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ABSTRACT
Molecular profiling of different omic-modalities (e.g., DNA methylomics, transcriptomics, proteomics) in biological systems
represents the basis for research and clinical decision-making. Measurement-specific biases, so-called batch effects, often hinder
the integration of independently acquired datasets, and missing values further hamper the applicability of typical data processing
algorithms. In addition to careful experimental design, well-defined standards in data acquisition and data exchange, the
alleviation of these phenomena particularly requires a dedicated data integration and preprocessing pipeline. This review aims
to give a comprehensive overview of computational methods for data integration and missing value imputation for omic data
analyses.
We provide formal definitions for missing value mechanisms and propose a novel statistical taxonomy for batch effects, especially
in the presence of missing data. Based on an automated document search and systematic literature review, we describe 32
distinct data integration methods from five main methodological categories, as well as 37 algorithms for missing value imputation
from five separate categories. Additionally, this review highlights multiple quantitative evaluation methods to aid researchers in
selecting a suitable set of methods for their work. Finally, this work provides an integrated discussion of the relevance of batch
effects and missing values in omics with corresponding method recommendations. We then propose a comprehensive three-step
workflow from the study conception to final data analysis and deduce perspectives for future research. Eventually, we present
a comprehensive flow chart as well as exemplary decision trees to aid practitioners in the selection of specific approaches for
imputation and data integration in their studies.

1 Introduction

Omic data provides a detailed characterization of a specific and
high-dimensional molecular target landscape (e.g., metabolome,

proteome, or transcriptome) in a biological system and can
be obtained using various measurement techniques (e.g., mass
spectrometry, microarrays, or next-generation sequencing). Such
omic layers can be considered both independently as well as
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FIGURE 1 (A) Concept sketch for data integration. (B) The total datamatrix is partitioned into observed andmissing subsets. Data incompleteness
is additionally amplified by data integration. (C) The novel statistical terminology for batch effects in the presence of missing values introduced in this
work. ABE, afflicted with batch effects; FBE, free of batch effects; CFBE, completely free of batch effects.

jointly (multi-omic) and frequent applications include charac-
terization, classification, and trait prediction of a considered
biological system or condition. Normally, it is assumed that omic
data represent the “totality” of the analyzed system (limited by
technical possibilities). Due to the high dimensionality, omic data
are exclusively processed using computational methods, which
are, for example, designed to perform subtype discovery, to find
biomarkers/therapeutic targets, to predict survival/risk of disease
progression, or even to perform clinical diagnostics.Whilst a large
number of well-established methods for such (and other) tasks
exists, their applicability for most omic types is often hampered
by the prevalence of missing values and nonbiological variation
in the data.

In particular, researchers typically pool their considered data
from multiple measurements/data sources, since technical limi-
tations, financial shortcomings, and sample availability often lead
to small cohort sizes and hence limit the statistical strength of
the individual cohorts. Often, each of the considered datasets is
afflicted with specific biases (batch effects), that limit their direct
comparability and thus also the direct applicability ofmost down-
stream data analysis/data processing algorithms. Therefore, data
integrationmethods are necessary that apply (often omic-specific)
statistical models to remove these batch effects and construct

an integrated dataset for downstream data analysis, compare
Figure 1,panel A. Note that while the term data integration is
commonly used to describe (1) integration of data from different
omic types (multi-omics) and (2) integration of multiple datasets
of the same omic-type, the algorithms for these two fields of
application differ greatly. In particular, this work focuses on the
integration of multiple cohorts from the same omic-type and the
reader is referred to the reviews in [1–3] for an overview of multi-
omic data integration and to [4] for an integrated consideration of
multi-omics with missing values.

In addition to batch effects, omicmeasurements are often afflicted
with missing values, which can for instance occur due to
biological, technical, or software-analytical shortcomings during
data quantification. Most data-analysis methods either compute
surrogate values for the unquantified data (imputation) or apply
heuristic approaches for data analysis, for example, listwise
deletion, the latter of which is only applicable in case of minimal
data incompleteness. Note that the number of missing values
may increase additionally when performing data integration,
compare Figure 1,panel B. Another important challenge is to
specifically account for the type of missing values (cf. Section
1.1), since individual missing values may need to be accounted for
differently than dataset-specific missing values.
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Although a number of surveys on both data integration [5–7] as
well as on the consideration of missing values in omics [8, 9]
have been published, these works limit their considerations
to one or the other, often focus on a specific omic type and
rarely include a dedicated discussion of statistical definitions
or suitable evaluation metrics. Moreover, there is a lack of
recommendations for computational workflows and methods
that holistically address both challenges, as well as a lack of an
integrated perspective for future research. To this end, this review
contributes to the corpus of existing literature by

∙ Introducing a novel statistical terminology for batch effects,
specifically in the presence of missing data,

∙ providing a comprehensive and integrated overview of com-
putational methods for data integration and missing values
in omics (i.e., discussing both challenges without limita-
tion to a specific omic type) and establishing corresponding
taxonomies based on the respective statistical approaches,

∙ recommending dedicated algorithms for specific use cases
and proposing a best-practiceworkflow covering study design,
data integration, and data imputation, as well as analysis of
omic data in the presence of missing values,

∙ eliciting the limitations of existing methods and outlining
potential directions of future research.

The following Section 1.1 formally defines missing values, batch
effects, and the respective terminology used throughout this
work. Subsequently, Section 2 describes the literature selection
process for this study. Then, two sections consecutively describe
Missing Values and Imputation Methods (Section 3) and Data
Integration Methods (Section 4), followed by the introduction
of the corresponding Section 5. The final Section 6 introduces
a three-step workflow from study conceptualization to data
analysis, recommends specific algorithms as starting points for
further evaluations per omic type and provides an outlook on
future research directions.

1.1 Definitions and Systematics

This work defines missing values as any missing data value for a
variable of an observation, that is, independent of the respective
cause of missingness (e.g., biological or technical reasons). Let
now the complete data matrix 𝑌 be partitioned into disjoint sets
of observed and unobserved (missing) data

𝑌 ≡ 𝑌obs ∪ 𝑌miss with 𝑌obs ∩ 𝑌miss = ∅.

Following common practice, missing values can be categorized
as missing completely at random (MCAR), missing at random
(MAR), and missing not at random (MNAR) as defined by Little
and Rubin [10].

That is, given the conditional distribution 𝑓(𝑀 |𝑌, 𝜙) of the
missing data pattern𝑀 on𝑌 and unknown parameters𝜙, missing
data are classified as

MCAR if 𝑓 does not depend on any missing or observed data,
that is,𝑓(𝑀|𝑌, 𝜙) = 𝑓(𝑀|𝜙)∀𝑌, 𝜙 (e.g., missing values in
data-independent acquisition mass-spectrometry)

MAR if 𝑓 depends only on the observed data 𝑌𝑜𝑏𝑠, that
is, 𝑓(𝑀|𝑌, 𝜙) = 𝑓(𝑀|𝑌obs, 𝜙)∀𝑌miss, 𝜙 (e.g., missing Y-
chromosome information for a female patient)

MNAR if the missing data mechanism depends on the orig-
inal, numeric values of the missing data, that is,
𝑓(𝑀|𝑌, 𝜙) = 𝑓(𝑀|𝑌miss, 𝜙)∀𝑌obs, 𝜙 (e.g., missing values
in data-dependent acquisition of a mass-spectrometer).

Note that the missing value pattern 𝑀 is distinct from the
unobserved numerical values 𝑌𝑚𝑖𝑠𝑠. In general, omic-types that
are largely affected by a limit of detection (i.e., mass spectrometric
proteome data, metabolite data) comprise a complex mixture of
MAR, MCAR, MNAR missing values [11]. In sequencing data
(esp. scRNAseq-data) researchers typically differentiate between
biological and technical zeroes. The former are introduced due
to the low expression of the transcript and can be regarded as
MNAR-type missing values, whereas the latter can arise either
due to a low sequencing depth or inefficient amplification/cDNA
generation and are thus regarded as MCAR-type missing values
[12–14]. As elaborated later in this manuscript, careful considera-
tion of the missing value type must be taken when selecting, for
example, an imputation method.

In practice, data are comprised by one or multiple cohorts
(batches), that each represent one data acquisition event. Every
batch represents a collection of observations (samples), each
of which represents a (potentially unknown) combination of
biological and experimental (e.g., treatment) conditions. When
incorporated into a statisticalmodel, these conditions are referred
to as covariates. Note thatmultiple samplesmay be taken from the
same individual (even across batches).

Measurement-specific variations between the batches are
referred to as batch effects. Throughout this work, we define data
integration as the process of reducing these batch effects from
a given set of batches (batch-effect correction) with the aim to
combine these into one integrated dataset with a larger number of
cases (i.e., with higher statistical power in downstream analyses).
Note that albeit many publications provide statistical models for
batch effects, these have—to the best of our knowledge—not
yet been defined formally, especially not under consideration of
missing values. We thus propose to transfer the above definition
of missing value patterns to batch effects. In particular, we
assume that the complete data matrix 𝑌 can be expressed as a
function of batch 𝐵, the covariates𝐶 and unknown parameters𝜔,
where the latter also include all further biological and technical
variation. Let then 𝑔(𝑌𝑜𝑏𝑠|𝐵, 𝐶, 𝜔) and ℎ(𝑀|𝐵, 𝐶, 𝜔) represent the
conditional distribution of the observed data𝑌𝑜𝑏𝑠 and themissing
data pattern 𝑀 on these parameters (i.e., implicitly accounting
for the data matrix 𝑌). Note that we restrict the considerations of
𝑔, ℎ to𝑌𝑜𝑏𝑠 and𝑀—while this does not imply an independence of
the true (but unobserved) values 𝑌𝑚𝑖𝑠𝑠 with respect to 𝐵, 𝐶, 𝜔, we
argue that only𝑌𝑜𝑏𝑠,𝑀 are observable and hencemost relevant to
a practitioner. We now propose to classify data as completely free
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of batch effects (CFBE), free of batch effects (FBE), and afflicted
with batch effects (ABE) based on the following definition:

CFBE if 𝑔 and ℎ do not depend on 𝐵, that is, 𝑔(𝑌obs|𝐵, 𝐶, 𝜔) =
𝑔(𝑌obs|𝐶,𝜔) ∧ ℎ(𝑀|𝐵, 𝐶, 𝜔) = ℎ(𝑀|𝐶,𝜔)∀𝐶, 𝜔 (e.g., array
data where missing intensities represent true zeroes)

FBE if only 𝑔 is independent of 𝐵, that is, 𝑔(𝑌𝑜𝑏𝑠|𝐵, 𝐶, 𝜔) =
𝑔(𝑌obs|𝐶,𝜔)∀𝑌obs, 𝐶, 𝜔 ∧ ∃B,𝑀, 𝐶, 𝜔 ∶ ℎ(𝑀|𝐵, 𝐶, 𝜔) ≠

ℎ(𝑀|𝐶,𝜔) (e.g., integrated dataset from multiplexed mass
spectrometry with tandem mass tags, in which variables
are most typically either quantified or missing for all
samples)

ABE otherwise.

CFBE, FBE, and ABE are exemplarily visualized in
Figure 1,panel C. Note that the terms free of batch effects
and batch-effect correction primarily refer to the theoretical
concepts—in practice, batch effects are typically only reduced by
batch-effect correction algorithms.

2 Methods

Eligible documents for this reviewwere selected using the Scopus
advanced search tool from Elsevier. In particular, document
titles were searched for a combination of any of the (target)
keywords imputation, data integration, data harmonization/data
harmonization, and batch effectswith at least one of the (context)
keywords omic, RNA seq/sequencing,mass spectrometry,microar-
ray, gene expression. Furthermore, document titles and abstracts
were required to contain any of the keywords framework, algo-
rithm, ormethod andnone ofmulti-omic/multi-omics. In total, the
respective query returned 381 peer-reviewed articles and review
papers written in English until May 3, 2024 (cf. Figure 2). These
documents underwent critical abstract screening, which yielded
262 documents that presented novel computational methods,
reported improvements/metrics/recommendations, or reviewed
the respective research field themselves, while not focusing on
a specific disease/dataset/biological condition or on manual or
multi-omic data integration. Following full-text screening by
scope, relevance, and methodological heterogeneity, a total of 69
computational methods from the disciplines of data integration
and data imputation were considered for this review. Algorithmic
content validation of the 262 abstract-screened documents was
performed using text clustering, revealing four broad article clus-
terswith content types represented by the selected 69methods (cf.
Supporting Information).

3 Missing Values and Imputation Methods

Missing values have been reported for all contemporary
omic types, including proteomics [15] and metabolomics [11],
microarray-based technologies [16], and even single-cell RNA
sequencing [17]. Furthermore, data integration often increases
the absolute number of missing values, since some variables
(e.g., gene transcripts) may be missing entirely for some of the
integrated datasets. This incompleteness causes a challenge
for many subsequent data analysis tasks and missing-value
tolerant methods are scarce. Therefore, to not exclude these
variables (e.g., through listwise deletion), researchers often

FIGURE 2 Overview over the employed methodology for literature
selection and identification of document clusters. Initial document search
was performed using Scopus Advanced Search (top), followed by manual
abstract screening (center) which resulted in 262 documents for full-text
screening. Finally, 37 data imputation methods and 32 data integration
algorithmswere incorporated into this review (bottom left). Unsupervised
clustering of the 262 screened articles revealed four groups of considered
manuscripts.
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FIGURE 3 Overview over the data imputation methods discussed in this review.

utilize imputation methods, which aim to estimate the “true”
values of the missing data points. With the increasing use of
single-cell techniques (including e.g., single-cell proteomics
[18]) and high-throughput technologies, this approach will
gain increasing relevance and this section hence provides a
comprehensive overview of representative imputation methods.

Generally, imputation methods can be distinguished into
single imputation (i.e., providing a single estimate for the
missing data point) and multiple imputation, which aims to
provide multiple potential estimates. This review focuses on
single imputation, since it has been demonstrated to often
provide imputation results with similar quality [19], whereas
multiple imputation methods (e.g., MICE [20, 21]) may, for
example exhibit model instability or weak convergence for high-
dimensional data [22] such as encountered in omics analyses.
Moreover, obtaining multiple imputation estimates poses an
additional hindrance to intuitiveness and interpretability,
for example, in scatter plots as commonly used in practice.
The systematic literature review procedure described in
Section 2 revealed five major methodological approaches
for imputation: Neighbor- and regression-based approaches,
matrix decomposition/factorization techniques, neural network
methods, approaches based on external knowledge and
statistical/miscellaneous procedures. This section briefly presents
37 exemplary methods from all five categories. These methods
and their respective categorization are visualized in Figure 3 and
Table 1 additionally presents a comprehensive summary of their
software availability as well as suitable omic-types.

3.1 Neighbor- and Regression-based Approaches

Neighbor- and regression-based approaches represent a very ver-
satile group of imputation methods that offer a particularly large
range of applicable omic types. They typically quantify similarity
between individual observations (e.g., cells) and variables (e.g.,
genes) and estimate the missing data points from other data in
close proximity. Note that these imputation methods directly
utilize other data points for inference, whichmay yield artificially
increased correlation values, that need to be considered when
choosing any downstream data analysis method.

LLSImpute
(and
variations
e.g.,
ILLSimpute/
RLLSimpute/
WLLSI/LAW-
LSImpute)

With local least-squares (LLS) based imputa-
tion, Kim et al. proposed a highly influen-
tial imputation method for microarray gene
expression data that uses a two-step procedure
[23]. To impute a data point for a given
target gene, it first selects neighboring genes
based on Pearson correlation coefficients and
then fits a least-squares regression model to
these genes in order to estimate the miss-
ing values. Researchers have proposed several
variations of the original method, among
which ILLSimpute (iterated LLS imputation)
iteratively refines missing value estimates
using suitable candidate genes from within
a distance threshold [24]. Authors further
proposed L1/L2 regularized LLS regression
(RLLSimpute_L1/L2) to account for highly
correlated genes and overfitting [25]. Further
notable variations include WLLSI (weighted
LLS imputation) and LAW-LSImpute (locally
auto-weighted LLS imputation) [26, 27]. Note
that LLSImpute has been shown to be less
suitable for data with high ratios of MNAR
data and more suited for data with higher
ratios of MCAR or MAR data [28].

KNNImpute
(and
variations,
e.g.,
SKNNImpute,
IKNNImpute)

A similarly influential model for microar-
ray data imputation, KNNImpute (K-nearest
neighbor imputation), was introduced by
Troyanskaya et al., who first selected neigh-
boring genes based on a distance metric (e.g.,
Euclidean distances) and estimated missing
values based on distance-weighted averages
of these genes [29]. Amongst other varia-
tions of KNNImpute, SKNNImpute sequen-
tially imputes each gene, starting from the
most complete one [30]. Later, IKNNImpute
was proposed, which iteratively refines the
missing value estimates [31]. KNN meth-
ods, like KNNImpute, have been shown to
be most effective for MCAR missing values
[32].

5 of 25

 16159861, 2025, 1-2, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/pm

ic.202400100, W
iley O

nline L
ibrary on [06/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



TA
B
LE

1
C
om

pr
eh
en
si
ve
su
m
m
ar
y
of
co
ns
id
er
ed

im
pu
ta
tio
n
m
et
ho
ds
.

N
am

e
A
cc
es
s

D
ir
ec
tl
in
k

D
ev
el
op
ed

fo
r
da
ta
ty
pe

N
ei
gh
bo
r-
an
d
re
gr
es
si
on
-b
as
ed

ap
pr
oa
ch
es

LL
SI
m
pu
te

F/
P

ht
tp
s:/
/w
w
w
.b
io
co
nd
uc
to
r.o
rg
/p
ac
ka
ge
s/
re
le
as
e/
bi
oc
/h
tm
l/
pc
aM

et
ho
ds
.h
tm
l

M
ic
ro
ar
ra
y
ge
ne

ex
pr
es
si
on

K
N
N
Im
pu
te

F/
P

ht
tp
s:/
/s
ci
ki
t-l
ea
rn
.o
rg
/s
ta
bl
e/
in
de
x.
ht
m
l

M
ic
ro
ar
ra
y
ge
ne

ex
pr
es
si
on

SC
-K
N
N

F/
P

ht
tp
s:/
/s
ci
ki
t-l
ea
rn
.o
rg
/s
ta
bl
e/
in
de
x.
ht
m
l

M
ic
ro
ar
ra
y
ge
ne

ex
pr
es
si
on

K
N
N
-T
N

C
/R

ht
tp
s:/
/d
oi
.o
rg
/1
0.
11
86
/s
12
85
9-
01
7-
15
47
-6

M
et
ab
ol
om

e
M
et
hy
LI
m
p/
M
et
hy
LI
m
p2

L/
R

ht
tp
s:/
/w
w
w
.b
io
co
nd
uc
to
r.o
rg
/p
ac
ka
ge
s/
re
le
as
e/
bi
oc
/h
tm
l/
m
et
hy
LI
m
p2
.h
tm
l

D
N
A
m
et
hy
la
tio
n

V
IP
ER

L/
R

ht
tp
s:/
/g
ith
ub
.c
om

/C
he
nM

en
gj
ie
/V
IP
ER

Si
ng
le
ce
ll
RN

A
se
q

2D
im
pu
te

L/
R

ht
tp
s:/
/g
ith
ub
.c
om

/z
ky
07
08
/2
D
Im
pu
te
C
FN

I
Si
ng
le
ce
ll
RN

A
se
q

C
FN

I
—

ht
tp
s:/
/d
oi
.o
rg
/1
0.
15
04
/I
JD
M
B.
20
16
.0
76
53
5

D
N
A
m
ic
ro
ar
ra
y

G
L2
P

—
ht
tp
s:/
/d
oi
.o
rg
/1
0.
10
16
/j.
co
m
pb
io
m
ed
.2
01
6.
08
.0
05

M
ic
ro
ar
ra
y
da
ta

M
at
ri
x
D
ec
om

po
si
ti
on
/F
ac
to
ri
za
ti
on

A
pp
ro
ac
he
s

SV
D
Im
pu
te

F/
R

ht
tp
s:/
/w
w
w
.b
io
co
nd
uc
to
r.o
rg
/p
ac
ka
ge
s/
re
le
as
e/
bi
oc
/h
tm
l/
pc
aM

et
ho
ds
.h
tm
l

M
ic
ro
ar
ra
y
ge
ne

ex
pr
es
si
on

BP
C
A

F/
R

ht
tp
s:/
/w
w
w
.b
io
co
nd
uc
to
r.o
rg
/p
ac
ka
ge
s/
re
le
as
e/
bi
oc
/h
tm
l/
pc
aM

et
ho
ds
.h
tm
l

M
ic
ro
ar
ra
y
ge
ne

ex
pr
es
si
on

Bi
-B
PC

A
F/
M

ht
tp
s:/
/g
ith
ub
.c
om

/f
an
ch
i/
bi
-B
PC

A
M
ic
ro
ar
ra
y
ge
ne

ex
pr
es
si
on

C
M
F-
Im
pu
te

L/
M

ht
tp
s:/
/g
ith
ub
.c
om

/x
uj
un
lin
12
3/
C
M
FI
m
pu
te

Si
ng
le
ce
ll
RN

A
se
q

A
LR

A
L/
R

ht
tp
s:/
/g
ith
ub
.c
om

/K
lu
ge
rL
ab
/A
LR

A
Si
ng
le
ce
ll
RN

A
se
q

N
eu
ra
lN

et
w
or
k
B
as
ed

A
pp
ro
ac
he
s

A
ut
oI
m
pu
te

L/
P

ht
tp
s:/
/p
yp
i.o
rg
/p
ro
je
ct
/a
ut
oi
m
pu
te
/

Si
ng
le
ce
ll
RN

A
se
q

VA
E

L/
P

ht
tp
s:/
/g
ith
ub
.c
om

/g
ev
ae
rt
la
b/
Be
ta
VA

EI
m
pu
ta
tio
n

Tr
an
sc
rip
to
m
e
an
d
m
et
hy
lo
m
e

IG
SI
m
pu
te

L/
P

ht
tp
s:/
/g
ith
ub
.c
om

/e
ric
co
m
bi
ol
ab
/I
G
Si
m
pu
te

Si
ng
le
ce
ll
RN

A
se
q

A
D
EP
T

L/
P

ht
tp
s:/
/g
ith
ub
.c
om

/m
ai
zi
ez
ho
ul
ab
/A
D
EP
T

Sp
at
ia
lt
ra
ns
cr
ip
to
m
e

cn
nI
m
pu
te

—
ht
tp
s:/
/d
oi
.o
rg
/1
0.
10
38
/s
41
59
8-
02
4-
53
99
8-
x

Si
ng
le
ce
ll
RN

A
se
q

G
E-
Im
pu
te

L/
P

ht
tp
s:/
/g
ith
ub
.c
om

/w
xb
C
at
er
pi
lla
r/
G
E-
Im
pu
te

Si
ng
le
ce
ll
RN

A
se
q

sc
N
TI
m
pu
te

L/
P

ht
tp
s:/
/g
ith
ub
.c
om

/q
iy
ue
ya
ng
-7
/s
cN
TI
m
pu
te
.g
it

Si
ng
le
ce
ll
RN

A
se
q

C
L-
Im
pu
te

L/
P

ht
tp
s:/
/g
ith
ub
.c
om

/y
uc
he
n2
1-
w
eb
/I
m
pu
ta
tio
n-
fo
r-
sc
RN

A
-s
eq

Si
ng
le
ce
ll
RN

A
se
q

(C
on
tin
ue
s)

6 of 25 Proteomics, 2025

 16159861, 2025, 1-2, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/pm

ic.202400100, W
iley O

nline L
ibrary on [06/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.bioconductor.org/packages/release/bioc/html/pcaMethods.html
https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html
https://doi.org/10.1186/s12859-017-1547-6
https://www.bioconductor.org/packages/release/bioc/html/methyLImp2.html
https://github.com/ChenMengjie/VIPER
https://github.com/zky0708/2DImputeCFNI
https://doi.org/10.1504/IJDMB.2016.076535
https://doi.org/10.1016/j.compbiomed.2016.08.005
https://www.bioconductor.org/packages/release/bioc/html/pcaMethods.html
https://www.bioconductor.org/packages/release/bioc/html/pcaMethods.html
https://github.com/fanchi/bi-BPCA
https://github.com/xujunlin123/CMFImpute
https://github.com/KlugerLab/ALRA
https://pypi.org/project/autoimpute/
https://github.com/gevaertlab/BetaVAEImputation
https://github.com/ericcombiolab/IGSimpute
https://github.com/maiziezhoulab/ADEPT
https://doi.org/10.1038/s41598-024-53998-x
https://github.com/wxbCaterpillar/GE-Impute
https://github.com/qiyueyang-7/scNTImpute.git
https://github.com/yuchen21-web/Imputation-for-scRNA-seq


TA
B
LE

1
(C
on
tin
ue
d)

N
am

e
A
cc
es
s

D
ir
ec
tl
in
k

D
ev
el
op
ed

fo
r
da
ta
ty
pe

A
pp
ro
ac
he
s
B
as
ed

on
Ex
te
rn
al
K
no
w
le
dg
e

G
O
-B
as
ed

Im
p.

(-)
ht
tp
s:/
/d
oi
.o
rg
/1
0.
10
93
/b
io
in
fo
rm

at
ic
s/
bt
k0
19

M
ic
ro
ar
ra
y
ge
ne

ex
pr
es
si
on

Bu
bb
le

L/
R+

P
ht
tp
s:/
/g
ith
ub
.c
om

/C
SU

Bi
oG

ro
up
/B
ub
bl
e

Si
ng
le
ce
ll
RN

A
se
q

SC
EN

A
—

ht
tp
s:/
/d
oi
.o
rg
/1
0.
10
89
/c
m
b.
20
21
.0
40
3

Si
ng
le
ce
ll
RN

A
se
q

de
ep
M
C

—
ht
tp
s:/
/d
oi
.o
rg
/1
0.
10
89
/c
m
b.
20
19
.0
27
8

Si
ng
le
ce
ll
RN

A
se
q

D
U
RI
A
N

—
ht
tp
s:/
/d
oi
.o
rg
/1
0.
10
93
/b
ib
/b
ba
c2
23

Si
ng
le
ce
ll
RN

A
se
q

SC
RA

BB
LE

L/
R+

M
ht
tp
s:/
/g
ith
ub
.c
om

/t
an
la
bc
od
e/
SC
RA

BB
LE

Si
ng
le
ce
ll
RN

A
se
q

(T
RA

N
S)
LA

TE
L/
P

ht
tp
s:/
/g
ith
ub
.c
om

/a
ud
re
yq
yf
u/
LA

TE
Si
ng
le
ce
ll
RN

A
se
q

St
at
is
ti
ca
la
nd

M
is
ce
lla
ne
ou
s
A
pp
ro
ac
he
s

Ba
ye
sI
m
pu
te

—
ht
tp
s:/
/d
oi
.o
rg
/1
0.
10
16
/j.
ym

et
h.
20
23
.0
6.
00
4

Si
ng
le
ce
ll
RN

A
se
q

sc
Im
pu
te

L/
R

ht
tp
s:/
/g
ith
ub
.c
om

/V
iv
ia
ns
ta
ts
/s
cI
m
pu
te

Si
ng
le
ce
ll
RN

A
se
q

m
is
sF
or
es
t

L/
R

ht
tp
s:/
/g
ith
ub
.c
om

/s
te
kh
ov
en
/m

is
sF
or
es
t

A
ny

ty
pe

of
in
pu
t

Ba
ye
sM

et
ab

(-)
ht
tp
s:/
/d
oi
.o
rg
/1
0.
11
86
/s
12
85
9-
01
9-
32
50
-2

M
et
ab
ol
om

e
ba
yN

or
m

L/
R

ht
tp
s:/
/b
io
co
nd
uc
to
r.o
rg
/p
ac
ka
ge
s/
re
le
as
e/
bi
oc
/h
tm
l/
ba
yN

or
m
.h
tm
l

Si
ng
le
ce
ll
RN

A
se
q

C
ID
R

L/
R

ht
tp
s:/
/g
ith
ub
.c
om

/V
CC

RI
/C
ID
R

Si
ng
le
ce
ll
RN

A
se
q

G
2S
3

L/
R,

F/
M

ht
tp
s:/
/g
ith
ub
.c
om

/Z
W
an
g-
La
b/
G
2S
3

Si
ng
le
ce
ll
RN

A
se
q

D
rI
m
pu
te

L/
R

ht
tp
s:/
/g
ith
ub
.c
om

/g
on
gx
03
0/
D
rI
m
pu
te

Si
ng
le
ce
ll
RN

A
se
q

N
ot
e:
A
cc
es
si
ss
pe
ci
fie
d
to
th
e
be
st
of
ou
rk
no
w
le
dg
e
as
fu
nc
tio
n
(F
),
so
ur
ce
co
de

(C
),
or
lib
ra
ry
(L
),
fo
llo
w
ed

by
th
e
la
ng
ua
ge
be
in
g
Py
th
on

(P
),
M
at
la
b
(M

),
or
(R
).

7 of 25

 16159861, 2025, 1-2, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/pm

ic.202400100, W
iley O

nline L
ibrary on [06/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1093/bioinformatics/btk019
https://github.com/CSUBioGroup/Bubble
https://doi.org/10.1089/cmb.2021.0403
https://doi.org/10.1089/cmb.2019.0278
https://doi.org/10.1093/bib/bbac223
https://github.com/tanlabcode/SCRABBLE
https://github.com/audreyqyfu/LATE
https://doi.org/10.1016/j.ymeth.2023.06.004
https://github.com/Vivianstats/scImpute
https://github.com/stekhoven/missForest
https://doi.org/10.1186/s12859-019-3250-2
https://bioconductor.org/packages/release/bioc/html/bayNorm.html
https://github.com/VCCRI/CIDR
https://github.com/ZWang-Lab/G2S3
https://github.com/gongx030/DrImpute


SC-KNN Dubey et al. introduced a particularly
noteworthy variation of distance-weighted
nearest-neighbor imputation of microarray
data, which selects suitable neighboring
genes based on a combination of K-Means
and spectral clustering [33]. Note that such
KNN-based methods, especially KNNImpute,
have been shown to be most effective for
MCAR missing values [32].

KNN-TN Focusing on metabolomic data, Shah et al.
proposed to account for the detection limit
when standardizing data prior to KNN impu-
tation [33]. Note that such KNN-based meth-
ods, especially KNNImpute, have been shown
to be most effective for MCAR missing values
[32].

MethyLImp/
MethyLImp2

The authors of methyLImp proposed a
limited-range linear regression model
specifically for DNA methylation data
[34]. In later work on methyLImp2, the
same authors introduced a chromosome-wise
parallelization and a mini-batch approach for
large number of samples [35]. Note that the
method requires a subset of variables without
missing values, which is however typically
fulfilled in DNA methylation data.

VIPER Variability-Preserving ImPutation for Expres-
sion Recovery (VIPER), models the normal-
ized expression value of a given cell via a hard-
thresholded, nonnegative regression problem
with expression of other cells as indepen-
dent variables [36]. These cells are preselected
using a penalized regression (L1/L2) regres-
sion model.

2Dimpute Zhu et al. introduced 2Dimpute for single-cell
RNA-seq data, which first distinguishes bio-
logical from technical zeros using the Jaccard-
index [37]. It then identifies coexpression
signatures in the data, followed by imputation
of spurious zeros among these signatures and
imputation of the remaining dropout values
via KNN-based regression across cells.

CFNI The cluster-directed framework for neighbor-
based imputation (CFNI) first performs K-
Means clustering of genes, for which it uses
initial estimates for the missing values from
mean imputation [38]. It then determines
the optimal number of gene clusters by a
collection of different metrics and subse-
quently performs neighbor-based imputation
(e.g., LLSImpute or KNNImpute) based on a
gene set from the cluster of the gene to impute.

GL2P GL2P (global learningwith local preservation)
iteratively selects the gene with the lowest
number of missing values [39]. For each such
gene, GL2P then uses pairwise Euclidean
distances to compute the similarity to other

- genes and uses these similarities as inputs to
a Gaussian kernel in order to compute the
weights for a linear regression model.

3.2 Matrix Decomposition/Factorization
Approaches

Other methods apply mathematical decomposition or factoriza-
tion to the data matrix in order to obtain quantitative estimates
for the imputed data.

SVDImpute In the same publication as the popular KNNIm-
pute method, Troyanskaya additionally proposed
an imputation method based on singular value
decomposition (SVD). The approach first replaces
missing values by the respective gene averages,
followed by SVD to compute the first princi-
pal components, from which new estimates for
the missing values can be obtained via linear
regression. This procedure is repeated until con-
vergence.

SVDImpute has been tested extensively for the
imputation of MNAR data, however, results seem
contradictory yielding either a very positive or
poor performance of the algorithm [11, 32].

BPCA The Bayesian Principal Component Analysis
(BPCA) builds on top of probabilistic [40] prin-
cipal components analysis (PCA) and estimates
missing values in microarray-based gene expres-
sion profiles using a variational Bayes method in
an iterative fashion [41]. BPCA has been shown to
achieve the best results on MCAR data [28, 32].

Bi-BPCA Driven by the aim to better exploit local struc-
ture of the gene expression matrix, Meng et al.
proposed a bicluster-based enhancement for the
BPCA method. Their two-step method, bi-BPCA,
first imputes the expression matrix by BPCA,
followed by nearest neighbor-based biclustering
to find similar genes and samples [42]. Final
estimates for the missing values are then obtained
by a second iteration of BPCA on each bicluster
individually. Since Bi-BPCA relies on the same
principles as BPCA it can safely be assumed that
it is similarly suited for MCAR data.

CMF-Impute Based on collaborative matrix factorization
(CMF), researchers proposed CMF-Impute, that
decomposes themeasured gene expressionmatrix
into a product of a cell feature matrix and a gene
feature matrix [43]. The authors further employ a
nonnegativity constraint to the expression values
to ensure biologically meaningful results.

ALRA ALRA (Adaptive Low-Rank Approximation) was
explicitly designed to distinguish between biologi-
cal zeros and dropouts in single-cell RNA-seq data
[44]. ALRA computes a low-rank approximation
of the expressionmatrix via SVD and then restores
biological zeros by thresholding each gene based
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on the low-rank approximation. Note that the
method further allows to estimate the number of
missed technical zeros after imputation.

3.3 Neural Network-Based Approaches

Driven by the increasing wealth of data, researchers have lever-
aged neural networks for imputation of missing values. Many
of these approaches rely on autoencoders and are most often
designed for single-cell RNA-seq data, where the large number of
observations (cells) provides sufficient data for training.However,
these methods are reliant on the abundance of training data and
generally come at the expense of increased computational costs
[45].

AutoImpute Among the earliest methods, Talwar et al. pro-
posed theAutoImpute algorithm [46]. Themethod
employs an overcomplete autoencoder architec-
ture with three fully connected layers that are
trained to reconstruct the entries with nonzero
counts.

VAE Other researchers proposed to use variational
autoencoder (VAE) to iteratively refine missing
value estimates and have successfully applied
their method to transcriptomic and epigenomic
(methylation) data [47]. Note that the authors also
proposed a modified version with shift correction
to account for detection limits.

IGSImpute IGSImpute, introduced by Xu et al., employs a
denoising autoencoder with an instance-wise gene
selection layer, that selects contributing genes for
the latent space, and a gene–gene interaction layer
for estimating cell–cell and gene–gene similarities
[48].

ADEPT Although primarily designed to cluster spatial
transcriptomic data, the ADEPT method (autoen-
coder with differentially expressed genes and
imputation) also performs imputation of gene
expression matrices [49]. The method first con-
structs a spot graph using K-nearest neighbors,
which is then fed into a graph autoencoder to
learn a representation of each spot in latent space.
ADEPT then selects matrices with differentially
expressed genes that it imputes by averaging
nonzero expression values across all similar spots
as identified from the latent space.

cnnImpute Researchers further proposed to use convolutional
neural networks (CNNs) for data imputation [50].
Their approach, cnnImpute, identifies dropout
using samemixturemodel as scImpute (cf. Section
3.5). It then constructs imputed values for sets
of target genes with missing values from highly
correlated genes using individual CNNmodels per
gene set.

GE-Impute Wu et al. proposed to use graph-embedding-based
neural networks [51]. Their method, GE-Impute,
utilizes a Skip-Gram model to learn feature repre-
sentations for cells in a cell–cell similarity network

constructed from node2vec. Imputation is then
performed based on an average over the expression
of neighboring cells.

scNTImpute scNTImpute employs the mixture model intro-
duced in scImpute (see Section 3.5) and leverages
a neural topic model to model the distribution
of scRNA-seq data [52]. Ultimately, the method
computes the cell similarity matrix using the topic
mixture per cell and estimates the missing values
from expression of neighboring cells.

CLImpute This method, proposed by Shi et al., employs
contrastive learning using simulated dropout as
augmentation [53]. It leverages self-attention to
learn a cell representation matrix and maximizes
the similarity between different augmentations of
the same cell (and vice versa). For imputation, the
method extracts similar cells from the network and
fits a least-squares regression model from these to
impute the missing data under consideration.

3.4 Approaches Based on External Knowledge

Especially for single-cell sequencing data, for which dropout is
particularly prominent, researchers proposed a large number of
methods that incorporate additional knowledge, for example,
relationships to sample-matched bulk data. A selection of such
methods is presented in the following. Note, however, that these
methods rely heavily on the respective external data (e.g., bulk
data or databases) and may hence reproduce their potential
biases.

GO-Based Imp. Among the earliest works, Tuikkala et al. [54]
proposed to incorporate gene ontology to com-
pute the semantic dissimilarity between genes
and integrate this with the classical expres-
sion level distance (i.e., Euclidean distances)
to select the genes for imputation with LLS
imputation (LLSImpute) as described in Section
3.1.

Bubble Bubble first identifies dropouts the same way
as BayesImpute (cf. Section 3.5). It then uses
a four-layer autoencoder with ReLu activation,
which it trains to minimize the reconstruction
error and to maximize the match to given bulk
RNA-seq data [55].

SCENA Single-cell RNA-seq Correlation completion by
ENsemble learning and Auxiliary information
(SCENA) aims to directly correct the gene–gene
correlation matrix for missing values in the raw
data [56]. The method allows to integrate fur-
ther sources of information, for example, gene
networks or other RNA-seq data, by estimating
the final corrected correlation matrix from an
ensemble of these inputs.

deepMC The authors of deepMC formulate imputation
as a matrix factorization method based on a
three-layered neural network [57].
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DURIAN Given matching single-cell and bulk RNA-seq
data, DURIAN (deconvolution and multitask-
regression-based imputation) first estimates the
bulk cell composition via deconvolution of the
bulk data using the single-cell data [58]. Impu-
tation is then performed using a singular-value
thresholded scheme constrained by a pseudob-
ulk reference and the process is repeated for
multiple iterations.

SCRABBLE SCRABBLE (single-cell RNA-seq imputation
constrained by bulk RNA-seq data) requires
consistent cell populations between single-cell
and bulk RNA-seq data [59]. The algorithm is
based on matrix regularization and optimizes
the deviation of the corrected matrix error from
the input, its nuclear norm and the deviation
between bulk- and single-cell data.

(TRANS)LATE Badsha et al. proposed the LATE (Learningwith
Autoencoder) model, which employs a deep
autoencoder that minimizes the reconstruction
error on the measured data [60]. Missing values
are treated as zeros and are added to a pseudo-
count of 1 to allow for log-transformation. A
model variant, TRANSLATE, first trains this
encoder on a reference gene expression dataset
and then transfers the learned weights to the
single-cell RNA-seq data.

3.5 Statistical and Miscellaneous Approaches

A small number of notable imputation methods that were
revealed by our systematic literature search could not be
grouped into any of the aforementioned categories. These tech-
niques often employ a specific statistical approach or follow an
entirely different concept and are hence briefly described in the
following.

BayesImpute After preprocessing of the raw count matrix,
BayesImpute performs dimensionality reduction
and clustering of cells [61]. The algorithm then
distinguishes between dropout and biological
zeros by thresholding based on the median
expression rate and coefficient of variation per cell
subpopulation and imputes the dropouts using
the posterior mean from Bayesian estimation.

scImpute Li et al. proposed scImpute, which first identi-
fies subpopulations in single-cell RNA-seq data
by spectral clustering in PCA-transformed, pre-
processed, and normalized count space [62].
The method then computes respective probabil-
ities for dropouts/biological zeros using a two-
component model with a Gamma distribution
for dropouts and a normal distribution for true
expression and finally performs imputation of
the dropouts by nonnegative least squares regre-
ssion.

missForest Stekhoven et al. proposed to leverage the Ran-
domForest [63] algorithm for data imputation,
especially for mixed categorical and continuous
data [64]. The algorithm iteratively refines the
missing data estimates starting from a simple
method such as mean imputation has been found
to performwell for proteomics andmetabolomics.
missForest has been extensively validated and has
been shown to best function for MCAR missing
values [28, 32].

BayesMetab Explicitly designed to distinguish betweenMNAR
missing values caused by detection limits and
other dropouts in metabolomics, BayesMetab
uses a Bayesian approach for imputation, based
on a Markov Chain Monte Carlo method to
estimate the posterior distributions [65].

bayNorm bayNorm assumes a negative binomial distri-
bution for the original counts of each gene to
estimate the posterior distribution in each cell
based on the observed count data of that gene
[66]. Note that the authors found the method to
be also capable of reducing batch effects on data
and that it can be used for both single andmultiple
imputation.

CIDR As part of its clustering approach, the CIDR (clus-
tering through imputation and dimensionality
reduction) method fits a shared logistic model via
nonlinear least squares regression to the dropout
probability as function of the true expression [67].
Here, dropout candidates are identified from a
cell-specific expression threshold and are imputed
from a weighted average based on the estimated
probability.

G2S3 G2S3 (sparse gene graph of smooth signals), pro-
posed by Wu et al., learns a weighted gene graph
across cells via primal dual approaches [68]. It
then imputes the data by one or multiple matrix
products with a lazy random walk matrix.

DrImpute In their work on single-cell RNA-seq data impu-
tation, Gong et al. proposed DrImpute, that first
repeatedly clusters cells and computes average
expression values from cells of the same cluster,
followed by obtaining themissing value estimates
as mean of these estimates [69].

4 Data Integration Methods

The systematic literature collection procedure described in Sec-
tion 2 yielded 32 representative data integration methods, which
can be broadly distinguished into five groups based on their core
principles: Model-based, neighbor-/clustering-based, reference-
based, and machine-learning-based approaches, as well as other
matrix-operation-based methods. Figure 4 highlights the respec-
tive categorization of the considered methods into these five
groups and Table 2 reports their corresponding access options and
primary data types.
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TABLE 2 Comprehensive summary of considered data integration methods.

Name Access Direct Link Developed for data type

Model-based Approaches
ComBat F/R https://rdrr.io/bioc/sva/ Microarray
Re-ComBat L/P https://github.com/BorgwardtLab/reComBat Gene expression
M-ComBat C/R https://github.com/SteinCK/M-ComBat Microarray gene expression
ComBat-seq L/R https://github.com/zhangyuqing/ComBat-seq RNA seq
limma L/R https://www.bioconductor.org/packages/release/bioc/html/limma.

html
Microarray data

Q-ComBat — https://doi.org/10.1371/journal.pone.0156594 Microarray transcriptome
Longitudinal ComBat L/R https://github.com/jcbeer/longCombat Multi-scanner imaging
GMM ComBat L/P https://github.com/hannah-horng/generalized-combat Radiomics
Nested ComBat L/P https://github.com/hannah-horng/generalized-combat Radiomics
OPNested ComBat L/P https://github.com/hannah-horng/opnested-combat Radiomics

Neighbor- /Clustering-Based Approaches
MNN F/R https://bioconductor.org/packages/release/bioc/html/scran.html Single cell RNA seq
Scanorama L/P https://github.com/brianhie/scanorama Single cell RNA seq
Harmony L/R https://github.com/immunogenomics/harmony Single cell RNA seq
SCIBER L/R https://cran.r-project.org/web/packages/SCIBER/ Single cell RNA seq

Reference-Based Approaches
IRS — https://doi.org/10.1074/mcp.M116.065524 TMT—labelled proteome
BRIDGE L/R https://github.com/qingxiaa/brg Microarray data
COCONUT C/R https://wiki.khatrilab.stanford.edu/sepsis Same as ComBat
BESC L/R https://bio.tools/besc Microarray data
SMNNiSMNN L/R https://github.com/yycunc/SMNN Single cell RNA seq

Machine-Learning-Based Approaches
NormAE L/P https://github.com/luyiyun/NormAE Metabolome
AD-AE C/P https://gitlab.cs.washington.edu/abdincer/ad-ae Gene expression
Dual AD-AE C/P https://github.com/LaraCavinato/Dual-ADAE Radiomics
Procrustes L/P https://github.com/BostonGene/Procrustes RNA seq
scGAMNN — https://doi.org/10.1109/JBHI.2023.3311340 Single cell RNA seq
BERMAD L/P https://github.com/zhanglabNKU/BERMAD Single cell RNA seq
HDMC L/P https://github.com/zhanglabNKU/HDMC Single cell RNA seq

Other Matrix-Operation-Based Approaches
HarmonizRBERT L/R https://www.bioconductor.org/packages/release/bioc/html/

HarmonizR.html
https://www.bioconductor.org/packages/devel/bioc/html/BERT.

html

Validated for microarray
gene expression,
metabolomics and

proteomics
scBatch L/R https://github.com/tengfei-emory/scBatch RNA seq
CCA (SEURAT) L/P https://satijalab.org/seurat/ Single cell RNA seq
LIGER L/R https://github.com/welch-lab/liger Single cell RNA seq
BEclear L/R https://bioconductor.org/packages/release/bioc/html/BEclear.html DNA methylation

Note:Access is specified to the best of our knowledge as function (F), source code (C), or library (L), followed by the language being Python (P), Matlab (M), or (R).
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FIGURE 4 Overview over the data integration methods discussed in this review.

4.1 Model-Based Approaches

Model-based data integration methods primarily represent the
batch effects via location-and-scale (L/S) models and estimate
their parameters (typicallymean and variance) from the observed
data. When employing this category of data integration methods,
it is imperative to understand which data type and model may
be applicable. Using the wrong underlying model can lead to a
bias.

ComBat Among the most popular methods for
data integration, ComBat [70] employs
the parametric empirical Bayes method
to estimate additive and multiplicative
batch effects via iterative refinement
in a computationally efficient manner.
The algorithm can also employ non-
parametric priors and was specifically
designed for batches with small sam-
ple sizes. Among other applications
for the integration of microarray-data
[71], radiomic features [72] and RNA-
seq measurements [73], Petralia et al.
used ComBat to integrate 23 batches of
pediatric brain tumors from triple mass-
spectrometry with tandem mass tags
[74].

reComBat ComBat relies on an initial linear regres-
sion step for the standardization of
input data. The authors of regular-
ized ComBat (reComBat) argue that the
design matrix of independent variables
in this regression step may become sin-
gular when integrating large-number of
batches [75]. They hence propose to use
ElasticNet regression instead to ensure
validity of the results and tested this
approach on microarray and bulk RNA-
seq data.

M-ComBat With M-ComBat, researchers proposed
to reformulate ComBat as to adjust all
data on a predefined optimal batch, for
example, with superior data quality [76].
To date, such an option is provided by

the official ComBat implementation as
well.

ComBat-seq Zhang et al. identified the assumption
of normal distributions in parametric
ComBat as the main caveat for its appli-
cability to count data [77]. They hence
propose a negative binomial regression
model specifically for count matrices
of RNA-seq studies to better handle
skewed input data and outliers.

limma The limma library by Ritchie et al. offers
a linear regression model for batch
effects, that allows to center each vari-
able to its respective grand mean across
batches [78]. Although this only corrects
the location (L) and neglects the scale
(S), this method has successfully been
applied to different omic-types, such as
proteomics [79] and methylomics [80].
Since it is based on well-established
linear regression, this method requires
very little runtime in practice.

Q-ComBat In a comparison of different data
integration methods for longitudinal
gene expression data, Müller et al.
found quantile normalization followed
by ComBat normalization (Q-ComBat)
to perform best [81].

Longitudinal ComBat Q-ComBat considers each measure-
ment as independent, which was identi-
fied as a weakness by the authors of
longitudinal ComBat [82]. They
proposed an adaptation of ComBat’s
L/S model for longitudinal data that
accounts for the inherent correlation
between acquisitions of the same
sample during the course of a
longitudinal study and validated
their method on radiomic features
generated from functional MRI images.

GMMComBat Horng et al. assumed that confound-
ing variables that cause unwanted vari-
ations may sometimes be unknown.
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They hence suggested to identify groups
by repeatedly fitting a two-component
Gaussian Mixture Model (GMM) to
the observed data and correcting for
the identified groups as batches. The
method was successfully validated on
radiomic data [83].

Nested ComBat In the samepublication [83], the authors
ofGMMComBat proposedNestedCom-
Bat that allows to sequentially remove
any number of batch effects by repeated
application of ComBat. The respec-
tive order of batch effects is optimized
exhaustively by minimizing the num-
ber of batch-effect afflicted features and
individual batch effects may be cor-
rected repeatedly.

OPNested ComBat In later work by the same group,
Nested ComBat was combined with
Gaussian Mixture Models. The new
model, OPNested ComBat, iterates
over all possible permutations of batch
effects and uses the mixture models to
either identify further batch effects or
to identify covariates to preserve during
batch-effect correction [84].

4.2 Neighbor- /Clustering-Based Approaches

Typical data integration tasks arise during the consideration of
a specific biological condition or biological system. Hence, the
batches to integrate typically share distributional properties, for
example, common cell types occurring in independently acquired
single-cell RNA-seq datasets. Neighbor- and clustering-based
approaches leverage these similarities by identifying matched
observations (e.g., cells) or groups of observations (e.g., cell types)
across the cohorts. Note that these matches are often based on
unsupervised heuristics (e.g., a low pairwise distance) and that
reference-based methods may offer a more supervised and exact
approach.

MNN In pioneering work by Haghverdi et al., it was
proposed to compute batch-effect correction vec-
tors for single-cell RNA-seq data based on mutual
nearest neighbors (MNNs) [85]. The method first
standardizes the data using a cosine normalization,
followed by MNN estimation. For each pair of
batches, local linear batch-effect correction vec-
tors are then obtained from matched cells using
Gaussian smoothing.

Scanorama The Scanorama algorithm for single-cell RNA-seq
data first performs randomized SVD for dimen-
sionality reduction, followed approximate nearest
neighbors search based on hyperplane locality sen-
sitive hashing and random projection trees [86].
In contrast to MNN, which iteratively aggregates
batches in a pairwise fashion, Scanorama is insen-
sitive to the input order and is computationally very
efficient. Note that the algorithm can both perform

data integration in the low-dimensional space, as
well as compute batch-effect corrected data in the
original high-dimensional space.

Harmony The Harmony algorithm employs iterative batch-
effect correction of single-cell data [87]. It first
projects the data to a lower-dimensional embedding
by PCA, followed by repeated maximum diversity
clustering (Cosine-distance-based K-Means with
penalization of clusters with low batch-diversity)
and a mixture model based linear correction step
until convergence.

SCIBER The single-cell integrator and batch-effect remover
(SCIBER) method aims to correct batch effects with
respect to a predefined reference batch. It first per-
forms K-Means clustering in each batch to identify
clusters and matches these across batches based on
differential gene expression. The expression of each
cell is then decomposed into a mixture of these
matched groups, followed by corresponding transfer
to the reference batch.

4.3 Reference-Based Approaches

In contrast to the aforementioned approaches, in which anchor
points (neighbors and shared clusters) are constructed algorith-
mically, reference-based approaches employ external knowledge
about technical or biological properties shared by the batches.
This also enables researchers to combine batches with more
unequal distributions of biological groups or conditions. Impor-
tantly, these methods strictly mandate the existence of identical
or at minimum very similar samples across all batches to
yield reliable data integration and researchers must plan for a
corresponding study design.

IRS Plubell and Wilmarth proposed to include
one or multiple standards (internal refer-
ence samples, IRS) in each plex of mass
spectrometric measurements with tandem
mass tags [88]. Normalization factors for
each variable are computed as to scale the
reference mean per batch to their geomet-
ric average across batches. This technique
is currently common practice in mass-
spectrometry based proteomics and has, for
example, been used by Krug et al. for the
investigation of treatment-naïve primary
breast cancers [89].

BRIDGE With a similar approach researchers pro-
posed BRIDGE, an empirical Bayesmethod
for batch-effect correction in longitudi-
nal (esp. gene expression) studies [90].
BRIDGE employs a modified L/S model,
the parameters of which are estimated
from a subset of shared (bridging) samples
between different timepoints.

COCONUT In a study on the classification of bacte-
rial and viral infections, Sweeney et al.
introduced a novel variation of ComBat,
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COCONUT, that utilizes user-defined sam-
ples of similar biological properties to infer
parameters of COMBAT’s L/S model that
are subsequently transferred for batch-
effect correction of the remaining samples
[91].

BESC Assuming that potential sources of batch
effects are associated with a unique sig-
nature, batch-effect signature correction
(BESC) aims to minimize the squared
residuals between the measurements and
a linear combination of such predefined
signatures. The signatures are represented
by unit vectors with zero mean and can
be constructed from biological or technical
replicates across batches. BESC has been
validated on microarray gene expression
data.

SMNN and iSMNN While most methods based on MNNs and
matched clusters are based on heuristics
for matching observations (e.g., cells or
cell clusters) across batches, SMNN allows
users to specify marker genes and respec-
tive cell types in single-cell RNA-seq data to
ensure correct inter-batch matching before
adjusting the data based on MNNs [92].
These neighbors are computed on the
unadjusted input data, which was identi-
fied as main caveat of SMNN, such that
the same authors proposed iterative SMNN
(iSMNN) in later work [93]. iSMNN repeat-
edly computes MNNs and corrects for the
respective batch effects.

4.4 Machine-Learning-Based Approaches

Over the last decade, the increase of both general data availability
and batch sizes has allowed researchers to make use of neural
networks and other machine-learning methods to develop novel
data integration techniques. Typical methods are often based
on autoencoders and adversarial learning, where the former
represents a pair of stacked neural networks that first project the
input data to a low-dimensional latent space (encoder network)
and then reconstruct the input (decoder network) with minimal
loss of information. While autoencoders thus represent a specific
network architecture, adversarial learning refers to a training
procedure in which multiple neural networks (typically two)
compete to achieve adversarial objectives (e.g., reconstructing
the measured data from a latent space and being unable to
predict confounders from this latent space). Note that many
machine-learning methods are primarily trained to remove batch
effects in the latent space, which hence often needs to be
used for any downstream tasks. Similar to the machine-learning
based approaches for imputation, data integration methods
from this category generally require large cohorts and sufficient
computational resources.

NormAE Among the earliest methods, normalization
autoencoders (NormAE) for batch-effect

removal in liquid-chromatography-based mass
spectrometry for metabolomics were proposed
[94]. NormAE uses an adversarial classifier, that
is, trained to predict the batch of origin and
other known sources of unwanted variation (e.g.,
injection order) from the latent representation,
while the encoder network is trained to maximize
the loss of the classifier. The decoder network is
trained to recover the original peak intensities
from the latent representation given the labels for
batch and the other confounders.

AD-AE Motivated by the goal of generating confounder-
robst and generalizable latent representations, AD-
AE, an adversarial deconfounding autoencoder,
was introduced. Here, the adversarial classifier is
trained to predict one or multiple confounders
from the latent representation [95]. In contrast to
NormAE, the decoder does not utilize the con-
founder label to reconstruct the input. AD-AE was
validated on microarray- and sequencing based
transcriptomics.

Dual AD-AE More recently, Cavinato et al. built upon AD-AE
by proposing a dual AD-AE model specifically for
radiomics, in which two independent adversarial
networks are used for the prediction of center and
scanner [96].

Procrustes In addition to the aforementioned autoencoder-
based approaches, Procrustes leverages linear cor-
relation between expression of individual genes
and coexpression of specific genes by using Elastic-
Net regression for computing integrated data based
on either individual or multiple genes [97].

scGAMNN Motivated by the success of nearest-neighbor
based methods for integration of single-cell data
(see below), researchers combined such tech-
niques with autoencoder-based data integration.
scGAMNN, in particular, trains a joint autoencoder
based on graph convolutional network (GCN)
layers for the expression matrix and the MNN
adjacency matrix [98]. Of note, the method uses
an additional distance-based loss for the MNNs
in latent space and does hence not require any
adversarial networks.

BERMAD BERMAD, as introduced by Zhan et al., is specif-
ically designed to avoid over- or under-correction
of batch effects in single-cell RNA-seq data. The
method trains an independent autoencoder per
batch and additionally optimizes a transfer loss
(maximum mean discrepancy) between the most
similar cell clusters of the batches to enforce
matched output distributions.

HDMC Hierarchical distributionmatching and contrastive
learning (HDMC) combines the traditional recon-
struction loss from autoencoders, a contrastive loss
in the latent space (reducing distance of similar
clusters and vice versa for noisy clusters) and an
adversarial loss from the prediction of the batch
of origin after an adversarial layer [99]. Note that
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the strength of the contrastive loss is gradually
increased to improve stability during early training
epochs.

4.5 Other Matrix-Operation-Based Approaches

Although all data integration methods operate on matrices
of variables and observations, some approaches could not be
grouped into any of the prior categories and are hence reported
in the following.

HarmonizR and BERT Since many of the previously reported
data integration methods are not
primarily designed for the integration
of data with large amounts of missing
values (especially those introduced by
the process of data integration itself),
our group introduced the HarmonizR
algorithm, that employs matrix
dissection to identify eligible sub-
matrices for downstream correction
with the aforementioned ComBat and
limma methods [100]. Intrinsic loss
of numerical values by the matrix
dissection and limited support
of user-defined references and
covariates is a central shortcoming
of HarmonizR, such that we further
proposed batch-effect reduction
trees (BERT) to overcome these
limitations while still offering the
same tolerance to missing values. Note
that BERT is so far only available as
a software publication [101]. BERT
and HarmonizR are particularly
suited for mass-spectrometry-based
and microarray-based omic data
(e.g., proteomics/metabolomics and
transcriptomics, respectively).

scBatch The scBatch algorithm employs lin-
ear transformations to a count matrix
from single-cell RNA-sequencing as
to yield a batch-effect free Pearson-
correlation matrix, which is computed
using QuantNorm [102, 103]. scBatch is
primarily designed for balanced study
designs.

CCA (Seurat) Originally, the popular Seurat pack-
age for analysis of single-cell data
employed canonical correlation analy-
sis (CCA) to learn shared gene correla-
tion structure, followed by a compari-
son to a principal component analysis
to identify and optionally remove sub-
populations with expression patterns
that are not well explained by this
correlation structure [104]. Themethod
then uses dynamic time warping to
iteratively integrate the data per batch

by aligning the canonical correlation
vectors. Note that the method inte-
grates the data into a conserved low-
dimensional space. Of interest, in a
later version of Seurat (v3), the method
was extended to utilize MNNs to com-
pute correction vectors based on cells
with similar biological state.

LIGER LIGER, as introduced by Welch et al.,
employs integrative nonnegative
matrix factorization to express each
observation by dataset-specific and
shared factors [105]. The approach
then constructs a shared factor
neighborhood graph in the factor space
and normalizes the factor loadings to a
predefined reference.

BEclear Originally designed for DNA-
methylation data, BEclear aims to
correct only batch-effect afflicted
genes, for the identification of which
it employs a Kolmogorov-Smirnov
test to compare distributions between
batches [106]. It then applies a cutoff to
the difference of gene medians, selects
batches with strong batch effects and
corrects the respective identified genes
by a latent factor model based on
matrix factorization.

5 Evaluation Methods

Reliable validationmetrics/methods are important to researchers
and practitioners alike to shed light on the success of both data
integration and imputation. While most evaluation techniques
for the former are capable of estimating output quality in both
characterization of novel approaches as well as during research-
specific data integration tasks, most metrics for data imputation
require knowledge of the correct values of the missing data. This
is however most commonly not the case in real-world research
projects, such that researchers often rely on validation with
artificially introduced missing values or on recommendations
obtained from large-scale comparative studies to decide on a
suitable imputation method.

For data integration, the most common evaluation techniques
represent either manually analyzed visualizations of the
integrated data, quantitative approaches borrowed from the
fields of statistics and machine-learning, as well as task-specific
performance measures, compare Figure 5.

Visualization, in particular, represents the most intuitive cate-
gory. Most commonly, researchers project the data (raw and inte-
grated) into a two- or three-dimensional space using techniques
such as PCA, t-distributed stochastic neighborhood embedding
(t-SNE) [107] or uniform manifold approximation and projection
(UMAP) and visualize the observations using scatterplots [108].
Improved overlap between biologically similar groups of observa-
tions from different input batches indicates effective batch-effect
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FIGURE 5 Overview over representative evaluation metrics for data integration and data imputation, as well indications for requirements and
limitations based on literature and experiences of the authors.

correction. PCA is employed particularly often due to its com-
putational efficiency, as well as to the inherent quantification of
the explained variance, which can aid researchers to estimate the
reliability of the visualization. In contrast, the t-SNEmethod does
computationally not scale well to large number of observations
(e.g., cell types or samples). It is of interest that UMAP generally
requires complete data, whereas t-SNE and PCA can both be
computed based on pairwise operations. In particular, t-SNEs
can be computed from arbitrary distance matrices (such as from
pairwise Euclidean distances), whereas the nonlinear iterative
partial least squares (NIPALS) algorithm [109] can be used for
PCA. As an example, the latter was employed by Godbole et al.
for both validating data integration with HarmonizR and for the
identification of medulloblastoma types in mass-spectrometry
based proteomics [110].

Despite the common use of visualization techniques, they lack
a quantification of data integration success, which might, for
example, be necessary to decide on an optimal strategy before
proceeding to downstream analysis. The machine-learning com-
munity has developed several such metrics for clustering (i.e.,
when only batch/biological labels are known) or regression (i.e.,
if the correct numerical values are known e.g., from technical
replicates). Among the former, researchers often compute the
average silhouette width (ASW) with respect to both batch
and/or biological condition, which is computed as the difference
between the mean intra-cluster distance and the mean nearest-
cluster distance divided by the maximum of the two [111].
Here, an ASW decrease for the batch label indicates successful
data integration and vice versa for the biological condition.
In a similar fashion, observations can be manually clustered
before and after data integration to compute the Rand index,
which quantifies the agreement to predefined groups (e.g., the
biological conditions or batch of origin). Higher Rand scores
indicate better clustering by the respective groups. Most studies
report the adjusted Rand index (ARI), which represents the
Rand index corrected for chance [112]. Furthermore, the kBET
metric was introduced that employs a 𝜒2-based statistical test
for “mixedness” in fixed-size neighborhoods of single-cell data

[113]. A low average rejection rate indicates good data integra-
tion. Recently, the cKBET method was proposed that explicitly
considers cell type labels (known or inferred by clustering),
which can be particularly suited for data integration tasks with
unequal distributions across batches [114]. Note that the ASW,
the ARI, and all regression metrics are well suited for incomplete
data given a suitable distance metric for clustering and distance
computations (e.g., pairwise Euclidean distances). Importantly,
each of these methods quantifies different aspects of the raw
and integrated data and researchers should consider more than
one. In particular, a recent benchmark study on batch-effect
correction in single-cell RNA-seq data used the ASW, ARI,
kBET and LISI [5] for quantification and different methods
performed best per metric, although some methods performed
generally favorable compared to others [115]. Given pairs of
matching samples across batches (e.g., references from BRIDGE,
IRS or BERT), scientists and practitioners can employ regression
metrics for the evaluation of data integration such as the mean
absolute error (MAE), the root mean square error (RMSE) or the
normalized rootmean square error (NRMSE). Thesemethods can
also be used to validate data imputation, which however requires
knowledge of the true value of the dropout data. In typical
experimental settings, the latter may arise either from repeated
measurements of the same sample (such that randomly missing
data from onemeasurementmay have been quantified in another
measurement) or from simulation studies, where nonmissing
data are set missing (e.g., using MCAR or MNAR mechanisms)
and subsequently imputed with the aim to recover the original
values.

Finally, both data integration as well as imputation methods may
be also evaluated by the performance of downstream tasks on the
processed data, which requires domain-specific knowledge of the
researcher. For data integration, in particular, researchers often
employ classification of observations (i.e., predicting either the
original batch or any biological condition of interest) andmonitor
the change in suitable classification metrics [116] (e.g., accuracy,
balanced accuracy, AUC score) caused by batch-effect correc-
tion. Examples for other specific tasks include segmentation in
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radiomics (quantified for instance by intersection over union
or Dice metric) or quality of coexpression networks [73] (e.g.,
quantified by matching gene ontology terms) and researchers
may define further tasks depending on the considered problem.
Similarly, successful data imputation should also yield improved
downstream analysis, such as differential expression analysis,
clustering and cell trajectory analysis for single-cell RNA-seq
data.

6 Discussion and Recommendations

With the increasing data availability arising from technical
improvements to high-throughput measurement techniques and
the establishment of FAIR data principles [117], data integration
is becoming a key part of daily research and even clinical appli-
cations (e.g., DNA-methylation-based classification of tumors
in the central nervous system [118]). Yet, the trend for high
throughput and single-cell technologies also introduces large
number of missing values to the data—A problem that is often
additionally amplified by data integration, since genes or other
features might not have been quantified in each batch. Although
these two aspects (data integration and missing values) are
interconnected, previous review papers have typically focused
on one or the other and this work complements the field by
providing a comprehensive and integrated discussion of both
data integration and imputation. In particular, we identified four
primary groups among the qualified 262 documents (cf. Section 2
and Supporting Information) and systematically address all these
groups within this review.

Unresolved batch effects may affect study results and limit
the validity of statistical analyses. For example, the Mouse
ENCODE consortium studied gene expression data of mice and
humans and found that samples primarily grouped by species
and not by tissue [119]. This surprising finding was however
demonstrated to be caused by batch effects and study design in
later work by Gilad et al., who used ComBat to integrate the
data and recover the expected clustering by tissue [120]. On the
contrary, as highlighted by Goh et al., batch-effect correction
can also over-correct data leading to biased, overly confident
or exaggerated differences between cohort subpopulations (e.g.,
biological groups) [7, 121]. This work introduced 32 qualified
data integration methods from five major categories, as well as
three relevant groups of techniques for their evaluation. The aim
was to provide an extensive overview over all relevant classes of
methods, although not every method could be integrated into the
manuscript for reasons of brevity (including e.g., RUV and SVA
as well their adaptations for sequencing data [122–125], resPAN
[126] or BERMUDA [127]).

In two benchmark papers on batch-effect correction methods
for single-cell RNAseq data, Harmony was highlighted as the
generally best-performing method and might hence represent
a suitable starting point for further analysis [115, 128]. Tran
et al. further recommended to test LIGER and Seurat (v3) if
the results of Harmony were not satisfactory. For microarray-
based gene expression studies, authors [129] have recommended
ComBat for data integration and variations of this approach
(see above) that allow to further specialize the respective L/S
model to the considered problem. In a review paper on data

integration of imaging data [130], ComBat and its variations were
also recommended for the harmonization of radiomic features,
especially for small to moderate sample sizes and in longitudinal
studies.

Generally, choosing an optimal method for a specific data inte-
gration task at hand is challenging. Users must carefully choose a
suitable algorithm for the data at hand, for example, considering
not only the specific omic type, but also the distribution of
groups across batches and the study design (longitudinal or
cross-sectional, bulk or single-cell), as well as the expected
missing value types. Especially in mass spectrometric proteome
measurements, the multitude of developed techniques (e.g.,
BioIDs [131], multiplexing, DIA/DDA measurements) presents
various distinct underlying assumptions, leading to different
methods being of relevance for the data processing, a detailed
discussion of which is however beyond the scope of this cross-
omic review. The introduced methods from Section Evaluation
Methods and the accompanying description of their merits and
demeritsmay aid researchers deciding on an appropriatemethod.
Interactive tools such as DBnorm (for metabolomics), proBatch
(for mass-spectrometry-based proteomics) or malbacR (mass-
spectrometry based lipidomics, metabolomics, proteomics and
nuclear magnetic resonance data, especially for integration with
pmartR [132]) can aid users with less programming experience
in quickly testing a broad range of methods [132–135]. Although
successful data integration increases the number of considered
samples and leads to improved and reliable research outcomes,
the correct application of suitable batch-effect correction algo-
rithms is challenging, and their respective results need to be
rigorously validated by amixture of themethods described above.
Individual metrics solely capture aspects of the corrected data
and an integrated consideration of multiple methods may better
represent the whole picture [115]. If applicable, biological or
technical references (e.g., replicates) may provide a particularly
unbiased estimate for success of batch-effect correction. Where
appropriate, researchers should additionally aim tominimize any
confounding effects (e.g., class imbalances) by study design.

It is important to note that data integration may amplify the
prevalence of missing values, since variables may be missing for
entire batches. This particular missing data pattern represents a
major challenge for many data integrationmethods (in particular
also for the popular ComBat method), and authors have hence
advocated against these methods for mass-spectrometry, that
often exhibits this specific type of dropout [134]. To date, only
few data integration algorithms are explicitly designed for miss-
ing data, although some established methods are conceptually
extendable to incomplete data either by employing pairwise
operations (i.e., using shared subsets of quantified variables for
each pair of samples) such as the IRS method, or by manually
removing variables with insufficient data in any of the batches via
listwise deletion (e.g., for ComBat). Package developers should
aim to account for this to make algorithmsmore easily applicable
to incomplete data (i.e., without manual package modification
by the applying researcher). In contrast, HarmonizR and BERT
leverage matrix dissection and hierarchical algorithms respec-
tively, to directly extend the applicability of ComBat and limma
to arbitrarily incomplete data and they may hence represent
suitable and easy-to-use methods for highly incomplete datasets
(e.g., mass-spectrometry based proteomics or metabolomics). For
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FIGURE 6 The proposed three-step workflow for integrated consideration of batch-effect correction and missing value imputation from study
conception phase (top), to the method exploration phase (center) and the final data analysis step in which practitioners apply domain-specific data
analyses methods to the final batch-effect corrected and imputed data (ellipses at bottom, nonexhaustive list). Note that the selected data imputation
and batch-effect correction methods are iteratively refined to optimize the selected evaluation metrics.
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FIGURE 7 Top: Imputation methods and appropriate criteria for elimination of methodological categories as described in this paper, as well
as decision trees with specific recommendations for representative data types and study designs. Bottom: Corresponding panels for data integration
methods.

example, Navolić et al. used HarmonizR to integrate incomplete
data from ablation-based spatial proteomics of the embryonic
mouse head [136]. With respect to our newly defined statistical
terminology for batch effects in the context of incomplete data
(cf. Section 1.1), all methods discussed in this section aim to create

FBE data. In conjunction with suitable data imputationmethods,
however, they may as well be used to create CFBE data.

From this perspective, this review also introduces 37 representa-
tive imputation methods from qualified literature revealed by the

19 of 25

 16159861, 2025, 1-2, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/pm

ic.202400100, W
iley O

nline L
ibrary on [06/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



systematic search described in Section 2. These methods can be
grouped into five major categories and span multiple major omic
types. Similar to the data integration methods discussed above,
not all methods and reviews could be included into this review
for the sake of brevity and inclusion criteria (e.g., SAVER [137]
and PIMMS-VAE [138], as well as refs. [139–141]).

Although multiple works have found that data imputation
needs to be applied with care, many downstream data analysis
methods or data preprocessing techniques (e.g., the ComBat
method for batch-effect correction) require complete data and
hence necessitate data imputation. Note that it is generally
recommended in literature to filter each batch to variables
that were quantified in at least 50–80 % of all samples before
missing value imputation, which further reduces the observed
numerical values per batch [11, 142]. Kokla et al. compared
nine different imputation methods for mass-spectrometry based
metabolomics and found missForest-based imputation to per-
form best [32, 143]. Similarly, Bramer et al. recommended
missForest-based imputation for isobaric labeling-based shotgun
proteomics, but elaborated that imputation should be applied
with consideration to data with small sample sizes [144]. For
label-free quantitative proteomics, Lazar et al. argue that the
optimal imputation strategy should be selected based on the
missing value mechanism and develop guidelines for the choice
and application of imputation in proteomics [143]. For single-
cell RNA-seq data, Hou et al. compared 18 different imputation
method with respect to a diverse set of downstream tasks and
found that the considered methods exhibited largely varying per-
formance for each of the tasks [145]. Formass-spectrometry based
metabolomic data Wei et al. compared nine different imputation
methods and found that Quantile Regression Imputation of Left-
Censored data showed the best performance and determined
different types of missing values for different metabolomic anal-
yses (MCAR/MAR in nontargeted GC/MS; MNAR in targeted
LC/MS metabolomics) [11]. However, we generally found only
few studies that explicitly account for different missing value
types in (characterization) data imputation and thus advocate,
that researchers should carefully select and validate suitable
imputation methods for their data. For this, software tools such
as the single-cell Imputation Methods Comparison platform
(scIMC), may aid them to rapidly explore a broad range of
methods [146].

To date, only few studies have investigated the mutual effects
of data integration and missing value imputation. Hui et al.
compared different mean imputation strategies (from all data,
from the same batch, from a different batch) prior to batch-effect
correction and found that batch-sensitive imputation methods
yield better signal-to-noise ratios than batch-naïve imputation
[147]. In later work, the same authors further elaborate that
batch-effect associated missing values represent an additional
challenge for imputation and suggest iterative batch-wise impu-
tation as potential solution [148]. With respect to our newly
defined terminology for batch-effect correction andmissing data,
this highlights the relevance of CFBE properties in modern
omic data analyses. In an investigation of HarmonizR, ComBat
and missForest-based imputation, Voss and Schlumbohm et al.
elaborated that imputation can be error-prone, but if necessary,
it should be applied before batch-effect correction [100]. If
these mutual effects of batch-effect correction and missing value

imputation cause challenges in data analyses, researchers may
consider imputation-free methods as an alternative. Amongst
other methods [149–151], BERT and HarmonizR, for exam-
ple facilitate missing-value-tolerant batch-effect correction; ACF
[152] allows for classification with missing data; and ProtRank
[153] allows for differential expression analysis on incomplete
proteomic data.

In summary, both data integration as well as missing-value impu-
tation may be necessary to allow for high-quality downstream
data analysis. In practice, there is no optimal set of methods
across all omic types and datasets and researchers often follow
an iterative exploration scheme, in which they repeatedly employ
a combination of algorithms and validate the respective results
using multiple methods and downstream tasks. During this
explorative validation, multiple aspects such as missing data
pattern, experimental design and even omic type1 may need to be
considered.We provide a formalization of this typical process into
a three-stepworkflowunder consideration of data integration and
missing values starting from the study conception, followed by
an iterative method exploration phase, and finishing with the
final data analysis, compare Figure 6. Yet, the large number of
methods (each with different statistical assumptions and aims)
represent an increasing challenge for researchers and interactive
tools, such as scIMC, malbacR, or proBatch will hence gain more
relevance in the future. However, such tools are so far often
limited to subsets of omic types and the field is still lacking a fully
comprehensive tool, which might represent an attractive target
for future research. Thus,we developed a comprehensive decision
flow chart as to aid users in eliminating methods or method
types, which are not applicable to their data, compare Figure 7.
Furthermore, researchers should aim to prospectively better
characterize the interconnection between batch-effect correction
and imputation, which is only poorly understood to date. Here,
researchers should especially aim to develop tools, similar to
the ALRA approach [44], that are capable of diagnosing and
categorizing the missing values according to the mechanism
that generated them. In addition to unraveling the generally
understudies field of missing value types in omics, these tools will
enable the design of the aforementioned more suitable imputa-
tion strategies for the imputation ofmissing values. Finally, future
research should establish a broader set of missing-value tolerant
methods for datasets for which high-quality imputation is not
possible.
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Endnotes
1Note that many methods are applicable to various omic types (e.g.,
ComBat), but some methods are particularly suited for certain data
properties that are correlated with such types. As an example, batch-
effect correction based on mutual nearest neighbors is particularly
suited for large number of observations as often found in single-cell
data. Hence, despite the general applicability of various methods, the
omic type still represents an important criterion during the iterative
exploration phase presented in Figure 6.
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