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Abstract: The di-top final state is an important search channel for additional Higgs bosons

at the LHC. In this channel, large signal–background interference contributions can strongly

distort a resonance peak as it would be expected from a pure signal contribution. Moreover,

signal–signal interference effects can have a significant impact if more than one additional

scalar particle is present. In this work, we perform a comprehensive model-independent

analysis of the various interference contributions considering two additional heavy scalars

that can mix with each other. We point out the importance of taking into account loop-

level mixing between the scalars. A proper treatment of these mixing effects, which has not

been previously carried out for the di-top final state, introduces additional relative phases

between different parts of the amplitudes entering the interference contributions which we

find to have a strong impact on the di-top invariant mass distribution. We study the

interference effects both in an idealistic setting as well as taking into account experimental

limitations using Monte-Carlo simulations. We demonstrate that the emerging experimental

signatures can be unexpected and difficult to interpret. In particular, we point out that an

experimental signature manifesting itself as an excess near the tt̄ threshold may actually be

caused by new scalar particles with much higher masses. We comment in this context on

the recent excess that has been observed by the CMS collaboration near the tt̄ threshold

in their searches in the di-top final state.
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1 Introduction

The discovery of a Higgs boson with a mass of 125 GeV [1, 2] was a major success for

the LHC and motivates the search for additional fundamental scalars that are predicted in

models of physics beyond the Standard Model (SM). Beyond the SM (BSM) scalars are for

example predicted in extended Higgs sectors such as Two-Higgs Doublet Models (2HDMs)
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(see Refs. [3–5] for reviews on the 2HDM). These models can also induce new sources of

CP-violation leading to mixing between BSM scalars.

In many models the BSM scalars have a large coupling to top quarks. Consequently,

the di-top final state is a particularly important search channel for BSM scalars with masses

above the di-top threshold. The resonant production of a heavy neutral Higgs boson and its

subsequent decay to top-quark pairs (the pure signal process) would be expected to manifest

itself as a characteristic bump in the invariant mass distribution of the top-quark pair.

However, the interference between the resonant production of a heavy Higgs production and

the SM QCD background (gg → tt̄) has a large destructive contribution [6–17]. This large

interference with the SM QCD background leads to a characteristic peak–dip signature in

the invariant mass distribution of the top-quark pairs. The signal–background interference

patterns depend on the CP nature of the heavy scalars, their masses, and their decay widths.

These interference effects can significantly alter the exclusion limits that are obtained from

those searches and leave a considerable parameter region un-excluded that would appear

to be ruled out if the interference effects were neglected [18, 19].

In addition to large (usually destructive) signal–background interference effects, fur-

thermore signal–signal interference contributions can occur if (at least) two neutral heavy

scalars contribute to the di-top final state. Signal–signal interference contributions have

been studied in Refs. [11, 12] for the tt̄ final state, which are mainly focused on the complex

2HDM (c2HDM) [20–22]. The phenomenology of signal–signal interference contributions

incorporating the relevant loop-level effects and their impact on BSM Higgs searches have

furthermore been studied in Refs. [23–26].

The latest results from experimental searches in the di-top final states can be found

in Refs. [27–29]. Interestingly, in 2019 an excess in the invariant mass distribution of the

di-top system, making use of spin-correlation information of the produced top quarks that

provides information about the CP nature of a possible BSM state, was found by the CMS

collaboration at a mass of about 400 GeV with a local significance of about 3.5σ based on

the partial LHC Run 2 dataset containing 35.9 fb−1 of integrated luminosity [19] (possible

interpretations of this excess were discussed e.g. in Ref. [30]). In the recent CMS result

based on the full LHC Run 2 dataset containing 137 fb−1 of integrated luminosity, again

exploiting spin-correlation information of the produced top quarks via angular observables

(see also Refs. [31, 32]), an excess with a local significance of much more than 5σ was

found above the perturbative QCD background near the tt̄ threshold [29]. As possible

interpretations of this excess in Ref. [29] the cases of a CP-odd Higgs boson A with a

mass of about 365 GeV (having a coupling of 0.75 times the SM top-Yukawa coupling and a

decay width of 2% relative to the mass)1 and a colour-singlet bound-state type contribution

ηt [34–40] at a mass of about 343 GeV were discussed, see also Ref. [41].

In the present work, we study the effect of loop-level mixing between two BSM scalars

in the di-top final state. We perform our study in a minimal simplified model (i.e., in a

model-independent framework) that involves two additional Higgs bosons with generic CP-

1Within a 2HDM, such an interpretation is in some tension with existing theoretical and experimental

bounds, see e.g. Ref. [33].
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mixed couplings. We show that if the scalars mix with each other at the loop level, a rich

pattern of signal–background and signal–signal interferences can emerge that can give rise

to important modifications of the phenomenology compared to the case of a single new BSM

particle. The loop-level mixing is treated via a “Z-factor” formalism [24, 25]. Moreover, we

provide all the necessary ingredients to study signal–signal interferences including loop-level

mixing in the di-top final using Monte-Carlo event simulations.

The article is organised as follows. In Section 2, we present our simplified model

framework, discuss the various contributions to the di-top final state, and review the Z-

factor formalism. In Section 3, as a first step, we perform an analytical parton-level analysis.

In Section 4 a Monte-Carlo analysis at the hadronic level is performed, and examples

of phenomenologically interesting scenarios are discussed. We provide our conclusions in

Section 5. Appendices A and B contain explicit expressions for the cross-section including

the loop-level mixing and the MS-renormalised self-energies. Appendix C provides further

details on the model file used for Monte-Carlo simulations, while Appendix D contains

supplementary information on the parameters used. Finally, in Appendix E the expected

distribution is discussed for the idealised case without experimental smearing of the di-top

invariant mass.

2 Methodology

2.1 Simplified model framework

We perform our study in a minimal simplified model that in addition to the SM particles

involves two BSM Higgs bosons which can be CP-mixed states. For our study, we param-

eterise the top-Yukawa part of the Lagrangian involving the two BSM CP-mixed heavy

scalars in the form

Lyuk = −
2
∑

j=1

ySM
t√
2
t̄ (ct,j + iγ5c̃t,j) thj,tree , (2.1)

where ySM
t is the SM top-Yukawa coupling, hj,tree denotes the lowest-order mass eigenstates

of the heavy scalar particles (h1,tree and h2,tree), and t and t̄ are the top and anti-top quark

spinors, respectively. The parameters ct,j and c̃t,j are the Yukawa-coupling modifiers which

rescale the CP-even and CP-odd coupling components of the heavy scalar hj,tree to the top

quark.

In our simplified model approach we do not apply theoretical and experimental con-

straints on the parameter space. For example, constraints on the free parameters like the

tree-level masses and the Yukawa-couplings can be derived from electric dipole measure-

ments or BSM Higgs searches in specific models. Since these constraints depend on details

of the models beyond the parametrisation in Eq. (2.1), their application would require to

go beyond the simplified model framework that we use here. The only constraint that we

impose for consistency is the requirement that the total decay widths of the heavy scalars

have to be at least as large as their partial decay width to top quarks.2

2Because of their coupling to top quarks, the BSM scalars can also have a loop-induced decay to gluons

– 3 –



2.2 tt̄ production

The total scattering amplitude for the process gg → tt̄ can be written as

A = A(gg → tt̄) +

2
∑

j=1

A(gg → hj,tree → tt̄) , (2.2)

where A(gg → tt̄) is the QCD background amplitude and
∑

j A(gg → hj,tree → tt̄) is the

signal part of the amplitude involving the two BSM Higgs bosons.3 It should be noted

that in Eq. (2.2) we do not explicitly account for the (non-resonant) contribution of the

SM-like Higgs boson at 125 GeV. While its interference contribution with the BSM scalars

having masses above the tt̄ threshold can safely be neglected, its interference with the

QCD background gives rise to a relevant contribution near the tt̄ threshold that should be

incorporated in experimental analyses as part of the SM background.

Following Ref. [15], we write the signal part of the amplitude as

∑

j

A(gg → hj,tree → tt̄) = −
∑

j

Γ̂gghj,treeΓ̂hj,tree→tt̄

ŝ−M2
hj,tree

+ iMhj,tree
Γhj,tree

, (2.3)

where Γ̂gghj,tree is the production amplitude for the scalar hj,tree via gluon–gluon fusion (con-

sidering only the top quarks in the loop), and Γ̂hj,tree→tt̄ is the amplitude for its subsequent

decay to top and anti-top quarks with four-momenta k1 and k2, respectively. The notation

Γ̂ in the numerator of Eq. (2.3) is used to distinguish the amplitudes of the production and

decay processes in the numerator from the decay width Γ appearing in the denominator.4

The expressions for the production and decay amplitudes are as follows [43–47]

Γ̂gghj,tree =
αs

8πv
ŝ

[

ct,jA
H
1/2(τt)

(

gµν − pνap
µ
b

pa · pb

)

+ c̃t,jA
A
1/2(τt)

paρpbσǫ
µνρσ

pa · pb

]

ǫaµǫbνδab

≡ ct,jΓ̂
gghj,tree

CP-even + c̃t,jΓ̂
gghj,tree

CP-odd , (2.4)

Γ̂hj,tree→tt̄ =
mt

v
ū(k1)(ct,j + iγ5c̃t,j)v(k2) ≡ ct,jΓ̂

hj,tree→tt̄
CP-even + c̃t,jΓ̂

hj,tree→tt̄
CP-odd , (2.5)

where pa,b and ǫa,b are the incoming gluon momenta and their polarisation vectors, respec-

tively (with the colour indices a and b), u and v are the top-quark spinors, and v ≃ 246GeV

is the electroweak vacuum expectation value. It is understood that for the evaluation of

the partonic cross-section arising from Eq. (2.2) the appropriate average of the polarisa-

tions and colours of the incoming gluons and the sum over the spins of the outgoing top

and photons. In comparison to the decay mode to top quarks, these channels are, however, suppressed by

more than two orders of magnitude. Since, as explained below, our predictions for the Z factors are based

on one-loop contributions, we neglect those loop-induced contributions in the calculation of the minimum

decay width.
3At the same perturbative order, there are additional contributions of the BSM scalars via loop diagrams.

As shown in Ref. [42], these can be sizeable but only have a weak dependence on m(tt̄). Consequently, their

impact is very difficult to distinguish from the background, and we do not further discuss those types of

contributions here.
4We will use below also the notation of, e.g., Σ̂ to indicate a renormalised quantity. The meaning of the

notation should be clear from the context, so that no confusion should occur.
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quarks is performed. The loop functions AH,A
1/2 , depending on τt =

ŝ
4m2

t

with the partonic

centre-of-mass energy ŝ, are defined in Refs. [15, 45]. The partonic differential cross-section

for the entire process can then be written as

dσ̂

dz
=

1

32π

β̂t
ŝ
|A|2 , (2.6)

where σ̂ is the partonic cross-section and z = cos θ, with θ being the scattering angle in the

parton-parton centre-of-mass frame between an incoming gluon and an outgoing top quark.

β̂t ≡
√

1− 4m2

t

ŝ is the velocity of the top-quark pairs in the centre-of-mass frame.

Considering first the case of a single BSM scalar hj,tree with coupling modifiers ct,j
and c̃t,j , the differential cross-section can be expressed in terms of contributions arising

only from the QCD background, the signal of the produced BSM Higgs boson, and the

signal–background interference as

dσ̂

dz
=

dσ̂B

dz
+

dσ̂S

dz
+

dσ̂I

dz
. (2.7)

In Eq. (2.7), the subscript “B” denotes the QCD background, “S” denotes the signal, and

“I” denotes the signal–background interference contribution (Sig-Bkg Intf.). The sum of

the signal “S” and signal–background interference “I” cross-section corresponds to the total

BSM contribution to the cross-section. The various terms in Eq. (2.7) can be found in Refs.

[7, 15].

The partial decay width of a CP-mixed scalar with the lowest-order mass eigenstate

hj,tree is given by

Γ(hj,tree → tt̄) = 3
GFm

2
t

4
√
2π

(

c2t,j β̂
3
t + c̃2t,j β̂t

)

Mhj,tree
. (2.8)

So far, we reviewed the formulae that have already been derived in the literature [7, 43–

45, 47].

Before we turn to the cross-sections involving two CP-mixed scalars, it is important to

note that for CP-mixed scalars all the cross-terms between ct and c̃t drop out in the pro-

duction and decay part in the polarisation-averaged and spin-summed squared amplitude.

This means that for a CP-mixed scenario, the CP-even (ct) and CP-odd (c̃t) couplings of

a CP-mixed scalar appear independently along with their loop-function counterparts (after

averaging/summing over the polarisations/spins of the incoming/outgoing particles), i.e.,

∣

∣

∣Γ̂gghj,tree

∣

∣

∣

2
∣

∣

∣

∣

CP-mixed

∝
(

c2t |AH
1/2(τt)|2 + c̃2t |AA

1/2(τt)|2
)

, (2.9)

∣

∣

∣Γ̂hj,tree→tt̄
∣

∣

∣

2
∣

∣

∣

∣

CP-mixed

∝
(

c2t β̂
2
t + c̃2t

)

. (2.10)

We now extend our analysis to include two CP-mixed Higgs bosons. This will be the

scenario that we will mainly investigate, first on an analytical level and then using Monte-

Carlo simulations. Again employing the definitions of the variables given in Eq. (2.7), but
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this time with two CP-mixed Higgs bosons, the expressions for the differential cross-section

read (the QCD background term stays the same)

dσ̂S

dz
=

3α2
sG

2
Fm

2
t

8192π3
ŝ2





(

c2t,1β̂
3
t + c̃2t,1β̂t

)

·
(

c2t,1|AH
1/2(τt)|2 + c̃2t,1|AA

1/2(τt)|2
)

(ŝ−M2
h1,tree

)2 + Γ2
h1,tree

M2
h1,tree

+

(

c2t,2β̂
3
t + c̃2t,2β̂t

)

·
(

c2t,2|AH
1/2(τt)|2 + c̃2t,2|AA

1/2(τt)|2
)

(ŝ−M2
h2,tree

)2 + Γ2
h2,tree

M2
h2,tree

(2.11a)

+ 2× Re





(

ct,1ct,2β̂
3
t + c̃t,1c̃t,2β̂t

)

·∆(1, 2)

(ŝ−M2
h1,tree

+ iΓh1,tree
Mh1,tree

) · (ŝ−M2
h2,tree

− iΓh2,tree
Mh2,tree

)







 ,

dσ̂I

dz
= −α2

sGFm
2
t

64
√
2π

1

1− β̂2
t z

2
×

Re

[

c2t,1β̂
3
tA

H
1/2(τt) + c̃2t,1β̂tA

A
1/2(τt)

ŝ−M2
h1,tree

+ iΓh1,tree
Mh1,tree

+
c2t,2β̂

3
tA

H
1/2(τt) + c̃2t,2β̂tA

A
1/2(τt)

ŝ−M2
h2,tree

+ iΓh2,tree
Mh2,tree

]

, (2.11b)

where

∆(1, 2) =
(

ct,1A
H
1/2(τt)ct,2A

H,∗
1/2 (τt) + c̃t,1A

A
1/2(τt)c̃t,2A

A,∗
1/2 (τt)

)

, (2.11c)

and τt =
ŝ

4m2
t

.

The expressions in Eqs. (2.11a) and (2.11b) agree with those in the literature in Refs.

[11, 12].

One can see that Eq. (2.11a) contains, as an important new feature, an interference

contribution of the form (2× Re[· · · ]) in the signal part. We will refer to this contribution

as the “signal–signal” (or “sig1-sig2”) interference term. Therefore, the differential cross-

section for the signal part now contains two “pure”-signal contributions and one signal–signal

interference term. The two signal–background interference terms are a straightforward

extension of the case with one CP-mixed scalar, i.e., the signal–background interference

terms independently occur for the two CP-mixed scalars and hence get added.

2.3 Treatment of the loop-induced production vertex

For the inclusive on-shell production of the SM-like Higgs boson at 125 GeV the Higgs–

gluon–gluon vertex can be well approximated by a real-valued effective coupling that is

obtained in the limit of an infinitely heavy top-quark mass by shrinking the virtual top-quark

loop to a point [48–51]. However, for the production of the BSM Higgs bosons considered

in this article the limit of an infinitely large top-quark mass would be a poor approximation

since the loop-induced Higgs–gluon–gluon production vertex develops a sizeable imaginary

part above the threshold where the two top quarks that couple to the Higgs boson can be

on-shell. This is illustrated in Fig. 1 where the real and imaginary parts of the top-quark
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Figure 1: The real and imaginary parts of the top-quark loop function A
hj,tree

1/2 for the cases

of a CP-even (hj,tree = H) and a CP-odd (hj,tree = A) state.

loop function are plotted for CP-even and CP-odd scalars. The imaginary part of the loop

function becomes non-zero if τ ≥ 1, i.e., for the parameter region where the heavy scalar

can decay into two on-shell top quarks. The proper incorporation of this imaginary part

is crucial for the description of interference effects. In particular, the contribution to the

real part in Eq. (2.11) arising from the product of the imaginary part in the Breit-Wigner

propagator and of the imaginary part from the loop functions is of specific relevance in the

resonance region of the two BSM Higgs bosons. Thus, in order to appropriately simulate

the interference effects (and all other contributions as well) we have implemented the full

top-triangle loop as a form factor into the Monte-Carlo program that we will use for our

numerical analysis below. The implementation details of the full top-triangle loop are

described in Appendix C.

2.4 Higher-order QCD corrections

All our calculations and simulations are performed at the leading order (LO) in QCD. The

production of a Higgs boson (of mass MH) is, however, known to be subject to large higher-

order corrections. We incorporate the effect of higher-order corrections at the level of the

total cross-section by making use of K factors for each part of the tt̄ production process.

The K factors are implemented by scaling the differential cross-section in the invariant
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mass distribution of the top-quark pairs by the following prescription

Signal(i) → K(sig(i))× Signal(i) , (2.12a)

Signal(i)–Background interference → K(sig(i)-bkg)× Signal–Background interference ,

(2.12b)

Signal(i)–Signal(j) interference → K(sig(i)-sig(j))× Signal(i)–Signal(j) interference ,

(2.12c)

where i and j (j > i) run over the scalars, and

K(sig(i)) = K(production(i)) , (2.12d)

K(sig(i)-bkg) =
√

K(sig(i))×K(bkg) , (2.12e)

K(sig(i)-sig(j)) =
√

K(sig(i))×K(sig(j)) . (2.12f)

The QCD background (gg → tt̄) K factor is estimated by comparing the next-to-leading or-

der (NLO) QCD cross-section and the LO QCD cross-section. We take the QCD background

K factor (K(bkg)) using the total cross-section for tt̄-production (at 13 TeV centre-of-mass

energy at the LHC) at the Next-to-Next-to-Leading Order (NNLO) in QCD to be 1.6 [52]

(see also Ref. [53]). The K factor for the signal production process is obtained using the

HiggsTools package [54], which is based on the results of SusHi [55, 56] and the recom-

mendations of the LHC Higgs working group [57]. We find most of the signal K factors to

be in the range of 2.5 to 3, this shows that the NLO contributions are crucial for the signal

process and consequently also for the signal–background and the signal–signal processes.

Finally, we note that a full NLO calculation of the signal–background interference

contribution, which is formally a two-loop calculation, was performed in Ref. [58] for the

specific case of the extension of the SM by a real singlet. The signal–background interference

K factor that was found for this case in Ref. [58] is slightly smaller than what we consider

in this paper.

2.5 Z factors and mixing between the scalars

Besides NLO QCD corrections also electroweak corrections can play an important role.

These are particularly relevant for the case of two nearly mass-degenerate states that can

mix which each other and can have a strong impact on the mixing pattern. For parametris-

ing this loop-level mixing, we employ the Z-factor formalism as described in Refs. [24, 25]

(see Refs. [59–61] for earlier works).

Following the discussion in Ref. [24], we consider a system of two tree-level mass eigen-

states h1,tree and h2,tree that can mix with each other. Neglecting the mixing of those two

BSM scalars with SM particles, the inverse propagator matrix of the mixed system will be a

2× 2 matrix, which in general is non-diagonal. Let (i, j) be the indices associated with the

tree-level mass eigenstates (h1,tree, h2,tree). Then, the renormalised, one-particle irreducible

(1PI) two-point vertex function Γ̂ij(p
2) can be written as

Γ̂ij(p
2) = i

[

(p2 −m2
i )δij + Σ̂ij(p

2)
]

, (2.13)
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where mi are the tree-level masses and Σ̂ij(p
2) are the renormalised self-energies of the

two scalars that are expressed in terms of their tree-level mass eigenstates. The associated

propagator matrix reads

∆ij(p
2) =

(

∆h1,treeh1,tree
∆h1,treeh2,tree

∆h2,treeh1,tree
∆h2,treeh2,tree

)

ij

:= −
(

Γ̂ij(p
2)
)−1

. (2.14)

The matrix inversion yields the individual propagators ∆ij(p
2) as the (ij) elements of

the 2 × 2 matrix ∆ij(p
2). The diagonal propagators ∆ii(p

2) and off-diagonal propagators

∆ij(p
2) (with i 6= j) can be written as

∆ii(p
2) =

i
[

Dj(p
2) + Σ̂jj(p

2)
]

[

Di(p2) + Σ̂ii(p2)
] [

Dj(p2) + Σ̂jj(p2)
]

− Σ̂2
ij(p

2)
=

i

p2 −m2
i + Σ̂eff

ii (p
2)

, (2.15)

∆ij(p
2) =

−iΣ̂ij(p
2)

[

Di(p2) + Σ̂ii(p2)
] [

Dj(p2) + Σ̂jj(p2)
]

− Σ̂2
ij(p

2)
(i 6= j) , (2.16)

where

Σ̂eff
ii (p

2) = Σ̂ii(p
2)−

Σ̂2
ij(p

2)

Dj(p2) + Σ̂jj(p2)
, and Di(p

2) = p2 −m2
i . (2.17)

Finding the poles M2
k of the propagator matrix, we obtain the loop-corrected mass eigen-

states labelled as h1 and h2, associated to the physical states. The loop-corrected mass

eigenstates, which occur as external, on-shell particles (for example, in a decay process) are

a mixture of the tree-level mass eigenstates. In the case of 2× 2 mixing, the diagonal (∆ii)

and the off-diagonal (∆ij) components of the propagator matrix given in Eq. (2.14) each

have two complex poles, denoted as M2
h1

and M2
h2

, in contrast to the case without mixing

where the propagator matrix is diagonal and each of the two entries has only a single pole.

We order the complex poles according to their real part — i.e., Re(M2
h1
) ≤ Re(M2

h2
).

The propagator matrix is used to obtain finite wave-function normalisation factors

which for external particles ensure the proper normalisation of the S matrix. Let (a, b) be

the indices associated with the loop-corrected mass eigenstates (h1, h2). The wave-function

normalisation factor for i-j mixing on the scalar line for the production or decay part of the

amplitude at the pole M2
a can be written as a product of the overall normalisation factor

√

Ẑa
i times the on-shell transition ratio Ẑa

ij , where

Ẑa
i =

1

1 +
∂Σ̂eff

ii (p
2)

∂p2

∣

∣

∣

∣

∣

∣

∣

∣

∣

p2=M2
a

, and Ẑa
ij =

∆ij(p
2)

∆ii(p2)

∣

∣

∣

∣

p2=M2
a

. (2.18)

For the case where n states can mix with each other the assignment between the lowest-order

mass eigenstates i, j, k, . . . and the loop-corrected mass eigenstates a, b, c, . . . is not unique,
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and it can in fact be shown that all possible assignments of the form (i, a), (j, b), (k, c), . . . are

physically equivalent [24]. For the case where only two states mix with each other it is conve-

nient to associate the lighter and heavier of the lowest-order mass eigenstates (h1,tree, h2,tree)

with the lighter and heavier one of the loop-corrected mass eigenstates (h1, h2), respectively.

This assignment denoted as ((h1,tree, h1), (h2,tree, h2)) implies the evaluation of

Ẑh1

h1,tree
, Ẑh1

h1,treeh2,tree
at p2 = M2

h1
(2.19)

and

Ẑh2

h2,tree
, Ẑh2

h2,treeh1,tree
at p2 = M2

h2
. (2.20)

In this chosen assignment and notation, Ẑh1

h1,treeh1,tree
= Ẑh2

h2,treeh2,tree
= 1 .

The normalisation factors
√

Ẑa
i and transition ratios Ẑa

ij described in Eqs. (2.19)

and (2.20) can be arranged into a so-called Z-matrix which is a non-unitary complex

matrix.5 The concrete Z-matrix for the chosen assignment between the tree-level and

loop-corrected mass eigenstates can be written as

Z =





√

Ẑh1

h1,tree
Ẑh1

h1,treeh1,tree

√

Ẑh1

h1,tree
Ẑh1

h1,treeh2,tree
√

Ẑh2

h2,tree
Ẑh2

h2,treeh1,tree

√

Ẑh2

h2,tree
Ẑh2

h2,treeh2,tree



 ≡
(

Z
h1

h1,tree
Z

h1

h2,tree

Z
h2

h1,tree
Z

h2

h2,tree

)

. (2.21)

One can now make use of the Z-matrix to express the 1PI vertex function Γ̂h1 for the

production or decay of the loop-corrected mass eigenstate h1 as a linear combination of

the 1PI vertex functions for the production or decay of the lowest-order states, Γ̂h1,tree and

Γ̂h2,tree , as

Γ̂h1 = Z
h1

h1,tree
Γ̂h1,tree +Z

h1

h2,tree
Γ̂h2,tree (2.22)

=
√

Ẑh1

h1,tree

(

Γ̂h1,tree + Ẑh1

h1,treeh2,tree
Γ̂h2,tree

)

. (2.23)

The repeated indices in these expressions are not summed over.

Furthermore, in the simplified model framework used here the 1PI vertex functions of

the lowest-order states (h1,tree, h2,tree) can be expressed in terms of their respective CP-even

and CP-odd vertex functions as follows

Γ̂hj,tree = ct,jΓ̂
hj,tree

CP-even + c̃t,jΓ̂
hj,tree

CP-odd , (2.24)

see Eqs. (2.4) and (2.5). Using Eqs. (2.21) and (2.24), the 1PI vertex function Γ̂h1 for the

production or decay of the loop-corrected mass eigenstate h1 given in Eq. (2.23) can be

expressed in terms of 1PI vertex functions of the lowest-order states and elements of the

5This is related to imaginary parts appearing in the propagators of unstable particles.
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Z-matrix. Writing the results for Γ̂h1 and Γ̂h2 conveniently in matrix form yields
(

Γ̂h1

Γ̂h2

)

= Z ·





ct,1Γ̂
h1,tree

CP-even + c̃t,1Γ̂
h1,tree

CP-odd

ct,2Γ̂
h2,tree

CP-even + c̃t,2Γ̂
h2,tree

CP-odd



 =

=







[

Z
h1

h1,tree
ct,1 +Z

h1

h2,tree
ct,2

]

Γ̂
h1,tree

CP-even +
[

Z
h1

h1,tree
c̃t,1 +Z

h1

h2,tree
c̃t,2

]

Γ̂
h1,tree

CP-odd

[

Z
h2

h1,tree
ct,1 +Z

h2

h2,tree
ct,2

]

Γ̂
h2,tree

CP-even +
[

Z
h2

h1,tree
c̃t,2 +Z

h2

h2,tree
c̃t,2

]

Γ̂
h2,tree

CP-odd






,

(2.25)

where we use the equality of vertex functions for h1,tree and h2,tree at the production/decay

vertex, i.e., Γ̂
h1,tree

CP-even = Γ̂
h2,tree

CP-even and Γ̂
h1,tree

CP-odd = Γ̂
h2,tree

CP-odd if the vertex functions are evaluated

at the same squared momentum (in our case, the square of the centre-of-mass energy).

As shown in Ref. [24], the loop-corrected internal propagator of Eq. (2.15) taking into

account the relevant higher-order contributions is well approximated using Breit-Wigner

propagators and the Z-factor matrix,

∆ii(p
2) ≃

∑

a=h1,h2

(Za
i )

2∆BW
a (p2) , and ∆ij(p

2) ≃
∑

a=h1,h2

Z
a
i∆

BW
a (p2)Za

j . (2.26)

Here, ∆BW
a (p2) is the Breit-Wigner propagator

∆BW
a (p2) =

i

p2 −M2
a

=
i

p2 −M2
a + iMaΓa

(2.27)

with the loop-corrected mass Ma and the total width Γa.

Writing the scalar BSM contributions to the gg → tt̄ amplitude as

ABSM =
∑

i,j=
h1,tree,
h2,tree

Γ̂ggi∆ij(p
2)Γ̂j→tt̄ , (2.28)

where Γ̂ggi and Γ̂j→tt̄ are the irreducible vertex functions from the production and decay

part of the amplitude, we can approximate it using Eq. (2.26),

ABSM ≃
∑

a=h1,h2









∑

i=
h1,tree,
h2,tree

Z
a
i Γ̂

ggi









∆BW
a (p2)









∑

j=
h1,tree,
h2,tree

Z
a
j Γ̂

j→tt̄









. (2.29)

Using Eqs. (2.24) and (2.25) and (as before) Γ̂
ggh1,tree

CP-even(odd) = Γ̂
ggh2,tree

CP-even(odd) ≡ Γ̂ggh
CP-even(odd)

at the production vertex and Γ̂
h1,tree→tt̄

CP-even(odd) = Γ̂
h2,tree→tt̄

CP-even(odd) ≡ Γ̂h→tt̄
CP-even(odd) at the decay

vertex, Eq. (2.29) can be re-expressed as

ABSM =
∑

a=h1,h2

([

Z
a
h1,tree

ct,1 +Z
a
h2,tree

ct,2

]

Γ̂ggh
CP-even +

[

Z
a
h1,tree

c̃t,1 +Z
a
h2,tree

c̃t,2

]

Γ̂ggh
CP-odd

)

×

∆BW
a (p2) ×
([

Z
a
h1,tree

ct,1 +Z
a
h2,tree

ct,2

]

Γ̂h→tt̄
CP-even +

[

Z
a
h1,tree

c̃t,1 +Z
a
h2,tree

c̃t,2

]

Γ̂h→tt̄
CP-odd

)

. (2.30)
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It should be noted that at the level of polarisation/spin-averaged squared amplitude the

cross-terms between the CP-even and CP-odd parts vanish.

As a result we find that incorporating the effects of loop-level mixing effectively amounts

to taking into account the loop-corrected masses arising from the complex poles of the

propagators as well as replacing the Yukawa-modifiers by

ct,1 → Z
h1

h1,tree
ct,1 +Z

h1

h2,tree
ct,2 , (2.31a)

c̃t,1 → Z
h1

h1,tree
c̃t,1 +Z

h1

h2,tree
c̃t,2 , (2.31b)

ct,2 → Z
h2

h2,tree
ct,2 +Z

h2

h1,tree
ct,1 , (2.31c)

c̃t,2 → Z
h2

h2,tree
c̃t,2 +Z

h2

h1,tree
c̃t,1 . (2.31d)

For the case where there is no mixing between the scalars the elements of the Z-matrix are

approximately Z
h1

h1,tree
≈ 1 ≈ Z

h2

h2,tree
, and Z

h1

h2,tree
≈ 0 ≈ Z

h2

h1,tree
. For the general case the

evaluation of the Z-matrix yields the following approximate relations: Z
h2

h2,tree
≈ Z

h1

h1,tree

and Z
h2

h1,tree
≈ −Z

h1

h2,tree
.

It is important to note that the Z-matrix elements are complex numbers and thus pro-

vide an additional source for imaginary parts in the scattering amplitudes besides the ones

arising from the loop integrals. As a result, additional phases enter the gg → tt̄ amplitude

leading in general to a much richer pattern of interference contributions in comparison to

the tree-level case.

Accordingly, in order to take into account the effects of loop-level mixing the analytical

equations for the differential cross-section given in Eq. (2.11) need to be adapted. For

completeness, the explicit expressions incorporating the effects of loop-level mixing are

given in Appendix A.

2.6 Z-matrix calculation in the simplified model framework

We now proceed to the explicit calculation of the elements of the Z-matrix as defined

in Section 2.5 in our simplified model framework at the one-loop level. Starting from the

lowest-order mass eigenstates (h1,tree, h2,tree) the loop-corrected mass eigenstates (h1, h2) are

obtained from the complex poles of the propagator matrix. This requires the computation of

one-loop self-energies. In this computation, we assume that the top-quark loop is dominant

and neglect the contribution from other particles.

While in a complete model one can carry out a renormalisation procedure for the free

parameters of the Lagrangian, in our simplified model framework we employ an MS renor-

malisation for the self-energies. This is not only convenient for simplicity and facilitates the

mapping of a complete model to the simplified model framework, it also yields finite expres-

sions for the wave-function normalisation factors that allow the incorporation of numerically

important contributions (in particular in the resonance-type region for the mixing between

two nearly mass-degenerate states) that are formally of higher order in the perturbative

expansion. The expressions for the MS-renormalised self-energies are given in Appendix B.
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The zeros of the determinant of the 2 × 2 inverse propagator matrix (see Eq. (2.14))

determine the complex poles at which the Z factors are evaluated. Explicitly, this reads

(p2 −m2
h1,tree

)(p2 −m2
h2,tree

)

+ q(p2 −m2
h1,tree

)
[

−2
(

c2t,2 + c̃2t,2
)

l1 +
(

c2t,2(p
2 − 4m2

t ) + c̃2t,2p
2
)

l2(p
2)
]

+ q(p2 −m2
h2,tree

)
[

−2
(

c2t,1 + c̃2t,1
)

l1 +
(

c2t,1(p
2 − 4m2

t ) + c̃2t,1p
2
)

l2(p
2)
]

+ q2 (ct,2c̃t,1 − ct,1c̃t,2)
2
(

4l21 − 4l1
(

p2 − 2m2
t

)

l2(p
2) + p2

(

p2 − 4m2
t

) (

l2(p
2)
)2
)

= 0 ,

(2.32)

where we introduced the short-hands q =
3αm2

t

8πM2
W sin2 θW

, l1 = Afin.
0 (m2

t ), and l2(p
2) =

Bfin.
0 (p2,m2

t ,m
2
t ) . Here A0 and B0 are the standard scalar one-loop integrals as defined

in Ref. [62], and “fin.” denotes their UV-finite parts. In our work, the renormalisation scale

(that appears in MS-renormalised self-energies) is set to the average of the tree-level masses

for our parton-level analysis. For the hadron-level Monte-Carlo study, we set it and the

factorisation scale to the average of the loop-level masses. We confirmed that these different

choices (made for technical reasons) have a negligible impact on the shown results.

It is interesting in this context to consider the specific case where the last term in

Eq. (2.32) vanishes, i.e., the case where (ct,2c̃t,1 − ct,1c̃t,2)
2 = 0 or equivalently t ≡ ct,1/c̃t,1 =

ct,2/c̃t,2 . In this case the determinant of the inverse propagator matrix simplifies to

(p2 −m2
h1,tree

)(p2 −m2
h2,tree

) + q c̃2t,2(p
2 −m2

h1,tree
)h(p2) + q c̃2t,1(p

2 −m2
h2,tree

)h(p2) = 0 ,

(2.33)

where h(p2) ≡
[

−2
(

1 + t2
)

l1 +
(

p2 + (p2 − 4m2
t )t

2
)

l2(p
2)
]

. Employing additionally the

limit of degenerate tree-level masses, mh2,tree
→ mh1,tree

, the determinant of the inverse

propagator matrix further simplifies to

(p2 −m2
h1,tree

)
[

p2 −m2
h1,tree

+ q
(

c̃2t,1 + c̃2t,2
)

h(p2)
]

= 0 . (2.34)

This implies that in this case one of the solutions for the determinant of the inverse prop-

agator matrix is p2(= M2
h1
) = m2

h1,tree
, which is a purely real quantity. Thus, the decay

width of one of the loop-corrected states with a pole at p2 = m2
h1,tree

is zero in this limit.

The other solution will, in general, have a non-zero imaginary part.

In fact, in mixing scenarios involving nearly mass-degenerate states, it was indeed found

that one of the widths can be suppressed via the so-called “quantum Zeno effect” [63, 64].

In the limit where this happens the Z-matrix is given by

Z ≃
(

1/
√
2 1/

√
2

−1/
√
2 1/

√
2

)

, (2.35)

corresponding to a maximally mixed scenario.

As a result, for the case where ct,2c̃t,1 ≈ ct,1c̃t,2 and the masses of the two states are very

close to each other the decay width of one of the loop-level mass eigenstates is suppressed
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and would go to zero in the limit of the exact coupling relation and mass degeneracy. In

our numerical investigation, we will demonstrate that the Z-matrix plays a crucial role in

regulating the resulting sharp peaks in the di-top invariant mass distribution. In Section 2.7,

where we focus on the c2HDM as an example of a potentially realistic model comprising

an extended Higgs sector, we will indicate the parameter region where the suppression

according to the quantum-Zeno effect can occur.

2.7 Mapping to the c2HDM

As a concrete UV-model that can be mapped to the simplified model framework that we

employ in this paper, we consider the complex Two-Higgs Doublet Model (c2HDM). We

focus on the c2HDM because it has three neutral scalars, one of which can be identified

with the detected SM-like Higgs boson (h125), while the masses for the other two neutral

scalars can be above the di-top threshold. In a first step we will relate the parameters

of the c2HDM to the Yukawa-coupling modifiers of the simplified model framework. As

an application, we will then compare our results to existing results in Ref. [65] where the

signal–signal interference contributions were not taken into account.

We focus on a c2HDM with a softly-broken Z2 symmetry. The Z2 symmetry transforms

the two Higgs doublets Φ1,2 via

Φ1 → Φ1, Φ2 → −Φ2 . (2.36)

Following closely the discussion in Ref. [22], the most general potential is then given by

V (Φ1,Φ2) = m2
11|Φ1|2 +m2

22|Φ2|2 −
(

m2
12Φ

†
1
Φ2 + h.c.

)

+
λ1

2

(

Φ†
1
Φ1

)2
+

λ2

2

(

Φ†
2
Φ2

)2

+ λ3

(

Φ†
1
Φ1

)(

Φ†
2
Φ2

)

+ λ4

(

Φ†
1
Φ2

)(

Φ†
2
Φ1

)

+

[

λ5

2

(

Φ†
1
Φ2

)2
+ h.c.

]

. (2.37)

Due to the hermiticity of the Lagrangian, all couplings are real except for m2
12 and λ5.

The two doublets Φi (i = 1, 2) are expanded around their real vacuum expectation

values (VEVs) v1 and v2, respectively, and the doublets then read

Φ1 =

(

φ+
1

1√
2
(v1 + ρ1 + iη1)

)

, Φ2 =

(

φ+
2

1√
2
(v2 + ρ2 + iη2)

)

. (2.38)

The component fields of the doublets are the charged complex fields φ+

i and the real neutral

fields ρi and ηi. The Higgs basis {H1,H2} as described in Refs. [66, 67] is defined by the

rotation
(

H1

H2

)

= RT
H

(

Φ1

Φ2

)

≡
(

cos β sin β

− sin β cos β

)(

Φ1

Φ2

)

, with tan β =
v2
v1

, (2.39)

where

H1 =

(

G+

1√
2
(v +H0 + iG0)

)

, H2 =

(

H+

1√
2
(R2 + iI2)

)

. (2.40)
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The electroweak VEV v =
√

v2
1
+ v2

2
along with the Goldstone bosons G± and G0 is now

rotated to H1, while the charged Higgs mass-eigenstates H± are part of H2, and H0, R2,

and I2 are real neutral fields. The neutral tree-level Higgs mass-eigenstates h125 and hi,tree
(i = 1, 2) are obtained from the neutral components of the c2HDM basis fields of Eq. (2.38)

ρ1, ρ2 (as in the doublets Φ1,Φ2) and ρ3 ≡ I2 via the rotation






h125
h1,tree
h2,tree






= R







ρ1
ρ2
ρ3






. (2.41)

After the rotation of the neutral components of the fields in the c2HDM basis, one obtains

three neutral tree-level scalars (h125, h1,tree, h2,tree) that, in general, are CP-mixed states.

Here, we implicitly assume that the states are ordered by their tree-level mass and that

the lightest state, h125, corresponds to the detected Higgs boson at 125 GeV. Additionally,

there are two charged scalars H±. The 3 × 3 mass matrix
(

M2
)

of the neutral scalars is

diagonalised via the orthogonal matrix R as described in Ref. [68]. That is,

RM2RT = diag(m2
h125

,m2
h1,tree

,m2
h2,tree

) , (2.42)

with mh125
≤ mh1,tree

≤ mh2,tree
. The orthogonal matrix R takes the form

R =







c1c2 s1c2 s2
−(c1s2s3 + s1c3) c1c3 − s1s2s3 c2s3
−c1s2c3 + s1s3 −(c1s3 + s1s2c3) c2c3






, (2.43)

where si = sinαi, ci = cosαi (i = 1, 2, 3), and αi are the mixing angles in the orthogonal

matrix R that diagonalise the mass matrix (M2) as illustrated in Eq. (2.42). Furthermore,

−π/2 < αi ≤ π/2 .

The Yukawa-Lagrangian (in this case comprising of the three neutral scalars of the

c2HDM) that describes the couplings of the neutral Higgs bosons to top quarks reads

LY = −
2
∑

i=1

mt

v
t̄ (ct,i + ic̃t,iγ5) thi,tree −

mt

v
t̄ (ct,h125

+ ic̃t,h125
γ5) th125 . (2.44)

Here the states hi,tree (i = 1, 2) have CP-mixed couplings to the top pairs, while h125

corresponds to the detected Higgs boson at 125 GeV. Within our simplified model framework

the two states h1,tree and h2,tree are the two CP-mixed BSM Higgs bosons, while the top-

Yukawa couplings of h125 do not enter the analysis in our simplified model framework.6

The relations between the mixing angles (α1, α2, α3) and tanβ of the c2HDM and the

Yukawa-coupling modifiers (ct,1, c̃t,1, ct,2, c̃t,2) read

ct,1 =
cosα1 cosα3 − sinα1 sinα2 sinα3

sinβ
, c̃t,1 = −cosα2 sinα3

tanβ
, (2.45)

ct,2 = −cosα1 sinα3 + sinα1 sinα2 cosα3

sinβ
, c̃t,2 = −cosα2 cosα3

tanβ
. (2.46)

6Experimentally it is known that ct,h125
≈ 1 while c̃t,h125

so far is only relatively weakly constrained

from LHC measurements [69–77].
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Finally, we address the question whether the suppression described above of the decay

width of one of the heavy scalars as a consequence of mixing between the heavy scalars

is realisable within the c2HDM. As stated in Section 2.6, the suppression occurs if the

two BSM scalars are nearly mass-degenerate and the relation ct,1/c̃t,1 ∼ ct,2/c̃t,2 holds. In

the c2HDM, the latter relation corresponds to cosα1 = 0, which in view of the existing

constraints is phenomenologically viable.

3 Parton-level analysis

As a next step, we carry out a parton-level analysis using the analytical expressions we

presented in Section 2. In particular, we investigate the background-subtracted BSM cross-

section, i.e., the difference between the total cross-section and the contribution arising from

the QCD background, as a function of the partonic centre-of-mass energy. The differential

signal and signal–background cross-section contributions are integrated with respect to the

scattering angle (cos θ = z),

dσBSM
Parton

dm(tt̄)
=

∫

+1

−1

(

dσ̂S

dz
+

dσ̂I

dz

)

dz , (3.1)

where m(tt̄) is the di-top invariant mass. In the parton-level analysis that we carry out in

the present section we do not fold with a Parton Distribution Function (PDF) but evaluate

the cross-section as a function of the partonic centre-of-mass energy.

We do not explicitly discuss the case of a single BSM scalar contributing to the tt̄ final

state, for which we find very good agreement with the results in the literature [6–15], but

focus on the case of two BSM scalars contributing to the tt̄ final state. For the case of

two mixing BSM scalars in the di-top channel we go beyond the previous results in the

literature [11, 12] by analysing the implications of loop-level mixing between two CP-mixed

scalars. In particular, we will demonstrate the importance of the effects of loop-level mixing

for the interpretation of the results from experimental searches.

One can broadly categorise the phenomenology of the different scenarios according to

the (tree-level) mass difference between the two heavy CP-mixed scalars,

(i) Large mass separation: the two scalar resonances do not have any significant overlap,

(Γh1
+ Γh2

) ≪ |Mh1
−Mh2

|,

(ii) Nearly mass-degenerate: the two scalar resonances significantly overlap (Γh1
+Γh2

) ≫
|Mh1

−Mh2
|,

and an intermediate region between the two mentioned cases. In the following, we will

describe these scenarios focusing in particular on the nearly mass-degenerate case.

Large mass separation — non-overlapping resonances

For the case where the tree-level mass separation between the two scalars is larger than

the sum of their decay widths, the signal–signal interference contribution is expected to
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Figure 2: Nearly mass-degenerate scenario: background-subtracted partonic cross-section

contributions as a function of the partonic centre-of-mass energy.

be insignificant compared to all the other contributions. We find that the tree-level and

loop-corrected masses are very close to each other in this case. Regarding the Z factors,

we find the off-diagonal elements of the Z-matrix, Zh1

h2,tree
and Z

h2

h1,tree
, to be small. The

Z-matrix is approximately given by an identity (2 × 2) matrix. While for the translation

of experimental results into precise model constraints, the shift between the tree-level and

loop-level masses should be taken into account, the loop effects do not significantly affect

the expected invariant mass distribution (arising from the sum of all the resonance and

interference contributions). The invariant mass distribution is characterised by two peak–

dip structures that are separated by the mass difference of the two scalars.

Nearly mass-degenerate — significantly overlapping resonances

We now focus on the scenario where the scalars are nearly mass-degenerate. Nearly mass-

degenerate scalars are well-motivated in various extensions of the SM, in which a single mass

parameter sets the mass scale of the BSM scalars. In the particular case of CP-violating

models, this can lead to mass eigenstates corresponding to highly CP-mixed states where

the CP-even and CP-odd Yukawa couplings are comparable in magnitude.

In such scenarios, we find substantial signal–signal interference contributions. More-

over, we find the Z-matrix to have large off-diagonal elements indicating the relevance

of off-diagonal mixing contributions. In Fig. 2, we show numerical results for such a

scenario. In particular, in the considered scenario the mass difference is ∼ 6 GeV and

ct,1 = ct,2 = c̃t,1 = c̃t,2 = 0.5. We display the BSM partonic cross-sections versus the
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Figure 3: Nearly mass-degenerate scenario: the prediction for the BSM cross-section based

on non-trivial Z factors (blue) is compared with the cases where the Z-matrix is replaced

by a 2×2 identity matrix (red) and where only the tree-level masses (dark-green) are used.

di-top invariant mass for all the individual signal and interference contributions and their

sum. The colour-code is as follows: the purple dotted curve is the signal resonance, and the

brown dashed curve is the signal–background interference for the first scalar. The yellow

dotted curve is the signal resonance, and the green dashed curve is the signal–background

interference for the second scalar. The red dash-dotted curve denotes the signal–signal

interference between the two scalars. The solid blue curve is obtained as the sum of all

the different individual contributions. We find a large destructive contribution arising from

the signal–signal interference. This feature primarily originates from the fact that the off-

diagonal elements of the Z-matrix are large in magnitude (see also Eq. (47) of Ref. [25]).

In Fig. 3, we highlight the importance of adequately treating propagator-type mixing

between the scalars. The plot contains three different results:

(i) “Z-fac. non-trivial (complex pole)” (blue): The complex poles and the Z-matrix

are used. This result corresponds to the most precise prediction for the considered

scenario.

(ii) “Z-fac. 2 × 2 identity (complex pole)” (red): The complex poles are used, but the

Z-matrix is set to an identity 2× 2 matrix (12).

(iii) “Z-fac. 2× 2 identity (tree-level masses)” (green): Only the tree-level masses and the
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(b) Decay widths of the loop-corrected states

Figure 4: (a): One of the off-diagonal elements of the Z-matrix, Zh1

h2,tree
, as function of

the tree-level mass Mh2,tree
for a scenario with Mh1,tree

= 400 GeV where both scalars have

a CP-even and CP-odd Yukawa-coupling of 0.5 . (b): Same as (a) but the decay widths Γhj

of the two loop-corrected states into top-quark pairs are shown.

minimum decay width as obtained from Eq. (2.8) are considered with the Z-matrix

set to the 12 matrix. This corresponds to a tree-level approximation.

The scenario investigated in Fig. 3 is such that it leads to a suppression of the decay

width of h2 as a consequence of loop-level mixing according to the quantum-Zeno effect, as

explained in Section 2.6. If the effects of loop-level mixing are not properly incorporated into

the Z-matrix but instead an identity 2×2 matrix is used, the suppression of the decay width

of h2 is seen to give rise to a huge peak in the invariant mass distribution. On the other

hand, for the result based on the properly calculated Z-matrix the peak is regulated leading

to a curve which is more similar to the tree-level result but still significantly deviates from it.

The difference to the tree-level result is partly a consequence of the additional phases in the

Z-matrix elements. The displayed results clearly show the importance of accurately taking

into account loop-level mixing for preventing the appearance of artificially large resonance

peaks in the invariant mass distribution.

To conclude our parton-level analysis, we study in Fig. 4 how the elements of the

Z-matrix evolve as one of the tree-level masses is varied while keeping all other input

parameters fixed (Fig. 4a), and similarly how the decay widths evolve in the same scan

(Fig. 4b). It is evident from Fig. 4a that the Z-matrix is indeed approaching the Z-matrix

associated with a maximally mixed scenario as described in Section 2.6 if the two masses

get close to each other. The suppression of one of the decay widths — demonstrating the

quantum-Zeno effect — is clearly seen in Fig. 4b as one of the tree-level masses (Mh2,tree
)

approaches the other tree-level mass, which is kept fixed here at Mh1,tree
= 400 GeV.
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4 Monte-Carlo analysis at the hadronic level

After studying the interference effects at the partonic level, we now turn to the hadronic

level. In particular, we implement our simplified model framework into the Monte-Carlo

code MadGraph (version 3.4.0) [78], fold the differential cross-section with the gluon PDFs,

and perform an approximate incorporation of detector effects. For the Universal FeynRules

Output (UFO) input model, we use a custom model file that extends the SM by two scalars

with the Yukawa couplings defined in Eq. (2.1). The model file includes support to input

arbitrary (complex) Z factors. The scalar–gluon–gluon interaction is implemented via a

form factor taking into account the full dependence on the momentum and the mass of the

top quark in the loop. We validated our model by comparing it to the analytical results

presented in Section 3 finding good agreement. For more details, see Appendix C.

We estimate the experimental sensitivity at current or future LHC runs following the

procedure outlined in Ref. [31], which is based on the CMS analysis presented in Ref.

[19]. While the experimental analyses consider several final states, we concentrate here

on the fully leptonic final state. To account for the top-quark decays, we multiply the

di-top cross-section with the leptonic top-quark branching ratios. Furthermore, Ref. [19]

performs its analysis in different regions of the spin correlation variable chel. Focusing on

the most sensitive region (0.6 < chel < 1) as in Ref. [31], we approximately account for

the selection by multiplying with the selection efficiency, which we estimated to be ∼ 0.18.

To estimate the experimental sensitivity, we compare our differential m(tt̄) distributions

(obtained by treating the top quarks as stable) to the post-fit uncertainty band for the di-

lepton final state from Refs. [19, 31]. In particular, we account for a statistical uncertainty

in the background, which is obtained by taking the square root of the expected SM tt̄

background for a luminosity of 300 fb−1 at the LHC (corresponding to the prospective

integrated luminosity after Run 3 of the LHC) with 13 TeV centre-of-mass energy.7 If

the predicted BSM contribution exceeds this statistical uncertainty band, we expect the

LHC to become sensitive to the experimental signature of such a BSM contribution (for

instance, during the partial or full Run 3 data analysis or during the High-Luminosity

phase of LHC). Finally, to account for the limited experimental mass resolution, we apply a

Gaussian smearing of 15% to the m(tt̄) values of the generated Monte-Carlo events. For the

binning of both the experimental uncertainty band and the BSM contribution, we orient

ourself on the current experimental resolution choosing a bin width of ∼ 30 GeV.

4.1 Overview of different interference patterns

In order to provide an overview of the (approximate) impact of the folding with the gluon

PDFs as well as the limited experimental resolution on the m(tt̄) distributions, we present

in Fig. 5 the background-subtracted m(tt̄) distributions both at the partonic (red curves)

and hadronic level (blue curves) for four illustrative scenarios. For the PDFs, we use the

NNPDF2.3 set [79] accessed using LHAPDF [80]. The grey band indicates the statistical

7The expected number of events for a centre-of-mass of 13.6 TeV changes slightly compared to the case

for 13 TeV centre-of-mass energy. Changes in the shape of the distribution are negligible.
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We note that these findings are of interest in the context of the very significant excess

of much more than 5σ above the perturbative QCD background that was recently observed

by the CMS collaboration near the tt̄ threshold in their analysis based on the full Run 2

data [29]. While we do not pursue here a dedicated analysis of the specific pattern that

was observed by CMS, we emphasise that the mere fact that the observed excess occurs

near the tt̄ threshold by itself does not exclude the possibility that it could arise, possibly

in combination with a bound-state type effect at the tt̄ threshold, from BSM states with

much higher masses. In fact, the current experimental limits leave more room for such BSM

states at higher masses than it is the case for a single CP-odd Higgs boson with a mass

near the tt̄ threshold.

5 Conclusions

In this work, we investigated the impact of interference effects on BSM searches in the di-

top final state. For our analysis, we employed a simplified model framework which extends

the SM by two additional (CP-admixed) scalars with masses above the di-top threshold and

large couplings to top quarks, as they occur in many extensions of the SM Higgs sector.

The production of scalars via gluon–gluon fusion proceeding through a virtual top-quark

loop and their subsequent decay to a pair of top quarks is affected by large interference

effects with the SM di-top QCD background. Moreover, in the presence of more than one

BSM scalar, signal–signal interference contributions can have a significant impact. These

interference effects can significantly alter the invariant mass distribution and thereby affect

the sensitivity of experimental searches targeting the di-top final state.

For the first time, we studied the effect of loop-level mixing between the scalars in the

di-top final state. This mixing between the tree-level mass eigenstates via loop-corrected

propagators not only shifts the masses and decay widths of the involved particles but

also affects their couplings to top quarks. We incorporated loop-level mixing using the

Z-matrix formalism. We found that the complex Z-matrix elements introduce additional

phase shifts between the interference contributions and thereby significantly modify the

tree-level invariant mass distributions. Furthermore we demonstrated that the inclusion of

Z factors is crucial for regulating unphysical enhancements of the signal peaks that would

occur if only the loop-corrected poles and decay widths were used. This clearly shows the

importance of properly taking into account loop-level mixing effects in scenarios of extended

Higgs sectors when confronting their predictions with experimental results.

Moreover, the Monte-Carlo implementation that we have provided should facilitate

the incorporation of signal–signal interference and loop-level mixing contributions in the

interpretation of experimental results. Emulating the effects of the limited experimental

resolution by using a Gaussian smearing of the invariant mass of the top-quark pairs at

the histogram level, we studied various scenarios with loop-level mixing at the hadronic

level and compared the resulting patterns with the predictions at the parton level. We

demonstrated that the limited experimental resolution washes out many of the features

that would be present at the parton level and additional patterns arising from the folding
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with the gluon PDFs. As a consequence, we find that for the case of an observed excess

in this search the limited resolution of the experimental analyses may make it difficult to

determine the underlying origin of the detected excess. This is visible for the investigated

scenarios with two CP-mixed scalars since the resonance contributions of the two BSM

scalars, their interferences with the QCD background and the signal–signal interference

contribution combine in a non-trivial way to the overall distribution. In view of the limited

experimental resolution it may be challenging to distinguish the case of a single new state

from the case of two CP-mixed states and to infer reliable information on the mass(es) of

the produced BSM state(s).

As specific examples we investigated scenarios with large cancellations between the

signal peaks and the signal–signal interference and demonstrated that the resulting overall

distribution may be difficult to extract from the background. In addition, we demonstrated

the versatility of the adopted model-independent approach by mapping the parameters

in the neutral sector of the c2HDM to the Yukawa-coupling modifiers of our simplified

model framework. Considering a scenario comprising two BSM Higgs bosons with masses

far above the tt̄ threshold, in this example at about 600 GeV, we find that the combined

effect of the interference contributions and the folding with the gluon PDFs gives rise to a

signal that peaks at the tt̄ threshold. The dip in the m(tt̄) distribution occurring at a much

higher value of m(tt̄), in this case at about 700 GeV, may be difficult to disentangle from the

experimental uncertainty band. Thus, as a generic feature of searches in the tt̄ final state at

the LHC we find that even BSM states with much higher masses would manifest themselves

in this search channel predominantly via the experimental signature of an excess of events

in the tt̄ threshold region (where the search has its highest sensitivity if the background

is sufficiently well understood). We have discussed the implications of these results in the

context of the recent excess above the perturbative QCD background that was observed

by the CMS collaboration near the tt̄ threshold. In particular, our results demonstrate

that restricting possible interpretations of an excess at the tt̄ threshold only to the options

of a bound-state type effect at the threshold or a BSM state with a mass close to the tt̄

threshold may be too restrictive, since BSM states with significantly higher masses could

also contribute to an excess at the tt̄ threshold.

Our study highlights the importance of interference contributions not only of signal–

background but possibly also of signal–signal type for the interpretation of experimental

searches in the di-top final states in extended Higgs sectors. For scenarios where such

interference effects are large we expect that other search channels with different interference

patterns — e.g., four-top production — will provide important complementary information.

We leave detailed studies of the possible interplay between different search channels for

future work.
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Appendices

A Differential cross-section(s) with loop-level mixing

Following the prescription as described in Eqs. (2.31a) to (2.31d) and taking into account

the loop-corrected masses arising from the complex poles of the propagators, we obtain the

following expressions
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(ŝ−M2
h2
)2 + Γ2

h2
M2

h2

×
(

∣

∣

∣Z
h2

h2,tree
ct,2 +Z

h2

h1,tree
ct,1

∣

∣

∣

2

β̂3
t +

∣

∣

∣Z
h2

h2,tree
c̃t,2 +Z

h2

h1,tree
c̃t,1

∣

∣

∣

2

β̂t

)

×
(

∣

∣

∣

(

Z
h2

h2,tree
ct,2 +Z

h2

h1,tree
ct,1

)

AH
1/2(τt)

∣

∣

∣

2

+
∣

∣

∣

(

Z
h2

h2,tree
c̃t,2 +Z

h2

h1,tree
c̃t,1

)

AA
1/2(τt)

∣

∣

∣

2
)

+ 2× Re

[

1
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As before, “S” denotes the signal and “I” denotes the signal–background interference con-

tribution (Sig-Bkg Intf.). In the signal contribution, the term (2× Re[· · · ]) corresponds to

the “signal–signal” (or, “sig1-sig2”) interference term.

B MS-renormalised self-energies

The MS-renormalised self-energies are given by
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where A0 and B0 are the standard scalar one-loop integrals as defined in Ref. [62], and

“fin.” denotes their UV-finite parts.

C UFO model file and generation of Monte-Carlo events

Our Universal FeynRules Output (UFO) model file incorporates two CP-mixed scalars that

we label as S1 and S2 in the model file. The full top-triangle loop is implemented in

the model file using a Fortran routine which defines the corresponding loop functions for

producing a CP-even or a CP-odd scalar. We validated our UFO model file by comparing

it with the publicly available UFO model file [81], on which our implementation is based,

for the case without CP violation.

To facilitate event generation the model file implements the two coupling orders QS1,

which denotes the coupling of S1, and QS2, which denotes the coupling of S2. This allows

simulating the individual contributions to the di-top processes separately as follows:
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QCD background: g g > t t∼ QS1∧2==0 QS2∧2==0

signal 1 (resonance): g g > t t∼ QS1∧2==4 QS2∧2==0

signal 2 (resonance): g g > t t∼ QS1∧2==0 QS2∧2==4

signal 1 – background (interference): g g > t t∼ QS1∧2==2 QS2∧2==0

signal 2 – background (interference): g g > t t∼ QS1∧2==0 QS2∧2==2

signal 1 – signal 2 (interference): g g > t t∼ QS1∧2==2 QS2∧2==2

D Input parameters used for the overview scenarios

The tree-level masses, decay widths, Yukawa coupling modifiers, Z factors, and the K factors

for the scenarios considered in Figs. 5 and 10 are tabulated in Tables 1 and 2.

Scenario (a) (b)

Mh1,tree
(Mh1

) [GeV] 750 (747.60) 550 (541.28)

Γh1
[GeV] 24.50 27.48

ct,1 −0.4 0.8

c̃t,1 0.5 0.7

Mh2,tree
(Mh2

) [GeV] 766 (751.48) 600 (577.69)

Γh2
[GeV] 19.36 38.78

ct,2 0.4 0.4

c̃t,2 0.8 −1.3

Z-matrix

(

1.12− 0.59i 0.82 + 0.75i

−0.83− 0.78i 1.1− 0.58i

) (

1.00− 0.08i −0.19− 0.23i

0.20 + 0.27i 0.99− 0.09i

)

K(sig(1)) 2.49 2.60

K(sig(2)) 2.48 2.54

Table 1: Parameters that are used for scenarios (a) and (b) in the overview plots in Figs. 5

and 10.

E Di-top invariant mass distribution with no Gaussian smearing

We present in Fig. 10 the background-subtracted m(tt̄) distributions both at the partonic

(red curves) and hadronic level (blue curves) for the four illustrative scenarios of Fig. 5 with

0% smearing. The grey band is the statistical uncertainty of the SM QCD background at

the hadronic level. The input parameters used for obtaining the various partonic-level and

hadronic-level curves in Fig. 10 arise are given in Appendix D.

Moreover, we show in Fig. 11 the scenario of Fig. 8 without smearing. The impact

of the folding with the gluon PDFs on the peak–dip structure arising from the signal–

background interference is clearly visible in this case. It gives rise to a plateau-like shape

of the peak between the tt̄ threshold and the mass of the produced scalar(s) (in this case
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Scenario (c) (d)

Mh1,tree
(Mh1

) [GeV] 500 (494.87) 550 (544.83)

Γh1
[GeV] 12.13 32.42

ct,1 0.0 0.8

c̃t,1 0.7 0.5

Mh2,tree
(Mh2

) [GeV] 600 (581.20) 580 (560.67)

Γh2
[GeV] 39.66 19.12

ct,2 1.0 0.4

c̃t,2 1.0 1.2

Z-matrix

(

1.00− 0.02i 0.07 + 0.07i

−0.09− 0.12i 0.97− 0.06i

) (

0.95− 0.31i 0.57 + 0.40i

−0.61− 0.45i 0.93− 0.29i

)

K(sig(1)) 2.63 2.57

K(sig(2)) 2.50 2.55

Table 2: Parameters that are used for scenarios (c) and (d) in the overview plots in Figs. 5

and 10.

about 550 GeV). The effect of the 15% Gaussian smearing that is applied in Fig. 8 in order

to account for the limited detector resolution is seen to reduce the significance of the peak

and the dip in comparison to the experimental uncertainty band. While the dip at about

670 GeV would be difficult to experimentally resolve in this case, the plateau-like shape of

the peak is modified into a broad peak at about 400 GeV in Fig. 8 as a result of the applied

smearing.

We conclude from this investigation that an ideal detector with 0% smearing in the

m(tt̄) resolution would preserve several of the distinct features of the parton-level distribu-

tions and clearly display the effect of an enhancement in the tt̄ threshold region arising from

the folding with the gluon PDFs. The limited experimental resolution of the actual analyses

may make it difficult to disentangle the underlying origin of an observed excess, which is ex-

emplified for the considered case of two CP-mixed scalars where the resonance contributions

of the two BSM scalars, their interferences with the QCD background and the signal–signal

interference contribution combine in a non-trivial way to the overall distribution.
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