interfaces obtained from the trivial representation of the stabiliser subgroup turn

out to be the ones that are relevant for holography.6 This is not merely an a posteriori

observation, but rather to be expected from first principles: From the string perspective,

the representations associated to the characters χ± and χp are the representations of the

5See section 2.3 below for a more precise definition of reflectivity and transmissivity in this context.
6There is some tension between this observation and the perspective advocated for in [7]. We comment

more on this issue in Appendix C where, in the context of correlation functions, it becomes especially

relevant.
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symmetric group that govern the statistics of multi-string states. If we would like to

describe multi-string ensembles with Bose statistics, we should hence make use only of the

trivial characters in the dual symmetric orbifold, see also [12]. Moreover, the restriction

to fully symmetric representations of the ‘gauge group’ SN is also consistent with the

situation for Maldacena-Wilson lines in four-dimensional N = 4 SYM theory. In the higher

dimensional context, Wilson lines in other than symmetric traceless tensor representations

require to consider multiple D3 branes in the bulk [35] (or D5 branes).

Reflective part of the interfaces. After this first qualitative description of our inter-

faces, let us now proceed with their systematic construction. The boundary states ∣a±⟩ of
the seed theory constitute the most non-trivial data that enters the construction. Let us

recall that the sectors of the seed theory, i.e. the irreducible representations of its chiral

algebra W , are labelled by some index j. Since the gluing condition for chiral fields relates

the label of the right- and left-moving representations, the index j also labels the Ishibashi

states ∣j⟫ that can contribute to the boundary state.7 Thus, a boundary state ∣a⟩ of the
seed theory is described by a set of coefficients aj in the expansion

∣a⟩ =∑
j

aj ∣j⟫. (2.21)

We can uplift this boundary state of the seed theory to a boundary state of the symmetric

product orbifold SymM(M) for any M ∈ N. Specifically we are interested in the cases

M = N− − p or M = N+ − p. Once again, the boundary state of the symmetric product

orbifold is a sum over Ishibashi states. For a fixed gauge ρ ∈ SM , the relevant Ishibashi

state is given by ∣jr⟫Mρ ∶= ∣{∣jr⟫}⟩Mρ . (2.22)

Here, ρ is assumed to possess a factorisation of the form (2.8) and the twisted sector states

that appear on the right hand side are obtained from ℓ Ishibashi states ∣jr⟫, r = 1, . . . ℓ of

the seed theory in the spirit of eq. (2.12). The only difference is that Ishibashi states live

in some appropriate completion of Hρ rather than Hρ itself.8 The action of elements σ ∈ Cρ
in the centraliser subgroup on the Ishibashi states takes the form

σ∣jr⟫ρ = ∣jπr⟫ρ , (2.23)

where π = πσ is a permutation that exchanges two cycles of the same length. Note that

the action of the factors ωνr
r in the factorisation formula for σ is trivial since contributions

from holomorphic and anti-holomorphic components cancel each other. The overlap of any

two of these Ishibashi states is given by

ρ′⟪j′r ∣σx̂ 1

2
(L0+L̄0− c

12
)∣jr⟫ρ = δ(ℓ)j′r,jπr

δρ′,ρ

ℓ∏
r=1

χjr( t̂
wr
). (2.24)

7To be more precise, the sectors of the seed theory are labelled by pairs (j, ̄) of representations for the

(anti-)holomorphic chiral fields. The specification of a boundary state involves picking a gluing automor-

phism Ω for the chiral algebra. This automorphism induces a map on representation labels j ↦ jΩ. Given

the choice of Ω, Ishibashi states only exist for those sectors of the theory for which ̄ = jΩ. In this sense, we

only need to specify a single representation label in order to specify the Ishibashi state, see [36] for details.
8For instance, they may be viewed as discontinuous linear functionals on H.
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Here, σ ∈ CMρ is in the centraliser subgroup of ρ and π = πσ, as before. Furthermore9,

χj(t) ∶= TrHj,̄
x

1

2
(L0+L̄0− c

12
). (2.25)

Let us stress that the Ishibashi states ∣jr⟫ρ we have introduced are not yet projected to the

subspace of Cρ invariant states. Given our Ishibashi states ∣jr⟫ρ, we construct the linear

combination

∣a⟩ρ = ∑
{jr}

aj1⋯ajℓ√∣CMρ ∣ ∣jr⟫
M
ρ (2.26)

with coefficients formed from products of the coefficients that appeared in the boundary

state ∣a⟩ of the seed theory. The overlap of any two of these states can be easily computed

from the overlap (2.24). Note that the states ∣a⟩ρ are actually within the subspace of Cρ
invariant elements, i.e. the projector Πρ

0 acts trivially on these states. The normalisation

we chose is the one that is appropriate for Cardy consistent boundary states, see e.g. [7]

or Section 4.3 of [8]. The states (2.26) constitute the first ingredient we shall use in

constructing our interfaces.

Transmissive part of the interfaces. As a second ingredient of our construction, we

need to discuss conformal interfaces for Symp(M). After the folding trick, such an interface

is described as a boundary state in which the holomorphic fields of the theory on the upper

half plane are glued to the anti-holomorphic fields of the second theory that was folded up

from the lower half plane and vice versa. Ishibashi states for the “permutation boundary

states” [34] in Symp(M) × Symp(M) will be denoted by

∣jr, is⟫p,pτ−,τ+ (2.27)

with τ± ∈ Sp that are conjugate to each other, i.e. [τ−] = [τ+]. More concretely, if we

formally10 write

∣jr⟫τ = ∣jr⟩τ ∣jr⟩τ , (2.28)

then

∣jr, is⟫p,pτ−,τ+ = ∣jr⟩τ− ∣is⟩τ− ∣is⟩τ+ ∣jr⟩τ+ . (2.29)

The action of the centraliser of τ+ and τ− on these Ishibashi states is given by

σ+σ− ∣jr, is⟫p,pτ−,τ+ = ∣αν−
π−rjπ−r⟩τ− ∣αν−

π−siπ−s⟩τ− ∣αν+
π+siπ+s⟩τ+ ∣αν+

π+rjπ+r⟩τ+ , (2.30)

where

α = e−2πiL0 . (2.31)

9In accordance with footnote 7, we could also have written jΩ instead of ̄ in eq. (2.25).
10Of course ∣jr⟫τ is not a pure tensor product of left and right movers, but a sum of such products. Our

notation captures the structure of the individual pure tensor summands.
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The overlaps of these Ishibashi states take the form

τ ′±
⟪j′r, i′s∣σ−σ+x̂L0+L̄0− c

12 ∣jr, is⟫τ±= δ(2ℓ)i′
k
,iπ±k

δ
(2ℓ)
j′
k
,jπ±k

δ
(2)
τ ′±,τ±

χi,σ+,σ−(t)χj,σ−,σ+(t). (2.32)

In particular, they are only non-vanishing if jπ−r = jπ+r. To spell out χj,σ−,σ+(t), recall that
π± is a product of permutations that shuffle twisted sectors associated to cyclic permuta-

tions of length w. Hence, if we write π± as a product π± = π±1π
±
2 . . . of cyclic permutations,

then each permutation π±a has two integers associated to it, namely the winding wπ±a of the

sectors it permutes and the length ℓπ±a = ∣π±a ∣.
The same is true for π ∶= π+π−1− = π1 . . . πm, i.e. for each πa we have pair (wa, ℓa) of

integers. The condition jπ−r = jπ+r is equivalent to the statement that jr = jπr i.e. jr = jπar

for all a. In particular, if we denote by a the set of labels appearing in the cycle πa, then

we can introduce ja as being equal to jr for some non further specified r ∈ a and this is a

well defined prescription. In terms of

χj(t, t̄ ) ∶= TrHj,̄
xL0− c

24 x̄L̄0− c
24 , (2.33)

χj,σ−,σ+(t) can then be expressed as

χj,σ−,σ+(t) = m∏
a=1

χja ( ℓat+ ∑k∈a ν
−
k

wa
,
ℓat+ ∑

k∈a
ν+
k

wa
) . (2.34)

Once again, we introduce a linear combination of these twisted Ishibashi states by summing

over the labels jr, is. But in this case, the sum over the labels is not sufficient in order to

ensure Cτ± invariance. Hence, we also have to perform the relevant projection

∣I⟫p,pτ−,τ+ = Π
τ+
0 Πτ−

0 ∑
jr,js

∣jr, is⟫p,pτ−,τ+ where Πτ±
0 =

1∣Cpτ± ∣ ∑σ±∈Cpτ± σ±. (2.35)

The overlap between any two such states can be computed with the help of formula (2.32).

This completes the discussion of the second ingredient for our construction of interfaces.

Averaging over gauge orbits. As the final step in the construction of the bound-

ary states (2.19), we now perform the averaging over gauge orbits. This gives the gauge

invariant state

∣p, a±⟩N±O±
= 1√

∣O−∣∣O+∣ ∑
(ρ±,τ±)∈O±

∣a−⟩ρ− ⋅ ∣I⟩p,pτ−,τ+ ⋅ ∣a+⟩ρ+ , (2.36)

where

O± ∶= [τ, ρ±]N±p = {(hτh−1, hρ±h−1) ∶ h ∈ SN±} (2.37)

are SN± gauge orbits associated to a choice of ρ± ∈ SN±−p and τ ∈ Sp. We added the

subscript p to remind ourselves, that τ and ρ± are elements of SN±−p and Sp and that the

associated subgroup is an extra piece of data that we explicitly keep track of. That is, we

distinguish for instance between idSp ∈ Sp and h ⋅ idSp ⋅ h
−1 = idhSp

∈ hSp.
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Let us briefly comment on the choice of normalisation that we made in the definition of∣p, a±⟩N±O±
. Ultimately, we do not have an a priori principle that tells us what the “correct”

normalisation should be. We can only justify our choice by showing that its overlaps lead

to the physical partition functions that we are interested in, which indeed will turn out

to be the case. However, we can at least argue, already before any computation, that

our guess is very natural one: Since we normalised appropriately the mutually orthogonal

states ∣a±⟩ρ± and ∣I⟩τ−,τ+ to represent reflective/transmissive boundaries, we should simply

divide out the square root of the size of the orbits that we sum over such that the sum

does not alter the already correct norm.

Now that we have constructed the boundary states ∣p, a±⟩N±O±
associated to some choice

of SN± orbits, we finally perform a weighted sum over all choices of O± to obtain the

boundary state

∣p, a±;χ−, χp, χ+⟩ = ∑
τ∈Sp

∑
ρ±∈SN±−p

χ−(ρ−)χp(τ)χ+(ρ+)∣[τ]∣∣[ρ+]∣∣[ρ−]∣ ∣p, a±⟩N±O±
. (2.38)

As advertised with eq. (2.19) at the end of our first qualitative description of the construc-

tion, formulating eq. (2.38) is the purpose of this section.

Summary of the construction. Let us finally summarise all ingredients of eq. (2.38) in

a concise manner. χ±, χp are characters of the SN±−p and Sp, respectively. The normalising

prefactors involving the numbers ∣[ρ±]∣ and ∣[τ]∣ of elements in the conjugacy classes of

ρ± ∈ SN±−p and τ ∈ Sp, respectively, appear here because we are summing over group

elements rather than conjugacy classes. The states we sum over are defined in eq. (2.36)

through a weighted average over elements g± of SN± . Their definition involves a product of

three states. Two of them are the states ∣a±⟫ρ′± , which are purely reflective with reflection

coefficients that are specified by the coefficients of boundary states ∣a±⟩ in the seed theory,

see eq. (2.26). The third factor in the states we average over is purely transmitting, see

eq. (2.35).

2.3 Reflectivity and transmissivity of the interfaces

Now that we have defined the interfaces in eq. (2.38) let us pause for a moment and

compute a first physical quantity that may help to better understand them. Concretely,

we determine the (stress-energy) reflectivity and transmissivity as proposed in [37]. It

measures e.g. how much energy gets transmitted through the interface or, after passing

to the folded setup, how much energy gets passes from e.g. from +-components of the

folded CFT to the −-component and vice versa. The interpretation of the reflectivity

is similar. More concretely, after folding the theory to the upper half plane we need to

compute correlations of the product T η(z)T̄ η(z̄) with η ∈ {+,−} in the presence of the

interface boundary state (2.38). Replacing the Virasoro fields by the corresponding states,

the quantity in question is

Rηη′ =
⟨0∣Lη

2L̄
η′

2 ∣p, a±;χ−, χp, χ+⟩⟨0∣p, a±;χ−, χp, χ+⟩ . (2.39)
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The overlaps that appear in this expressions are not that difficult to compute. The simplest

is clearly the overlap in the denominator which is obviously given by

⟨0∣p, a±;χ−, χp, χ+⟩ = χr−(id)χp(id)χr+(id)
√
(N−
p
)(N+

p
) (a−)N−−p0 (a+)N+−p0√(N− − p)!(N+ − p)! . (2.40)

The overlap in the numerator is not that much harder to compute. Note that the Virasoro

fields T± and T̄± of the two symmetric product orbifold CFTs are in the untwisted sector

and hence the overlap in the numerator sees essentially the same coefficients as that in the

denominator. In formulas this means only the term with τ = ρ± = id in the expansion of

the state (2.38) can contribute to give

⟨0∣Lη
2L̄

η′

2 ∣p, a±;χ−, χp, χ+⟩ = χr−(id)χp(id)χr+(id)⟨0∣Li
2L̄

j
2∣p, a±⟩N±[id,id]N±p

. (2.41)

The state on the right hand side is a special case of eq. (2.36) which consists of a single

term only and has trivial coefficient,

∣p, a±⟩N±[id,id]N±p

= ∣a−⟩ ⋅ ∣I⟩p,p ⋅ ∣a+⟩. (2.42)

Let us now first address the off-diagonal elements of the reflection matrix R, i.e. the matrix

elements R+− = R−+. Each of the N− − p components within the state ∣a±⟩ contributes a

factor of (a±)0. Moreover, every transmitting component gives rise to a term cM2(22 −
1)/12 = cM/2 from the commutations relations of the Virasoro generators in the seed theory.

Since we need to sum over all the transmitting components of which there are p, we find

the simple relation

⟨0∣L±2 L̄∓2 ∣p, a±;χ⟩ = pcM2 ⟨0∣p, a±;χ⟩. (2.43)

between the overlaps in the numerator and denominator. Here, we used the shorthand

χ = (χ−, χp, χ+) to denote the triple of characters. For the diagonal elements of R, the

transmissive boundaries do not contribute at all. The contribution of all the reflective

factors, on the other hand, sum to

⟨0∣L±2 L̄±2 ∣p, a±;χ⟩ = (N± − p)cM2 ⟨0∣p, a±;χ⟩. (2.44)

Plugging the previous two relations back into the definition (2.39) of the reflection matrix

R we conclude that

R =
cM
2
(N− − p p

p N+ − p
) . (2.45)

From the matrix elements, we read off the reflectivity of our interface, which is given by

R ∶=
2

cM(N− +N+)(R−− +R++) = 1 −
2p

N− +N+
, (2.46)

and the transmissivity

T =
2p

N− +N+
. (2.47)
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Note that the “unitarity condition” R + T = 1 is indeed satisfied. We also observe that

p = 0 corresponds to a purely reflective interface and N− = N+ = p is purely transmissive,

as expected. Let us end this short interlude with three minor comments on the result.

First, note that the formula (2.45) for R may be brought into its standard form

R =
cM
2

N−N+
N− +N+

⎡⎢⎢⎢⎢⎣
⎛⎝

N−
N+

1

1 N+
N−

⎞⎠ + ωb ( 1 −1

−1 1
)⎤⎥⎥⎥⎥⎦ (2.48)

from which we read off

ωb = 1 −
p

N−
−

p

N+
. (2.49)

Second, note that the reflectivity and transmissivity coefficients are insensitive to most of

the data that we used to construct the interfaces in the previous subsection. In fact, only

the number p of transmissive components and the numbers N±−p of reflective components

enter. The choice of the boundary conditions a± or the characters χ± and χp on the

other hand has no effect. The reason for this is rather clear from the derivation: The

stress-energy reflectivity and transmissivity only receive contributions from the untwisted

sector of the symmetric product orbifold. In this sense, R and T are very coarse grained

characterisations of the interfaces I
(p)∣a±⟩.

Let us finally make a somewhat related observation. We decided to determine the

matrix R above from the concrete formula (2.38). However, the authors of [37] noted

already that for a certain class of interfaces, the matrix R is rather easy to compute by

more general arguments. They considered a situation in which the chiral algebras A− and

A+ of the two CFTs the interface interpolates between possess a common subalgebra C.

If the interface I in question is completely transmissive for the common subalgebra C and

reflective for all other degrees of freedom, then the chiral algebra of the folded theory is

broken down to a product

A− ⊗A+ → A−/C ⊗ C ⊗ C ⊗A+/C. (2.50)

by the presence of the interface I. Denoting the corresponding boundary state by ∣I⟩, we
can easily compute

⟨0∣L±2 L̄∓2 ∣I⟩ = ⟨0∣(L(A/C)±2 +LC±2 )(L̄(A/C)∓2 + L̄C∓2 )∣I⟩
= ⟨0∣(L(A/C)±2 +LC±2 )(L(A/C)∓−2 +LC±−2)∣I⟩ = c

2
(2.51)

and

⟨0∣L±2 L̄±2 ∣I⟩ = ⟨0∣(L(A/C)±2 +LC±2 )(L̄(A/C)±2 + L̄C±2 )∣I⟩
= ⟨0∣(L(A/C)±2 +LC±2 )(L(A/C)±−2 +LC∓−2)∣I⟩ = c± − c

2
, (2.52)

where c± are the central charges of A± and c the central charge of the chiral subalgebra C.

In the two short calculations we have split the Virasoro elements L± and L̄± of the chiral
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algebras A± according the factorisation (2.50). Then, we used the Ishibashi conditions of

the interface boundary state ∣I⟩ to replace anti-holomorphic components by holomorphic

ones in passing from the first to the second line. In the last step we used commutation

relations of the Virasoro elements to evaluate the overlap in terms of the central charges. In

our case, the chiral algebras A± are those of the symmetric product orbifolds SymN±(M)
while the common subalgebra C that is preserved by the interface is the chiral algebra of

Symp(M). Plugging in the associated values of the central charges c± = cMN± and c = cMp

reproduces eq. (2.45).

2.4 Partition functions of interface changing operators

A very interesting object related to the interfaces that we defined in section 2.2 is the

partition function that enumerates interface changing operators. To be concrete, let us

choose one interface ∣pR, aR± ;χR⟩ to the right of the origin and another ∣pL, aL± ;χL⟩ to the

left. The associated partition function for interface changing operators is obtained from

the associated overlap as follows

ZN±(pL,aL± ;χL),(pR,aR± ,χ
R)(t) = Tr[xL0− c

24 ] = ⟨pL, aL± ;χL∣x̂ 1

2
(L0+L̄0− c

12
)∣pR, aR± ;χR⟩. (2.53)

Here, c = (N+ +N−)cM is the total central charge of the folded theory and the parameter

x̂ on the right is related to x = exp(2πit) by modular transformation x̂ = exp(2πit̂) with
t̂ = −1/t. We continue to use the shorthand χ for the entire triple (χ−, χp, χ+) of characters.
These overlaps could certainly be computed in full generality, but since we have no need

for such a general result, we restrict to the case in which all the characters χL/R are trivial.

This turns out to be the only one that is relevant for the holographic relation with AdS2

branes.

As usual, the partition functions of the type defined in eq. (2.53) are somewhat incon-

venient to describe individually, but as whole organise into a rather simple grand canonical

partition function. Concretely, we propose that the grand canonical partition function

Z
a
L/R
±
[µ±, ρL/R; t] ∶= ∞∑

N±=0

min(N±)∑
pL/R=0

µN+
+ µN−

− ρ
N++N−−2pL
L ρ

N++N−−2pR
R ZN±(pL,aL± ;1),(pR,aR± ,1)(t) (2.54)

is given by the exponential

Z
a
L/R
±
[µ±, ρL/R; t] = exp(ZC[µ±, ρL/R; t] +ZO[µ±, ρL/R; t]) (2.55)

of the sum of a “single closed string” part

ZC[µ±, ρL/R; t] = ∞∑
k=1

µk
−µ

k
+TkZc(t) (2.56)

and a “single open string” part

ZO[µ±, ρL/R; t] =∑
A,B∈{L,R}

∞∑
k=1
∑
w∣k

ρwAρ
w
Bµ

k−wδRAδLB− µ
k−wδLAδRB+

1

w
ẐAB
o ( (2k−w+wδBA)t̂

w2 ) . (2.57)
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ZC and ZO involve two types of partition functions for the bulk theory. On the one hand,

there is the “closed string” partition function Zc defined as

Zc(t) = ZM(t, t̄)t=t̄ (2.58)

which is the modular invariant bulk partition function of the seed theoryM restricted to

the diagonal t = t̄. On the other hand, there are the open string partition functions ZAB
o

defined as

ZLL
o = ZaL− ,(aL+ )∗ , ZLR

o = ZaL− ,a
R
−
, ZRL

o = ZaL+ ,a
R
+

and ZRR
o = Z(aR+ )∗,aR− (2.59)

where Za,b(t) = Zb∗,a∗(t) is the partition function of the annulus with boundary conditions

a and b imposed along the two components of the boundary. It is famously related to the

overlap of the boundary states in the seed theory through

Za,b(t) = ⟨a∣ x̂ 1

2
(L0+L̄0− cM

12
) ∣b⟩ = Ẑa,b(t̂). (2.60)

with t̂ = −1/t as usual. Strictly speaking, formula (2.55) is a conjecture. We decided against

a rigorous derivation of the full formula in this work. However, we do prove it carefully

for the special case ρL = 0 in appendix B. Considering this special case is necessary in

order to verify that we made the correct normalisation choices in section 2.2. It is also

sufficient in the sense that the case of ρL = 0 is fully sensitive to all normalisations that we

chose in the construction of the interface (2.38). Assuming that, with the correct choice of

normalisation, the grand canonical partition function exponentiates, eq. (2.55) then follows

by computing the “single string” sums ZC and ZO in the exponent. The calculation of

these “single string” sums is the most illuminating part of the computation. This is why

we dedicate the remainder of the current section to this task

Let us start by discussing the limit ρL = ρR = 0 in which only transmissive boundaries

are present. When both ρ parameters vanish, so does ZO. This means that only the first

term in the exponent contributes in the limit. Hence, our result (2.55) simplifies to

∞∑
N=0

κN ⟨N ∣x 1

2
(L(1)

0
+L̄(2)

0
− c

12
)x̄ 1

2
(L̄(1)

0
+L(2)

0
− c

12
)∣N⟩ = exp [ ∞∑

k=1
µk
−µ

k
+TkZ(t, t̄)] , (2.61)

where Z = Zc is the torus partition function of the seed theory, as before, Tk is the usual

Hecke operator (see eq. (2.5)), and ∣N⟩ is the fully transmissive boundary state

∣N⟩ = ∣p = N,a±;N+ = N = N−⟩. (2.62)

Obviously, this state does not depend on the choice of ∣a±⟩ since we do not allow for any

reflection. The state ∣N⟩ is associated with the trivial defect line of the symmetric product

orbifold. Hence, we expect the partition function to coincide with the torus partition

function (2.4), as shown in figure 3. This is indeed what we observe.

To verify eq. (2.61), we start by plugging in the definition (2.38) of ∣N⟩ on the left

hand side of the equation and simplifying, which gives

⟨N ∣x 1

2
(L(1)

0
+L̄(2)

0
)x̄ 1

2
(L̄(1)

0
+L(2)

0
)∣N⟩ = 1

N !
∑

τ∈SN

∑
σ∈CNτ

∑
jr,is

N,N
τ,τ ⟪jr, is∣xL0 x̄L̄0σ∣jr, is⟫N,N

τ,τ . (2.63)
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SymN (M)⊗ SymN (M)

SymN (M) on Torus

pL = pR = N : both sides are fully transmissive

≃

Figure 3. Coincidence of partition function of fully transmissive boundaries and torus partition

function.

This formula for the overlap manifestly is a sum of contributions each associated to a

permutation τ ∈ SN and an element σ of the centraliser of τ . As explained in section 2.1,

σ includes a factor πσ that permutes j and i labels associated to cycles of the same length

within the permutation τ . Only those terms in the sum for which jr = jπσr and js = jπσs

are non-vanishing. The full answer factorises into individual contributions associated to

the cycles of τ and πσ. This suggests11 that the full grand canonical partition function

is an exponential of sums of single cycle contributions Z(w,ℓ) associated to a πσ that is a

single cycle of length ℓ and a τ that is a product of ℓ cycles of length w such that N = wℓ.

To compute the single cycle contributions Z(w,ℓ), let us define

τ(w,ℓ) =
ℓ−1∏
k=0
(kw + 1, kw + 2, . . . , kw +w). (2.64)

From eq. (2.63), we can then directly conclude that

Z(w,ℓ) =
∣[τ(w,ℓ)]∣

N !
∑

σ∈Cτ(w,ℓ)∣πσ ∣=ℓ
∑
jr,is

N,N
τ(w,ℓ),τ(w,ℓ)

⟪jr, is∣xL0− c
24 x̄

L̄0− c
24σ∣jr, is⟫N,N

τ(w,ℓ),τ(w,ℓ)
. (2.65)

The action of σ on the states was spelled out in eq. (2.30) which leads to

Z(w,ℓ) = 1
wℓℓ!
(ℓ − 1)!w−1∑

i1=0
⋅ ⋅ ⋅

w−1∑
iℓ=0

ZM
⎛⎜⎝
ℓt+

ℓ

∑
k=1

ik

w
,
ℓt̄+

ℓ

∑
k=1

ik

w

⎞⎟⎠ . (2.66)

Using that the partition function ZM of the bulk theory is invariant under modular T trans-

formations, i.e. under shifts of the argument by arbitrary integers, the previous formula

simplifies to

Z(w,ℓ) = 1
wℓ

w−1∑
i=0

ZM ( ℓt+iw
, ℓt̄+i

w
) = 1

N

w−1∑
i=0

ZM (Nt
w2 +

i
w
, Nt
w2 +

i
w
) . (2.67)

This is what we wanted to show.

11As mentioned before, the computation in appendix B proves the claim rigorously.
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Let us now look at the more generic case, where only ρL is sent to 0 in our general

formula (2.55). In this case, we obtain

ZaL/R[µ±,0, ρR; t̂] = exp⎛⎝
∞∑
k=1

µk
−µ

k
+TkZc(t̂) + ∞∑

k=1
∑
w∣k

µk
−µ

k
+ρ

2w
R

1

w
ẐRR
o (2 kt̂

w2 )⎞⎠ . (2.68)

We now sketch how this result is derived. Again, just by plugging in the definition (2.38)

and performing a few elementary simplification steps, one can deduce that

⟨N ∣x̂L0 ∣p, a⟩ = 1

p!(N − p)! ∑τ∈Sp

∑
ρ∈SN−p

∑
σ∈CNτρ

∑
jr,is

N,N
ρτ,τρ⟪jr, is∣x̂L0σ∣a⟩ρ∣I⟩τ,τ ∣a⟩ρ, (2.69)

where σ acts only on the states of the symmetric orbifold living in the lower half plane. At

this point, we can also unfold using the notation introduced in eq. (2.29) and obtain

⟨N ∣x̂L0 ∣p, a⟩ = 1

p!(N − p)! ∑τ∈Sp

∑
ρ∈SN−p

∑
σ∈CNτρ

∑
jr,is

ρ⟨a∣⟨is∣pτ ⟨jr ∣pτ x̂L0σ∣is⟩pτ ∣jr⟩pτ ∣a⟩ρ. (2.70)

The overlap can be interpreted as a sum of products of “open string” contributions (which

involve reflecting boundaries) and “closed string” contributions (which do not involve re-

flecting boundaries) that arise from the interplay of different τ , ρ and σ. In the special

case p = 0, there are no closed string contributions.

Furthermore, for p = 0, the only “single string” contributions come from the conjugacy

class [ρ] = [(1 . . .N)] of the maximal cyclic permutation. The choice of σ does not matter:

every element of the commutator acts trivially. Accordingly, these contributions to the

partition are simply

∣[ρ]∣∣Cρ∣
N !

ρ⟨a∣x̂2L0− c
12 ∣a⟩ρ = ρ⟨a∣x̂2L0− c

12 ∣a⟩ρ = 1

N
Ẑo ( 2tN ) , (2.71)

where Zo is defined in eq. (2.59). The factor 1/N on the right hand side of the equation

originates from our choice to normalise ∣a⟩ρ by 1/√Cρ, see eq. (2.26).

More generally, we can find single particle contributions at p = w(ℓ − 1) for N = wℓ.

They arise for

∣πσ ∣ = ℓ, [τ] = [τ(w,ℓ−1)], [ρ] = [((ℓ − 1)w + 1 . . . ℓw)]. (2.72)

Their contribution to the partition function is

∣[τ]∣∣[ρ]∣∣{σ ∈ CNτρ ∶ ∣πσ ∣ = ℓ}∣
p!(N − p)!∣CN−pρ ∣ Ẑo (2ℓtw ) = ∣{σ ∈ C

N
τρ ∶ ∣πσ ∣ = ℓ}∣∣Cpτ ∣∣CN−pρ ∣2 Ẑo (2ℓtw ) = 1

w
Ẑo (2Nt

w2 ) . (2.73)

Assuming that the grand canonical partition function is obtained by the exponentiation of

these single particle contributions, we obtain eq. (2.68). Appendix B provides a detailed

computation that establishes this result more rigorously.

Before we close this section, let us add a few comments concerning the formula (2.57).

First of all, we have introduced µ± and ρL/R in order to unify the discussion of the various
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special cases obtained by sending some of the chemical potentials to zero in this section.

However, we will ultimately be especially interested in the case

ZO[µ, t̂] ∶= ZO[µ,µ,1,1, t̂] =∑
A,B∈{L,R}

∞∑
k=1
∑
w∣k

1

w
µ2k+wδBA−wẐAB

o ( (2k−w+wδBA)t̂
w2 ) , (2.74)

which is more conveniently described by summing over

ℓ = 2 k
w
+ δBA − 1 (2.75)

instead of k. Indeed,

ZO[µ, t̂] =∑
A,B∈{L,R}

∞∑
ℓ,w=1

1
2w
(1 − eiπ(ℓ+δBA))µwℓẐAB

o ( ℓt̂
w
) . (2.76)

In this equation, as in all other partition functions above, we have used the “closed string”

modular parameter t̂ as appropriate for the overlap of boundary states. Given the interpre-

tation as a counting function for boundary/interface changing operators, it may be more

natural to perform a modular S transformation and rewrite the grand canonical partition

function in terms of the dual modular parameter t = −1/t̂. Using Zo(t) = Ẑo(t̂), we obtain

ZO[t] =∑
A,B∈{L,R}

∞∑
ℓ,w=1

1
2ℓ
(1 − eiπ(w+δBA))ZAB

o ( ℓt
w
) . (2.77)

In rewriting the expression we also exchanged w and ℓ.

In the remainder of this work, our focus is on the holographic relation with AdS2

branes for tensionless superstring theory in AdS3 × S
3
× T

4. In this theory, the spacetime

symmetry is enhanced from the usual Virasoro algebra to the small N = 4 superconformal

algebra and hence states of the CFT can be distinguished by their R-symmetry charge that

is given by the eigenvalue of the Cartan generators K0 and K̄0 of the R-symmetry group.

It is then natural to include these charges in the counting functions for states. At the level

of the seed theory, this means that the bulk and boundary partition functions (2.58) and

(2.59) become functions of another variable ζ in addition to t, i.e.

Zc(t) → Zc(t, ζ), ZAB
o (t) → ZAB

o (t, ζ). (2.78)

The corresponding change to formula (2.57) is given by the substitution

ẐAB
o (ℓt̂

w
) Ð→ ẐAB

o (ℓt̂
w
, ℓζ̂) . (2.79)

The function Ẑ is obtained from the partition function Z through the prescription

Ẑ(t̂, ζ̂) = Z(−1/t̂, ζ̂/t̂) = Z(t, ζ). (2.80)

We complement these qualitative remarks with more explicit formulas in section 4.1 after

establishing some more background on the supersymmetric four-torus in section 3.2.
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3 AdS2 branes in tensionless AdS3 backgrounds

In this section, we turn to the dual side and discuss the string theory of AdS2 branes in

AdS3, or more concretely, in type IIB superstring theory on AdS3 × S
3
×T

4 with one unit

of NS-NS flux. In the hybrid formulation or Berkovits-Vafa-Witten [38], the latter involves

a psu(1,1∣2)k WZNW model at level k = 1 along with a topologically twisted four-torus

and some ghosts, see below.

In the first subsection, section 3.1, we review the relevant boundary states for AdS2

branes in the psu(1,1∣2)1 WZNWmodel following [8]. After adding the remaining factors of

the worldsheet model, i.e. the topologically twisted T
4 and the ghost factors, we, in section

3.2, compute the overlaps of the full boundary states and interpret the resulting quantity

as a counting function for boundary operators. The worldsheet partition function we end

up with counts physical open string vertex operators in the tensionless AdS3 × S
3
× T

4

background. In order to compute the partition function of the associated spacetime string

theory, we must integrate over the modulus τ of the worldsheet torus. We do this first

for global AdS3 and then, anticipating our comparison with the dual CFT we studied in

section 2, for thermal AdS3 in section 3.3. Note that the boundary of global AdS3 is a

sphere whereas the boundary of thermal AdS3 is a torus. The latter is the geometry that

is relevant for comparison with the CFT partition functions we computed above.

3.1 Boundary states for AdS2 branes in tensionless AdS3

According to the work of Berkovits, Vafa and Witten [38], the description of superstrings

in AdS3 × S
3 in the hybrid formulation involves a psu(1,1∣2)1 WZNW model. The latter

has been studied in the past, see in particular [39, 40] and references therein to earlier

work in string theory and quantum Hall plateaux transitions, as well as [41] for some later

extensions. Here, we restrict to the case of k = 1. Our exposition is purposefully kept

minimalistic and we refer the reader to sections 3 and 4 of [8] for more detail.

The even part of the psu(1,1∣2)1 current algebra is generated by the affine currents

Ja, a = 1,2,3, of an sl(2,R)1 WZNW model along with the currents Ka, a = 1,2,3, of an

su(2)1 WZNW model. These six bosonic currents are associated with the six directions in

the bosonic base of the supergroup PSU(1,1∣2). In addition, the supergroup also has eight

fermionic directions which give rise to the fermionic currents Sαβγ in the WZNW model.

Here α,β, γ are spinor indices that take the values α = ±1, respectively. These currents

satisfy the relations of an affine psu(1,1∣2)1 Kac-Moody algebra at level k = 1. Since we

do not need these relations, we do not spell them out here, see e.g. section 3 of [6] for a

complete list.

The state space of the bulk theory is a direct sum of representations of this worldsheet

current algebra. Following standard conventions, we shall denote by Fλ the representations

of the psu(1,1∣2)1 algebra whose spectrum of conformal weights is bounded from below.

Here, the index λ ∈ [0,1[ determines the quantization of the zero mode J3
0 of the current

J3 of the non-compact current algebra sl(2,R)1. For generic level k, the representations

Fλ would carry other labels that keep track of angular momenta but these are all removed

by the null-vectors at k = 1. In addition to the representations Fλ, the worldsheet model
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also includes representations Fw
λ that are obtained by application of the spectral flow

automorphism σw, that is Fw
λ = σw(Fλ). Recall that the space of ground states from

which Fλ is obtained by the action of the negative psu(1,1∣2)1 modes is the short multiplet

(C 1

2

λ
,2)(C 1

λ+ 1

2

,1) (C 0
λ+ 1

2

,1). (3.1)

Here, the symbol (C j
λ
,m) denotes an irreducible representation of the subalgebra sl(2,R)1⊕

su(2)1 which is the maximal bosonic subalgebra of psu(1,1∣2)1. These representations

are constructed from the m-dimensional highest weight representation m of the compact

algebra su(2)1, along with the continuous series representations C
j
λ
of the non-compact

sl(2,R)1. The labels j and λ of C
j
λ

capture the eigenvalue −j(j − 1) of the quadratic

Casimir element and the fractional part of the J3
0 eigenvalues, respectively. As we stressed

before, in the case k = 1, the label j is entirely fixed and hence we dropped it from the

symbol Fλ. In terms of representations of the psu(1,1∣2)1 current algebra, the Hilbert

space of the psu(1,1∣2)1 WZNW is the direct sum

HWZNW =⊕
w∈Z

1

∫
0

dλ σw(Fλ)⊗ σw(Fλ). (3.2)

Let us now turn to the boundary theory. The gluing conditions for the sl(2,R) currents
Ja(z), the su(2) currents Ka(z) and the Fermionic currents Sαβγ(z) associated to the

AdS2 branes take the form

Ja(z) = J̄a(z̄), Ka(z) = K̄a(z̄), Sαβγ(z) = εS̄αβγ(z̄) (3.3)

at z = z̄. The parameter ε that enters the gluing conditions we impose on the fermionic

currents is a sign i.e. ε ∈ {+,−}. The corresponding Ishibashi states ∣w,λ, ε⟫ in the sectors

of the bulk decomposition (3.2) are characterised by

(Ja
n + J̄

a
−n)∣w,λ, ε⟫ = 0, (Ka

n + K̄
a
−n)∣w,λ, ε⟫ = 0, (Sαβγ

n + ε S̄
αβγ
−n )∣w,λ, ε⟫ = 0. (3.4)

These conditions imply w = 0 and λ ∈ {0,1/2}. In [8], Gaberdiel et al. suggested to consider

the following two linear combinations of Ishibashi states

∥ε⟫A = 1√
2
∑

λ=0,1/2
e2πi(λ−1/2)δLA ∣0, λ, ε⟫, (3.5)

where the label12 A is chosen from A ∈ {L,R}. The two boundary states impose Dirichlet

conditions for the angular coordinate of AdS3 forcing open strings to end “left” or “right”

of the centre of the AdS2 brane respectively. In this sense, they only describe half branes

and the worldsheet boundary state corresponding to the full AdS2 brane is

∥ε⟫ = ∥ε⟫L + ∥ε⟫R. (3.6)

12In [8], this label is called Θ and chosen from {0,1}.
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Figure 4. Open string winding half way

around AdS3 at k = 1. Since the worldsheet

(red) is pinned to ∂AdS3, the end points of the

string remain on either of the two asymptotics

boundaries of the AdS2 brane (blue).

Figure 5. Open string winding half way

around AdS3 for large k. The string can fall

into the interior of AdS3 and re-emerge with

its end-point on opposite asymptotic bound-

aries of the AdS2 brane.

For generic k > 1, the splitting of ∥ε⟫ into ∥ε⟫L and ∥ε⟫R is unnatural since the ends of open

strings can cross the centre of AdS3. It is a special feature of the tensionless limit, that

it is useful to keep track of ∥ε⟫L and ∥ε⟫R separately. Indeed, since long open strings in

the tensionless limit cannot probe the centre of AdS3, an open string end on the left/right

asymptotic end of the AdS2 brane will always stay on the left/right. We illustrate the

situation in figures 4 and 5.

As we stressed above, the full worldsheet description of superstrings in the hybrid for-

mulation also involves a topologically twisted four-torus and ghosts. Hence, the boundary

states of the psu(1,1∣2)1 WZNW model we have described here must still be multiplied

with further contributions from these additional sectors to obtain the following boundary

states for AdS2 branes in AdS3 × S
3
×T

4,

∥u, ε⟫ = ∥ε⟫∥u,R, ε⟫T4 ∥ghost, ε⟫. (3.7)

Corresponding to the splitting (3.6), we also define

∥u, ε⟫A = ∥ε⟫A ∥u,R, ε⟫T4 ∥ghost, ε⟫. (3.8)

The additional factors are discussed in detail in appendix B.1 of [8]. Here, it suffices to say

that the letter u refers to the freedom we have in selecting a boundary condition on the

four-torus T4, such as the brane’s dimension, orientation and position. It is not necessary

for us to specify this choice any further.
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Regarding the R label, recall that in the hybrid formalism, the fermions of the original

sigma model on T
4 with small N = (4,4) supersymmetry mix with the currents of the

sl(2,R)1 and su(2)1 WZNWmodels to generate the supercurrents of the psu(1,1∣2)1 model.

The subsequent decoupling of torus degrees of freedom from the psu(1,1∣2)1 WZNW model

leaves us with a topologically twisted T
4. While the bosonic degrees of freedom of the

topologically twisted sigma model coincide with that of the untwisted theory, part of the

fermionic degrees of freedom are removed and we are essentially only left with the RR

sector. Consequentially, the boundary condition that we pick for the topologically twisted

sector is a boundary condition for RR fermions. The purpose of the label R is to remind

us of this fact.

3.2 Partition function for AdS2 branes in global AdS3

Our goal in this subsection is to compute the overlap of any two of the boundary states

(3.7) for AdS2 branes and to apply a modular transformation in order to interpret this

overlap in terms of the boundary spectrum. More precisely, the quantity in question is

ẐWS
u∣v (t̂, ζ̂; τ̂) ∶= ⟪u,∓∥q̂ 1

2
(L0+L̄0− c

12
)x̂ 1

2
(J3

0−J̄3
0 )ŷ 1

2
(K3

0−K̄3
0)∥v,±⟫ = ∑

A,B∈{L,R}
ẐWS
A,u∣B,v(t̂, ζ̂; τ̂), (3.9)

where on the right hand side, we split the brane into a left and right half according to

(3.6), that is

ẐWS
A,u∣B,v(t̂, ζ̂; τ̂) ∶= A⟪u,∓∥q̂ 1

2
(L0+L̄0− c

12
)x̂ 1

2
(J3

0−J̄3
0 )ŷ 1

2
(K3

0−K̄3
0)∥v,±⟫B (3.10)

counts the open strings that stretch between the A-half of the u-brane and the B-half of

the v-brane. The overlap factorises into three contributions from the psu(1,1∣2)1 WZNW

model, the four-torus T4 and the ghosts respectively. In order to spell these out explicitly,

we need a bit of notation. It is convenient to use the conventions of [42] for Jacobi theta-

functions. That is, we define

ϑ [α
β
] (ζ ∣τ) ∶= ∑

n∈Z
exp (iπ(n + α)2τ + 2πi(n + α)(ζ + β)) . (3.11)

Together with the standard Dedekind η function, one can use these theta-functions to

compute the supercharacter [8]

c̃h[Fλ](t, z; τ) ∶= trFλ
[(−1)F qL0− c

24xJ
3
0 yK

3
0 ] =∑

r∈Z+λ

xr

η(τ)4ϑ [
1
2
1
2

] ( t+ζ
2
∣τ)ϑ [121

2

] ( t−ζ
2
∣τ) , (3.12)

which by performing the sum over r can also be written as

c̃h[Fλ](t, z; τ) = xλ ∑
m∈Z

δ(t −m)
η(τ)4 ϑ [121

2

] ( t+ζ
2
∣τ)ϑ [121

2

] ( t−ζ
2
∣τ) . (3.13)

By the identity

ϑ [121
2

] (m±ζ
2
∣τ) = eiπ⌈m2 ⌉ϑ [ 1

2
1+eiπm

4

] (± ζ
2
∣τ) , (3.14)
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this simplifies further to

c̃h[Fλ](t, z; τ) = ∑
m∈Z

e2πiλm
δ(t −m)
η(τ)4 ϑ [ 1

2
1+eiπm

4

] ( ζ
2
∣τ)ϑ [ 1

2
1+eiπm

4

] (− ζ
2
∣τ) . (3.15)

The supercharacter can be used to determine the overlap of the boundary states for AdS2

branes in the psu(1,1∣2)1 WZNW model,

⟪0, λ′,∓∣ q̂ 1

2
(L0+L̄0− c

12
)x̂ 1

2
(J3

0−J̄3
0 )ŷ 1

2
(K3

0−K̄3
0) ∣0, λ,±⟫ = δλ,λ′ c̃h[Fλ](t̂, ζ̂; τ̂). (3.16)

Combining the explicit expression (3.15) for the super character with the definition (3.5)

of the boundary states representing the AdS2 brane, we obtain

Ẑ
psu

A∣B(t̂, ζ̂; τ̂) =12 ∑
λ=0,1/2

e2πi(1/2−λ)(δLA−δLB) c̃h[Fλ](t̂, ζ̂; τ̂)

=
∞
∑
m=1

eiπm − eiπδ
B
A

2η(τ̂)4 δ(t̂ −m)ϑ⎡⎢⎢⎢⎣
1
2

δA,B

2

⎤⎥⎥⎥⎦(− ζ̂
2
∣τ̂) ϑ⎡⎢⎢⎢⎣

1
2

δA,B

2

⎤⎥⎥⎥⎦(+ ζ̂
2
∣τ̂) .

(3.17)

The two remaining contributions from the overlaps of the boundary states in the four-torus

and the ghost factor are the same as in the case of spherical branes that were fully analysed

in [8]. We use the same conventions and only slightly different notation. For instance, we

write the four-torus factor in the overlap using the notation for Jacobi theta-functions

introduced in eq. (3.11) as

ẐT
4

u∣v [αβ] (ζ̂ ∣t̂) ∶=
Θ̂T

4

u∣v(t̂)
η(t̂)6 ϑ [α

β
] (+ ζ̂

2
∣t̂)ϑ [α

β
] (− ζ̂

2
∣t̂) . (3.18)

Here, the quantity Θ̂T
4

u∣v in the numerator of the first factor stems from the bosonic directions

on the four-torus and it depends on the choice of boundary states on T
4, see appendix B.1

of [8] for details. Instead of the bracket notation it is also common to write, as Gaberdiel

et al. do in [8],

ẐT
4

u∣v [121
2

] = ẐT
4

u∣v,R̃, ẐT
4

u∣v [120] = ẐT
4

u∣v,R, ẐT
4

u∣v [00] = ẐT
4

u∣v,NS, ẐT
4

u∣v [01
2

] = ẐT
4

u∣v,ÑS
, (3.19)

where R and NS refer to the Ramond and Neveu-Schwarz sector of the fermions, respec-

tively, and the tilde on top indicates whether we count fermions with additional signs or

not, i.e. whether we insert a factor (−1)F in the trace. Since

∥u,R,∓⟫ = (−1)F ∥u,R,±⟫, (3.20)

the insertion of (−1)F is effectively achieved by choosing opposite ε for the two states whose

overlap we compute. With the notations in place, we can now state that the relevant overlap

of the boundary states on the four-torus is

⟪u,R,∓∥q̂ 1

2
(L0+L̄0− c

12
)∥v,R,±⟫ = Θ̂T

4

u∣v(τ̂)
η(τ̂)6 ϑ [121

2

] (0∣τ̂)ϑ [121
2

] (0∣τ̂) . (3.21)
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The last contribution we need is that from the overlap of boundary states in the ghost

sector which we also take from [8]

Ẑghost(τ̂) = η(τ̂)4
ϑ [121

2

] (0∣τ̂)ϑ [121
2

] (0∣τ̂) . (3.22)

Multiplying eqs. (3.22), (3.21) and (3.17), we conclude that the overlap (3.10) is given by

ẐWS
A,u∣B,v(t̂, ζ̂; τ̂) = ∞

∑
m=1

1
2
(eiπm − eiπδBA )δ(t̂ −m)ẐT

4

u∣v
⎡⎢⎢⎢⎣

1
2

δA,B

2

⎤⎥⎥⎥⎦ (ζ̂ ∣τ̂). (3.23)

We placed a superscript WS on this quantity to remind us that this is a partition of the

worldsheet theory that describes strings in AdS3 × S
3
× T

4. In particular, the modular

parameter τ̂ = −1/τ is that of the annulus worldsheet.

The overlap we have just computed is still written in terms of closed string parameters

t̂, ζ̂ and τ̂ . In order to reinterpret the overlap in terms of open string vertex operators, we

need to perform a modular S transformation. This transformation acts as

τ̂ = −
1

τ
, t̂ =

t

τ
, ζ̂ =

ζ

τ
(3.24)

on the chemical potentials. We can rewrite our result (3.23) as a function of the dual

variables with the help of the following transformation formula for the overlap of boundaries

on the four-torus

ẐT
4

u∣v [αβ] (ζ̂ ∣τ̂) = eπiζ2

2τ ZT
4

u∣v [βα] (ζ ∣τ) (3.25)

with α,β ∈ {0, 1
2
}. Here, following [8], we absorb the sign from the modular transformation

of the theta functions into the definition

ZT
4

u∣v [αβ] (ζ ∣t) ∶= e4πiαβ
ΘT

4

u∣v(t)
η(t)6 ϑ [α

β
] (+ ζ

2
∣t)ϑ [α

β
] (− ζ

2
∣t) . (3.26)

This allows us to rewrite eq. (3.23) as

ẐWS
A,u∣B,v(t̂, ζ̂; τ̂) = ∞∑

m=1
1
2
(eiπm − eiπδBA )δ( t

τ
−m)eπiζ2

2τ ZT
4

u∣v
⎡⎢⎢⎢⎣
δA,B

2
1
2

⎤⎥⎥⎥⎦ (ζ ∣τ). (3.27)

As usual, we interpret the right hand side as the partition function that counts operators

that can be inserted along the boundary of the worldsheet or, equivalently, the state space

of the theory in an infinite strip, i.e.

ZWS
A,u∣B,v(t, ζ; τ) ∶=TrHWZNW

A,u∣B,v
((−1)F qL0− c

24 e2πitJ
3
0 e2πiζK

3
0)

= τ
2

t

∞
∑
w=1

1
2
(eiπw − eiπδBA )δ( t

w
− τ)eπiζ2

2τ ZT
4

u∣v
⎡⎢⎢⎢⎣
δA,B

2
1
2

⎤⎥⎥⎥⎦ (ζ ∣τ).
(3.28)
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Relative to the previous result in eq. (3.27), there is a prefactor τ2

t
that results from

rewriting the argument of the δ function.

Integrating over the worldsheet modulus τ using the integral measure dτ̂ = dτ/τ2 yields
i∞

∫
0

dτ

τ2
ZWS
A,u∣B,v(t, ζ; τ) = 1

t

∞
∑
w=1

1
2
(eiπw − eiπδBA )eπiwζ2

2t ZT
4

u∣v
⎡⎢⎢⎢⎣
δA,B

2
1
2

⎤⎥⎥⎥⎦ (ζ ∣ tw). (3.29)

Formulas (3.28) and its integrated cousin (3.29) are the main result of this subsection. We

discuss these further in section 4 when we compare with the expressions for the partition

function of the spacetime CFT.

3.3 Partition function for AdS2 brane in thermal AdS3

We finally compute the boundary spectrum of AdS2 branes in thermal AdS3 along the lines

of [43]. As is well known, thermal AdS is obtained from the global one through an orbifold

construction with the orbifold group Z. The Z action enforces a periodic identification

along the Euclidean time direction. Our starting point for the construction is the boundary

partition function we computed in eq. (3.28). The associated orbifold partition function is

obtained as a sum over all twisted sector contributions,

ℓ◻
0

= NZWS
A,u∣B,v(ℓt, ℓζ; τ), (3.30)

corresponding to strings that wrap the thermal cycle of thermal AdS3 with winding number

ℓ. Here, we inserted a normalisation constant N that we shall determine later. Summing

over ℓ, we obtain the worldsheet partition function

Z
WS AdST

3

A,u∣B,v
(t, ζ; τ) = N τ2

ℓt

∞
∑

w,ℓ=1
1
2
(eiπw − eiπδBA )δ( ℓ

w
t − τ)eπiℓ2ζ2

2τ ZT
4

u∣v
⎡⎢⎢⎢⎣
δA,B

2
1
2

⎤⎥⎥⎥⎦ (ℓζ ∣τ). (3.31)

Upon integration over the modulus τ of the worldsheet, we obtain

Z
ST AdST

3

A,u∣B,v
(t, ζ) = N

t

∞
∑

w,ℓ=1
1
2ℓ
(eiπw − eiπδBA )eπiwℓζ2

2t ZT
4

u∣v
⎡⎢⎢⎢⎣
δA,B

2
1
2

⎤⎥⎥⎥⎦ (ℓζ ∣ ℓw t). (3.32)

In terms of N = wℓ, we can also rewrite this as

Z
ST AdST

3

A,u∣B,v
(t, ζ) = N

t

∞
∑
N=1
∑
w∣N

w
N

1
2
(eiπw − eiπδBA )eπiNζ2

2t ZT
4

u∣v
⎡⎢⎢⎢⎣
δA,B

2
1
2

⎤⎥⎥⎥⎦ (Nw ζ ∣ N
w2 t). (3.33)

Finally, we conclude that the full open string partition function, counting strings that can

start and end on both halves of the AdS2 brane, is

Z
ST AdST

3

u∣v (t, ζ) = N
t ∑

A,B∈{L,R}
∞
∑

w,ℓ=1
1
2ℓ
(eiπw − eiπδBA )eπiwℓζ2

2t ZT
4

u∣v
⎡⎢⎢⎢⎣
δA,B

2
1
2

⎤⎥⎥⎥⎦ (ℓζ ∣ ℓw t). (3.34)
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Here, t is the modular parameter of the spacetime torus and ζ is a chemical potential

associated with the R-charge. The only non-trivial ingredient in the summands are the

functions ZT
4

u∣v that we defined in eq. (3.26).

Before carrying on and matching the result of this string computation to the symmetric

orbifold grand canonical partition function in section 4, let us pause and give a geometric

interpretation of the formulas we obtained. Looking back at our formula (3.31), we infer

from the argument of the δ function that the worldsheet modulus τ localises to ℓ
w
t with

two integers ℓ and w. We can relate this observation to the geometric interpretation that

was given to a similar closed string computation in [43]. Eberhardt explained that the

one-to-one correspondence between solutions to the equation

t =
aτ + b

bτ + d
, τ =

dt − b

−ct + a
(3.35)

with integer coefficients a, b, c, d ∈ Z and holomorphic coverings of the t torus by the τ torus

can be understood by realising that such a covering must lift to an affine map Γ̃ ∶ C2 → C
2,

z ↦ αz + β such that Γ̃(Λτ) ⊆ Λt holds. The latter condition in particular implies α,β ∈ Λ

and ατ + β ∈ Λt and hence enforces that τ is a fraction of elements of Λt. Consequentially,

τ can be written as

τ =
dt − b

−ct + a
. (3.36)

For the situation at hand, we describe coverings of a cylinder by a cylinder obtained by

cutting the tori along the imaginary axis (because the boundary of the AdS2 brane is a

thermal cycle in the boundary torus of thermal AdS3). Thus, we want that Γ̃(iR) ⊆ iR,
which implies α ∈ R and β ∈ iR. However, in combination with the fact that t is purely

imaginary, α ∈ R implies that c is zero. But if c is zero and t, τ are purely imaginary then

b must also be zero. Hence, we are restricted to

τ =
d

a
t. (3.37)

Furthermore, the prefactor of 1
ℓ
in the partition function is to be expected. w counts the

winding of the strings around the spatial cycle, while ℓ counts the winding around the

thermal cycle. The translation symmetry along the spatial cycle is broken by the presence

of the AdS2 brane. But we still have full translation symmetry along the thermal cycle.

Hence, there is a Zℓ symmetry that the partition function needs to reflect by a factor of 1
ℓ
.

4 Holographic matching of interfaces with AdS2 branes

The goal of this section is to collect evidence supporting the claim that the interfaces we

have constructed in section 2 indeed provide a holographic description of AdS2 branes in

a theory of tensionless type IIB superstrings in AdS3 ×S
3
×T

4. In order to do so, we first,

in section 4.1, compare our results on open string spectra, most notably formula (3.34)

for the partition function of single open string states for AdS2 branes in thermal AdS3,

with the counting function (2.57) for interface changing operators. Moreover, since closed
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strings do not couple to the AdS2 brane in the tensionless limit, the holographic matching

between symmetric orbifold correlators and closed string amplitudes trivially reduces to

the well established duality in the absence of branes – some aspects of which we review in

section 4.2. Finally, section 4.3 establishes the basis for the holographic duality between

amplitudes involving open strings and corresponding correlation functions of the symmetric

orbifold that involve certain interface changing operators. Concretely, we show that the

large N expansion of correlation functions in the presence of our interfaces takes the form

of a string theoretic genus expansion. We also establish the analogous claim for correlation

functions in the presence of the boundary conditions studied in [8] to describe the dual of

spherical branes in AdS3. However, since this work is mainly about AdS2 branes, we have

moved the analysis of the spherical brane case into appendix C.

4.1 Partition functions and string amplitudes

As promised at the end of section 2.4, we now use the notation for partition functions

of the supersymmetric four-torus established in section 3.2, to spell out eq. (2.76) more

concretely for the special case in which the seed theoryM is given by the supersymmetric

four-torus T
4. This entails making a particular choice for the boundary conditions a

L/R
± .

Our proposal is

∣aL−⟩ = ∥u,R, ε⟫T4 and ∣aL+⟩ = ∥v∗,R, ε⟫T4 (4.1)

as well as

∣aR− ⟩ = −∥v,R,−ε⟫T4 and ∣aR+ ⟩ = −∥u∗,R,−ε⟫T4 , (4.2)

which leads to

ẐLL
o (t̂, ζ̂) = ẐRR

o (t̂, ζ̂) = ẐT
4

u∣v [121
2

] (ζ̂ ∣t̂) and ẐLR
o (t̂, ζ̂) = ẐRL

o (t̂, ζ̂) = −ẐT
4

u∣v [120] (ζ̂ ∣t̂). (4.3)

We can thus conclude that

ZO[t̂, ζ̂] =∑
A,B∈{L,R}

∞
∑

ℓ,w=1
1
2w
(eiπℓ − eiπδBA )ẐT

4

u∣v
⎡⎢⎢⎢⎢⎣

1
2

δA,B

2

⎤⎥⎥⎥⎥⎦ (ℓζ̂ ∣
ℓ
w
t̂) (4.4)

and applying eq. (3.25), as well as swapping w and ℓ, gives

ZO[t, ζ] =∑
A,B∈{L,R}

∞
∑

ℓ,w=1
1
2ℓ
(eiπℓ − eiπδBA )eπiwℓζ2

2t ZT
4

u∣v
⎡⎢⎢⎢⎣
δA,B

2
1
2

⎤⎥⎥⎥⎦ (ℓζ ∣ ℓw t). (4.5)

This partition function is manifestly identical to eq. (3.34) if we choose the normalisation

N = t. Furthermore, eq. (2.56) directly tells us that ZC is identical to the t = t̄ restriction of

the space time CFT torus partition function. Making the appropriate choice of spin struc-

ture, the latter has been matched with the thermal AdS3 closed string partition function

in [43]. The rest of this section is devoted to a qualitative description of the holographic

duality underlying this equality.
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The equality of partition functions is equivalent to the statement that the spectrum

(i.e. the conformal weights and the eigenvalues of K0 as well as the dimensions of the

eigenspaces) of open strings stretching between two AdS2 branes coincides with the spec-

trum of interface changing operators of our symmetric orbifold interfaces. Combining this

observation for the open strings with the fact that there is no coupling of closed strings

to the brane leads to a natural proposal for the holographic description of the tensionless

string dynamics in the presence of an AdS2 brane. Let us first sketch this proposal in a

rough qualitative manner and then explore its precise quantitative implications.

1. We recall from [44] that in the tensionless limit, long closed superstrings of type IIB

theory on AdS3×S
3
×T

4 possess a holographic description in terms of twisted sector bulk

operators in the symmetric product orbifolds SymN(T4).
2. Given that tensionless closed superstrings do not couple to an AdS2 brane, we propose

that the holographic dual of the AdS2 brane is given by the unique defect in symmetric

product orbifolds that does not couple to any bulk fields: The trivial defect.

3. Based on the equality between the partition functions (3.34) and (4.5), we propose

that the open strings that end on the AdS2 brane are dual to interface changing operators

between interfaces of SymN±(T4) which we constructed in section 2.2.

In order to simplify the navigation through the rest of this section, we divided it into

short paragraphs that provide the interested reader with further details on various aspects

of our proposal. The paragraphs can be read somewhat independently.

Thermal versus global AdS3. In the three claims above, we do not specify whether

we consider string theory on thermal or global AdS3. Let us start our discussion of the

claims by filling in some more detail on this. Recall that we constructed the open string

spectrum on thermal AdS3 from the partition function of global AdS3, which we computed

in eq. (3.29), by including additional twisted sectors that wind the thermal cycle ℓ = N/w
times. Vice versa, we can pass from the thermal AdS3 open string partition function (3.34)

to its analogue for global AdS3 simply by dropping all the ℓ > 1 terms13. Because of this,

the above holographic matching of the thermal AdS3 partition function directly implies

that we can also obtain the global AdS3 partition function from our interface construction.

What this requires is to adjust the boundary states (2.38) that describe our interfaces

or, more precisely, their building blocks defined in eq. (2.36). These states involve the

boundary states (2.26) which contain a sum in the ρ-twisted sectors. In order to recover

the partition function of global AdS2, we need to restrict the sum over ρ± to the trivial

term ρ± = id. This manifestly removes the ℓ > 1 terms in the partition function of defect

changing operators.

Absence of disk contributions. Note that, in sharp contrast to the bulk discussion

[45] as well as that of spherical branes [8], our holographic matching of the open string

13As also explained at the end of section 3.3, the situation for the open strings is in this sense simpler

than the closed string analogue discussed in [43]. Indeed, for the closed strings it is not true that the global

AdS3 partition function is obtained from the thermal AdS3 one by simply dropping the ℓ > 1 terms.
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partition function did not rely on the extrapolation of large k results for (disconnected)

genus 0 contributions to k = 1. Instead, the one-loop (annulus) string computation directly

reproduces the exact symmetric orbifold partition function of interface changing operators

(up to an overall normalisation factor)14. In fact, this remarkable absence of the somewhat

problematic disk contributions is to be expected on simple geometric grounds. As opposed

to the spherical branes, the AdS2 branes are not contractible inside thermal AdS3. Thus,

the existence of contractible world-sheets whose boundary winds one of the boundaries of

the AdS2 brane is topologically obstructed.

The set of string scattering states. Having commented on the absence of disk con-

tributions and clarified the roles of thermal and global AdS3, let us now expand more

generally on part three of our proposal. In order to formulate an actual prescription for

holographic computations of open string scattering amplitudes in the tensionless limit of

superstring theory on AdS3 × S3
× T

4, the next paragraphs describe how to label and

construct the interface changing operators dual to string scattering states. Recall from

eqs. (2.55 - 2.59) that these operators fall into two classes, corresponding to the two classes

of string states. On the one hand, the string theory contains long closed strings. Their

quantum numbers include the winding numbers (w, ℓ). As in the previous sections of this

paper, w counts how many times the string winds the spatial cycle of the boundary torus.

Similarly, ℓ is the winding number associated to the thermal cycle. In addition, the string

theory also contains long open strings. These possess two new labels A,B ∈ {L,R} as well
as the familiar pair (w, ℓ) of winding numbers. The labels A,B ∈ {L,R} refer to the two

components of the boundary of the AdS2 brane to which two endpoints of the open strings

are attached. While the interface changing operators that are dual to long closed strings

are simply obtained by restricting familiar bulk operators to the one-dimensional locus of

the interface, those that are associated with long open strings are new. In the following

few paragraphs we will therefore mostly focus on the latter.

Interface changing operators dual to open strings. When we discussed bulk fields

of symmetric product orbifolds in section 2, we pointed out that it is useful to work with

a larger set of twist fields that are labelled by group elements of the orbifold group rather

than the physical fields which are labelled by conjugacy classes. The physical operators

are obtained from the former by averaging over the orbits of the SN± action. We follow a

similar strategy for the interface changing operators and describe the physical operators

σAB(w,ℓ) = N∑γ
σA,B
γ (4.6)

as a sum over objects that are labelled by a sequence γ = (gi)wi=1 of length w. The entries

gi of the sequence γ are cycles of length ℓ with the additional condition that they alternate

between the two orbifold groups SN− and SN+ , i.e. if gi ∈ SN± then gi+1 ∈ SN∓ . The labels

A,B determine the permutation group from which we pick the first and last entry g1 and

gw of our sequence. If A = L, we agree to choose g1 ∈ SN− while g1 ∈ SN+ in case A = R.

The rules apply in reverse for the last entry gw, i.e. gw ∈ SN+ if B = L and gw ∈ SN− for

14We thank Andrea Dei for encouraging us to emphasise this point more explicitly.
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B = R. In the special case of ℓ = 1 our sequence γ is simply a sequence of integers that

we chose alternating between the two sets N± = {1, . . . ,N±} with appropriate conditions

imposed on the first and last entry. The labelling of open string states with ℓ = 1 through

sequences of integers was described in [9] already. Martinec used red and blue colours to

distinguish between elements of N±.

Having described the label γ, it is rather straightforward to state how the actual

operator σ
A,B
γ acts. Recall that the interfaces described in section 2 are gauge invariant

sums (2.36) of states that couple to one specific pair g± = ρ±τ± ∈ SN± of twisted sectors

in the bulk of the product theory. To each cycle in g−, these gauge fixed states either

associate a reflective boundary condition or a cycle in g+ to which it is transmitted. In

order to specify the operator σAB
γ , we pick a twisted sector with twists elements g± of the

folded bulk theory to which the interface to the left (the L-interface) and to the right (the

R-interface) couples. The cycles of g± are related to the sequence γ = (gi, i = 1, . . . ,w) in
the following way:

g∓ = ∏
i odd

gi , g± = ∏
i even

gi for A =
L

R
. (4.7)

Regarding reflective boundary conditions, we demand that the first cycle g1 is reflected

at the A-interface and the last cycle gw is reflected at the B-interface. All other cycles

are to be transmitted. Regarding transmissive boundary conditions, our prescription is as

follows. If A = L then the sectors that are associated with the twist elements gi and gi+1
for odd integer i are glued together at the R interface. If the index i is even, on the other

hand, the two twisted sectors are glued at the L interface. For A = R the prescription is

reversed.

Interface changing operators dual to closed strings. Now that we have completed

our description of the interface changing operators we propose to be dual to open strings,

let us briefly comment on the operators σw,ℓ dual to closed strings. These are more familiar.

Again, they possess a representation akin to eq. (4.6) but the nature of the label γ is a

bit different. For ℓ = 1 we are dealing with the operators that are dual to strings that can

propagate in global AdS3. In this case, γ is the product of two cycles of length w/2, one
in SN− the other in SN+ . More generally, for ℓ > 1, the sequence γ of cycles gi of length ℓ

that we described in our discussion of the operators σAB(w,ℓ) are now periodically identified,

i.e. we extend the sequence such that gw+1 = g1. Since we had chosen neighbouring entries

from the upper and lower half plane in an alternating fashion, we see that w must be even

in order to admit the periodic identification.

The operators σγ that contribute to σ(w,ℓ) now admit a description that is very remi-

niscent of our description of σA,B
γ in the previous comment except that they do no longer in-

volve reflections but rather are purely transmissive. Put differently, twist elements gi ∈ SN+

and gi+1 ∈ SN− are glued together at the L interface and similarly twist elements gi ∈ SN−

and gi+1 ∈ SN+ are glued together at the R interface. This time, the prescription also

applies to the endpoints of the sequence γ using the periodic identification gw+1 = g1.
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this relation is expected to look like.

On the string side, we encounter scattering amplitudes that can be written as integrals

over the moduli spaceMb,g,nc,no
of Riemann surfaces Σb,g,nc,no

of genus g with b boundary

components as well as nc punctures in the interior and no punctures on the boundary.

The associated integrand is a correlation function of nc closed string vertex operators and

no open string vertex operators of the worldsheet theory. Thus, such a string scattering

amplitude takes the form

A = ∫
Mb,g,nc,no

⟨ nc

∏
i=1

Vwi,hi,h̄i
(zi, z̄i, ti) no

∏
j=1

V
A,B
wj ,∆j

(yj , tj)⟩Σb,g,nc,no
. (4.8)

Here, wi label the winding of the closed strings around the cycles of the Riemann surface,(hi, h̄i) are its holomorphic and anti-holomorphic space time conformal weights, (zi, z̄i)
labels a point in the interior of the Riemann surface and ti labels a point on the boundary

of the AdS2 brane in the target space. The role of ti is completely analogous to that of(xi, x̄i) in the x-basis vertex operators of [32], i.e. they are introduced by an appropriate

deformation of the ordinary Vertex operators. In the closed string scenario discussed in

[32], the deformation is generated by the zero modes J+0 and J̄+0 of one holomorphic and one

anti-holomorphic current of the SL(2,R) WZNW model. The AdS2 boundary condition

glues these currents together along the boundary so that only one zero modes survives.

This zero mode generates the deformation by the parameter t. Moreover, the open string

vertex operators are inserted at the points yj on the boundary of the worldsheet and they

carry only a single conformal weight ∆j .

On the symmetric orbifold side, these string scattering amplitudes should be repro-

duced by correlation functions

⟨ nc

∏
i=1

σwi,hi,h̄i
(ti) no

∏
j=1

σ
A,B
wj ,∆j

(tj)⟩∣
g,b

(4.9)

of interface changing operators. Here, we have not only included the labels which specify

the ground state of the twisted sectors in which the operators live, but also added labels

hi, h̄i and ∆j that keep track of the excitations. The label g, b instructs us to restrict to

the contribution to the correlator computed through covering maps whose covering space

is an element ofMb,g,nc,no
.

We will formulate the conjecture in more detail and collect evidence for it in forth-

coming work. Here, we shall content ourselves with a few basic statements. Concretely,

in the remaining two paragraphs of this section, we discuss two special classes of string

amplitudes for which the correspondence is trivially satisfied. In section 4.3 we then show,

for a special subset of boundary operators, that the N scaling of the large N -expansion of

the boundary symmetric orbifold indeed matches the scaling of the dual string scattering

amplitudes in the string coupling.

Closed string scattering amplitudes One simple type of amplitudes that we can

compare right away are the scattering amplitudes of closed string states in the absence of

open strings.
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On the symmetric orbifold side, the relevant correlation functions only involve interface

changing operators of type σ(w,ℓ). These are simply correlators of bulk twist fields whose

insertion points are restricted to the one-dimensional (trivial) interface of the orbifold

theory. Such correlation functions are known to be dual to closed string amplitudes in the

absence of an AdS2 brane.

To match this with the string theory side, it is crucial to recall that the only closed

strings that can couple to AdS2 branes are those with vanishing winding number. But

tensionless strings in AdS3 ×S
3
×T

4 contain no physical states with zero winding number.

Hence, the coupling to AdS2 branes is trivial and without the insertion of extra open

strings, the closed string scattering amplitudes are not affected by the presence of the

brane, just as predicted by the previous statements about the dual correlation functions.

Scattering of one closed and one open string. We can actually go one step further

and study scattering amplitudes of a single open and a single closed string. These should

be related to the two-point functions

⟨σwc,hc,h̄c
(tc)σA,B

wo,∆o
(to)⟩ (4.10)

in the symmetric product CFT. We claim that all these two-point functions of interface

changing operators vanish. This is not difficult to see. Indeed, around the insertion point

tc of the field σwc , all boundary conditions must be transmissive. On the other hand,

inserting operators of the form σ
A,B
wo requires that some components of the symmetric

product are reflected, at least on one side of the interface changing operator. Hence,

correlation functions with a single insertion of σA,B
w0

vanish.

We expect that this behaviour is matched in string theory. Indeed, for tensionless

strings in AdS3 × S
3
× T

4, closed string amplitudes factorise on the set of closed string

states simply because there are no non-trivial closed string states that couple to the AdS2

brane. This makes it appear plausible that there are no processes in which a single closed

string can split open to convert into a single open string. A more precise derivation using

localisation of the worldsheet along with properties of branching functions will be given in

a forthcoming paper.

4.2 Bulk correlation functions and amplitudes - a review

As mentioned towards the end of the last section, now that we have successfully matched

the string theory and space time CFT partition functions, the natural next step is to

show that the duality also extends to correlators. Here, we shall content ourselves with

the very first step of such an extension. Namely, we show that the large N expansion of

correlation functions involving bulk and interface changing operators in the presence of

our interfaces takes the form of a string theoretic genus expansion. This is reminiscent

of ‘t Hooft’s analysis of the large N limit for gauge theories. A detailed comparison of

the particular amplitudes with those of string theory in AdS3 will be performed in a

forthcoming publication. For bulk correlations of symmetric product orbifolds the large

N behaviour was studied by Pakman, Rastelli and Razamat [2]. To set up notations and
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illustrate the main ideas, we shall review their arguments first before including interface

changing operators in the next subsection.

The covering space method of15 Lunin and Mathur [47] computes correlation functions

⟨σg1(z1, z̄1) . . . σgnc
(zn, z̄n)⟩ (4.11)

of gauge fixed twist fields in (bulk) symmetric product orbifolds on some two-dimensional

base space M from the data of branched coverings

γ ∶ Σ→M (4.12)

of the base space M by a covering space Σ. Here, we shall assume that the elements gν ∈ SN

are cyclic permutations of length wν . The general case can be treated similarly and in fact

follows directly from that of cyclic gν by taking suitable OPEs. We place a subscript c

on the number nc of bulk field insertions to remind us that these should be in one-to-one

correspondence with insertions of vertex operators of closed strings in the dual theory.

Let us explain how to determine the covering space topology from the choice of cyclic

permutations gi. To this end, it is useful to introduce the concept of “active colours” [2].

Given any g ∈ SN , the subset Ag of active colours consists of all elements in {1, . . . ,N} on
which g acts non-trivially i.e. Ag ∶= {i∣gi ≠ i}. Furthermore, we define the active colours

AS of any subset S ⊆ SN of the permutation group to be the union of the active colours

of all its elements. This definition is now applied to the set S = {g1, . . . , gnc} of cyclic

permutations that appear in the correlation function (4.11). We call the associated set AS

the set of active colours of the correlation functions.

The permutations gν that appear in the correlation function we want to evaluate

generate a subgroupHS ⊆ SN of the permutation group. By construction, HS acts faithfully

on the corresponding set AS of active colours. Under this action, the set AS decomposes

into orbits which we denote by O1, . . . ,Om. Once we have determined the orbits, it is rather

easy to infer key features of the covering surface Σ. More specifically, it turns out that

1. The orbits O are in one-to-one correspondence with the connected components ΣO

of the covering surface Σ. In particular, the number of connected components of Σ

is equal to the number m =m(S) of orbits.
2. The genus gO of the connected component ΣO that is associated to the orbit O can

be computed in terms of the number of elements ∣O ∣ of the set O as

gO = 1 − ∣O ∣ + 1
2 ∑
Agν ⊆O

(wν − 1). (4.13)

The sum runs over all those indices ν ∈ {1, . . . , nc} for which the set of active colours

Agν of the group element gν is a subset of the orbit O.

Hence, the covering surface Σ is connected if and only if there is exactly one orbit. Put

differently, in order for Σ to be simply connected the subgroup HS ⊆ SN that is generated

15See also [46] for an earlier application of covering space methods to orbifold CFTs.
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by the elements of S = {g1, . . . , gnc} must act transitively on the active colours AS of the

correlator. Denoting the number of active colours of the correlator by ∣AS ∣ = n, the formula

for the genus then becomes

g = 1 − n + 1
2

nc

∑
ν=1
(wν − 1). (4.14)

The physical correlation functions to consider in a symmetric product orbifold are of course

not the gauge fixed correlators that we have discussed so far, but rather the correlation

functions of gauge invariant twist fields

σw =
1√∣[(1...w)]∣ ∑

g∈[(1...w)]
σg =

√ (N−w)!w
N ! ∑

g∈[(1...w)]
σg. (4.15)

Clearly, the expansion of the gauge invariant twist fields into gauge fixed twist fields allows

us to immediately express correlators of the former in terms of correlators of the latter,

⟨ nc

∏
ν=1

σwν(zν , z̄ν)⟩ = ( nc

∏
ν=1

√ (N−wν)!wν

N !
) ∑
gν∈[(1...wν)]

⟨σg1(z1, z̄1) . . . σgnc
(znc , z̄nc)⟩. (4.16)

The connected part of such a correlator is defined as the restriction of the above sum to

those terms that are associated to connected covering spaces Σ. According to the comments

that we made earlier in this section, we can state this definition as

⟨ nc

∏
ν=1

σwν(zν , z̄ν)⟩c ∶= ( nc

∏
ν=1

√ (N−wν)!wν

N !
) ∑

gν∈[(1...wν)]
m({g1,...,gnc})=1

⟨σg1(z1, z̄1) . . . σgnc
(znc , z̄nc)⟩. (4.17)

The restricted sum now runs over all sets S = {g1, . . . , gnc} of cyclic permutations gν for

which the active colours AS of the correlations function form a single orbit under the action

of HS . Remarkably, the large N expansion of the connected part of the correlator takes the

form of a string genus expansion. In order to understand the precise scaling with N , we

point out that the restricted sum on the right hand side of eq. (4.17) contains combinatorial

enhancements from the number of ways in which one can pick n active colours from the N

colours that are available. Thus, the connected correlator scales as

nc

∏
ν=1

√ (N−wν)!wν

N !

N !

n!(N − n)! ∼ N
n−1

2 ∑
nc
ν wν ∼ gs−2n+∑nc

ν wν = g−2+2g+nc
s . (4.18)

In the first step, we used Stirling’s formula to determine the leading asymptotics of the

prefactor as N becomes large. Then, we used the standard relation g2s ∼ 1/N between the

string coupling gs and the total number N of colours. Finally, we inserted eq. (4.14) in

order to rewrite the exponent in terms of the genus g of the covering surface Σ. The right

hand side of eq. (4.18) can be recognised as the usual dependence of closed string scattering

amplitudes on the string coupling.
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4.3 Boundary genus expansion for AdS2 branes

In this subsection, we extend the previous analysis to correlation functions involving both

bulk and interface changing fields and show that the large N expansion of correlation

functions in the presence of our interfaces organises itself in the fashion of a string theory

genus expansion. Just as in section 4.2, (the connected part of) a gauge invariant correlation

function is a sum of gauge dependent correlators each of which can be associated to a

covering space with a certain genus g and with nc punctures associated to the (bulk)

operators inserted inside the correlator. In contrast to the covering spaces described in

section 4.2, the covering spaces that we encounter in this subsection additionally have a

possibly non vanishing number b of boundaries, as well as a number no of punctures on the

boundary.

In this paper, we do not provide a full analysis of all interface changing correlation

functions, but rather restrict to a special class of boundary operators. While somewhat

more tedious to spell out, the generalisation to arbitrary interface changing operators is

conceptually straight forward. Concretely, we restrict to fields σ± that interpolate between
I
(p)∣a±⟩ and I

(p±1)∣a±⟩ and possess an expansion of the form

σ± = N
−1
4− N
−1
4+

N−

∑
i−=1

N+

∑
i+=1

σ±i∓i± . (4.19)

Here, the operator σ−i−i+ cuts the i−th copy of the seed theory in the lower hemisphere

from the i+th copy in the upper hemisphere and turns on an ∣a±⟩ boundary for both.

Conversely, the operator σ+i+i− removes two copies of the boundary ∣a±⟩ and glues the i−th
copy of the seed theory in the lower hemisphere to the i+th copy in the upper hemisphere.

Consequently

σ+ = σRR(2,1) and σ− = σLL(2,1) (4.20)

in the notation used in section 4.1. Note that the order of the indices i+ and i− is different

in σ+ and σ−. This is a choice of notation that is convenient in describing the computation

of correlation functions

⟨ no

∏
ν=1

σsν(tν) nc

∏
µ=1

σwµ(xµ, x̄µ)⟩ , (4.21)

where sν ∈ {−,+}. We assume the ordering ν < µ⇒ xν < xµ. Since the background in which

this correlation function is computed just consists of the trivial interface, any boundaries

that should be glued together by a σ+ first had to be cut open by the insertion of a σ−.
More generally, a correlator with no (ordered) interface changing operators σ± can only be

non-vanishing if

no

∑
i=1

si = 0 and
k

∑
i=1

si ≤ 0 (4.22)

for every k < no. As for the correlation functions of bulk twist fields, we can express the

correlator (4.21) as a sum over gauge fixed terms. Concretely, inserting the definition (4.19)
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of σ±, we obtain

⟨ no

∏
ν=1

σsν(tν) nc

∏
µ=1

σwµ(xµ, x̄µ)⟩ = N−no

2 ⟨ no

∏
ν=1

N

∑
i±ν

σsν
i
−sν
ν ,i

sν
ν
(tν) nc

∏
µ=1

σwµ(xµ, x̄µ)⟩. (4.23)

For the individual terms on the right hand side not to vanish, all indices i±ν must be

contracted according to the following rule:

Wick contractions for σ± colour indices: The left index i+ν of every boundary creation

operator σ−i+ν ,i−ν needs to be contracted with the right index i+µ of a boundary annihilation

operator σ+i−µ,i+µ such that xν < xµ. In complete analogy, the left index i−µ of a boundary

annihilation operator inserted at xµ needs to be contracted with the right index i−ν of a

boundary creation operator inserted at xν < xµ.

Following this contraction procedure, starting from an arbitrary boundary creation

operator σ−c+
1
c−
1

, we zigzag back and forth along the boundary line, collecting a string of

boundary creation and annihilation operators σ−c+
1
c−
1

σ+c−
1
c+
2

σ−c+
2
c−
3

. . . σ+c−wnc
c+
1

that ultimately

has to close into some cycle bringing us back to c+1 . Keeping only the c−i , we obtain a cyclic

permutation gnc+1 = (c−1c−2 . . . c−wnc+1
) ∈ SN− whose length we denote by wnc+1. This notation

reflects the fact that upon fusing all of the operators that formed the cycle, we obtain twist

fields in the gnc+1 twisted sector. The latter are analogous to the bulk operators that are

indexed by nc cycles gν of length wν .

Effectively, the Wick contractions among interface changing operators we just per-

formed thus gave rise to an additional cycle. If the latter did not include all the interface

changing operators, we pick one of the remaining ones and form a second cycle gnc+2 of

length wnc+2. We continue this process until we reach the last cycle gnc+b of length wnc+b,
i.e. until no uncontracted interface changing operators remain.

Once we have completed this contraction process, we are now left with nc + b cycles gν
of length wν . These data are identical to those that would appear if we had to calculate

a (nc + b)-point correlation function of bulk operators. Consequently, we can now follow

essentially the same steps we outlined in the previous subsection. As we did there, we first

form the set S = {g1, g2, . . . gnc+b} and the group HS that is generated by the cycles gµ. We

then let HS act on the active colours. We shall say that a term in the sum on the right hand

side of eq. (4.23) contributes to the connected part of the correlation functions if the group

HN acts transitively on the active colours. Furthermore, the terms that are contributing

to the connected part of our correlation functions are associated with a connected covering

space whose genus g is given by16

g = 1 − n + 1
2

nc+b
∑
µ=1
(wµ − 1) (4.24)

where n denotes the number of active colours as before. By construction, the cycles that are

associated with the interface changing operators are in one-to-one correspondence with the

16This follows directly from the fact that the interface changing operators that are associated to a cycle

gnc+i fuse into gnc+i twist fields upon performing the OPE, which we have already alluded to above.
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connected components of the boundary of the covering surface. In particular, the number

of connected components of the boundary is b.

We are finally able to compute the large N scaling behaviour of the connected part of

the correlation function. There are three factors that contribute. As in the case of bulk

correlation functions, we need to select the n active colours from the N colours that are

available. In addition, we need to collect the normalisations of bulk and interface changing

fields. The large N behaviour of the first two factors we evaluated in eq. (4.18) already.

Since the interface changing fields we consider each contribute a factor of N−1/2, the large

N asymptotics of the prefactor reads

N
n−1

2 ∑
nc
ν wν−no

2 = Nn−1
2 ∑

nc
ν wν−12 ∑

b
ν=1 wnc+ν−

no

4 . (4.25)

In going to the right hand side of this equations, we have used the fact that

b

∑
ν=1

wnc+ν =
no

2
, (4.26)

which follows from the construction of the wµ with µ > nc since they count the number of

interface changing operators that are combined into a cycle and non-vanishing correlators

require that all the fields are part of some cycle. Now we can proceed by inserting equation

(4.24) to express the sums over the cycle lengths wµ through the genus g of the branching

surface. The result is

N
n−1

2 ∑
nc
ν wν−12 ∑

b
ν=1 wnc+ν−

no

4 = N1−g− b
2
−nc

2
−no

4 ∼ g−2+2g+b+nc+no

2
s . (4.27)

Once again, we have used that g2s ∼ 1/N to express the final result for the large N asymp-

totics of the correlation function in terms of the string coupling gs rather than N ∼ 1/g2s .
The final result indeed has the gs dependence of a string amplitude for a surface of genus g

with b boundary components, nc bulk punctures and no boundary punctures. This is what

we wanted to show.

5 Conclusion and outlook

In this work, we have constructed a new family of interfaces I
(p)∣a±⟩ between two symmetric

product orbifolds SymN(M) with N = N±. These interfaces are associated with a pair

of boundary states ∣a±⟩ of the seed theory M. The integer p ≤ min(N−,N+) controls the

transmissivity of the interface. More precisely, the transmissivity (2.47) is proportional

to p and takes its largest value for p = min(N−,N+). For p = 0, on the other hand, the

interface is purely reflecting. A precise formula for the interface was given in section 2,

see eq. (2.38) and the paragraph below that equation for notations. The overlaps between

the associated boundary states and hence the spectrum of interface changing operators

was computed in section 2.4. As in the case of the bulk spectrum of symmetric product

orbifolds which is elegantly encoded in the grand canonical partition function found in [31],

we stated the results in terms of a generalised grand canonical partition function which

also involves chemical potentials for the indices pL and pR of transmissivity on both sides
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of the interface changing operator, see eqs. (2.54-2.59). The modular transform of the

central formula (2.57), or rather of its restriction (2.76) to special values of the chemical

potentials, was given in eq. (2.77). The latter formula contains contributions from interface

changing operators of arbitrary twist. Single particle states with odd-integer twist require

the orders N+ and N− of the symmetric product orbifolds on the two sides of the interface

to be different.

The fact that our interfaces support operators in twisted sectors with arbitrary twist

is a key feature that hints toward a possible holographic description in terms D-branes in

AdS3. Indeed, AdS2 branes have been argued to support long open strings of arbitrary

winding numbers [28]. In the case of the supersymmetric four-torus M = T4, we have in

fact provided significant evidence for such a holographic duality with AdS2 branes in type

IIB theory of tensionless strings in AdS3×S
3
×T

4. In section 3, we computed the partition

function (3.34) of AdS2 branes in thermal AdS3. The resulting function was shown in

section 4.1 to match precisely with the corresponding terms in the exponent of the grand

canonical partition function (2.76) of our interfaces in symmetric product orbifolds. In

addition, the triviality of scattering amplitudes of a single tensionless closed string in the

presence of an AdS2 brane matches our description of the brane as a trivial defect in the

dual symmetric orbifold.

In section 4.3 and appendix C, we also suggested how to match more general string

amplitudes involving both closed and open strings, leaving a fully conclusive analysis for

a forthcoming publication. As we have explained above, scattering amplitudes with at

most one open string insertion are correctly reproduced by the holographic dual. In order

to fully establish the correspondence between the interfaces I
(p)∣a±⟩ and the AdS2 branes

for tensionless strings, it would therefore suffice to compare three-point functions of three

interface changing operators with the scattering amplitudes of three open string states

in AdS3. Even though the three-point couplings are non-trivial, their computation and

comparison is expected to closely follow the related analysis that was carried out for bulk

operators in symmetric product orbifolds and closed strings, see [32]. We will work out the

details in a forthcoming paper.

While the full proof of the holographic duality for tensionless closed and open strings

that we described in the previous paragraph relies on the explicit calculation of quantities

on both sides of the correspondence, it would also be very interesting to uncover the

mechanism of the holographic relationship in the spirit of [48]. In that work, two of the

authors considered an extension of string theory in AdS3 to arbitrary values k of NSNS

background flux. According to a proposal of Eberhardt in [49] such a string theory is dual

to some non-rational symmetric product orbifold with a certain Liouville like interaction

turned on, see also [50, 51]. In [48] this interacting CFT2 was used as a starting point and

its correlators were rewritten (for any number of bulk insertions) in terms of scattering

amplitudes of closed strings in some AdS3 string theory. The main idea was to uplift

the Liouville direction of the interacting non-rational symmetric product orbifold to the

radial direction of AdS3 by reversing an intriguing relation between the H+3 WZNW model

and Liouville field theory [52–55], see also [56–59] for related developments. Thereby the

holographic correspondence was established for arbitrary correlation functions without ever
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computing a single correlation function or scattering amplitude. It should be possible to

extend this type of derivation to include branes and open strings along the lines of [60].

A particularly interesting aspect that deserves attention in going away from the case

with k = 1 arises because AdS2 branes are generically not unique but rather carry an

additional parameter r. In the spacetime description, the parameter r is related to the

angle at which the brane ends on the boundary of AdS3. The case of r = 0 corresponds

to an AdS2 brane that runs straight through the centre of AdS3 so that it approaches the

boundary at 90 degrees. For other non-vanishing values of r, the angle is non-trivial. The

analogy with Karch-Randall interfaces in higher dimensions suggests that the parameter

r should be related to the difference N+ − N−. In [9] Martinec also proposed that r ∼(N− −N+)/(N+ +N−).
A very interesting challenge for the type of holographic relation we described here is to

make contact with the geometric supergravity regime by turning on RR background flux.

In the symmetric product orbifold this corresponds to a marginal deformation by some

particular operator, see e.g. [61] for an early review. This deformation is somewhat similar

to switching on the interaction in four-dimensional N = 4 SYM theory. In the latter case,

the leading perturbative corrections to the spectrum of the free field theory (and eventually

the entire deformation into the geometric regime of infinite ’t Hooft coupling λ) can be

computed using integrability, see e.g. [62] for first order calculations (and [63] for further

results from integrability). For the two-dimensional cousins such powerful tools to reach

the geometric regime are not available (yet), even though there exists a few attempts to

start an integrability based approach to the problem, see e.g. [64, 65]. One of the issues

that complicates the analysis of the perturbative spectrum near the symmetric product

orbifold is the mixing of left- and right-moving modes in the bulk. It might therefore be

advantageous to study the deformation for open strings on AdS2 probe branes instead.

Note that their open string spectrum is as rich as that of closed strings with long strings of

arbitrary winding number w and one might hope that these spectra can be deformed away

from the tensionless limit all the way to the geometric regime using the ideas developed in

[66, 67]. It would also be interesting to extend other integrability based studied of string

theory in AdS3 × S
3
× T

4, see e.g. [68, 69] and references therein, to line defects as was

done for Wilson lines in N = 4 SYM theory [70, 71]. When combined with the toolbox

of integrability, the interfaces we introduced here could turn out to be useful probes of

emerging geometries.
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A Torus partition function of the symmetric product orbifold

In this appendix, we derive eq. (2.4). To do so, we need to acknowledge that fixed (g, h)
contributions to the partition function (2.3) can be identified with ways of wrapping col-

lections of disconnected tori around the spacetime torus. In this picture, we should view

g ∈ [w1, . . . ,wℓ] as providing the data that, if we were to cut all tori open along a spatial

slice, then the corresponding covering of cylinders would be one where the covering space

consists of ℓ disconnected cylinders that are wrapped around the spacetime cylinder wi

times respectively. h on the other hand tells us how these cylinders are glued together at

the spatial cycles where we performed the cut. The exponential in the grand canonical

partition function comes from the fact that the full partition function is obtained from the

“single particle” part i.e. the part corresponding to coverings with a connected covering

space by exponentiation. To be precise, the contribution

1

N

w−1
∑
j=0

Z(Nt
w2 +

j
w
) (A.1)

comes from covering the space time torus with a torus that winds w times around the

spatial cycle and ℓ = N/w times the thermal cycle (where w necessarily has to divide N).

That is, it comes from terms in the trace where g ∈ [g(w,ℓ)] ⊆ SN with

g(w,ℓ) =
ℓ−1
∏
k=0
(wk + 1 wk + 2 . . . wk +w) (A.2)

and where furthermore h ∈ Sℓ⋉(Zw)ℓ has a Sℓ part πh that is just a single cycle of length ℓ.

There are (ℓ−1)! such cycles πh and hence we get that the (w, ℓ) winding covers contribute

Z(w,ℓ) = 1

N !
∑

g∈[g(w,ℓ)]
∑
h∈Cg∣πh∣=ℓ

TrHg[hqL0−NcM
24 ] = ∣[g(w,ℓ)]∣

N !
(ℓ − 1)! w−1

∑
j1,...,jℓ=0

Z
⎛⎜⎝
ℓt+

ℓ

∑
k=1

jk

w

⎞⎟⎠ . (A.3)

But ∣[g(w,ℓ)]∣ = N !
ℓ!wℓ and, since the spectrum only contains integer spin states, the seed

partition function is Z periodic. Hence,

Z(w,ℓ) = 1

ℓw

w−1
∑
j=0

Z (ℓt + j
w
) (A.4)

and summing over ℓ and w as well as exponentiating, we get the grand canonical partition

function

∞
∑
N=0

κNZN = exp
⎛⎝
∞
∑

ℓ,w=1
Z(w,ℓ)κwℓ⎞⎠ , (A.5)

which upon replacing ℓ by N/w is the same as eq. (2.4).
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B Interface changing operator partition function: detailed computation

In this appendix, we provide a more detailed derivation of eq. (2.68). The starting point

is eq. (2.69), which written as a sum over conjugacy classes instead of individual group

elements, takes the form

⟨N ∣x̂L0 ∣p, a⟩ = ∑[τ]∈[Sp]
∑[ρ]∈[SN−p]

∑
σ∈CNτρ

∑
jb,id

1

∣CN−pρ ∣∣Cpτ ∣ N,N
ρτ,τρ⟪jb, id∣x̂L0σ∣a⟩ρ∣I⟩τ,τ ∣a⟩ρ. (B.1)

We can describe equivalence classes [τ] and [ρ] with sequences17 (tw)w∈N and (rw)w∈N such

that tw gives the number of cycles of length w in [τ]. In this context, let

∣t∣ ∶= ∞∑
w=1

tww. (B.2)

Using this notation,

Za[µ±,0, ρR; t̂] =∑
t,r

µ∣t+r∣ρ2∣r∣R ∑
σ∈Cr+t

1∣Ct∣∣Cr ∣ ∑jb,id
N,N
ρτ,τρ⟪jb, id∣x̂L0σ∣a⟩ρ∣I⟩τ,τ ∣a⟩ρ, (B.3)

where µ ∶= µ−µ+ and

Cu ∶=
∞
∏
w=1
(Suw ⋉Z

uw
w ) , (B.4)

while ρ and τ are arbitrary representatives of the conjugacy class determined by r and

t. Now the contribution of fixed t and r factorises into a product of components that

correspond to different cycle lengths according to

Za =∑
t,r

∞
∏
w=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
µw(tw+rw)ρ2wrw

R ∑
σw∈Srw+tw⋉Zrw+tw

w

∏
s∈S

Zc

⎛⎜⎜⎝
ℓcs t̂+

ℓcs

∑
i=1

zi

w

⎞⎟⎟⎠
rw∏
j=1

Ẑo (2ℓoj t̂w
)

tw!wtwrw!2w2rw

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (B.5)

Here, for σw = (π, (z1, . . . , zrw+tw)), define ℓoj with j = 1, . . . , rw as the smallest integer k > 0
such that πkj ≤ rw. Furthermore, let π = π1 . . . πL be the decomposition of π into cycles.

We denote the elements of the cycle πs by (π1
s . . . π

ℓcs
s ) and let S ⊆ {1, . . . , L} be the set of

those indices s for which {π1
s , . . . , π

ℓci
s } has an empty overlap with {1, . . . , rw}. Note that

∑
s∈S

ℓcs +
rw

∑
j=1

ℓoj = rw + tw. (B.6)

17Since the modular parameter relevant for this section will always be t̂ and not the S transformed

modular parameter t, we hope that the reader will not be offended by our choice to instead use t in this

appendix to refer to the sequence associated to τ .
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To simplify further, we can now perform the summation over Zrw+tw
w . This gives

Za =∑
t,r

∞
∏
w=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
µw(tw+rw)ρ2wrw

R ∑
σw∈Srw+tw

wtw−∣S∣ ∏
s∈S

Zc

⎛⎜⎝
ℓcs t̂+

w−1

∑
i=0

i

w

⎞⎟⎠wrw
rw∏
j=1
(Ẑo (2ℓoj t̂w

))
tw!wtwrw!2w2rw

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (B.7)

By the use of eq. (B.6), this can be simplified further to

Za =∑
t,r

∞
∏
w=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑

σw∈Srw+tw

∏
s∈S

µwℓcs

w
Zc

⎛⎜⎝
ℓcs t̂+

w−1

∑
i=0

i

w

⎞⎟⎠
rw∏
j=1

µ
wℓoj ρ2wR
w

Ẑo (2ℓoj t̂w
)

tw!rw!2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (B.8)

Now we perform the sum over Srw+tw . As a first step towards this goal, we should replace

the labels ℓoj and ℓcs of individual cycle lengths by labels Lo and Lc that just count how

many cycles of certain length are present. That is

Lo
ℓ ∶= ∣{j ∈ {1, . . . , rw} ∶ ℓoj = ℓ}∣, Lc

ℓ ∶= ∣{s ∈ S ∶ ℓcs = ℓ}∣. (B.9)

Just as we notationally suppressed the dependence of ℓo, ℓc on σ, we will suppress the

dependence of Lo, Lc on σ. In terms of the new labels, the sum becomes

Za =∑
t,r

∞
∏
w=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑

σw∈Srw+tw

∞
∏
ℓ=1

⎛⎜⎝µ
wℓ

w
Zc

⎛⎜⎝
ℓt̂+

w−1

∑
i=0

i

w

⎞⎟⎠
⎞⎟⎠
Lc
ℓ

∞
∏
ℓ=1
(µwℓρ2wR

w
Ẑo (2ℓt̂w ))L

o
ℓ

tw!rw!2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (B.10)

Now, since the terms which we sum only depend on the Lo and Lc labels, we can introduce

an equivalence relation ∼ on Srw+tw that identifies permutations with equal Lo, Lc labels,

trading the sum over σw with a sum over equivalence classes [LoLc]. To correctly compute

the sum, we have to determine the size of [LoLc]. Let us first take a step back and try to

count permutations with fixed ℓo. They need to satisfy σk
w(1) > rw for all 0 < k < ℓo1 and

σ
ℓo1
w (1) ≤ rw. This leads to tw!(tw−ℓo1+1)!rw choices for {σk

w(1)}ℓo1k=1. Continuing a counting like

this for all {σk
w(i)}ℓoik=1 with 1 ≤ i ≤ r gives a factor of

rw!
tw!

(tw−rw∑
i=1
(ℓo

i
−1))! = rw!

tw!

(tw−∞∑
ℓ=0

Lo
ℓ
(ℓ−1))! (B.11)

contributing to the size of [LoLc]. Additionally, we need to consider how many ways there

are to realise the label Lo with labels ℓo. This leads to an extra factor of rw!
∏
ℓ
Lo
ℓ
!
. Hence, the
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choice of Lo contributes a factor of

rw!
2

∏
ℓ
Lo
ℓ
!

tw!

(tw − ∞∑
ℓ=0

Lo
ℓ
(ℓ − 1))! (B.12)

to the size of ∣[LoLc]∣. Finally, we need to multiply by the size of the conjugacy class

labelled by Lc to obtain

∣[LoLc]∣ = rw!
2

∞
∏
ℓ=1

Lo
ℓ
!

tw!

(tw − ∞∑
ℓ=1

Lo
ℓ
(ℓ − 1))!

(∞∑
ℓ=1

ℓLc
ℓ)!

∞
∏
ℓ=1

Lc
ℓ
!ℓL

c
ℓ

. (B.13)

Now

∞
∑
ℓ=1

ℓ(Lc
ℓ +L

o
ℓ) = rw + tw and

∞
∑
ℓ=1

Lo
ℓ = rw (B.14)

implies

tw −
∞
∑
ℓ=1

Lo
ℓ(ℓ − 1) = ∞∑

ℓ=1
ℓLc

ℓ (B.15)

and therefore

∣[LoLc]∣ = rw!
2tw!

∞
∏
ℓ=1

Lo
ℓ
!Lc

ℓ
!ℓL

c
ℓ

. (B.16)

This implies

Za =∑
t,r

∞
∏
w=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑[LoLc]

∞
∏
ℓ=1

⎛⎜⎝µ
wℓ

wℓ
Zc

⎛⎜⎝
ℓt̂+

w−1

∑
i=0

i

w

⎞⎟⎠
⎞⎟⎠
Lc
ℓ

Lc
ℓ
!

∞
∏
ℓ=1

(µwℓρ2wR
w

Ẑo (2ℓt̂w ))L
o
ℓ

Lo
ℓ
!

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (B.17)

where the [LoLc] sum runs over the set of equivalence classes Srw+tw/ ∼. Finally, we trade

the unconstrained sum over the sequences t and r, which in turn constrains Lo and Lc

to correspond to equivalence classes in Srw+tw for an unconstrained sum over Lo and Lc

without t,r sum. This is achieved by reinterpreting the constraints (B.14) as fixing tw and

rw in terms of Lo and Lc, leading to

Za =
∞
∏

w,ℓ=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∞
∑
Lc
ℓ
=0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎝µ
wℓ

wℓ
Zc

⎛⎜⎝
ℓt̂+

w−1

∑
i=0

i

w

⎞⎟⎠
⎞⎟⎠
Lc
ℓ

Lc
ℓ
!

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∞
∑
Lo
ℓ
=0

⎛⎜⎜⎜⎝
(µwℓρ2wR

w
Ẑo (2ℓt̂w ))L

o
ℓ

Lo
ℓ
!

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (B.18)
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The sums now simply give exponential functions

Za[µ±,0, ρR; t̂] = exp⎛⎜⎝
∞
∑

w,ℓ=1

⎛⎜⎝
µwℓ

wℓ
Zc

⎛⎜⎝
ℓt̂+

w−1

∑
i=0

i

w

⎞⎟⎠
⎞⎟⎠ +

∞
∑

w,ℓ=1
(µwℓρ2wR

w
Ẑo (2ℓt̂w ))⎞⎟⎠ . (B.19)

Replacing the summation variable ℓ by k = wℓ finally gives us the result (2.68) that we

wanted to prove.

C Boundary symmetric orbifold genus expansion for spherical brane

The main subtlety in establishing the genus expansion for connected correlation functions

in the presence of the boundary

∥a⟫ = 1√
N !
∑
g∈Sn

∣a⟩g (C.1)

is to identify the correct definition of the word “connected” in this context. One naive

attempt motivated by the definition of the connected part in the case without boundary

would be to define the connected correlator

⟪a∥σw1
(z1, z̄1) . . . σwnc

(znc , z̄nc)∣0⟩c (C.2)

directly as the restriction of the sum

( nc

∏
i=1

√ (N−wi)!wi

N !
) ∑
gi∈[(1...wi)]

⟪a∥σg1(z1, z̄1) . . . σgnc
(znc , z̄nc)∣0⟩ (C.3)

to those terms for which the subgroup of SN generated by {gi}nc

i=1 acts transitively on the

active colours. For the case without a boundary, this prescription is intuitively sound: All

contributions to the correlator from the passive (i.e. not active) colours are trivial and

hence, though the passive colours arguably could be seen as contributing “disconnected”

parts to the correlator, we may discard them on the basis that they are undetectable in

the gauge dependent correlators.

The situation in the presence of the boundary (C.1) is different from this. Even in

the absence of any bulk operator insertions, i.e. even with a vanishing number of active

colours, the correlation function has a non trivial dependence on N . Concretely,

⟪a∣0⟩ = 1√
N !
∼ N−N/2. (C.4)

Hence, we see that every passive colour contributes a factor of N−1/2 to the overall N

scaling. To obtain the true connected correlator, we should divide out the contributions of
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all passive colours. This leads to the definition18

⟪a∥ nc

∏
i=1

σwi
(zi, z̄i)∣0⟩c ∶= ∑

gi∈[(1...wi)]{g1,...gnc} generates a transitive subgroup of Sn

⟪a∥ nc∏
i=1

√ (N−wi)!wi

N !
σgi(zi, z̄i)∣0⟩

⟪a∣0⟩N−nN

, (C.5)

where n is the number of active and hence N − n the number of passive colours.

Let us now compute the N scaling of the individual gauge dependent correlators. To

do so, we first simply observe that

⟪a∥ nc∏
i=1

√ (N−wi)!wi

N !
σgi(zi, z̄i)∣0⟩

⟪a∣0⟩N−nN

∼ N−n2 gnc+1
⟨a∣ nc

∏
i=1

N
−wi

2 σgi(zi, z̄i)∣0⟩, (C.6)

where

gnc+1 = (g1 . . . gnc)−1. (C.7)

Now there are many terms in the sum (C.5) that give the same contribution to the overall

correlator. This has to be accounted for in order to get the correct scaling with N with

which an individual term gnc+1
⟨a∣ nc∏

i=1
σgi(zi, z̄i)∣0⟩ contributes to the overall correlator. In

order to obtain the N scaling, we do not need to work out the precise combinatorics. All

we need is an overall factor of Nn accounting for the choice of the n active colours. The

detailed combinatorics just provides order 1 corrections, since it originates from a counting

problem of Sn. Hence, gnc+1
⟨a∣ nc∏

i=1
σgi(zi, z̄i)∣0⟩ contributes with a weight of

N

n
2
−

nc

∑
j=1

wj

2
(C.8)

to the overall correlator. Thus, what we would like to show is

n
2
−

nc

∑
j=1

wj

2
= 1 − g − b

2
−

nc

2
. (C.9)

In order to do so, we have to express g and b in terms of the group theoretic data. Now

the number b of boundaries is simply given by the number of cycles in gnc+1. That is, the
decomposition of gnc+1 into cycles (including cycles of length 1), takes the form

gnc+1 = (gnc+1)1 . . . (gnc+1)b. (C.10)

Let us denote the length ∣(gnc+1)i∣ of the ith cycle by wnc+i. To determine the genus, we can

imagine to shrink the boundary circles down to punctures, corresponding to the insertion

18Note that the large N behaviour of one-point functions in the presence of boundaries like the one

discussed here was also considered by Bellin, Biswas, Sully in [7]. They however did not only divide out all

the passive disconnected pieces to the correlator, but the full overlap of the boundary state with the defect.

This leads to an enhancement of the one-point functions with N that, as they also observe in their paper,

is incompatible with a geometric bulk dual interpretation.
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of order wnc+i twist fields. The genus of the covering surface can then be determined by

the formula for the genus in the absence of any boundaries as

g = 1 − n + 1
2

nc+b
∑
j=1
(wj − 1). (C.11)

With this knowledge, we can now prove eq. (C.9). Indeed,

1 − g − b
2
−

nc

2
= 1 −

⎛⎝1 − n + 1
2

nc

∑
j=1

wj −
nc

2
+

1
2

nc+nb

∑
j=nc+1

wj −
b
2

⎞⎠ − b
2
−

nc

2

= n − 1
2

nc+nb

∑
j=nc+1

wj −
1
2

nc

∑
j=1

wj .

(C.12)

But

1
2

nc+nb

∑
j=nc+1

wj =
n
2
, (C.13)

which finishes the proof.
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3
×T

4 at k = 1 and their

holographic duals, JHEP 12 (2021) 149 [2110.05509].

[9] E.J. Martinec, A defect in AdS3/CFT2 duality, JHEP 06 (2022) 024 [2201.04218].

[10] M. Gutperle, Y.-Y. Li, D. Rathore and K. Roumpedakis, Non-invertible symmetries in SN
orbifold CFTs and holography, JHEP 09 (2024) 110 [2405.15693].

[11] M. Gutperle, Y.-Y. Li, D. Rathore and K. Roumpedakis, A note on entanglement entropy

and topological defects in symmetric orbifold CFTs, JHEP 09 (2024) 010 [2406.10967].

[12] B. Knighton, V. Sriprachyakul and J. Vošmera, Topological defects and tensionless
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