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ABSTRACT: Molecular dynamics (MD) simulations are a powerful tool for
studying matter at the atomic scale. However, to simulate solids, an initial atomic
structure is crucial for the successful execution of MD simulations but can be
difficult to prepare due to insufficient atomistic information. At the same time,
wide-angle X-ray scattering (WAXS) measurements can determine the radial
distribution function (RDF) of atomic structures. However, the interpretation of
RDFs is often challenging. Here, we present an algorithm that can bias MD
simulations with RDFs by combining the information on the MD atomic
interaction potential and the RDF under the principle of maximum relative
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entropy. We show that this algorithm can be used to adjust the RDF of one liquid

model, e.g., the TIP3P water model, to reproduce the RDF and improve the angular distribution function (ADF) of another model,
such as the TIP4P/2005 water model. In addition, we demonstrate that the algorithm can initiate crystallization in liquid systems,
leading to both stable and metastable crystalline states defined by the RDF, e.g., crystallization of water to ice and liquid TiO, to
rutile or anatase. Finally, we discuss how this method can be useful for improving interaction models, studying crystallization
processes, interpreting measured RDFs, or training machine-learned potentials.

1. INTRODUCTION

Understanding the structure of solid matter at the atomic level
is an important task in materials science and a prerequisite for
the development of new tailored materials. To this end,
Molecular Dynamics (MD) simulations are an important
method to study materials at the atomic scale. A crucial
component to perform a MD simulation are suitable models of
the interatomic potentials. However, knowledge of the
interatomic potential alone is not sufficient to predict the
structure of stable or metastable solid atomic structures.
Therefore, the atomic structure of interest must be provided as
another essential requirement to perform a physically mean-
ingful MD simulation.

Sometimes it is not possible to provide the required atomic
structure ab initio, because it is difficult to generate, e.g., in the
case of amorphous structures, or not enough details are known
about the exact atomic configuration. In this case an alternative
option is to generate the target structure during the MD
simulation from an initially unstable random or liquid phase.
For this strategy to be successful, it is sometimes necessary to
induce a phase transition in the initial system. This requires the
system to move from one local free energy minimum to
another stable free energy minimum by overcoming a free
energy barrier. To date, several methods have been developed
that can be used to overcome the free energy barrier and
generate realistic solid atomic configurations during a MD
simulation.

Some examples of these methods include crystal seed
insertion,' ™ simulated annealingf’7 the introduction of a bias
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~'5 e.g, umbrella sampling®

potential in one form or another,”
or well-tempered metadynamics,'” or replica exchange
methods.'®™>° However, each strategy has its own challenges.
The introduction of a crystal seed requires a seed of the correct
crystalline structure, which is problematic if the correct
crystalline structure is not available. Introducing a meaningful
bias potential requires the choice of a set of collective variables
that summarize the position of the system in the free energy
landscape. The collective variables usually have to be
developed and chosen individually for each problem. In
contrast to these methods, simulated annealing and replica
exchange methods are structure agnostic. However, the
methods cannot be used to target a specific stable or
metastable state of interest, since simulated annealing is
designed to find the state of the global energy minimum and
replica exchange methods are undirected with respect to the
sampled configurations. In addition, it can be quite challenging
to find the right parameters for the successful application of
simulated annealing, biasing methods, or replica exchange
methods.
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A common approach to the determination of unknown
atomic structures is an experimental investigation with Wide
Angle X-ray Scattering (WAXS). WAXS allows the determi-
nation of radial distribution functions (RDF) g(r) of an atomic
structure by Fourier transforming the measured isotropic total
scattering structure function S(gq), which depends on the
2m 24
7-
However, the interpretation of the atomic structure function
S(q) or the derived RDF g(r) without any prior structural
knowledge is an ill-posed inverse problem, since the generated
RDF could originate from different atomic structures all
resembling the same S(q).

Considering the potential struggle to prepare atomic
structures in MD simulations and to determine unknown
atomic structures from experimental approaches, the question
arises whether the information from the RDF can be combined
with the information contained in the atomic interaction
potentials used in MD simulations to generate atomic
structures. For example, the Reverse Monte Carlo (RMC)
method** ™ attempts to reconstruct the atomic structure from
the atomic structure function S(q) alone with unquantifiable
fidelity. The Hybrid Reverse Monte Carlo (HRMC) method
and its extension incorporating MD sampling”®*” on the other
hand aims to improve the RMC algorithm by combining it
with a molecular sampling scheme to reproduce the RDF g(r)
or the structure factor function S(g). In HRMC, the RMC
algorithm is added as a bias to the potential energy of the
system. However, the mathematical structure of the introduced
bias not only constrains the ensemble mean of the system to
reproduce the RDF or the structure factor function, but it also
constrains the variance of how the target function g(r) or S(q)
can be reproduced from the system ensemble.”” Since
information about the variance of the objective function
from an atomistic point of view is usually not available from
experiments, this additional constraint is not supported by the
experimental data. Furthermore, the application of the HRMC
method requires the specification of a coupling parameter that
determines the strength of the bias on the original potential
energy of the system. The choice of the coupling parameter
can drastically alter the simulation results and should be based
on the level of confidence in the original atomic potential or
the influence of the experimentally determined data. The
proper estimation of this trade-off makes the choice of the
appropriate coupling parameter a difficult task. Therefore, a
method that can incorporate the information contained in an
RDF into MD simulations in a way that avoids inappropriate
biases of the original force fields and facilitates the choice of
appropriate coupling parameters would be an important step
forward.

A suitable approach to combine information from measured
observables with a thermodynamic system is the application of
the principle of maximum entropy, first introduced by Pitera
and Chodera® and subsequently reviewed for the related
principle of maximum relative entropy in the context of
atomistic modeling by Cesari et al.*" Prior to our work, relative
entropy applications have been used in the development of
coarse-graining potentials’*~>* and the improvement of
existing force fields.”*® Cilloco’” demonstrated that it is
possible to reproduce a simulated target RDF of a Lennard-
Jones fluid in a Monte Carlo simulation from a maximum
entropy approach. Subsequently, the resulting interaction bias
was found to be in agreement with the Lennard-Jones

magnitude of the reciprocal scattering vector q =

interactions that were used to create the target RDF. In
more recent work, White and Voth®® biased molecular
dynamics simulations to reproduce ensemble averages using
a maximum relative entropy approach. In this study, the
authors indirectly reproduced the target RDF of liquid systems
by biasing the moments of the atomic coordination numbers.
In a subsequent publication, White et al.>” presented a method
for designing free energy surfaces that align with experimental
data under the principle of maximum entropy with
metadynamics.

In contrast to these prior works, the approach presented
here, directly reproduces RDFs from the individual bins of a
target RDF, thereby allowing the reproduction of not only
partial RDFs but also total RDFs consisting of multiple partial
weighted RDFs. Additionally, it offers greater control over the
introduced virial pressure into the system. Furthermore, we
show that with the presented approach, it can be sufficient to
bias liquid systems with RDFs from stable or metastable
crystalline states to induce a liquid—solid phase transition to a
corresponding state that is defined by the target RDF.

2. THEORY

2.1. Radial Distribution Functions. We can describe the
radial distribution function of a macroscopic physical system
with a large number of identical atoms N ~ 10* as a histogram
g, with bins b ranging from 1, .., B. Each bin extends over a
range of + A/2 around the radial position r,. p, describes the
position in bin b and is defined on the interval

A A N .
[rb -ont ?]. Considering the atom coordinates

R = {r"} the intensity of the radial distribution function g,
in bin b can be calculated by counting the weighted number of
distances r;; = ||r;|| = ||r; — rj|| between the individual particles
i and j. Mathematically, this can be represented as an
integration over all delta distributions §(p;, — ri]-) positioned

at each distance r; situated within the bin boundaries from

(”h - %) to (Vb + %) Hence, g, reads as

S

e N
= ==X
&~ RE - Doy Z

Here, V is the system volume and

AY AY
5Vh=i7r (rb+—) —(rb——)
3 2 2 (2)

the volume of a spherical bin. If the RDF is determined in a
MD simulation, the number of atoms in the simulation N and
the volume V of the simulated system will be significantly
smaller, ie, N <« N and V < V, than in a real macroscopic
system. To simulate the RDF of a macroscopic system, the
instantaneous RDFs as determined from the MD simulation g,
are averaged (-) over several time steps to approximate the
macroscopic ensemble in the ergodic limit

g, ~(g)

N N-1
(+3

v )
=G X2 2 e @30,
3)
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To use the RDF as a bias potential in MD simulations, it has
to be differentiable with respect to the interatomic distance r;,.
The nondifferentiable J-distributions are thus replaced with
differentiable kernel functions ©(p;, — rij) as an approximation
to the original RDF. The kernel function is centered around r;
and extends over the entire radial bin range + A/2.
Furthermore, the integral over the kernel function has to be
equal to one. In order to avoid any unjustified variations in the
density of the contributions from r; to the RDF over the bin
range A, we choose a simple rectangular function as kernel
function. Thus, ®(p, — r;) is defined as

1 . pb - rij 1
O(p, — 1) =1 A A 2
0 otherwise (4)

Due to the extent A of the kernel function, the contribution of
7;; to the histogram is spread over two adjacent bins, if r;; is not
positioned in the exact center r;, of the bin b. The position of
the adjacent bin to which the kernel function contributes to is

. . . A
dependent on the position of r;; in the bin. If , — = <1, <,
the kernel function contributes to the bins b — 1 and b, while if

n<ry<n+ % the kernel function contributes to the bins b

Tij5 Tij
I 1
| LA | 1
| |
1- : - :
A
I I
I I
1 1
1 Fa ) | Fa
Tb—1 Tb Ty Tb+1
Figure 1. Sketch of the contribution of each distance r; to the RDF g,,.

The colored dashed lines represent the original delta distribution 6(p,
— r;) at ry. We replace the delta distributions with rectangular kernel
functions O(p, — r,j) centered around r;. The contribution of the
distance r;; to the bin b is defined by the area under the rectangular
function in the bin b (lighter color). Due to the extent of the
rectangular kernel function, the distance r; contributes to the RDF
intensity of two adjacent bins. If it is situated to the left of the center
of the bin b, the affected bins are b — 1 and b (red). If it is situated to
the right of the center of bin b, the affected bins are b and b + 1
(blue). The black cross indicates the nonzero value of

@(rb—%—r"ij>=®<rb,l+ —rij)= (red) and
@(rb + % - rij) = @(rb+1 - = - ri]-) = — (blue) at the bin boun-

daries, while the kernel function is zero at the other boundaries of the

bins (black circle).

w| > N>
B= >~

and b + 1 (see Figure 1). After replacing the delta distributions
with the rectangular functions eq 3 reads as

g, ~ (g
N N-1 A
\74 (’1;"’7)
= X / dp,®(p, — 1))
N(N - 1)8V, ; E -y P

©)

where the approximation holds for sufficiently large sample
sizes of the r; and small bin sizes A.

Often a system contains several atom types. In this case, the
total RDF can be described as the sum of the individual partial
RDFs. Considering the atom types a and f, the partial radial
distribution function, which describes the radial distribution
function restricted to the atom pairs of type a and f3, is written
as g¥. To compute the total radial distribution function, the
partial RDFs g’ have to be weighted by the relative frequency
w? of the a and f3 pairs, resulting in

3
g = D Wi
aff (6)

If the total radial distribution function is measured by WAXS,
the atom type specific structure factor f has to be added to
calculate the total RDF from its partial constituents. To
mitigate the dependence of the structure factor from the length
of the reciprocal scattering vector g, the Warren—Krutter—
Morningstar approximation®® is used throughout this work.
The total RDF is then given by

af
g;, = Zfaf/jwuﬂgh/
ap (7)

2.2. Maximum Relative Entropy Bias. Equilibrium MD
simulations are designed to sample particle coordinates R from
the generalized Boltzmann distribution™'

-AUR)- T X,x,)

B(R) =e (8)

1
kB_T’
M generalized forces X,, (e.g., the pressure), and M conjugate
generalized coordinates «,, (e.g., the volume). The goal of this
work is to bias the original generalized Boltzmann distribution
Py of a MD simulation to obtain an updated ensemble
distribution P that reproduces a target RDF

with the potential energy U(R), the thermodynamic f§ =

~ target

<gb>P = gh (9)

in the MD simulation. An infinite set of probability
distributions P exists that satisfy eq 9. However, the useful
physical information they contain is markedly different. Thus,
an additional requirement to decide for the best of the new
distributions P is necessary. This requirement is chosen such
that the average probability of encountering a specific atomic
configuration R under the new ensemble distribution P should
be as similar as possible to encounter the same atomic
configuration R under the original distribution P,,. The relative
entropy S[P||Py], also known as the Kullback—Leibler
divergence, is the statistical distance between the distributions
P relative to Py, denoted as P||P,, that quantifies this similarity
requirement. It is defined as

P(R)

S[P||R] P(R)
0

- f dRP(R) In

~ [aRP(R)[In P(R) — In B(R)] w0
Therefore, the closer eq 10 is to zero, the smaller the
discrepancy between the distributions of P and P,.
Consequently, the desired biased distribution can be identified
by maximizing the relative entropy (because S < 0)°%**
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Pyp = arg max S[P||R)] N-1 N-1 VE
P (11) E= = _ 9
b & N(N- 1)
under the two constraints j# j#i ( ) J (20)
~ target Mth
[ @R, RPR) = (g = &, 1) .
E = _ i
- TONIN -1 (21)
f dRP(R) = 1 0 j
and

Here, f dR implies an integral over the whole phase space.
This approach is called the principle of maximum relative
entropy. A review on biasing with the maximum relative
entropy approach is provided by Cesari et al.”' Solving the
constrained optimization problem with the method of
Lagrange multipliers leads to a posterior probability distribu-
tion that reads as

Z 8
PME X e =1 bpo (14)

where A, are the Lagrange parameters, that need to be
determined. Thus, the generalized Boltzmann distribution is

updated to be

B
_ﬁ(U Zm m% m)+ Z ﬂ'bgb
PM_E =e€ b=1

B
—ﬁ(U 2o X Z hg,)
— e—/j(U—Z,,mem‘*'V) (15)

with the linear bias potential

B
:Z,{
b=1

(16)
and the definition that
IN 1
j’h = _j’h
p (17)

The similarity of the term ¥, X, x,, to 3% 1 Aygy in eq 15 is
due to the fact that thermodynamic systems reproduce an
average of the generalized coordinates (x,,) specified by X,
while maximizing the entropy of the distribution of generalized
coordinates of the system. In this sense, the values gb(R) can

be compared to and 4, to
“generalized forces”.
In MD simulations, the bias potential V(R) adds a force F,

to the atom i, which can be expressed as

“generalized coordinates”

B

b=1 (18)

The derivative of the RDF contribution Vigb(R) with respect to
the coordinate r; of atom i is

= VV(R) =

|4 ot 2
Y8R = S e ¥ <3, f s W80, )

j#i 2)
N-1
=L1XZ @rb+é—rx)—®(rb—é—rx)
N(N = 1)éV; por 2 2
(19)

By inserting eq 19 into eq 18 and rearranging, we get

ST

Il
M=
=

b=1
B ~

£ 422
= 5v, 2 2

(22)

Note that @(1‘ - % - "1,) is the value of the kernel function

centered at r; at the lower boundary of bin b and
@(rb + % - ij) the value of the same kernel function at the
upper boundary of bin b. We can simplify eq 22 by considering
that each kernel function © around r; contributes to only two
adjacent bins, the bin b in which r;is located and a neighboring
bin b’ Thus, the kernel function crosses the bin boundaries
only at one bin boundary position (see Figure 1 at the location
of the black cross). Since eq 22 depends only on the values of
the kernel function © at the bin boundaries, only two terms,
stemming from b = band b= b’ in the sum >, over all bins
in eq 22 are nonzero, or more precisely 1/A (black cross in
Figure 1), and contribute to the term eq 22. At the position of
all other bin boundaries, the kernel function is zero and does
not contribute to the term eq 22 (black circles in Figure 1).
Whether r; is positioned to the left or right of the bin center r;
determlnes whether the adjacent bin is b’ = b—1 (red kernel
function in Figure 1) or b’ = b + 1 (blue kernel function in
Figure 1). So eq 22 can be simplified to

Y A
—| =t ifry — <r<rg
A6V, oV, 2
Ej =
A A A
—| b ifri<ry<rp+ —
A6V, OV (23)

If partial RDF compositions (eq 6) or RDFs measured by X-
ray scattering (eq 7) are considered, the weights of the partial
RDFs have to be included in the forces and eq 21 is altered to

A

Vi,
= e
’ N(N - 1) (24)
or
VE, 5

V=), (25)

respectively. Given that the bias force is generated by a
pairwise interaction, the implementation of the bias is
analogous in computational complexity to the incorporation
of an additional pairwise potential into the MD simulation.
Additionally, the bias will contribute to the original virial
pressure of the system, T, by adding a term, Ty;.

https://doi.org/10.1021/acs.jctc.4c01621
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Consequently, the new total virial pressure of the system, T,
is given by

Tiota = To + Tye (26)
The virial resulting from the bias can be calculated as®
N N-1
=% X
i j# (27)

where d is the dimensionality of the system, e.g., three for a
three-dimensional system. By substituting eqs 21 and 22, 27
can be transformed to

B
b
Tye = Z Ty
b=1 (28)
with
N N-1
b
TME dN(N Z Z ij 1] ( )
i jFE 29

where T4 represents a measure for the bias-induced virial per
bin b.

2.3. Determination of Lagrange Multiplier 4,. To bias
the original probability distribution Py(R), the parameters 4,
need to be determined. Following Pitera and Chodera™ the
function

g B
F(l) = 11’1 /dRH)(R)e_ bgljbgb(ﬂ) + Z Abgbtarget
b=1 (30)

is introduced, which combines eq 11 with eqs 12 and 13 by a
Legendre transformation.”* The set of parameters A that solve
the combined eqs 11—13 can be found by minimizing eq 30.

In this study, we use gradient descent with a step size of y to
iteratively update the Lagrange multipliers during the
simulation to minimize I'(A). The gradient of I'(1) with
respect to A, is defined as

[dRB(R)e Zim "6 Rg (R)
/dRPO(R)e_ So g, (R)

E — ~target _
ok, P

- g target <gb> (3 1)

and thus can be determined by calculating the difference of the
target RDF g® at bin b to the average RDF (g,) at bin b
measured in the (biased) simulation.

In order for gradient descent to consistently identify an
optimal set of Lagrange parameters, it is imperative that the
optimization does not become trapped in local minima of
I'(4). This can only be guaranteed if I'(4) is convex. That is to
say, the Hessian matrix of I'(A) must be positive-definite. The
Hessian matrix of I'(1) is®

0T

Thor, = &k ~ (&),

(32)
eq 32 demonstrates that the positive-definiteness of I'
necessitates the individual bins of the RDFs to be statistically
uncorrelated; however, given that the intensities in the RDF
bins are typically statistically correlated, the function I'(4) is
not convex. Consequently, gradient descent may not identify
an optimal set of parameters A but rather converge to a local
minimum. This suggests that a set of parameters A determined

by gradient descent may represent a local rather than a global
minimum solution of the objective function I'(4).

As discussed at the end of Section 2.2, the bias force leads to
a change in the virial of the system (eq 27). Depending on the
target RDF, this can lead to a significant change in volume in
systems simulated as isobaric ensembles. This ultimately
impedes the induction of phase transitions in the simulations.
To counteract an undesired large change in volume, we
introduce an optional scaling parameter k, into the gradient
descent algorithm. The scaling parameter k; adjusts the update
of the Lagrange parameters A, based on the average
contribution of the induced viral per bin {T%;). To counteract
excessive contraction or expansion of the system, we reduce
the update rate by setting x, < 1.0 for bins b for which the
average virial per bin (T%;) contributes negatively or positively
to the total virial, respectively. The update rates for the other
bins remain unchanged with k, = 1.0. With the additional
parameter k;, we observed satisfactory results in minimizing
I'(A) with gradient descent for all considered systems.

As the discrepancy between the measured RDF (g,) and the
target RDF 3"®" is reduced during the gradient descent
process, the adjustments to the parameters 4, per update cycle
would become increasingly small. This would result in a
deceleration of the convergence of the mean RDF (g;) toward
the target RDF g;**'. Consequently, the update is normalized
by the sum of the absolute values of the RDF differences across
all bins Y. _; [ — (g, ). This normalization guarantees that
the updates of the Lagrange multipliers 4, remain constant,
irrespective of the proximity of the measured RDF (g;) to the
target RDF g™, This facilitates the selection of a meaningful
update parameter y, that can be maintained constant
throughout the simulation. Hence, the update rule for the
parameters 4, is calculated as

E
, ok,
Ay = Ay + 1Ky B
Zh 1 azb
~ target
B g% — (g
- /1h + yKb |~target _ |
Yo, lg) (g, (33)

The magnitude of change in the Lagrange parameters in each
update cycle is determined by the selection of the update
parameter y. An increase in the update parameter results in a
larger adjustment of the Lagrange parameters A, and
subsequently requires a smaller number of updates for (g,)
to converge to its target value gj"8*". However, simulations that
employed excessive update parameters y exhibited instability
due to abrupt and substantial alterations in forces.
Furthermore, to induce liquid-to-solid nucleation, it is crucial
to avoid setting excessively high values, as the formation of a
nucleation seed remains a stochastic process, albeit with a
noticeably increased probability. In our experimental inves-
tigations, we found that values of ¥ ranging from 10 to S and
from S to 1 were effective in reproducing RDFs in liquids or in
inducing liquid-to-solid transitions, respectively.

In addition to the update parameter y, the number of bins B,
or equivalently the size of the bins A, is a parameter that must
be provided in the presented algorithm. This determines the
number of Lagrange parameters A, that need to be found
through the gradient descent method. While it is not feasible to
establish a universal guideline for the binning of the target
RDF, the following factors should be taken into account when

https://doi.org/10.1021/acs.jctc.4c01621
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determining a bin size: The binning should be sufficiently small
to capture the essential features of the RDF being reproduced,
while avoiding bins that are excessively small. The latter results
in insufficient statistics to determine the average number of
atoms in the bins. This, in turn, leads to noisy parameter
updates and consequently large biasing forces, resulting in
instabilities of the simulation.

2.4. Potential of Mean Force. The free energy or
potential of mean force as a function of the instantaneous RDF
at all bins obtained in the MD simulation g forms a
hypersurface

(g) =~ log [ 4R3(E(R) ~ HR(R) "

with as many dimensions as there are biased bins B. This
hypersurface is tilted by the applied linear bias

_%10g /dRﬁ(g/(R) - 8)B(R)

F(g)

~ s f[R3E(R) — (R

= Fy(g) + kyTAg (35)

as discussed in Cesari et al.”'
Figure 2 shows the hypothetical free energy surface for an
exemplary one-dimensional case of a single bin b’. The

Ay =0.0

Free energy F/ arb. units

—_— )y =-5.0
— )\ =-15.0
— )\, =-25.0
0 1 2 3 4 5 6 7 8

RDF intensity gy

Figure 2. Hypothetical free energy surface as a function of the RDF
intensity g, at one specific bin position r,. Two local free energy
minima are visible that are separated by a free energy barrier. The
resulting Boltzmann probability distribution is indicated by slightly
lighter distributions in the energy minima. An increase of the bias is
expressed by the decrease of the Lagrange multiplier A, from 4, = 0.0
(dark blue) to A, = —25.0 (dark red).

unbiased system 4, = 0.0 (dark blue) has two local free energy
minima. The state at g, &~ 1.5 is the lowest free energy state
and thus stable, while the state at about g, =~ 6.5 is a
metastable state of higher energy that is separated from the
stable state by a free energy barrier indicated by the dashed
line. The resulting Boltzmann probability distribution is
indicated by slightly lighter distributions in the energy minima.
The stepwise decrease of the Lagrange multiplier down to 4, =
—25.0 (from dark blue to dark red) causes the free energy
profile to tilt downward with increasing intensity of g,. The

induced tilt has two important effects on the free energy
surface. First, the free energy of the metastable state is reduced
to the point where it becomes the new minimum energy state
of the system (in Figure 2 the new global minimum changes
from g, & 1.5 to gy &~ 7). Thus, the former metastable state
becomes the new stable state and vice versa. As a result,
crystalline phases may become stable in the simulation at
temperatures and/or pressures where the phase was not stable
prior to the induced bias. Second, the free energy barrier is
lowered. Reducing the barrier increases the probability of a
state transition up to the point where, by increasing the bias,
the free energy barrier disappears and a state transition is
certain to occur. On multidimensional free energy surfaces
with multiple bins b, the direction of tilt of the free energy
surface determines the amount of energy reduction of the
target state and the barrier. The tilt angle between the different
dimensions defined by the bins b in the presented algorithm is
implicitly chosen by the step size y and the virial weighting «,
at which each individual Langrange multiplier 4, is updated.

3. RESULTS AND DISCUSSION

We implemented the maximum relative entropy formalism as
an extension to the Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS).* To incorporate the atomic
structure factor dependence of the RDFs, we build on the code
of Coleman et al,** which in turn uses an analytical
approximation of the atomic structure factors’’ parametrized
by Peng et al.** We then evaluated the implemented algorithm
in two different applications. In the first application, we biased
a liquid water system modeled with the TIP3P* model to
reproduce the RDF of another system modeled with the
TIP4P/2005>° water model. In the second application, we
investigated the potential of the algorithm to moderate liquid—
solid phase transitions. Therefore, we biased a liquid water
system to reproduce the hexagonal phase Ij, and a liquid TiO,
system to reproduce the stable polymorphs rutile or anatase
depending on of the applied target RDF. All examples
presented were simulated under the assumption that the
RDFs were generated from WAXS measurements. This means
that atomic form factors had to be used to weight the partial
RDF contributions in the RDF and the resulting forces (eq 7
and eq 25). We chose WAXS target RDFs because they are the
most complex to reproduce with the additional weighting
factors. Therefore, we expect the formalism to work similarly
for target RDFs generated by identical particles or partial RDF
compositions. In the following sections, we will present the
simulated RDFs (g,) with small bin sizes A. Thus, the bin
positions r, and the RDFs (g,) are represented as continuous
{ry, « 5} = rand {{(g1), .., (g)} = g(r) for clarity.

3.1. Biasing of Liquid Systems: Water. A wide variety of
atomic interaction potentials have been developed to
reproduce different properties of water, each with a different
level of computational effort.”’ Among other properties, MD
simulations with different water models tend to have different
radial distribution functions. Here, we demonstrate that our
method can be used to fit the RDF of a liquid system modeled
with one atomic interaction potential to the RDF of a liquid
system modeled with a different atomic interaction potential.
As a demonstration, we biased the atomic interaction })otential
of TIP3P* to reproduce the RDF of the TIP4P/2005°" model.

The TIP3P water model is a three-site model where the
water molecule is simulated as three individual atoms. In
contrast, the TIP4P /2005 water model is a four-site model that
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Figure 3. Upper panel: RDF (left) and ADF (right) of liquid water systems modeled with different interatomic potentials. Black is the RDF/ADF
of the TIP4P/200S water model from which the target RDF was extracted. The RDF/ADF of the unbiased TIP3P water model is depicted in blue,
while the biased TIP3P water model is depicted in red. Bottom panel: Difference in the RDF/ADF between the target TIP4P/2005 water model
and the unbiased (blue) and biased (red) TIP3P water model. The two respective mean absolute errors (MAE) between the functions are given in

the plot legend, with smaller values indicating better agreement.

adds an additional dummy atom to the water molecule. This
dummy atom has no mass, but carries a charge, allowing for a
more accurate representation of the charge distribution among
water molecules. This makes the TIP4P/2005 model more
suitable for reproducing a variety of bulk water properties,
including density, viscosity, and diffusion coefficient, as well as
the local water s.tructuring.52 However, this advantage is offset
by the increased computational complexity.

The goal of this demonstration is to use the maximum
entropy algorithm to improve the agreement between the
TIP3P and TIP4P/2005 models by biasing the TIP3P model.
For this purpose, we simulated a liquid water system with the
TIP4P/2005 model at a temperature of 300 K and a pressure
of 1 atm. From the equilibrated system, we calculated a target
RDF g ranging from 0 to 8 A with a bin size of 0.08 A. This
target RDF was then used to bias a TIP3P equilibrium system
according to the maximum relative entropy formalism. The
RDF (g,) was calculated every ten time steps and averaged
over 100 time steps to conduct the update of the Lagrange
multiplier A, with a step size of ¥ = 10.0 and no virial specific
weighting, i.e., K, = 1 for all bins. The incorporation of the bias
resulted in a reduction of the simulation’s computational speed
from 3.2 simulated nanoseconds per day for the unbiased
TIP3P water model to 2.7 simulated nanoseconds per day.
Therefore, this modification caused a decrease of approx-
imately 16% in the simulation’s computational speed.

Figure 3a shows the resulting RDF from the TIP3P model
before (blue) and after (red) the application of the bias
compared to the target RDF from the TIP4P/2005 model
(black) in the upper part of the figure. The lower part of the

figure depicts the difference between the TIP4P/2005 target
RDF and the unbiased and biased RDFs of the TIP3P model
in blue and red, respectively. After applying the bias, the initial
mean absolute error (MAE) between the RDFs was reduced
from 0.058 to 0.016.

In addition to the effect of the bias on the generated RDFs,
we also investigated the influence of the introduced bias on
another characteristic of the model unrelated to the RDF, i.e,,
the angular distribution function (ADF) f(6) of the oxygen
atoms within a distance of 0 A to 3.4 A over an angle 6 of 180°
in 2° bins, as shown in Figure 3b. Similar to Figure 3a, in the
upper part of the figure the ADF of the target model TIP4P/
2005 is shown in black, the unbiased TIP3P in blue and the
biased TIP3P in red. In the lower part of the figure the
difference between the ADF of the TIP4P/2005 model and the
unbiased and biased TIP3P models is shown in blue and red,
respectively. The ADF of the TIP3P model shows a clear
change with the introduction of the bias. Similar to the RDF
generated by the original TIP3P model, the unbiased ADF was
less structured than the ADF generated by the TIP4P/200S
target model. With the application of the bias, the difference
between the TIP4P/2005 and the biased TIP3P ADF
decreased from a MAE of 0.065 to 0.023. In addition to the
RDF and ADF, which are structural properties, the diffusion
coefficients D were determined from the mean squared
distance of the oxygen atoms in the water molecules (see SI
for more information). Table 1 contains the measured values
of the diffusion coefficients for the TIP4P/2005 water system,
the unbiased TIP3P water system, and the biased TIP3P water
system. The results indicate that water modeled with the
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Table 1. Diffusion Coefficients D of Oxygen Atoms Bound
in the Water Molecules for the Considered Water Models at
300 K and 1 atm

water model diffusion coeff. D/m? s™!

TIP4P/2005 2.40 X 107
TIP3P 128 X 107°
Biased TIP3P 0.31 x 1077

TIP4P/2005 model exhibits increased diftusivity compared to
water modeled with TIP3P. The diffusion coefficient
determined for the TIP4P/2005 model lies close to the
diffusion coefficient of 2.1 X 10~ m? s reported by Markland
et al.”> However, the determined diffusion coefficient for the
TIP3P model deviates from ~5.8 X 10~° m? reported by Mark
and Nilsson.”* The reason for this discrepancy is not fully
understood, but it may be related to the strong system-
property dependence of the diffusion coeflicient, such as the
assumed water density. Since Mark and Nilsson™* determined
the TIP3P diffusion coefficients from constant volume and
energy (NVE) ensemble simulations, the properties may not be
directly comparable to the constant pressure and temperature
(NpT) ensemble simulations under consideration here.
Therefore, the diffusion coefficients determined here will be
used moving forward. To more accurately represent the
TIP4P/2005 model, the diffusion coefficient would need to be
increased; however, the applied bias results in a decrease of
diffusivity to approximately one-fourth of the original
diffusivity. This reduction in diffusivity is likely attributable

to the additional constraints imposed on the dynamics of the
water molecules to reproduce the target RDF.

While the scientific value of biasing the TIP3P liquid model
with data from RDFs obtained from the TIP4P/200S model
may be limited, a potential application could be to bias other
atomic interaction models to structurally align more closely
with RDFs derived from experiments. Furthermore, it could be
beneficial to align simpler, more lightweight models to
reproduce structural properties of complex, computationally
intensive models to obtain structures for the training of
machine learning potentials. In the context of water, for
instance, the training of coarse-grained models has been
demonstrated to be of interest for studying water.’>°
However, it is imperative to acknowledge that this approach
may result in a diminution of atomic mobility, which renders
the biased model unfit to investigate dynamic properties of a
system.

3.2. Crystallization of Water. Homogeneous crystalliza-
tion of water is a process of great interest, but is challenging to
study with MD simulations. As predicted by classical
nucleation theory (CNT), homogeneous crystallization
requires the formation of a nucleation seed. The nucleation
seed creates a surface against the surrounding liquid. This
surface makes the existence of the nucleation seed energetically
unfavorable for small seed volumes. Therefore, in order for
homogeneous crystallization to occur, the system has to
overcome a free energy barrier. Consequently, the formation of
a nucleus of sufficient size happens with low probability in
unbiased MD simulations. This makes the study of
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Figure 4. Bias-induced liquid—solid transition of a liquid water system modeled with TIP4P/ICE at 360 K and 1 atm. The mean absolute error
(MAE) between the RDF of the biased water system and the target RDF of the simulated hexagonal ice I is depicted. Several snapshots of the
biased simulation show the state of the oxygen atoms in the system from left to right at 0, 7, 8, 9.5, and 14 ns. The atoms in the liquid and
hexagonal ice phase are colored blue and red, respectively. The inset shows the RDF of the unbiased liquid simulation (blue) and the final state of

the system (red) compared to the target RDF (black).
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crystallization processes difficult and often computationally
infeasible.

In this section, we show that the maximum relative entropy
formalism can be used to mediate a crystallization of the liquid
water system into the hexagonal ice phase I;. To this end, we
simulated an isothermal—isobaric system of water molecules in
the hexagonal ice phase I} at 10 K and 1 atm. The TIP4P/ICE
model was used as water potential.”” Based on this system, the
target RDF 2" was calculated from 0 to 14 A with a bin size
of 0.07 A. By using the computed RDF as input to the
maximum relative entropy algorithm, a simulation of liquid
water at 360 K and 1 atm was biased.

A temperature above the freezing point of water at 273 K
was chosen to ensure sufficient mobility of water molecules in
the system. Nevertheless, a phase transition to the hexagonal
ice phase was possible in the simulation, since the free energy
of the crystalline state is lowered by the induced tilt of the free
energy surface (see Sec. 2.4). The Lagrange parameters were
updated every 1100 time steps with a step size of 1 fs. The step
size was y = 2.5 and no virial weighting (x = 1.0) was applied.
The RDF of the system was computed every 10 time steps and
averaged over 1000 time steps to determine the difference
between the target RDF and the instantaneous system RDF for
the gradient descent update. After the bias update, the system
was equilibrated for 100 time steps before next samples of the
instantaneous RDF g, were taken from the simulation. The
incorporation of the bias resulted in a reduction of the
simulation’s computational speed from 3.2 simulated nano-
seconds per day for the unbiased TIP4P/ICE water model to
1.7 simulated nanoseconds per day. Therefore, this mod-
ification caused a decrease of approximately 47% in the
simulation’s computational speed. The substantial additional
computation time requirement is likely associated with the
extensive RDF range of 14 A.

After a certain amount of induced bias strength, a gradual
increase in temperature in the system was observed during the
simulation as the bias was increased further. This rise in
temperature is attributed to the sharp peaks of crystalline
RDFs, such as those observed for water ice at 10 K. These
sharp peaks lead to significant differences in Lagrange
parameters 4, of adjacent bins. Consequently, strong forces,
that are not adequately damped by the thermostat, are created
by the applied bias (refer to eq 23). These forces cause a rise in
temperature. We were able to mitigate this effect by increasing
the damping parameter of the applied thermostat or by
decreasing the time steps. However, for moderate temperature
increases, we did not observe any problems with reproducing
the target RDF.

The upper part of Figure 4 shows snapshots of the oxygen
atoms contained in the water molecules generated with
VMD>® during the simulation at time steps 0 ns (a), 7 ns
(b), 8 ns (c), 9.5 ns (d), and 14 ns (e). The oxygen atoms are
colored in dependence of a calculated average local bond order
parameter G, which is a modification of the local bond order
parameter,”’ with a cutoff value of 3.5 A. Blue oxygen atoms
have an average local bond order parameter g4 < 0.07, while
red oxygen atoms are gg > 0.07 (see SI for more information
on bond order parameters).

At the beginning of the simulation, the dissimilarity of the
RDF of the liquid water and the hexagonal ice system was
relatively large, with an MAE of about 0.45. The dissimilarity is
also evident from the inset, which shows the RDF of the
unbiased liquid system (blue) and the target RDF of the

hexagonal ice (black). During the initial time period from 0 ns
(a) to 7 ns (b), the biased simulation exhibited a decrease in
density with increasing bias strength. At the same time, the
MAE between the target RDF and the RDF originating from
the biased system decreased linearly. The diffusion coefficients
of oxygen atoms in water molecules were measured for the
water system prior to the water-ice phase transition at
approximately 1, 2, 3, 4, and 5 ns. The result is depicted in
Figure 5. It is evident from the figure that as the bias strength
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Figure S. Diffusion coefficients of the oxygen atoms bound in the
water molecules in dependence of the applied bias at different points
in time before the water-ice phase transition occurred.

increased, the diffusivity of the water molecules decreased due
to the increasing constraint to the water structure. After
approximately 7 ns (b), a nucleation seed formed in the biased
system. This nucleation seed grew in the following simulation
steps. After approximately 10 ns, the whole system transitioned
into a crystalline phase of I, ice (e). The phase transition is
visible as a steep drop in MAE between the target and
instantaneous RDF. The presence of the I ice phase is
corroborated by the similarity between the measured RDF and
the target RDF of the biased system at the end of the
simulation, as demonstrated in the inset. During the phase
transition, the system did not form a single hexagonal ice
crystal; rather, it formed a composite of crystal domains with
varying crystal plane orientations. The thermal stability of the
resulting ice structure was assessed by applying the unbiased
TIP4P/ICE force field to the ice structure formed after 10 ns
of simulation. To this end, a NpT ensemble of 260 K and 1
atm was simulated for approximately 3 ns. During the
simulation, the ice system was observed to melt into a liquid
system. The results of this study indicate that the crystal
domains formed during the phase transition were inadequate
in size to surmount the free energy barrier and establish a
stable crystallization seed. The underlying reason for the
formation of ice crystals with domains instead of a single
crystal under the application of bias remains unclear and is a
subject to be explored in subsequent research.

3.3. Polymorphs of TiO,: Rutile and Anatase. TiO, is
an important material with various applications, such as
photocatalytic water splitting,""*> photodynamic therapy for
cancer treatment, inactivation of antibiotic resistant bacteria,®®
and gas sensing,”* to name a few examples.
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Figure 6. Crystallization of liquid TiO, to rutile at 2500 K and 1 atm. The mean absolute error (MAE) between the RDF of the biased TiO, system
and the target RDF of the simulated rutile is depicted. The time at which the crystallization seed formed a critical nucleus is marked by the vertical
dotted black line. Several snapshots of the biased simulation, show the state of the titanium atoms in the system from left to right at 0, 1.3, 1.38,
1.45, and 2 ns. The atoms in the liquid and rutile phases are colored blue and red, respectively. The inset shows the RDF of the unbiased liquid
simulation (blue) and the final state of the system (red) against the target RDF (black).

At atmospheric pressure, there are three different poly-
morphs of TiO,, namely rutile, anatase, and brookite, with
rutile and anatase being the most important polymorphs for
applications. While rutile is the lowest energy configuration
under ambient conditions, anatase and brookite are metastable
polymorphs.

In this section, we demonstrate the crystallization of liquid
TiO, into the corresponding stable rutile or metastable anatase
polymorph by biasing a liquid TiO, system with the RDF
extracted from a rutile or anatase system. In particular, the
crystallization into the metastable anatase phase would not be
feasible using conventional methods developed to find the
configuration of the global energy minimum, such as simulated
annealing or replica exchange methods.

To bias the liquid TiO, system, two target RDFs were
created for rutile and anatase, ranging from 0 to 8 A with a bin
size of 0.08 A. For this purpose, rutile and anatase were
modeled as an isothermal—isobaric ensemble at a temperature
of 300 K and a pressure of 1 atm with the atomic interaction
potential developed by Matsui and Akaogi®® and provided by
the Knowledgebase of Interatomic Models (KIM).°® The
calculated RDFs were used as inputs to the maximum relative
entropy algorithm to bias the two identical initial systems of
liquid TiO, at 2500 K and 1 atm to reproduce the RDF of
either rutile or anatase. A time step size of 1 fs was set for both
simulations. The Lagrange parameters were updated every
1000 time steps with a step size of y = 5.0 for rutile and y =
1.25 for anatase.

Similar to the crystallization of water, we observed an
increase in temperature at high bias forces. It is possible to

mitigate the temperature increase by increasing the thermostat
damping or by using smaller simulation time steps. However,
in the present case, the temperature increase did not have a
negative effect on the simulations. To counteract the excessive
contraction of the system due to the virial contribution Ty of
the bias (eq 27), the update rate of all bins contributing
negatively to the total virial contribution was reduced by a
factor of k, = 0.25. The system RDF was computed at 10 time
step intervals and averaged after 1000 time steps to calculate
the difference between the target RDF and the instantaneous
system RDF for the gradient descent update. It was determined
that an equilibration period following the Lagrangian
parameter update was unnecessary, as the change in bias
potential was sufficiently small in each iteration. The
incorporation of the bias resulted in a reduction of the
simulation’s computational speed from 8.7 simulated nano-
seconds per day for the unbiased TiO, model to 6.9 simulated
nanoseconds per day. Therefore, this modification caused a
decrease of approximately 21% in the simulation’s computa-
tional speed.

Figures 6 and 7 show the results for the simulations biased
with the RDF of rutile and anatase, respectively. In both
figures, snapshots of the Ti atoms in the biased TiO, systems
are depicted in the upper part of the figures. The titanium
atoms are colored as a function of the averaged local bond
order parameter values. In Figure 6, blue atoms in the liquid
phase correspond to an averaged local bond order parameter
Qg calculated over the 12 nearest neighbors, with a value <
0.073, while red atoms in the rutile phase have a value >0.073
(see SI for more information). Similarly, in Figure 7, blue

https://doi.org/10.1021/acs.jctc.4c01621
J. Chem. Theory Comput. XXXX, XXX, XXX—XXX


https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.4c01621/suppl_file/ct4c01621_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c01621?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c01621?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c01621?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c01621?fig=fig6&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c01621?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

Liquid TiO; to Anatase
a) (b) g

ﬁ 0.35 - m— Target RDF
E 01 === RDF biased simulation
0.30 = == RDF unbiased simulation
. 1>
24
0.25 g
& 24
0.204 5
0.15 1 04 T T T T T T T T
0 1 2 3 4 5 6 7
0.10 - Radial Distance r / A
T T T

0 2 4 6 8

10 12 14 16 18 20

Time / ns

Figure 7. Crystallization of liquid TiO, to anatase at 2500 K and 1 atm. The mean absolute error (MAE) between the RDF of the biased TiO,
system and the target RDF of the simulated anatase is depicted. Several snapshots of the biased simulation, show the state of the titanium atoms in
the system from left to right at 0, 10.7, 10.9, 11.3, and 20 ns. The atoms in the liquid and anatase phases are colored blue and red, respectively. The
inset shows the RDF of the unbiased liquid simulation (blue) and the final state of the system (red) against the target RDF (black).

atoms correspond to Ti atoms in the liquid phase with an
averaged local bond order parameter of degree q,,, calculated
over the 12 nearest neighbors, with values < 0.085. Red atoms
with >0.085 belong to the anatase phase (see SI for more
information). Both figures show the MAE between the
respective target RDF and the instantaneous RDF in the
biased system. Additionally, the RDF of the liquid TiO, at the
beginning of the biased simulations (blue), the final RDF at
the end of the biased simulations after 2 ns for rutile and 20 ns
for anatase (red), and the respective target RDFs (black) are
shown in the inset.

Overall, the figures indicate that both biased simulations
proceeded in a similar manner. During the initial phase of the
biased simulation, the simulation box stretched in one
direction, but the overall density of the system increased.
The initial phase of the biased simulation was characterized by
a linear reduction of the MAE in both systems. After the initial
phase, a nucleation seed formed in the biased simulations after
approximately 1.3 ns for the rutile system and 10.7 ns for the
anatase system. From this point on, the system entered a phase
transition process and complete crystallization occurred from
the nucleation seed. The phase transition was characterized by
a steep decrease of the MAE. After about 1.5 and 12.0 ns,
respectively, the transition was complete and no further
significant changes in atomic configuration occurred. Except
for some visible defects, the systems crystallized completely.
The defects were responsible for the small deviations from the
final system RDF (red) and the target RDF (black) in the
inset. Overall, the target RDF and the instantaneous system
RDF exhibited strong agreement.

The comparative examples of rutile and anatase crystal-
lization demonstrate that the maximum relative entropy
formalism can be effectively applied to reproduce different
crystal configurations of polymorphs. In contrast to the phase
transitions of liquid water to hexagonal ice, as discussed in Sec.
3.2, both crystallized systems form a single crystal with only
minor defects, as evidenced by the snapshots (e) in Figures 6
and 7, respectively. To assess the thermal stability of the
intermediate and final structures of rutile, 16 structures were
extracted from the simulation trajectory at simulation times
ranging from 1.3 to 1.6 ns with a temporal distance of 0.02 ns.
These structures were utilized as initial configurations to
simulate the TiO, system as an NpT ensemble at 2500 K and 1
atm with an unbiased force field. The continuation of the
crystallization process from the crystallization seed was
dependent on the precise time of the biased simulation from
which the initial structure was acquired. For all initial
structures obtained from the biased simulation prior to the
1.42 ns time threshold, the crystallization seed underwent a
phase transition to a liquid state, resulting in the return of the
TiO, to its liquid phase. Conversely, every initial structure
obtained from the biased simulation at or later than 1.42 ns
underwent a complete transformation into the stable crystalline
rutile state, suggesting that these structures have surmounted
the free energy barrier. The derived point in time at which the
crystallization seed consequently formed a critical nucleus is
indicated in Figure 6 by the vertical dotted black line. These
results demonstrate the efficacy of utilizing biased simulation
trajectories to determine committor probabilities of atomic
structures and critical nucleus sizes. In this case, the
crystallization process was feasible with only minor changes
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in the simulation or algorithm parameters. More specifically, to
reproduce anatase instead of rutile, it was only necessary to
change the step size, ¥, and the target RDF.

4. CONCLUSIONS AND OUTLOOK

An algorithm was developed to bias MD simulations to
reproduce target radial distribution functions. This was done
based on the principle of maximum relative entropy. For this
purpose, the original atomic interaction potential was linearly
biased with a target RDF. The linear functional form of the
applied bias, as determined by the maximum entropy
approach, is advantageous because it constrains the reproduced
ensemble average solely by the information contained in the
target RDF.

The magnitude of the bias is determined by the values of the
Lagrangian multipliers, which are calculated during the
simulation using the gradient descent method. Since the g,
are not uncorrelated observables of the system, it cannot be
guaranteed that the optimization function has a global
minimum. However, this has not been found to affect the
systems studied. The algorithm allows individual atomic
contributions to the RDFs to be weighted by atomic scattering
factors. This allows the bias of MD simulations with RDFs
derived from WAXS techniques. The algorithm has been
implemented in LAMMPS and evaluated for two use cases.

In one use case, the RDF of a TIP4P/200S liquid water
system was reproduced in a TIP3P liquid water system. The
method proved to be effective in accurately reproducing the
RDF of the TIP4P/200S water system while improving the
agreement between the angular distribution of the oxygen
molecules in the bias and target systems. The application of
bias was found to result in a reduction of the diffusivity of the
water molecules. Based on these results, it can be concluded
that the approach represents a theoretically sound method-
ology for updating an interatomic potential using prior
knowledge of a system RDF to investigate structural properties
of the liquid. At the same time, studies investigating the
dynamical properties of an atomic system should be treated
with caution.

As a second application, the method was used to induce
homogeneous crystallization in liquid systems. To achieve this,
liquid water was biased to crystallize into hexagonal ice and
liquid TiO, was biased to crystallize into rutile or anatase. The
process of crystallization of liquid water gave rise to crystalline
structures of hexagonal ice. However, the crystallization
process itself did not produce a single ice crystal, but rather
multiple domains of crystals with varying crystal plane
directions. The absence of a single, thermally stable crystal
domain for temperatures below the melting point of ice,
resulted in the melting of the crystal structure once the bias
was alleviated from the system. The underlying reasons for the
formation of these crystal domains under the influence of the
bias will be the focus of future research. In contrast, the
crystallization of liquid TiO2 into rutile and anatase produced
stable single crystals. Furthermore, the simulation trajectory of
the rutile phase transition demonstrated that the observed
transition states are stable and could be used to investigate the
crystallization process, e.g., in the form of the calculation of
committor probabilities. During the execution of the biased
simulations with target RDFs derived from crystalline
structures, a temperature increase was observed in strongly
biased systems. This increase can be attributed to the sharp
peaks of the crystalline RDFs, which in turn lead to high

difference in values of the Lagrange parameters 4, of adjacent
bins. Consequently, strong forces are added to the simulated
system. For moderate temperature increases, no resulting
problems were found in the reproduction of the target RDF.
Additionally, the effect can be mitigated by increasing the
damping parameter of the used thermostat or by downscaling
the time steps to shorter lengths.

The method presented here has a variety of potential
applications. One such application could be the improvement
of liquid interaction potentials by biasing the potential with a
RDF, as demonstrated for the TIP3P water model. Another
application could be the study of liquid-to-solid phase
transitions. Through a sophisticated combination of biased
and unbiased simulations, it may be possible to prepare states
along a crystallization transition path and continue with
unbiased simulations from these states, or use the prepared
states as starting points for advanced sampling methods, such
as umbrella sampling.

In addition, the algorithm described here could assist in the
interpretation of experimentally obtained RDFs from WAXS
measurements of liquid or solid states. While the atomic states
considered in this work are well-known, this algorithm could
reveal other atomic configurations by combining measured
RDFs with MD simulations. This is particularly true for
metastable states, as the method presented here is able to
reproduce such metastable states, in contrast to other methods
such as simulated annealing. General purpose machine-learned
atomic interaction potentials, which can extrapolate energies of
stable atomic configurations to which they have not been
directly trained,’”®" in combination with the algorithm
presented here, offer the possibility to interpret WAXS
measurements of atomic structures that are still undiscovered.

In the future, the method may also be applied to more
complex systems, such as crystallization processes of confined
matter, where only the confined atoms would be distorted by
the measured RDFs.

The method can also be used to provide atomic
configurations for training machine learning potentials. For a
machine learning potential to interpolate effectively, a diverse
range of atomic configurations must be provided as under-
sampled regions of the configuration space, which can lead to
unsatisfactory generalization of the models. However, generat-
ing a sufficient number of atomic configuration samples,
especially in the transition regions of a crystallization process,
is a challenging task. In this way, our method could contribute
to the training of machine learning potential specialized for the
study of specific phase transitions.

In addition to the discussed applications, the presented
method offers many directions for further research. With
respect to the interpretation of WAXS data, it might be
interesting to develop a method that uses the principle of
maximum relative entropy to bias MD simulations with the
directly measurable structure factor function S(g). A bias
derived directly from the structure factor function S(g) would
avoid an initial Fourier transform of the measurement data,
which in turn would avoid additional noise. In general, the
application of the principle of maximum relative entropy can
be used in conjunction with any system observable derived
from the ensemble average. Therefore, the use of local bond
order parameters to bias MD systems would be of interest, as
these parameters are designed to discriminate between
different atomic configurations.
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