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Abstract

At finite lattice spacing, Lagrangian and Hamiltonian predictions differ due to discretiza-
tion effects. In the Hamiltonian limit, i.e. at vanishing temporal lattice spacing at, the path
integral approach in the Lagrangian formalism reproduces the results of the Hamiltonian
theory. In this work, we numerically calculate the Hamiltonian limit of a U(1) gauge the-
ory in (2 + 1) dimensions. This is achieved by Monte Carlo simulations in the Lagrangian
formalism with lattices that are anisotropic in the time direction. For each ensemble, we
determine the ratio between the temporal and spatial scale with the static quark potential
and extrapolate to at → 0. Our results are compared with the data from Hamiltonian sim-
ulations at small volumes, showing agreement within < 2σ. These results can be used to
match the two formalisms.

1 Introduction

Gauge theories are fundamental in our understanding of force mediation in the standard model
(SM) of particle physics. Of the three forces unified in the SM, the strong force or quantum chro-
modynamics (QCD) is special because it is strongly coupled in the low energy regime. Therefore,
it requires a non-perturbative treatment, which is possible in the lattice regularisation of gauge
theories pioneered by Wilson [1]. While primarily applied to QCD, the lattice regularisation is
applicable to any gauge theory.

In practice, any computation in a lattice gauge theory requires one to choose either the
path integral formalism enabling mainly Monte Carlo (MC) simulations of such theories, or
the Hamiltonian formalism. The basis for the former has been provided already by Wilson,
for the latter the corresponding Hamiltonian has been derived not much later based on general
arguments in Ref. [2] by Kogut and Susskind, while Creutz derived the same expression for the
Hamiltonian by explicitly constructing the transfer matrix [3]. The Hamiltonian formulation has
recently attracted fresh attention since it represents the natural formulation one would use on
a future digital quantum computer. Compared to the MC approach, Hamiltonian simulations
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have the advantage that for instance systems at finite density or real time evolution can be
studied. However, the development state of current quantum computing devices limits such
simulations to rather small systems. Alternatively, tensor network states can be used, which
see rapid development as well [4–8]. Still, Hamiltonian simulations are currently restricted to
systems with a relatively small number of degrees of freedom.

Ideas to nevertheless usefully apply Hamiltonian simulations already now include a clever
combination with MC simulations, profiting from the respective strengths simultaneously [9–13].
One such idea has been brought forward in Ref. [9] and further investigated in Ref. [10]. It re-
quires the matching of Hamiltonian and Lagrangian simulations: both formulations encompass
the bare gauge coupling as a single parameter, which is directly related to the scale of the corre-
sponding theory. However, being a bare parameter implies that simply using the same numerical
value for the coupling will, at least at finite lattice spacing, likely lead to sizeable artefacts. An
alternative is to connect the MC simulations with the Hamiltonian ones by taking the contin-
uum limit in time direction, as the construction by Creutz suggests. This continuum limit in
time direction has been studied previously in Refs. [14–16] based on the so-called anisotropic
formulation of lattice gauge theories [17]. Most relevant for our work here is Ref. [14], where
the authors study a U(1) theory using the anisotropic Wilson plaquette action. They take the
temporal continuum limit keeping the β-value fixed. They compare to Green’s Function Monte
Carlo results which they comment, however, to be unreliable due to strong dependence on the
trial wave function.

In this paper we will go beyond Refs. [14, 15] in two ways: first, we will take the continuum
limit in time direction in compact pure U(1) gauge theory while keeping a suitable spatial length
fixed, which we determine non-perturbatively. Second, we directly compare our extrapolated
results from MC simulations with Hamiltonian simulations, finding agreement within 2σ. It is
conceptually straightforward to extend this to non-Abelian lattice gauge theories. We reported
on a first stage of this work in Ref. [18].

The paper is organised as follows: First, we give an overview of the theory in section 2.
Then we introduce the setup that we used for simulation in section 3, and go into detail on
our determination of the temporal continuum limit in section 3.1.2. We present our results in
section 4, discuss them in section 5, and conclude in section 6.

2 Theoretical background

2.1 Lagrangian formulation

On the Lagrangian side, we use the anisotropic Wilson action [17, 19], which reduces to the
standard Wilson action for the special value of the anisotropy parameter ξinput = 1. It reads:

SW =
β

ξinput

∑

~x,i

Re (1− P0i(~x)) + βξinput
∑

~x,i>j

Re (1− Pij(~x)) , (1)

where Pµν(~x) is the so-called plaquette operator:

Pµν(~x) = Uµ(~x)Uν(~x+ µ̂)U †
µ(~x+ ν̂)U †

ν (~x) . (2)

ξinput is the bare anisotropy and β = 1/g20 the inverse squared coupling constant. The gauge
links Uµ(~x) are elements of U(1) and can, hence, be parametrised as U = eiϕ with a real-valued
angle ϕ. ~x is a point in our 2 + 1 dimensional lattice and the directions µ ∈ {0, 1, 2}. MC
simulations of the theory described by the action SW can be performed using standard Markov
Chain MC methods, such as the Metropolis algorithm. More details on the algorithm will be
given below.

The renormalised anisotropy ξren represents the ratio of temporal to spatial lattice spacing
at/as. ξren can be estimated from MC simulations in different ways, with the idea always being
to compute one physical observable O in units of both at and as. Once atO and asO have been

2



determined, the renormalised anisotropy is estimated as

ξren =
atO

asO
=

at
as

. (3)

In this paper we use two different choices for such an observable O, both based on the so-called
static quark potential V , see for instance Ref. [14]. The static quark potential can be determined
from planar Wilson loops W (aµx, aνy) with extents aµx and aνy. Here, aµ represents the lattice
spacing in direction µ, which can be one of the spatial directions or the time direction. Since we
are working in Euclidean space-time, the expectation values of Wilson loops decay exponentially
in spatial as well as temporal directions. By forming purely spatial Wilson loopsWss and spatial-
temporal Wilson loops Wst, one obtains

lim
y→∞

Wss(x/as, (y + 1)/as)

Wss(x/as, y/asy)
= exp(−asVs(x/as)) ,

lim
t→∞

Wst(x/as, (t+ 1)/at)

Wst(x/as, t/at)
= exp(−atVt(x/as)) .

(4)

Again, due to the fact that we are working in Euclidean space-time, we have at equal distance
Vt = Vs up to a constant shift and, therefore, the anisotropy can be determined from a fit of

asVs(x/as) =
1

ξren
atVt(x/as) + c (5)

to the data for the two potentials as a function of distance. The fit parameter c represents
the difference in self-energy in Vs and Vt. We refer to this procedure as the one based on the
“normal” potential.

The second way to determine the potential is the one also used by Ref. [20], and we refer
to this method as the one based on the “sideways” potential. In this procedure the potential is
determined varying the first argument in the corresponding Wilson loops as follows

lim
x→∞

Wss((x+ 1)/as, y/as)

Wss(x/as, y/as)
= exp(−asVs(y/as)) ,

lim
x→∞

Wst((x+ 1)/as, t/at)

Wst(x/as, t/at)
= exp(−asVt(t/at)) .

(6)

Now the argument is that if the potentials are equal, the distances in physical units must be
equal as well. Thus, the anisotropy can be determined from

Vs(y/as) = Vt (t/at) ⇒ y = t ⇒ ξren =
aty

ast
=

at
as

(7)

Since we rarely have spatial and temporal extents such that Vs and Vt are equal, we rescale the
y-dependence of Vs until the two curves Vs(ξreny/as) and Vt(t/at) agree within errors, which
gives the renormalised anisotropy.

In practice, we start by interpolating linearly between any two neighbouring points t/at and
(t + 1)/at (excluding the smallest t-value) of the potential Vt. Next, we determine for each
value of Vs the corresponding scaling factor η(y/as) by matching the value of Vs(y/as) to the
appropriate linear interpolation. Finally, we obtain ξren by averaging over all η(y/as).

2.1.1 Sommer parameter r0 and setting the scale

The static potential, which in 2 + 1 dimensions has the form

V (r) = a+ σr + d ln(r) . (8)

can be used to define a length scale r0, the so-called Sommer parameter [21], as follows

−r2
d

dr
V (r)|r=r0 = c (9)
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in units of the spatial lattice spacing as. In QCD, the physical value of r0 is known to be around
0.5 fm for c = −1.65, but, in the U(1) theory at hand its physical value is unknown. However,
this is not relevant for our procedure, as we only need an observable in units of the spatial lattice
spacing with a well defined continuum limit. We use a value of c = −1.65, because it turns out
to be in the linear region of the potential and we stick to the notation r0/as. Once the potentials
are parametrised using the form eq. (8), the corresponding value of r0/as can be determined.
It allows one to fix the spatial lattice spacing: if in two simulations with parameters (β, ξ) and
(β′, ξ′) the same r0/as is measured within uncertainties, both simulations exhibit the same as.

In practice, we determine r0 by fitting the potential form eq. (8) to the data. Then, we take
the derivative analytically and express r0/as as follows

r0
as

= −
d

2σ
+

√

(

d

2σ

)2

−
c

σ
, (10)

with the parameters σ and d from eq. (8) and c from eq. (9).

2.2 Hamiltonian

The Kogut-Susskind Hamiltonian for the pure U(1) lattice gauge theory in (2 + 1) dimensions
is given by [2]

Ĥtot =
g2

2

∑

~r

(

Ê2
~r,1 + Ê2

~r,2

)

−
1

2a2g2

∑

~r

(

P̂~r + P̂ †
~r

)

, (11)

where a is the lattice spacing and g is the bare coupling. The operator Ê~r,µ represents the
dimensionless electric field on the link starting from the lattice site at coordinates ~r = (r1, r2)

in the direction µ ∈ {1, 2}. The plaquette operator P̂~r = Û~r,1Û~r+1,2Û
†
~r+2,1Û

†
~r,2 is defined as

the product of four unitary link operators Û~r,µ, where the notation ~r + 1 ≡ (r1 + 1, r2) and
~r + 2 ≡ (r1, r2 + 1) indicates the neighbouring sites in the 1 and 2 directions, respectively. The
link operator is defined as

Û~r,µ = eiag
~A~r,µ , (12)

where ~A~r,µ is the discretized vector field in the compact formulation, i.e., the values of ag ~A~r,µ

are constrained to lie within the interval [0, 2π). Note that Û~r,µ is a unitary operator. The

commutation relations between the electric field operator Ê~r,ν and the link operator Û~r′,µ
read

[Ê~r,ν , Û~r′,µ
] = δ

~r,~r′
δν,µÛ~r,ν , (13)

[Ê~r,ν , Û
†
~r′,µ

] = −δ
~r,~r′

δν,µÛ
†
~r′,ν

. (14)

The gauge-invariant states satisfy Gauss’s law at every site ~r,

[

∑

µ=1,2

(

Ê~r,µ − Ê~r−µ,µ

)

−Q~r

]

|Φ〉 = 0, (15)

where Q~r are the static charges. Instead of considering the full Hilbert space and enforcing
Gauss’s law, we formulate the theory directly on the gauge-invariant subspace, by using the
Gauss’s law constraints to eliminate certain degrees of freedom [22–26].

For a numerical implementation of the Hamiltonian, the gauge degrees of freedom must be
truncated to a finite dimension because the electric field values are unbounded, resulting in
an infinite-dimensional Hilbert space for these degrees of freedom. The continuous U(1) gauge
group can be discretized in the electric basis to the group of integers Z2l+1. The integer l sets
the truncation level, i.e., the discretized gauge fields are constrained to integer values within
the range [−l, l] [22]. The total Hilbert space dimension is (2l+ 1)N , where N is the number of
gauge fields.
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The eigenstates e~r,µ of the electric field operator Ê~r,µ form a basis,

Ê~r,µ |e~r,µ〉 = e~r,µ |e~r,µ〉 , e~r,µ ∈ [−l, l] , (16)

on which the link operators Û~r,µ and Û †
~r,µ act as raising and lowering operators, respectively,

Û~r,µ |e~r,µ〉 = |e~r,µ + 1〉 , Û †
~r,µ |e~r,µ〉 = |e~r,µ − 1〉 . (17)

When discretizing a gauge theory, one needs to give up either unitarity or the exact commutation
relations between the electric field and link operators in eq. (13) and eq. (14). In our case, the

commutation relations are preserved for the truncated operators, but unitarity is lost, Û †
~r,µÛ~r,µ 6=

✶. This can be seen from the matrix representation of the link operators [24],

Û 7→











0 . . . . . . 0
1 . . . . . . 0

0
. . .

... 0
0 . . . 1 0











, Û † 7→











0 1 . . . 0

0
...

. . . 0
0 . . . . . . 1
0 . . . . . . 0











. (18)

However, unitarity is recovered in the limit of l → ∞. The resulting errors due to the finite
truncation parameter l have been investigated in Refs. [27, 28]. Alternative methods for defining
the electric field and link operators have been explored in Refs. [29–32].

In order to analytically derive the Kogut-Susskind Hamiltonian in eq. (11) from the Wilson
action in eq. (1), one needs to employ the transfer matrix method [3]. This derivation has been
performed for various quantum field theories in arbitrary dimensions, for example, for studying
transport coefficients [33] and the topological θ-term of (non)Abelian lattice gauge theories in
(3+1) dimensions [25]. Since the Wilson action is defined on a (d + 1)-dimensional space-time
lattice and the Kogut-Susskind Hamiltonian is defined on a d-dimensional spatial lattice, the
limit of at → 0 has to be taken when deriving eq. (11) from eq. (1) using the transfer matrix
formalism [3].

The parameters of the resulting Kogut-Susskind Hamiltonian generally differ from the orig-
inal parameters of the Wilson action, due to renormalization effects. Thus, when combining
Hamiltonian and Lagrangian lattice methods, these parameters need to be matched.

3 Methods

3.1 Lagrangian

We use two different Markov Chain Monte Carlo algorithms to simulate the lattice action eq. (1).
We use periodic boundary conditions in all directions. For values of ξinput ≥ 1/4 we use the
standard Metropolis algorithm, where each link is updated 10 times per sweep. We discard an
appropriate amount of sweeps to account for thermalisation, and only analyse every 50th or
every 100th configuration to account for autocorrelation effects. For anisotropies smaller than
ξinput = 1/4, we encounter issues with critical slowing down and, therefore, use a combination of
heatbath and overrelaxation algorithms, with ten heatbath steps per overrelaxation step. Only
in the case of ξinput = 0.18, five heatbath steps are followed by five overrelaxation steps.

Details of the algorithm can be found in Ref. [34] (see in particular the arXiv version). Our
implementation can be found in our publicly available simulation code [35]. Our code for the
data analysis uses the code [37] and can be found in 1.

When performing the limit ξ → 0, we keep the spatial volume (asL)
2 fixed and scale the

time extent T by ξ−1
input in order to keep both the physical spatial and time extents constant.

In total, we have generated 82 ensembles with L = 16 with β-values in the range (1.39, 1.75)
and ξinput-values 1, 4/5, 2/3, 1/2, 2/5, 1/3, 1/4, 1/5, 0.18. Even smaller values of the anisotropy
turned out to be unrealistic due to too long equilibration and autocorrelation times. A list of

1https://github.com/christianegross/U1 analyse potential
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label Potential type Iξren Ir0 included error

N1ES Normal [2, 7] [1, 7] statistical only
S1ES Sideways [2, 7] [1, 7] statistical only
N0ES Normal [2, 8] [1, 8] statistical only
S0ES Sideways [2, 8] [1, 8] statistical only
N1ET Normal [2, 7] [1, 7] statistical and systematic
S1ET Sideways [2, 7] [1, 7] statistical and systematic
N0ET Normal [2, 8] [1, 8] statistical and systematic
S0ET Sideways [2, 8] [1, 8] statistical and systematic

Table 1: Summary of the different analysis chains. The potential type refers to those defined in
section 2.1. The intervals Iξren and Ir0 indicate the range of distances in units of the spatial lattice
spacing as used to determine ξren and r0/as, respectively. For the different error determinations
see appendix B. The systematic error arises from uncertainty in choosing the fit range for the
effective masses. In the following, we refer to the different analysis chains with the labels in the
first column (see text).

all ensembles is compiled in the appendix in table 8 together with relevant parameter values,
algorithm, autocorrelation times, and number of configurations included in the analysis. The
bootstrap method is used for the statistical analysis with 500 bootstrap samples. Residual
autocorrelation times are taken into account as discussed in appendix A.

In principle, one would perform the stochastic simulations in 2 + 1 dimensions in the very
same spatial volume used also in the Hamiltonian simulations. However, this target volume is
so small that the static potential in the relevant region of distances, r0/as and the renormalised
anisotropy cannot be determined reliably. Therefore, a two-step procedure is required in which
r0/as and the parameter-values for the temporal continuum limit are determined in large spatial
volume. This is followed by dedicated simulations with L = 3 to match the volume of the
Hamiltonian simulations.

In addition to the L = 16 simulations, we have also generated 54 dedicated L = 3 ensembles,
which exactly match the spatial volume used in the Hamiltonian simulations. These are listed
in the appendix in table 9. The time extent T for given ξinput was chosen equal to the large
volume simulations at the same ξinput.

Further, the range of β-values we can use in practice for the matching is restricted: for
too small β-values as is too large to reliably determine the static potential from Lagrangian
simulations. On the other hand, for too large β-values, the Hamiltonian simulations we are
using are suffering from significant truncation errors. This leaves us currently with a window of
β-values in the limit ξ → 0 between β = 1.35 and β = 1.5.

3.1.1 Determining r0 and ξren

Once we have determined the Wilson loops, we extract the potential by computing the ratios
eqs. (4) and (6), and determine the values of the potential using fits to effective masses. In
order to account for ambiguities in the choice of the fit range, we perform a model averaging
procedure, see appendix B. This allows us to compute statistical or combined statistical and
systematic errors for each value of the potential. From the potential we determine ξren and
r0/as from different ranges of distances in the intervals Iξren and Ir0 , respectively. The various
choices can be combined in different ways, which we use to define analysis chains, all of which
are compiled in table 1. The most important difference between the analysis chains is whether
they include a systematic error (label ET) or not (label ES).

3.1.2 Taking the temporal continuum limit

For the generation of ensembles we start with isotropic simulations corresponding to ξ = ξinput =
1 at a given β-value β = βiso and determine r0/as(βiso) ≡ riso. Then, for all ξinput-values smaller
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cA cB

ξinput-values np ξinput-values np

0.18, 1/5, 1/4 1 1/5, 1/4, 1/3 1
0.18, 1/5, 1/4, 1/3 1 1/5, 1/4, 1/3, 2/5 1
0.18, 1/5, 1/4, 1/3, 2/5 2 1/5, 1/4, 1/3, 2/5, 1/2 2
0.18, 1/5, 1/4, 1/3, 2/5, 1/2 2 1/5, 1/4, 1/3, 2/5, 1/2, 2/3 2

Table 2: Two sets of extrapolations cA and cB used to calculate a combined continuum limit of
the fits. The same fit ranges are used for all trajectories and for all fits to the continuum limit
– for β, the plaquettes and for R. We list the anisotropies that are included in the polynomial
fits and the degrees of the polynomials.

a2t , which is expected for a pure gauge theory. The extrapolations are performed with different
fit ranges in ξren, and with different degrees np. In particular, we have two sets of continuum
extrapolations denoted as cA and cB, respectively, which mainly differ by the inclusion or
exclusion of ξinput = 0.18 in cA and cB, respectively. The two different sets of fits are compiled
in table 2.

For each of the eight analysis chains, we perform all eight fits listed in table 2, leading to 64
continuum limits, for the pair (β, P ).

The 64 pairs fall into four sets of equal size corresponding to the extrapolation set–analysis
chain combinations (cA-ES), (cB-ES), (cA-ET) and (cB-ET), respectively.

We extract the statistical error of the final results of the sets cA and cB from the standard
deviation of the bootstrap distribution of the unweighted average over all pairs in (cA-ES) and
(cB-ES), respectively. Likewise, the combination of statistical and systematic error is obtained
from (cA-ET) and (cB-ET). Additionally, we include for (cA-ET) and (cB-ET) separately the
spread of the different continuum results as follows

σ2
spread, tot = σ2

unweighted +
1

N

∑

i

(µunweighted − µi)
2 (20)

in the corresponding systematic uncertainty. Here, (µ, σ)unweighted represents the mean and
standard deviation from the combined bootstrap samples, and µi the mean values of the single
fits. We fold this systematic uncertainty into our bootstrap distribution of (cA-ET) and (cB-
ET), respectively, by an appropriate rescaling, analogous to what is described in appendix A. A
flow chart of this procedure is given in fig. 11.

To summarise this technical discussion: the procedure described above leaves us with a
purely statistical error σstat, a combined error σcomb from the statistical error and the systematic
errors from choosing the plateau points, and a combination of σcomb and the error due to the
spread, σspread,tot. In the end we can isolate the single errors using the relations σ2

spread =

σ2
spread,tot−σ2

comb and σ2
pot = σ2

comb−σ2
stat and eventually quote the errors σspread, σpot and σstat.

As final temporal continuum results for the observables β, P (L = 16), P (L = 3) and R, we quote
the mean values from the unweighted averages over (cA-ET) and (cB-ET).

3.2 Hamiltonian

As discussed in section 2.2, we use the Gauss’s law to eliminate some gauge degrees of freedom,
thereby restricting the theory to the gauge-invariant space. More specifically, we treat the
Gauss’s law in eq. (15) as a set of constraints on the electric operators, and solve this set of
equations over the electric operators. While there are N Gauss’s law constraints, they are not
independent, since there is a conservation of charges, which, in the pure gauge case, means the
constraints sum to zero. Therefore, there are only N − 1 independent constraints, which allows
us to express N − 1 arbitrary electric field operators, i.e., effectively eliminating them, in terms
of the remaining ones. Since the eliminated electric fields do not contribute directly to the
dynamics, their corresponding link operators become identities. For a two-dimensional L × L
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square lattice, where N = L2, L2 − 1 out of the 2L2 gauge degrees of freedom are eliminated.
Thus, the Hamiltonian is expressed in terms of the L2 + 1 remaining gauge fields. This reduces
the number of basis states from (2l + 1)2L

2

to (2l + 1)L
2+1, which in practice, alleviates the

computational costs significantly.
Here we perform exact diagonalization of a 3× 3 lattice with periodic boundary conditions

to solve for the ground state |Ψ0〉. Then, we evaluate the plaquette expectation value, defined
by

〈P〉 ≡

〈

Ψ0

∣

∣

∣

∣

∣

1

2V

∑

~r

(

P̂~r + P̂ †
~r

)

∣

∣

∣

∣

∣

Ψ0

〉

, (21)

where V is the number of plaquettes in the lattice. Note that we set the lattice spacing a = 1
throughout our simulations. The simulations are carried out over a range of 1/g2 in (0, 10] and
for l ∈ {1, 2, 3, 4}. We find that the values of 〈P〉 obtained for l = 2, 3, 4 agree with each other
up to 1/g2 = 1.5, beyond which the values start to deviate for different l values, indicating that
the simulations are no longer reliable.

3.3 Comparing Lagrangian and Hamiltonian simulations

We compare the Lagrangian results, obtained with the methods in section 3.1 and the Hamil-
tonian results, obtained with the methods in section 3.2, in the two-dimensional βmatch-Pmatch-
plane. We use confidence ellipses in addition to error bars to display the errors of our measure-
ments. The confidence ellipses are constructed from the errors of the continuum limit results
of βmatch and Pmatch and the correlation between them. To quantify the deviation between
Lagrangian and Hamiltonian results, we scale the confidence ellipse until it is touching the in-
terpolation of the Hamiltonian result. Then we convert the radius of this touching ellipse into
the probability that a point from the Lagrangian distribution is within the ellipse and thus not
a match to the Hamiltonian, i.e. the probability that the Hamiltonian and Lagrangian measure-
ments do not match. We convert the mismatch probability into the probabilities of standard
deviations of the normal distribution. The detailed formula for the ellipses and the probabilities
are given in appendix C.

4 Results

In this section, we mainly present results of the stochastic simulations. The results from the
Hamiltonian simulations are only required at the end when we compare it with the results in
the temporal continuum limit.

In fig. 2, we exemplarily show three equilibration histories of the plaquette: we plot P −〈P 〉
as a function of the number of Monte Carlo steps, where 〈P 〉 is computed after equilibrium
is reached. Each step corresponds to a complete sweep over the lattice. The main difference
between the three panels is the value of ξinput, which is ξinput = 0.18 in the leftmost panel,
ξinput = 0.2 in the middle, and ξinput = 1 in the rightmost panel. The ensembles have constant
as, leading to different β. The values of βmatch were taken from the analysis chain N0ET and
βiso = 1.65. For ξinput = 1, thermalisation is achieved almost instantly, for ξinput = 1/5 it takes
about 2000 Monte Carlo steps, and for ξinput = 0.18, thermalisation is only achieved after about
25000 steps. Also, one observes long-range fluctuations at the smallest value of the anisotropy,
hinting at larger autocorrelation times.

In the following, we show results exemplarily for the analysis chain N0ET. We show the
integrated autocorrelation times for constant β and simulation with the Metropolis-algorithm in
fig. 3, and we observe that the autocorrelation increases roughly exponentially with decreasing
ξinput. For anisotropies that are close to 1, we see an ideal autocorrelation time with τint ≈ 0.5.
For decreasing ξinput, the error on the integrated autocorrelation time grows larger, but also τint
itself grows. For ξinput = 1/4, the autocorrelation grows to τint = 17.7(63). This prevents us
from simulating even smaller anisotropies with the Metropolis-algorithm.
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βiso 1.65 1.7

set cB cB
P (L = 16) 0.6233(04)(11)(67)[67] 0.6334(07)(18)(27)[34]
P (L = 3) direct 0.6495(03)(07)(46)[47] 0.6574(07)(14)(15)[22]
d dir. 1.57 0.61
P (L = 3) ratio 0.6469(04)(12)(69)[70] 0.6553(07)(19)(28)[34]
d rat. 0.66 1.77

Table 7: Same as table 6, but for extrapolation set cB

5 Discussion

In fig. 2 we see that the number of sweeps it takes to reach an equilibrium state grows with
decreasing ξinput, eventually leading to critical slowing down. This is also seen in the autocorre-
lation times in tables 8 and 9 and fig. 3, they grow with decreasing anisotropy. For ξinput ≥ 1/4,
we were able to simulate with the standard Metropolis algorithm, whereas for even smaller
anisotropies, the autocorrelation was too large and we were unable to even achieve thermalisa-
tion. The combination of heatbath and overrelaxation algorithms mitigated the critical slowing
down enough to make simulations at ξinput = 1/5, 0.18 feasible. However, for ξinput < 0.18 we
could not reach equilibrium in reasonable simulation times.

This restricts of course how close we could get with our simulations to the temporal con-
tinuum limit. Still, we are confident that our procedure of following different analysis chains,
and of using different sets of temporal continuum extrapolations leads to reliable estimates of
the uncertainties. In fact, the total uncertainty is in almost all results dominated by systematic
uncertainties. Moreover, statistical fluctuations are more likely to average out in our procedure.

It is also reassuring that the extrapolation sets cA and cB lead to compatible results: we
recall that the most significant difference between the two is the in- or exclusion of the data at
the smallest ξinput-value. Therefore, the data at the smallest ξinput-value confirm our temporal
continuum limit results, but are not strictly necessary.

Our results in the temporal continuum limit are in agreement with the Hamiltonian results
within two σ; the largest deviation is 1.87σ. This indicates in general that taking the temporal
continuum limit in the Euclidean (2 + 1) dimensional lattice theory is equivalent to the Hamil-
tonian lattice theory for the specific lattice action and Hamiltonian quoted in the introduction.

Still, there might be a systematic effect unaccounted for, because all our extrapolation result
lie below the Hamiltonian curve. One possible explanation for this systematic deviation could
be the truncation on the Hamiltonian side. This seems not to be the case because larger l-values
tend to push the plaquette values up at fixed β. Despite the discussion from above, we certainly
cannot be 100% sure that we are close enough to the temporal continuum limit, which might
offer one explanation for the systematic deviation. However, this will need further investigation
in the future.

6 Summary and Outlook

We have performed the temporal continuum limit in a U(1) lattice gauge theory using stochastic
simulations in the Lagrangian formalism. We performed this temporal continuum limit using the
anisotropic lattice formulation starting with two β-values from the isotropic side. Trajectories of
constant spatial lattice spacing are defined by keeping the Sommer parameter r0/as fixed. The
so obtained temporal continuum results for the plaquette and the coupling β are compared to
results from a direct Hamiltonian simulation. We find general agreement within two σ between
Hamiltonian and extrapolated Lagrangian results. As discussed in the previous section, the
deviation is systematic towards lower plaquette values for the extrapolated results, for which we
currently do not have a good explanation.

There are several immediate extensions that we leave for the future: On the path integral

16



side, it is possible to use other parameters to set the scale, e.g. the time τ0 from the gradient
flow, or a fermion mass or decay constant in a fermionic theory. In a fermionic theory we could
also use other matching variables, like the mass gap.

On the Hamiltonian side, the goal is to simulate larger lattices, which simplifies the match-
ing. This can be achieved by other methods beyond exact diagonalization, such as Tensor
Networks and future Quantum Computers. Larger lattices in future simulations would make
other matching variables beyond the plaquette possible, and would reduce the need for finite
volume extrapolations.

An extension to higher dimensions or other lattice gauge theories, in particular QCD, is
conceptually straightforward, but will be computationally demanding on both the Lagrangian
and the Hamiltonian side.

Acknowledgements

The work on this project was supported by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) as part of the CRC 1639 NuMeriQS – project no. 511713970 and as part of
NRW-FAIR by the MKW NRW under the funding code NW21-024-A. This work is supported
with funds from the Ministry of Science, Research and Culture of the State of Brandenburg
within the Center for Quantum Technology and Applications (CQTA).

This work is supported by the European Union’s Horizon Europe Framework Programme
(HORIZON) under the ERA Chair scheme with grant agreement no. 101087126.

The authors gratefully acknowledge the granted access to the Marvin cluster hosted by the
University of Bonn. We thank A. Crippa for helpful discussions and for providing additional
results of the Hamiltonian simulations. We also thank M. Garofalo for helpful discussions.

A Autocorrelation

A common way to deal with autocorrelation is to block the data before bootstrapping it. How-
ever, our results showed that this lead to a bad estimation of the covariance matrix, and thus
unreliable results of the potential energies.

We take care of the autocorrelation in a different way: The potential energies are still
determined with bootstrapping, but with block length 1. At the same time, we determine the
autocorrelation of the original data with the UWerr-algorithm [36] implemented in [37]. We
then rescale the results of the bootstrapping to take the autocorrelation into account. The error
is rescaled with 2τint and each bootstrap sample x is rescaled to be xnew = xold+(xold−µ) · (2 ·
τint − 1), with µ the unbiased mean. This ensures that the difference of the bootstrap sample
to the unbiased mean is 2τint times as large, so the error increases by the required amount.

We also draw bootstrap samples of the plaquette. There, we set the block length to 4τ2int to
take the autocorrelation into account.

B Using AIC to determine the potential points

The potential points are computed with the help of the Akaike Information Criterion (AIC) [38].
We fit the ratios from eqs. (4) and (6) to a constant in the region (t1, t2). All possible

combinations with t1 > 1 and t2 − t1 > 2 are used, and each fit result is assigned the weight

w = exp

(

−
1

2
·
(

χ2 + 2− (t2 − t1)
)

)

(22)

with χ2 the sum of residues of the fit.
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The weights are normalized to one. We assume the results are normally distributed and
combine the weights, means µ and standard deviations σ to give the cumulative distribution
function (cdf)

cdf(y) =
∑

i

wi ·
1

2



1 +
erf(y − µi)

√

2σ2
i



 (23)

where erf is the error function and y is the potential energy.
The cdf is used to find the median q50, the 16% quantile q16 and the 84% quantile q84 of the

distribution of the masses. The procedure is repeated for each bootstrap sample.
The medians of the bootstrap samples represent the statistical error. However, q16 and q84

also give us information about the total error, including the systematic uncertainty in choosing
the correct boundaries of the effective mass fit.

We use σcomb = 1
2
(q84 − q16) of the result of the original data as an estimate of the total

error, and σstat = sd(q50,boot) as an estimate of the statistical error.
To use the total error in the further analysis, we rescale each bootstrap sample so that it is

σcomb

σstat
further away from the mean, similar to the rescaling to take into account the autocorrela-

tion as described in appendix A. We can extract the systematic error from σ2
comb = σ2

stat + σ2
pot.

C Determining confidence level

C.1 Getting a touching ellipse

We want to determine the difference between the Hamiltonian and Lagrangian results and do
this geometrically with an ellipse.

We piece wise linearly interpolate the Hamiltonian results and determine the equation for
each piece.

We know the Lagrangian result (β, P ) and its errors (σβ , σP ). This is the centre point of
the ellipse, and the ratio of the errors is the ratio of the major axes of the ellipse. The angle φ
of the ellipsis is given by tan(2φ) =

2ρσβσP

σ2

β
−σ2

P

, with ρ the correlation coefficient of the bootstrap

samples of β and P [39].
The ellipse can be written in the general form as

Axxx
2 + 2Axyxy +Ayyy

2 + 2Bxx+ 2Byy + C = 0 , (24)

or, written in matrix form





x
y
1





T 



Axx Axy Bx

Axy Ayy By

Bx By C









x
y
1



 = 0 = X̃TAX̃ (25)

with

Axx = σ2
β · sin2(φ) + σ2

P · cos2(φ)

Axy = (σ2
P − σ2

β) · sin(φ) · cos(φ)

Ayy = σ2
β · cos2(φ) + σ2

P · sin2(φ)

Bx = −Axx · β −Axy · P

By = −Axy · β −Ayy · P

C = Axx · β
2 + 2AxyβP +AyyP

2 − σ2
βσ

2
P . (26)

Here we have set the major axes equal to the errors, as is the starting case for our calculation.
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We interpret the Hamiltonian interpolation as a polar to the ellipse. The interpolation can
be expressed as a line of the form Dx + Ey + F = 0 = BT X̃. This curve is invariant under a
rescaling of B.

A polar to a point P can be written as P TAX̃ = 0 [40].
Setting the two descriptions of the polar equal to each other, we get

P TA = BT ⇔ AP = B ⇔ P = A−1B . (27)

With




xP
yP
zP



 =





Axx Axy Bx

Axy Ayy By

Bx By C





−1



D
E
F



 (28)

the pole has the coordinates (xP

zP
, yP
zP

), where we chose zP as our rescaling factor for the polar
equation. If the polar is a tangent to the ellipse, the pole is the touching point and directly on
the ellipse [40]. In that case, it fulfils the ellipse equation eq. (24).

For determining the matching level, we keep the angle, centre point and ratio of the major
axes fixed, but vary the length of the major axes by setting them to rσP and rσβ .

Finding the matching level and radius is reduced to a root-finding procedure: We keep
everything except the radius r fixed, and vary the radius until the pole is on the ellipse, and
thus the polar is a tangent at the radius r∗. We call the ellipse corresponding to the radius
r∗ the matching ellipse, because at this radius it touches the interpolation of the Hamiltonian
results.

We do this for every interpolated piece, and then select only the piece(s) for which the
matching point is on the piece itself. This usually only yields one matching point and level of
deviation, but in case several points match, we select the one with the lower r∗.

C.2 Getting a confidence level from the radius

A non-tilted ellipse centred at the origin can be written as

(

x

σx

)2

+

(

y

σy

)2

= s . (29)

The probability distribution for x, y is

P (x, y) =
dxdy

(2π)σxσy
e
− x2

2σ2
x
−

y2

2σ2
y . (30)

Integrating over this in the area of the ellipse gives us the probability p that a point is inside
the ellipse p = 1− exp (−0.5 · s).

We can apply this to a tilted ellipse as well, and identify β, P with x, y and r∗2 with s.
From the matching ellipse, we can thus calculate the probability p that a point from the

Lagrangian distribution is inside the ellipse and not a match to the Hamiltonian.
We convert this probability into units of the standard deviation of the normal distribution.
We determine the deviation level, d, by setting p = Φ(d) − Φ(−d), with Φ the cumulative

density function of the normal distribution. We determine d by a root-finding procedure on

(Φ(d)− Φ(−d))−
(

1− exp
(

−0.5 · r∗2
))

= 0 . (31)

D Systematics of continuum limit

Our procedure to average over different ways of taking the continuum limit from section 3.1.2
is visualised in fig. 11.

E used configurations

The configurations are given in table 8 for L = 16 and in table 9 for L = 3.
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Ensembles

ES ET

cAcB cB cA

cont. limit results

cB-ES cA-ES cB-ET cA-ET

determine ξren, r0/as in
analysis chains

determine trajectory of
constant as

extrapolate to cont.
limit

σstat σstat
σcomb

σspread,tot

σcomb

σspread,tot

cA
σstat
σpot

σspread

cB
σstat
σpot

σspread

collect in sets

extract errors from av-
erage and spread

calculate individual
errors

Figure 11: Visualisation of the different steps of the analysis procedure. The procedure is
described in detail in section 3.1.2. We display only four analysis chains (see table 1) and four
kinds of fit to the continuum limit (see table 2). The analysis goes from top to bottom, and
we denote the inclusion(exclusion) of a systematic error from the potential by dotted(dashed)
lines, and the inclusion(exclusion) of the smallest anisotropy in the fits for the continuum limit
by black(red) lines.
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ξinput β # confs. L T algo # sweeps τint
1 1.65 5500 16 16 met 50 0.490(13)
1 1.7 9748 16 16 met 100 0.497(10)
4/5 1.59 1500 16 20 met 50 0.516(65)
4/5 1.6 1500 16 20 met 50 0.585(95)
4/5 1.615 1500 16 20 met 50 0.499(45)
4/5 1.63 1500 16 20 met 50 0.489(44)
4/5 1.64 9749 16 20 met 100 0.490(10)
4/5 1.65 4749 16 20 met 100 0.502(39)
4/5 1.6521 1750 16 20 met 50 0.496(34)
4/5 1.665 1500 16 20 met 50 0.497(63)
4/5 1.7 4749 16 20 met 100 0.503(39)
4/5 1.75 4749 16 20 met 100 0.500(25)
2/3 1.54 28000 16 24 hb 10 0.581(26)
2/3 1.555 3750 16 24 met 50 0.500(16)
2/3 1.56 3750 16 24 met 50 0.500(16)
2/3 1.565 1500 16 24 met 50 0.519(66)
2/3 1.58 2749 16 24 met 100 0.550(63)
2/3 1.595 7749 16 24 met 100 0.533(36)
2/3 1.6 28000 16 24 hb 10 0.578(25)
2/3 1.6075 1750 16 24 met 50 0.487(62)
2/3 1.7 1500 16 24 met 50 0.491(57)
1/2 1.49 2749 16 32 met 100 0.600(76)
1/2 1.515 1500 16 32 met 50 0.513(75)
1/2 1.525 4750 16 32 met 100 0.610(61)
1/2 1.53 4749 16 32 met 100 0.562(51)
1/2 1.54 5750 16 32 met 50 0.569(52)
1/2 1.55 4749 16 32 met 100 0.516(40)
1/2 1.555 5750 16 32 met 50 0.563(47)
1/2 1.56 5750 16 32 met 50 0.567(49)
1/2 1.575 5750 16 32 met 50 0.523(41)
1/2 1.7 1500 16 32 met 50 0.62(11)
2/5 1.45 5500 16 40 met 50 0.840(98)
2/5 1.46 2500 16 40 met 50 0.80(13)
2/5 1.47 5500 16 40 met 50 0.727(78)
2/5 1.48 5500 16 40 met 50 0.678(70)
2/5 1.495 5500 16 40 met 50 1.28(18)
2/5 1.511 1750 16 40 met 50 0.66(11)
2/5 1.52 5500 16 40 met 50 0.802(91)
2/5 1.525 2500 16 40 met 50 0.74(11)
2/5 1.55 5500 16 40 met 50 0.729(78)
2/5 1.57 5500 16 40 met 50 1.17(16)
2/5 1.7 1500 16 40 met 50 1.81(52)
1/3 1.43 15000 16 48 met 50 1.32(13)
1/3 1.44 15000 16 48 met 50 1.23(11)
1/3 1.45 7000 16 48 met 50 1.19(15)
1/3 1.46 15000 16 48 met 50 1.118(97)
1/3 1.47 4750 16 48 met 100 0.782(93)
1/3 1.48 2749 16 48 met 100 0.93(15)
1/3 1.4814 3500 16 48 met 50 1.38(25)
1/3 1.5 3000 16 48 met 50 1.55(31)
1/3 1.51 4749 16 48 met 100 1.29(20)
1/3 1.515 15000 16 48 met 50 2.75(36)
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1/3 1.55 4749 16 48 met 100 1.60(27)
1/3 1.7 6000 16 48 met 50 2.34(43)
1/4 1.4 16002 16 64 met 50 5.23(88)
1/4 1.415 9000 16 64 met 100 10.9(31)
1/4 1.42 9000 16 64 met 100 3.05(52)
1/4 1.43 22002 16 64 met 50 5.56(84)
1/4 1.4378 17002 16 64 met 50 6.6(12)
1/4 1.45 10000 16 64 met 50 6.9(16)
1/4 1.46 2499 16 64 met 100 2.90(81)
1/4 1.47 2499 16 64 met 100 2.92(82)
1/4 1.49 9000 16 64 met 100 5.3(11)
1/4 1.5 9000 16 64 met 100 5.1(11)
1/4 1.53 8999 16 64 met 100 9.8(27)
1/4 1.7 7999 16 64 met 50 17.7(63)
1/5 1.39 7502 16 80 hb 50 2.41(40)
1/5 1.4 7502 16 80 hb 50 2.22(36)
1/5 1.41 7502 16 80 hb 50 3.09(57)
1/5 1.42 3500 16 80 hb 50 2.39(54)
1/5 1.435 7501 16 80 hb 50 3.52(68)
1/5 1.46 7502 16 80 hb 50 3.52(68)
1/5 1.47 7502 16 80 hb 50 3.71(74)
1/5 1.48 7502 16 80 hb 50 4.7(10)
0.18 1.39 176221 16 88 hb 50 1.55(15)
0.18 1.395 260004 16 88 hb 50 1.61(13)
0.18 1.4 176256 16 88 hb 50 1.38(12)
0.18 1.405 260004 16 88 hb 50 1.64(13)
0.18 1.41 175633 16 88 hb 50 1.80(18)
0.18 1.45 176286 16 88 hb 50 2.76(34)
0.18 1.46 176291 16 88 hb 50 3.20(42)
0.18 1.47 176288 16 88 hb 50 3.12(40)

Table 8: List of configurations with L = 16 that were used to determine the continuum limit.
We give the coupling β, the input anisotropy ξinput, the number of thermalised configurations
on which we did measurements, the number of spatial and temporal lattice points, the algo-
rithm used for generation, the number of sweeps that were done between measurements and
the integrated autocorrelation time of the spatial-spatial plaquette. The algorithm is one of
heatbath-overrelaxation (hb) and Metropolis (met).

ξinput β # confs. L T algo # sweeps τint
1 1.65 9667 3 16 met 50 0.4818(99)
1 1.7 9667 3 16 met 50 0.497(10)
4/5 1.6 7501 3 20 met 100 0.491(20)
4/5 1.615 7501 3 20 met 100 0.489(23)
4/5 1.64 7501 3 20 met 100 0.522(36)
4/5 1.65 9667 3 20 met 50 0.500(20)
4/5 1.6521 7501 3 20 met 100 0.490(11)
2/3 1.56 7251 3 24 met 100 0.481(11)
2/3 1.5614 7251 3 24 met 100 0.502(33)
2/3 1.565 7251 3 24 met 100 0.496(31)
2/3 1.58 9167 3 24 met 50 0.501(23)
2/3 1.595 46250 3 24 hb 20 0.4944(80)
2/3 1.6 7251 3 24 met 100 0.498(31)
2/3 1.6075 7251 3 24 met 100 0.499(12)
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1/2 1.49 9667 3 32 met 100 0.496(10)
1/2 1.515 9667 3 32 met 100 0.493(10)
1/2 1.5381 9667 3 32 met 100 0.607(44)
1/2 1.54 8667 3 32 met 50 0.493(21)
1/2 1.55 8667 3 32 met 50 0.498(11)
1/2 1.5514 9667 3 32 met 100 0.532(32)
1/2 1.5531 8667 3 32 met 50 0.634(51)
1/2 1.555 9667 3 32 met 100 0.491(10)
2/5 1.46 14501 3 40 met 100 0.502(24)
2/5 1.4638 14501 3 40 met 100 0.724(51)
2/5 1.47 14501 3 40 met 100 0.507(22)
2/5 1.48 14501 3 40 met 100 0.667(45)
2/5 1.51 7667 3 40 met 50 0.573(43)
2/5 1.511 7667 3 40 met 50 0.524(34)
2/5 1.52 14501 3 40 met 100 0.539(28)
2/5 1.525 14501 3 40 met 100 0.729(51)
1/3 1.44 37001 3 48 met 100 0.605(24)
1/3 1.4406 37001 3 48 met 100 1.407(93)
1/3 1.45 37001 3 48 met 100 1.310(83)
1/3 1.46 4667 3 48 met 50 0.791(95)
1/3 1.48 4667 3 48 met 50 0.93(12)
1/3 1.4814 37001 3 48 met 100 1.326(85)
1/3 1.5 37001 3 48 met 100 1.292(82)
1/4 1.42 49334 3 64 met 100 9.6(13)
1/4 1.43 29336 3 64 met 50 4.53(55)
1/4 1.4378 2667 3 64 met 50 2.39(61)
1/4 1.47 49334 3 64 met 100 1.72(11)
1/4 1.49 49334 3 64 met 100 12.8(19)
1/5 1.41 47499 3 80 hb 200 0.820(37)
1/5 1.42 47500 3 80 hb 200 0.868(40)
1/5 1.46 47499 3 80 hb 200 0.923(44)
1/5 1.47 47500 3 80 hb 200 0.964(47)
1/5 1.48 47500 3 80 hb 200 0.986(48)
0.18 1.39 36770 3 88 hb 500 1.349(87)
0.18 1.395 36000 3 88 hb 500 1.284(81)
0.18 1.4 36000 3 88 hb 500 1.420(95)
0.18 1.405 19742 3 88 hb 500 1.28(11)
0.18 1.45 36756 3 88 hb 500 1.69(12)
0.18 1.46 37277 3 88 hb 500 1.99(15)
0.18 1.47 36000 3 88 hb 500 1.75(13)

Table 9: List of configurations with L = 3 that were used to determine the continuum limit.
We give the coupling β, the input anisotropy ξinput, the number of thermalised configurations
on which we did measurements, the number of spatial and temporal lattice points, the algo-
rithm used for generation, the number of sweeps that were done between measurements and
the integrated autocorrelation time of the spatial-spatial plaquette. The algorithm is one of
heatbath-overrelaxation (hb) and Metropolis (met).
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