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1. Introduction

Laser-based powder bed fusion of metals (PBF-LB/M) is an 
additive manufacturing process, creating complex components 
by melting successive layers of metal powder.

The potential of combining additive and subtractive laser 
processes has been shown in previous research where ablative 
post-processing of printed parts with ultrashort pulses has been 
demonstrated [1, 2].

Based on these results, a novel manufacturing approach, 
integrating PBF-LB/M and ultrafast laser processing at the 
layer level was developed. This new approach not only exceeds 
the accuracy limits of conventional PBF-LB/M, but also the 
achievable aspect ratios for e.g. micro-holes or grooves
compared to conventional micromachining with ultrashort 
pulses [3, 4].

In the subtractive part of the process, material is locally
removed by a multitude of scanning passes to produce 
structures with dimensions significantly below 100 µm in 
width. This results in the creation of a v-shaped groove. When 
repeated over several additive layers, these grooves can be 
connected to each other and form a thin slit spanning several 
layers. However, this process is very time-consuming due to 
the high number of scan passes required. Increasing the 
scanning velocities and pulse repetition rates would increase 
the productivity of the process.

It has been noted that, when processing metals and 
semiconductors with ultrashort pulses, an inhomogeneous 
groove bottom is formed after just a few scanning passes. This 
was first shown by Fornaroli et al. [5] in silicon. The semi-
periodic appearance of the depth of the groove can also be 
described as a series of micro-holes.
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Abstract

The formation of slits with very high aspect ratios is critical for the production of additively manufactured parts for advanced electric drives. In 
this work, high-speed synchrotron X-ray imaging is utilized to observe slit/groove formation in stainless steel using ultrashort laser pulses. The 
results reveal that, under the pulse conditions employed here, a narrow, deep slit or groove can be created by the eventual consolidation of micro-
holes which are generated in the early stages of the laser-material interaction. The success or otherwise of this micro-hole consolidation has a 
complex relationship to the process parameters.
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This behaviour can also be seen in stainless steel. The 
formation of a series of micro-holes during the ablation of 
grooves with an increasing number of scans has been observed 
as shown in Fig. 1. The presence of melt is recognizable after a 
few tens of passes. Individual micro-holes are formed after 
around 100 passes. The spacing of these micro-holes appears 
to be self-organized.

Recent studies focusing on laser welding, cutting, and 
drilling have underscored the efficacy of high-speed X-ray 
imaging as an invaluable asset for visualizing laser materials 
processing [6-8]. The exceptional beam quality of X-rays from 
a synchrotron enables the real-time observation of micro-hole
formation during drilling. This research showcases how this 
method facilitates a comprehensive examination of the 
formation of micro-holes during the ablation of a groove while 
scanning along a straight line, providing valuable insights into 
the intricacies of the cutting process.

Fig. 1. SEM images of grooves manufactured in stainless steel. The
individual images show the top view on the grooves after increasing number 
of scanning passes. 

2. Experimental setup

The experiments were carried out at the DESY (Deutsches 
Elektronen-Synchrotron, Hamburg, Germany) [9]. The 
relevant experimental setup employed for investigating laser 
material processing has been extensively explained by Wagner 
et al. [7]. A variant of this setup is shown in Fig. 2. 
Experimental Setup. An ultrafast Yb:YAG laser (Carbide CB3-
80) from Light Conversion (Vilnius, Lithuania) was used. The 
circularly polarized laser beam was guided into a 
galvanometer-scanner, through a f-theta lens with a focal 
length of 160 mm and focused on the surface of the sample, 
resulting in a focal diameter of df = 50 μm. The laser beam 
parameters are provided in Table 1.

Fig. 2. Experimental Setup (not to scale).

The energy of the monochromatic X-ray beam was set to 
89 keV. The investigated sample material was stainless steel 
(AISI 304) with a width of 1 mm. The X-ray image sequence 
underwent post-processing in two steps following the 
methodology outlined by Wagner et al. [7]. A flat field 
correction was initially applied to the sequence to avoid 
misinterpretations due to the intensity profile of the X-ray 
beam. A Kalman filter was then applied for further refinement
[10].

Table 1. Laser beam parameters and optical setup.

Dimension Unit Carbide CB3-80

Wavelength (λ) nm 1035

Laser Power (P) W 15; 30; 60

Pulse energy (Ep) µJ 100; 200

Repetition rate (frep) kHz 150; 300

Pulse duration (τp) ps 8

Beam Quality (M²) - < 1.1

Beam diameter (Dr) mm 4.6

Polarization - circular

Focal length (f) mm 160

Focus diameter (df) µm 50
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The parameters detailed in Table 1 yield peak fluences of 
approximately 10.2 J/cm² and 20.4 J/cm² in the focal plane.
Lines of 4 mm length were ablated along the x-direction for a 
total of 1600 scans, using a repetition rate of 150 kHz as well 
as 300 kHz. The scan speed was adjusted to 1.5 m/s and 3 m/s 
respectively, which resulted in a pulse overlap of approx. 80 %
in each case.

The high-speed camera was set to a framerate of 3 kHz. The 
achievable camera resolution was 1500 x 800 pixels with a 
scale of 1.17 µm/pixel.

3. Results

Fig. 3 shows different chronological sequences of micro-
hole formation during the scanning of a groove in the x-
direction. The processing parameters are listed above each 
group of images. To obtain images with a higher signal-to-
noise ratio, each image is the average of 100 captured frames 
selected over the respective duration of 25 scans just before the 
actual number of scanning passes Ns is reached, which is 
indicated below each image.

The following points can be determined from an analysis of 
Fig. 3:
In each case micro-holes have begun to form before 100 scans 
have been completed. These micro-holes initially have a 
periodicity of approximately 50 µm, with sides which extend 
up to the top surface of the sample until approximately 200 
scans have been completed.
By the time 400 scans have taken place, the hole entrances have 
started to be ablated away from the top surface of the sample 
and this recession results in a partially successful groove with 
a fluctuating penetration depth. 
After 1600 scans the success of the grooving operation can be 
measured by comparing the penetration of the grooves from the 
top surface of the sample to the top of the highest micro-hole
entrance. For the parameters used here, this ‘groove depth’
hierarchy is;
Fig. 3a (240 µm), Fig. 3b (220 µm), Fig. 3c (130 µm), Fig. 3d 
(60 µm).

The parameters given in Fig. 3a clearly give the deepest 
groove results. In the case of Fig. 3b both the scan speed and 
the pulse frequency have been doubled (and the process time 
halved), and this has given similar results to Fig. 3a but with a 
slightly reduced ablation efficiency. 

In the cases of Fig. 3c and Fig. 3d the individual pulse 
energy has been doubled compared to Fig. 3a and Fig. 3b. 
These higher energy pulses remove more material per scan but 
this process makes the micro-holes larger and more resilient to 
conversion into an overall groove. Although the micro-holes 
seem to combine to some extent, their entrances remain 
relatively close to the top surface of the sample, frustrating the 
generation of an overall groove.

It should be borne in mind that, although the deepest groove 
depth (240 µm), was achieved by the parameters given for Fig. 
3a, the parameters used for Fig. 3b achieved 92% of this result 
(220 µm), in half the process time (2.13s rather than 4.26s). 
Therefore, the Fig. 3b parameters would be preferred from a 
production engineering point of view.

Fig. 3: Chronological sequences of micro-hole formation during the scanning 
of a groove in the x-direction. The number of scanning passes Ns already 
applied for each position is indicated below each image. The processing 
parameters are listed above each group of images. Each tile spans a width of 
400 µm is only a section of the original frame.

It is clear from the above results that fine groove cutting is 
possible in stainless steel but the mechanisms involved are 
complex and results are not linearly related to process 
parameters. A considerable amount of future work needs to be 
carried out to establish optimum process parameters.

4. Conclusions

The following conclusions can be drawn from this work;
a. Grooves or slits with very large aspect ratios can be 

created in stainless steel using ultrashort laser pulses.
b. The grooves created in the parameter range employed 

here are generated by the consolidation of a line of 
micro-holes which are drilled into the material in the 
early stages of the laser-material interaction.

c. The relationship between the process parameters and 
the resulting groove/slit is complex and requires further 
investigation.
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