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The choice of vibrational coordinates is crucial for the accuracy, efficiency, and interpretability of molecular
vibrational dynamics and spectra calculations. We explore the recently proposed normalizing-flow vibrational
coordinates, which are learned molecule-specific coordinate transformations optimized for a given basis set.
Much like how spherical coordinates naturally simplify the hydrogen atom by embedding physical insight
into the coordinate system, normalizing-flow coordinates offload complexity from the basis functions into
the coordinate transformation itself. This shift not only improves basis-set convergence, but also enhances
interpretability of vibrational motions. We provide an analysis of the utility, interpretation and associated
constraints of normalizing-flow vibrational coordinates. Moreover, we demonstrate that these coordinates can
be generalized across different isotopologues, and even structurally related molecules, achieved with minimal
fine-tuning of selected output parameters.

I. INTRODUCTION

Theoretical and computational studies of molecular vi-
brations are central to theoretical chemistry, molecular
physics, and related scientific fields. Key areas of interest
include the calculation and fitting of accurate potential
energy surfaces (PESs)1–4, the development of effective
molecular Hamiltonians for efficient representations of
molecular spectra5–7, and the first-principles computa-
tion of accurate vibrational energies, wavefunctions, and
spectra5,7–9. The latter can be accomplished with per-
turbation theory methods, variational theory approaches
using finite-basis expansions, or pseudo-variational meth-
ods like discrete-variable representations. Central to all
these methods is the construction of an appropriate vi-
brational Hamiltonian, which relies on carefully chosen
coordinates and associated basis functions. The selection
of coordinates plays an important role in defining the
Hamiltonian operator, influencing the extent to which
vibrational motions are coupled10,11 and thus the overall
computational efficiency. Determining an optimal coordi-
nate system and compatible basis functions for describing
molecular vibrations often requires substantial expertise
and prior knowledge of the vibrational motions.

Rectilinear normal coordinates are effective for com-
puting low-energy states in semi-rigid molecules, where
the PES often can be relatively well approximated by a
low-order Taylor-series expansion around a single equi-
librium geometry. However, these coordinates become
inadequate in calculations of delocalized states, such as
those encountered in floppy molecules12,13, or high-energy
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states in semi-rigid molecules14,15, which sample larger
and more complex regions of the phase space.

Curvilinear coordinates like Radau16, Jacobi17,18, va-
lence19, ellipsoidal20, hyperspherical21, and polyspheri-
cal22–24 types are often better suited for vibrational cal-
culations in floppy molecules9,25. The optimal choice
depends on the specific nuclear motions involved and re-
quires an understanding of the morphology of the PES.
Because vibrational motions vary widely across differ-
ent molecular structures, no single coordinate system is
universally optimal. The general approach for selecting
effective coordinates is to capture the primary variations
in the PES along individual dimensions, which helps to
minimize coupling between different vibrational modes.
Chemical intuition suggests that valence coordinates are
most suitable for many molecules, as the localized elec-
tron density between adjacent atoms leads to significant
changes in the PES with variations in bond lengths.

A promising strategy is to use general parametrized
coordinates, with parameters optimized in variational
calculations of vibrational energies. Optimized linear
combinations of normal or valence coordinates have been
explored in several studies20,26–34. While this strategy has
demonstrated an improvement in basis-set convergence of
energy calculations, it has not gained widespread adop-
tion. The main reasons are likely that the improvements
achieved through optimized linear coordinate mappings
is often modest, due to their restrictive nature, and that
such mappings introduce additional complexity by the
loss of symmetry inherent in such coordinate systems35.

Once the vibrational coordinates have been selected,
the next step is to choose an appropriate basis set, guided
by the domain of each coordinate. For example, valence
coordinates have domains of [0,∞) for bond lengths, [0, π]
for angles, and [0, 2π] for dihedrals. A common approach
is to use a direct-product basis of univariate orthogo-
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nal polynomial-based functions (or linear combinations
thereof), primarily due to their close relation with Gaus-
sian quadratures13,36. This approach simplifies the evalua-
tion of integrals necessary for the calculation of the Hamil-
tonian matrix elements and facilitates transformations
between the finite-basis representations and their corre-
sponding discrete-variable representations. The specific
univariate functions are chosen based on the coordinate
domains, the shape of the PES along the coordinates, and
the degree of vibrational coupling in the Hamiltonian.

We recently introduced a new approach for nonlinear
parametrization of vibrational coordinates based on nor-
malizing flows37,38, implemented through an invertible
residual neural network39. In the machine learning litera-
ture, normalizing flows refer to a sequence of invertible
and differentiable transformations38,40. In our method,
the neural network parameters are optimized using the
variational principle to minimize the approximate energies.
Unlike traditional approaches - where the vibrational coor-
dinates are defined first and the basis functions are chosen
afterwards - our approach adapts the coordinate system
itself to maximize the performance of a chosen truncated
basis set, tailoring it to the specific molecule. In our pre-
vious work37, normalizing-flow coordinates were applied
to molecules such as H2S, H2CO and HCN/CNH. It was
demonstrated that the learned coordinates enhance the
separability of the Hamiltonian, enabling more reliable as-
signment of approximate quantum numbers. Furthermore,
we demonstrated the transferability of these coordinates
across different basis-set truncations. Normalizing-flow co-
ordinates have also been used in conjunction with Monte
Carlo integration to tackle larger molecular systems, such
as CH3CN and C2H4O

41, and to investigate anharmonic
effects in lithium solids at finite temperatures42.

In this work, we investigate interpretability and effec-
tiveness of normalizing-flow coordinates. Specifically, we
show that when optimized using the variational principle,
these coordinates shift the average density center (de-
fined as the trace of the position operator matrix divided
by the number of basis functions) to align with that of
the eigenbasis. This observation offers a practical and
physically meaningful way of interpreting how coordinate
transformations influence the representation of quantum
states. Additionally, we demonstrate that the nonlinear
mappings enabled by normalizing flows offer significant
advantages over linear transformations, particularly in
capturing anharmonic behavior across semi-finite and
finite domains.

We further investigate the transferability of normalizing-
flow vibrational coordinates. Coordinates trained for H2S
are found to generalize well to its deuterated isotopologues
(D2S and HDS) with only minor, physically motivated ad-
justments. Remarkably, the same coordinate system also
performs well for H2O, suggesting that the learned coordi-
nates capture structural motifs common to chemically re-
lated molecules. In all cases considered, normalizing-flow
coordinates outperform traditional curvilinear valence-
bond coordinates, as evidenced by faster convergence of

variationally computed vibrational energies.
These findings are significant for two main reasons.

First, they suggest that normalizing flows provide a prac-
tical means of transferring optimized coordinate systems
across chemically related systems, thereby improving com-
putational efficiency and initialization. Second, and more
broadly, our method offers a general computational frame-
work for identifying informative coordinate systems - those
that simplify vibrational complexity and improve spectral
convergence. While the notion of intrinsic coordinates
is often invoked in chemical intuition to describe a min-
imal set of variables underlying molecular motion, our
results suggest that coordinates optimized for computa-
tional efficiency may also reflect such intrinsic structures.
Importantly, the optimality of these coordinates is rela-
tive: it depends on both the chosen truncated basis and
the target vibrational states.

To build physical insight and isolate key effects, we focus
primarily on illustrative one-dimensional systems. These
simplified models serve as a clean testbed for understand-
ing the mechanisms and interpretability of variational
coordinate optimization using normalizing flows.

II. THEORY

In variational basis representations, the vibrational
Schrödinger equation,

ĤΨn =
(

T̂ + V̂
)

Ψn = EnΨn, (1)

is projected onto a finite set of orthonormal basis func-
tions. Here, Ĥ is the vibrational Hamiltonian operator,
T̂ is the kinetic energy operator and V̂ is the potential
energy operator. Ψn and En are the n-th eigenfunction
and eigenvalue, respectively. The vibrational eigenfunc-
tions, Ψn (n = 0 . . . N − 1), are approximated as linear

combinations of M basis functions {φ}M−1

m=0 , with M ≥ N ,
as

Ψn(r) ≈ Ψ̃n(r) =
∑

m<M

cnmφm(r), (2)

where r denotes the vibrational coordinates.
By introducing this linear expansion into the weak

formulation of the Schrödinger equation, one obtains a
matrix eigenvalue problem

HC = EC, (3)

where H = {〈φm|Ĥ|φ′

m〉}M−1

m,m′=0
is the Hamiltonian ma-

trix, C = {cmn}M−1, N−1

m=0, n=0 are the linear expansion coef-

ficients, and E = {En}N−1

n=0 are the approximated vibra-
tional energies. The accuracy of calculated energies can
be systematically improved by increasing the number of
basis functions M , ensuring variational convergence to
the true energies as lower bound. In practice, quadratures
or truncated Taylor-series expansions are often employed
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to evaluate the integrals required to construct the Hamil-
tonian matrix elements, which introduce additional errors
to the truncated basis representation and may result in a
violation of the variational principle.

An alternative approach to systematically improve cal-
culated energies is to enhance the approximation power of
the chosen basis functions. To achieve this, we start with a
truncated set of orthonormal basis functions {φm(q)}M−1

m=0

defined on a coordinate set q. The coordinate set q is re-
lated to an initial set of vibrational coordinates r through
a parametrized invertible mapping fθ, such that q = fθ(r).
Because the mapping is invertible, the reverse relation
also holds, r = f−1

θ (q). The augmented basis functions
are then defined as

γm(q; θ) = φm(q)
√
D, (4)

where D = |1/ det(∇qf
−1

θ (q))| = |det(∇rfθ(r))| is the
absolute value of the inverse of the determinant of the
Jacobian. The inclusion of the factor

√
D ensures that the

augmented basis functions remain orthonormal, regardless
of the values of the parameters θ. These basis functions
can also be evaluated in the vibrational coordinates r as
γm(fθ(r); θ).

In principle, the mapping fθ can be any differentiable
invertible function. However, for the augmented basis
set to remain complete, fθ must be bi-Lipschitz43. This
means that there exist constants k,K > 0 such that k ≤
1/| det(∇qf

−1

θ (q))| ≤ K for all q within the domain. We
represent fθ as a normalizing flow implemented through
an invertible residual neural network (iResNet)39, which
is bi-Lipschitz by construction.

Matrix elements of the vibrational kinetic and potential
energy operators can be expressed within the augmented
basis in (4), by applying the coordinate transformation
q = fθ(r). For the potential energy, this leads to the
expression:

Vmm′ =

∫

φ∗

m(fθ(r))
√
D V (r)φm′(fθ(r))

√
D dr (5)

=

∫

φ∗

m(q)V (f−1

θ (q))φm′(q) dq,

where the volume elements of integration are related by
dq = Ddr. This formulation shows how the change of co-
ordinates effectively modifies the operators within matrix
elements in the original basis set {φm}M−1

m=0 . Therefore,
optimizing fθ for enhancing the expressivity of basis func-
tions in (4) is equivalent to optimizing the coordinates
in which the Hamiltonian operator is expressed, for the
chosen fixed set of basis functions.

The corresponding expression for the kinetic energy

matrix elements after the coordinate transformation is

Tmm′ =

∫

φ∗

m(fθ(r))
√
D T̂ (r) φm′(fθ(r))

√
D dr (6)

=
h̄2

2

∑

kl

∫

[

(

1

2
√
D

∂D

∂qk
+
√
D

∂

∂qk

)

φ∗

m(q)

]

∑

λµ

∂qk
∂rλ

Gλµ(f
−1

θ (q))
∂ql
∂rµ

[

(

1

2
√
D

∂D

∂ql
+
√
D

∂

∂ql

)

φm′(q)

]

dq,

where Gλµ are the elements of the mass-weighted met-
ric tensor (Wilson G-matrix). In addition, the pseudo-
potential term,

U =
h̄2

32

∑

λ

∑

µ

Gλµ

g̃2
∂g̃

∂rλ

∂g̃

∂rµ
+ 4

∂

∂rλ

(

Gλµ

g̃

∂g̃

∂rµ

)

,

(7)

where g̃ = det
(

G−1
)

, also contributes to the exact kinetic
energy operator. The pseudo-potential arises from the
original coordinate transformation from Cartesian to the
initial coordinates r. As the pseudo-potential is a scalar
function of the vibrational coordinates, its associated
matrix elements can be evaluated analogously to the
potential energy operator in (5).

A. Invertible neural networks

To model the normalizing flow fθ, we used an iResNet
consisting of 10 blocks (five blocks for the one-dimensional
examples, vide infra). An iResNet is given by concatenat-
ing blocks of the form

xk+1 = xk + hk(xk; θ), (8)

where xk is the input to the block and hk(x; θ) is a
feed-forward neural network composed of weights, biases
and nonlinear activation functions. Each block was con-
structed as a dense neural network with two hidden layers
with unit sizes [8, 8], and an output layer with the number
of units equal to the number of coordinates. A block is
guaranteed to be invertible if it has a Lipschitz constant <
1. The inverse of each block was obtained by fixed-point
iterations.

To guarantee that the feed-forward networks hk for
k = 0, . . . ,K − 1 satisfy the aforementioned Lipschitz
condition, we used the LipSwish activation function

σ(x) :=
x

1.1

1

1 + exp(−x)
, (9)

which has a Lipschitz constant of ∼ 1. With this activa-
tion function, the block hk is guaranteed to be Lipschitz
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if each of its weight matrices, W, has a spectral norm
< 1. This is achieved by setting

W =

{

W if ‖W‖2 < c

UΣ̃VT if ‖W‖2 ≥ c,
(10)

where 0 < c < 1 is a hyperparameter, ‖W‖2 is the
spectral norm of the weight matrix W, U and V are the
left and right singular vectors of W, respectively, and Σ̃ is
a diagonal matrix containing the corresponding modified
singular values,

Σ̃ii =

{

Σii if Σii < c

c if Σii ≥ c.
(11)

In practice, we set the upper bound on c to be 0.9 for
numerical stability.

A hyperbolic tangent wrapper was applied to the output
of the inverse pass of the iResNet (input of the forward
pass), xK → tanh(xK), which maps all dimensions to a
domain of [−1, 1]. The final output of the inverse pass
was linearly scaled from the range [−1, 1] to match the
domain of the original vibrational coordinates:

f−1

θ (x) = a · f̃−1(x) + b. (12)

This ensures that f−1

θ (x) is contained within the original
coordinate domain for all possible values of the parameters
θ.

B. Loss function

To optimize the parameters θ of fθ, we take advantage
of the variational principle to define the loss function as

LM
θ =

∑

n<M

En → min
θ

. (13)

If the number of target states is equal to the number of
basis functions, M = N , this loss function can be effi-
ciently computed as LN

θ = Tr(H), eliminating the need to
calculate off-diagonal matrix elements of the Hamiltonian
matrix. Despite the added complexity, the computational
cost of calculating off-diagonal matrix elements and re-
peated Hamiltonian matrix diagonalization can be justi-
fied when the optimization focuses on a specific subset of
states of interest. In such cases, focusing on a smaller set
of eigenvalues and selectively improving their accuracy
can lead to a more efficient and targeted optimization
process.

The loss function was optimized using the Optax44

Adam optimizer with a learning rate of 0.001, β1 = 0.9,
β2 = 0.999, ǫ = 10−8, and ǭ = 0.0.

C. Details of multidimensional calculations

For the multidimensional calculations on H2S and H2O,
the reference vibrational coordinates were chosen as con-
ventional displacement-based valence coordinates, i. e.,

bond lengths and angles. Multidimensional basis func-
tions were expressed as direct products of Hermite basis
functions in all examples. The normalizing-flows archi-
tecture enables mapping of any input coordinate range,
defined by the domain of r (initial valence coordinates),
to any output coordinate range, defined by the domain
of q (optimized coordinates). Therefore, Hermite basis
functions are suitable for both the bond stretching coor-
dinates, (−∞,∞) → [0,∞), and the angular coordinates,
(−∞,∞) → [0, π].

The direct-product basis was truncated by including
only basis-product configurations (n1, n2, n3) that satisfy
the polyad condition 2n1+2n2+n3 ≤ Pmax, where n1, n2,
and n3 represent the Hermite basis function indices corre-
sponding to the two stretching and one bending valence
coordinate, respectively. Two direct-product quadrature
grids were used in an alternating fashion during training,
with 30/31 points along the stretching coordinates and
60/61 points along the bending coordinate. These grids
were chosen to minimize numerical integration error in the
Hamiltonian matrix elements, keeping the optimization
stable while maintaining computational efficiency. For
higher-dimensional systems, it may be necessary to use
sparse quadrature methods or Monte Carlo integration.

The PES used for H2S and its isotopologues was ob-
tained from Azzam et al.45, while the PES for H2O was
taken from Conway et al.46.

III. RESULTS & DISCUSSION

A. Solving the Morse oscillator with harmonic oscillator basis
functions

To better understand the morphology and effective-
ness of the normalizing-flows coordinate optimization, we
examine its application to a typical one-dimensional exam-
ple of molecular vibrations: the Morse oscillator47. The
Hamiltonian for the Morse oscillator is

HM (r) =
−h̄2

2µ

∂2

∂r2
+De

[

1− exp(−aM (r − re))
]2

,

(14)

where µ is the reduced mass of the oscillator, De is the
dissociation energy, aM is a second Morse parameter,
and r − re is the displacement coordinate relative to the
equilibrium bond distance, re. The nonlinear coordinate
transformation z = 1−exp(−aM (r−re)) maps the Morse
potential into a harmonic potential,

VM (r) = De

[

1− exp(−aM (r − re))
]2 → Ṽ (z) = Dez

2.

(15)

It may seem that the Hermite functions - eigenfunctions of
the quantum harmonic oscillator - could be used to exactly
solve the problem. However, this coordinate transforma-
tion also modifies the kinetic energy operator. Specifically,
the change in the volume element dr → dz results in the
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State Fixed linear Opt. linear Opt. flows Reference

0 1838.973 1839.060 1838.973 1838.973
1 5394.319 5395.019 5394.319 5394.319
2 8786.199 8792.357 8786.199 8786.199
3 12014.61 12049.57 12014.61 12014.61
4 15079.57 15179.36 15079.56 15079.56
5 17981.52 18155.42 17981.04 17981.04
6 20728.82 20982.55 20719.06 20719.06
7 23388.67 23732.85 23293.61 23293.61
8 26163.27 26416.76 25704.69 25704.69
9 29264.49 28966.13 27952.31 27952.31
10 32765.44 31315.58 30036.47 30036.46
11 36686.37 33429.37 31957.18 31957.14
12 40993.55 35297.63 33714.47 33714.36
13 45781.41 36900.91 35308.38 35308.11
14 51111.91 38389.79 36738.93 36738.40
15 56489.49 39614.34 38006.14 38005.22
16 63550.75 41484.32 39110.04 39108.57
17 76662.53 43077.35 40050.60 40048.46
18 99098.51 45237.53 40827.66 40824.88
19 134083.8 47989.70 41440.98 41437.83
20 187873.2 49875.60 41890.97 41887.32
21 273469.8 55280.78 42178.18 42173.35
22 425156.5 57058.45 42307.43 42295.90

Sum 1684363.7 716460.43 652331.80 652300.37

TABLE I. Calculated bound state energy levels (in cm−1) for
the Morse potential using a basis of 23 Hermite functions.
Results are provided for fixed linear, optimized linear, and
normalizing-flows coordinate transformations. The reference
energy levels were calculated analytically.

sponse to changes in physical parameters of the system
(µ, F , and re). However, the corresponding mapping strat-
egy for the normalizing-flow coordinates is not entirely
clear. To address this, in Section III E we investigate the
transferability of the optimized normalizing-flow coordi-
nates in isotopologues, i. e., molecules that share the same
structure but differ in nuclear masses.

B. Transformations on finite and semi-finite domains: The
need for nonlinear maps

As illustrated in the previous subsection, the optimal
coordinate ensures that the average density center of the
basis functions is closely aligned with the average density
center of the eigenfunctions. On infinite domains, this
transformation can be conveniently accomplished using
a simple linear transformation. However, on semi-finite
and finite coordinate domains, linear transformations may
produce unphysical results.

Consider a one-dimensional Schrödinger equation de-
fined on a domain [rmin, rmax], where at least one of the
limits is finite. This constrain commonly arises in radial
and angular coordinates. Let {φi}∞i=0

be a basis set that
is optimal for a given system on this domain, e. g., the
eigenfunctions of the system. Suppose we wish to reuse

this basis set for a different system defined on the same in-
terval [rmin, rmax], but with a shifted potential minimum
and a different potential width. In principle, it is possible
to account for such changes using a linear transformation
of the form L(r) = ar + b, as suggested in (17). This
transformation maps the original domain to a new do-
main, L : [rmin, rmax] → [qmin, qmax] = [L(rmin), L(rmax)].
Depending on the values of a and b, the transformed do-
main may extend beyond the original physical region, i.e.,
qmin < rmin and/or qmax > rmax, resulting in an unphysi-
cal domain. Even if the domain remains within bounds,
the transformation may alter the implicit (Dirichlet or
Neumann) boundary conditions of the basis functions,
compromising their validity.

Linear transformations on the infinite real line preserve
the domain and avoid the aformentioned challenges on
semi-finite or finite intervals. We exploit this property to
construct coordinate maps between two different problems
defined on the same (semi-)finite domain. We define a
map h : [rmin, rmax] → [rmin, rmax], r 7→ q = h(r) as a
composition of invertible transformations:

h = L−1

0 ◦ T−1 ◦ L ◦ T ◦ L0, (18)

where h = f ◦ g denotes function composition h(x) =
f(g(x)). The fixed linear transformation L0 maps the
initial domain [rmin, rmax] to the interval I, where I is the
domain of the nonlinear transformation T : I → (−∞,∞).
After these two operations, the problem has been mapped
into an infinite domain. Hence, any linear transformation
L preserves the domain. The inverse transformation, T−1

followed by L−1

0 , returns the coordinate to the original
physical domain [rmin, rmax]. This construction defines a
nonlinear map that contains an optimizable unconstrained
linear transformation L, while remaining constrained to
the physical domain. We use the construction in (18)
in Section III F as a fine-tuning mechanism for transfering
coordinates from H2S to H2O.

To illustrate the limitations of linear coordinate trans-
formations and the utility of the nonlinear transformation
h, we consider a one-dimensional example defined on a
finite interval. We construct two one-dimensional model
potentials by fixing the valence radial coordinates at their
equilibrium values and treating the valence angular coor-
dinate as the variable. The systems considered are H2S
and H2O, with the valence angular coordinate defined on
the domain [0, π]. We treat the angular coordinate for
H2S as the one optimized for a chosen basis set and aim to
reuse this basis and coordinate definition for H2O. Rather
than transforming the basis functions directly, which is
difficult to visualize due to their infinite extent, we in-
stead transform the coordinate in which the potential
is expressed. This approach is analogous to transform-
ing Hermite functions so that the second-order Taylor
series of the potential at the minimum maps to that of
the harmonic oscillator, as in (17). The two potentials
are illustrated in the top panel of FIG. 2, which reveals
differences in both equilibrium positions and potential
shapes.
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able much faster basis-set convergence compared with
both fixed linear and optimized linear transformations of
valence coordinates.

Although the optimized coordinates are tailored to a
specific molecule, basis-set truncation, and target set of
eigenstates, our results show that this specificity does
not preclude generalization. On the contrary, we find
that the same coordinates often remain effective across
different basis-set truncations, isotopologues, and even
across molecules with similar structural motifs.

This findings suggest that normalizing flows may un-
cover coordinate systems that reflect fundamental features
of molecular motion. While these coordinates are opti-
mized for spectral accuracy, their capacity to generalize
indicates a deeper connection to the intrinsic vibrational
coordinates long sought in theoretical chemistry. Thus,
variational coordinate optimization with normalizing flows
may serve not only as a practical computational tool, but
also as means of generating physically motivated repre-
sentations of vibrational motion.

Looking ahead, several promising directions emerge.
One is to develop a generalized, trainable coordinate map-
pings that embed molecular descriptors or parameters
directly into the model, thereby enabling automatic adap-
tation across different chemical systems. Another is to
extend the current framework to larger molecular systems.
At present, the use of dense Gaussian quadrature grids
imposes a practical limit on system size. To address this,
we are investigating Monte Carlo integration as an alter-
native. While it introduces greater integration errors, it
offers a viable path to higher-dimensional systems where
traditional quadratures become unfeasible.

Finally, our current architecture does not yet incorpo-
rate molecular symmetry, which is known to improve effi-
ciency in conventional vibrational treatments49. Enforsing
symmetry in the coordinate transformation and basis func-
tion could provide similar benefits for normalizing-flow
coordinates. However, imposing symmetry constraints
may reduce the flexibility of the neural network, present-
ing a tradeoff between generalization and effectiveness.
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