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ABSTRACT

The validation of laser welding of metallic materials is challenging due to its highly dynamic processes and limited accessibility to the weld. The
measurement of process emissions and the processing laser beam are one way to record highly dynamic process phenomena. However, these
recordings always take place via the surface of the weld. Phenomena on the inside are only implicitly recognizable in the data and require further
processing. To increase the validity of the diagnostic process, the multispectral emission data are synchronized with synchrotron data consisting of
in situ high-speed images based on phase contrast videography. The welding process is transilluminated by synchrotron radiation and recorded
during execution, providing clear contrasts between solid, liquid, and gaseous material phases. Thus, dynamics of the vapor capillary and the for-
mation of defects such as pores can be recorded with high spatial and temporal resolution of <5 μm and >5 kHz. In this paper, laser welding of
copper Cu-ETP and CuSn6 is investigated at the Deutsches Elektronen-Synchrotron (DESY). The synchronization is achieved by leveraging a
three-stage deep learning approach. A preprocessing Mask-R-CNN, dimensionality reduction PCA/Autoencoders, and a final LSTM/Transformer
stage provide end-to-end defect detection capabilities. Integrated gradients allow for the extraction of correlations between defects and emission
data. The novel approach of correlating image and sensor data increases the informative value of the sensor data. It aims to characterize welds
based on the sensor data not only according to IO/NIO but also to provide a quantitative description of the defects in the weld.

Key words: deep Learning, multi-spectral, emission, sensor, laser, welding, copper, quality control, synchrotron
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I. INTRODUCTION

Sensor data play a pivotal role in numerous manufacturing
domains by enabling comprehensive monitoring, analysis, and
optimization of complex systems and processes. One such domain
is laser-based metal processing, where precise control of parameters
such as laser power, beam position, and welding speed is essential
to achieve high-quality parts. These integrated data provide valuable

insights into the dynamics and interactions occurring during
welding, facilitating the identification of optimal process settings and
potential anomalies. Once fine-tuned, the process can be reproduced
without high-cost in situ supervision, which, in turn, can drive down
cost and complexity further.

Careful consideration must be given to strike a balance between
the number of sensors, their cost, and the overall effectiveness in
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detecting anomalies. Factors such as the complexity of the process,
desired speeds compared to amounts of data, the level of accuracy
required, and the financial constraints of the plant or facility play
pivotal roles in determining the optimal sensor selection strategy.

While a blanket approach into fitting all process-relevant
equipment with sensors is viable, a once-performed calibration
with high-cost data can lead to comparable results at a reduced
sensor complexity during runtime.

II. STATE OF THE ART

The idea of correlating defect formation and emission data in
laser welding is an active field of research. Determining which
process emissions contribute the highest information gain is of par-
ticular interest to reduce setup cost and subsequent computational
resources.

Gao et al. have shown in Ref. 1 that the recorded visible spec-
trum of electromagnetic emissions provides a high information
landscape for defect detection and process stability estimation on
stainless steels. Vakili-Farahani et al. performed wavelet analysis2

on optical recordings spanning a spectral space from 450 to
1700 nm. They also identified changes in the visual spectrum to be
a viable indicator for keyhole and plume geometry with the possi-
bility for blowout. In their work with Ti6Al4V alloy, they showed
that 250–1700 and 450–850 nm contain mostly similar informa-
tion, giving insights into keyhole formation and collapse during the
welding process. Eriksson et al. identified the self-illumination
rather than reflective characteristics of the material plume.3 They
postulated its self-emitting radiation to be in the infrared range and
highly correlated with the visible spectrum even when the welding
process deviates from stable conditions with Pearson correlation
coefficients above 0.7.

Given the physical constraints of laser welding being an
ongoing process, the focus is on time series-centric evaluation
models. Previous attempts by researchers such as Shevchik et al.4

showed that laser back reflection signals and acoustic emission
monitoring during laser welding yield valuable process information
suitable for defect prediction. For surface-level defects such as
blowout, accuracies of up to 95% are reported, while subsurface cat-
egories such as pore formation are detected with 73% accuracy.
Time-dependent recordings were sliced using a sliding window
schema, converted into a spectrogram, fed through a CNN archi-
tecture, and supervised training was used on predefined defect
classes. Heilmeier and his team5 used a pool of statistical metrics to
evaluate recordings of combined spectral and acoustic emissions
from the welding of battery cells. By provoking defect formation
and comparing recordings against reference processes, they identified

statistical measures for the detection and evaluation of weld seam
defects.

III. OBJECTIVES

Current research has demonstrated that numerous defects in
laser beam welding processes can be detected through process
emissions. However, determining which emissions are relevant
requires expert process knowledge.2,3 This research paper proposes
a novel approach to leverage the cost-effectiveness of simple
sensors while performing calibration with high-cost in situ data.
Through a three-stage pipeline, emission data are deduplicated,
correlated with defects, and finally ranked according to importance.

IV. MATERIALS AND METHODS

For this study, spectral emissions and high-speed in situ
imaging during laser beam welding of CuSn6 and Cu-ETP samples
between 2 and 3mm with a variety of infrared (IR) laser sources
(1030 and 1070 nm) were used (see Table I). This includes a total
of 195 experiments with a combined database row count of 394 057
samples. For this work, the whole set of existing historical experi-
mental data was (re-)evaluated.

A. Synchrotron investigations at DESY

As part of Laser-Meets-Synchrotron,6 regular research cam-
paigns are scheduled at the Deutsches Elektronen-Synchrotron
DESY. High-energy x-ray radiation from the particle accelerator is
used to gain insights into metal probes during welding operations.
After the x rays pass through the material, they are converted into
visible light by a scintillator. This image is recorded by a high-
speed camera iSpeed727 on the opposite side. Meanwhile, the mul-
tispectral sensor 4D.TWO from 4D Photonics records a broad set
of emission data from an axis angle pointing at the welding area. It
offers cumulative spectral band counts at 5 kHz from 353 to
1850 nm with 32 individual bands (16 around the VIS and 16 IR)
spaced out at regular intervals to focus on different band groups
interesting for the welding industry.

As a practical implementation, the material is moved, with a
steady advance speed, by a linear axis through the cross-point of a
laser and synchrotron beam [see Fig. 1]. The resulting images are
flat field corrected and contrast enhanced. Annotating these high-
speed images is a labor-intensive process. An internal Mask-RCNN
network with a custom backbone was used to generate per image
statistics of keyhole geometry and material defects [see Fig. 2].
Recorded data were normalized based on process parameters as
much as possible. An assortment of unbiased preselections was

TABLE I. Technical specifications of utilized lasers.

Parameter Coherent ARM-FL IPG YLR-1500
IPG

YLR-3000
IPG

YLR-4000
IPG

1000-WC
IPG

6000-WC
TRUMPF
TD6001

TRUMPF
TD8001

Wavelength λ (nm) 1030 1070 1070 1070 1070 1070 1030 1030
Power P (W) 600–800 500–750 360–1000 3000 360–800 3000–5800 350–4000 1250–7700
Operating mode (−) cw cw Cw cw cw Cw cw cw
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used to discard experiments from our database. These included but
were not limited to the following: experiment length to be suffi-
ciently long, the detected keyhole center to be stable, no trend in
laser power being apparent, and the material moving and not static.

IV. RESULTS AND DISCUSSION

A. Defect label construction

A key trait of supervised machine learning is the provision of
ground truth data to compute gradient losses from. As the two
main categories, a regression or a classification approach can be
used. For this work- and domain-specific context, classification was
deemed to be the more appropriate path. To facilitate quantitative
defect descriptions, geometric per image statistics were combined
to devise seven meta-defect columns as multihot vectors.

In laser-based metal welding, keyhole integrity and pore for-
mation are the key factors in obtaining high product yields. While
certainly interesting, the exact percentage of pore volume inside the
product is not needed to deem a weld successful or a failure. A clas-
sification task of monotone increasing porosity brackets of different
sizes better reflects the industry needs. After inspection of the avail-
able dataset, the first four categories define the porosity of 0%–1%,
1%–5%, 5%–15%, and 15%–100% per 2D area, respectively, where
the first bracket is a proxy for near no pores given a margin of
detection error. The remaining steps were chosen arbitrarily and

can be adjusted at will by abiding to individual quality constraints
or ISO norms.

Additionally, three keyhole-related defects were introduced:
bulging, piercing, and splashing of the keyhole. Together, they form
a multiclass binary-encoded label vector. While the porosity quan-
tiles are exclusionary, the keyhole labels can appear simultaneously.

The porosity of the experiment was calculated by determining
the percentage of visible pore area relative to the area of the melt
[see Fig. 3]. The underlying concept involves recognizing that while
the pore area is absolute, the reference area should not encompass
the entire image size but rather only the region where a pore can
manifest physically.

This defining rectangle was established with its upper boun-
dary aligned with the surface of the probes, as pores can exclusively
manifest within the workpiece. The right side of the rectangle is
constrained by the averaged x-coordinates of the keyhole centers,
considering the keyhole as the sole source of pores. The lower side
is delimited by the upper five percent quantile of keyhole depths
for the same rationale. Conversely, the left side is determined by
the lower five percent quantile of pore center x-coordinates. This
design choice is rooted in the Gaussian x-ray beam distribution,
where the brilliance of the beam peaks in the center of the image
and gradually diminishes toward the edges, leading to a reduction
in the signal-to-noise ratio. During normal operation, detected
pores may consequently blend with the background noise before
reaching the image border.

As evidenced in prior research,4 a clear relation exists between
the instability of a keyhole and the formation of pores, particularly
when the keyhole enters a bulging phase.

During such bulging episodes, the keyhole expands its volume
into the horizontal plane of the workpiece, only to subsequently
collapse, trapping vapors within and resulting in the creation of
new pores [see Fig. 4]. While it is not a certainty that every bulging
keyhole will lead to pore formation, such occurrences are decidedly
undesirable in standard operating conditions and are classified as
defects if the lower portion of the keyhole contributes to 70% or
more of the overall volume.

The second keyhole irregularity centers on the rapid increase
in keyhole depth, serving as an indicator of inhomogeneous weld

FIG. 1. Abstract data acquisition setup at DESY (Ref. 7).

FIG. 2. Example feature extraction from a preprocessed DESY x-ray image
(left). Pore detections (blue) and the central capillary (red) were visualized from
pixel segmentation data (right). FIG. 3. Visualization of melt area considered for porosity calculations.
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depth. During the piercing phase, the depth fluctuates by at least
30% per time step, signaling a significant deviation in the consis-
tency of the weld line as mirrored by the unpredictable movements
of the surrounding weld pool [see Fig. 5].

Lastly, a splashing keyhole is characterized by a swift contrac-
tion or expansion covering at least 30% of the surface length. This
phenomenon serves as an indicator of uneven surface penetration
and is often accompanied by a material blowout, as higher layers
grapple with the full force of the laser energy, prompting rapid
melting and partial vaporization (see Fig. 6).

B. Pipeline stage 1: Dimensionality reduction

Preliminary statistical analysis of the dataset displayed a high
Pearson correlation coefficient, which can be indicative of input
data being repetitive in their informational content. To yield an
optimal usage of training time in terms of performance, pruning or
combining correlated features is advised. Two dimensionality
reduction techniques were investigated, namely principal compo-
nent analysis (PCA)8 and autoencoders (AE).9

Plotting every correlation coefficient permutation in order can
give an assessment into what reduction can be expected and what
method is advisable to use. It is important to note that this
measure of correlation can only show linear correlations due to the
inherent nature of the used covariance itself. Furthermore, it is
limited in scope to the underlying process used, including the laser
wavelengths and selected copper metal.

Inspecting the pairwise coefficients (see Fig. 7) displays the
expected self-correlations of 1 across the diagonal. Additionally,
there are two distinct patches in the lower left and upper right. The
former part shows a high correlation between the ultraviolet (UV)
(below 380 nm), visible (380–750 nm), and near-infrared (NIR)
(755–1000 nm) with slight reaches into the short-wave infrared
(SWIR) (1000–2500 nm) wavelength range. At the border to the
second patch, minor steps following the transition can be observed.
In accordance with previous research,2,3 high linear correlation
between the features exists, which can be exploited to perform
dimensionality reduction techniques target at linear-dependent data.

Given this preliminary analysis, a PCA performed with a
component count of n ¼ 2 yields a 95% reproduction of data vari-
ance at a mean squared error of MSEPCA(n¼2) � 2:32� 10�3.
Increasing the component count to n ¼ 4 raises the captured data
variance to 99.42% and MSEPCA(n ¼ 4) � 3:62� 10�4, as more
intricate spectral band correlations (as seen in Fig. 8) get

FIG. 4. Bulging weld at 18 kHz. Cropped, flat-field corrected, and contrast
enhanced.

FIG. 5. Piercing weld at 18 kHz. Cropped, flat-field corrected, and contrast
enhanced.

FIG. 6. Splashing weld at 18 kHz. Cropped, flat-field corrected, and contrast
enhanced.

FIG. 7. Pearson correlation coefficient pairwise across all wavelength samples
available in the dataset.
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approximated. Here, special caution must be emphasized, as
Fig. 7 can give the impression of only needing two components.

Comparably, an autoencoder outperforms the PCA at a latent
space size of n � 2 with an MSEAE(n ¼ 2) � 1:86� 10�3 and
MSEAE(n ¼ 4) � 1:34� 10-4. As an autoencoder is capable of learn-
ing nonlinear functional mappings with just one hidden layer,10

this performance increase can be attributed to smaller nonlinear
correlations in between spectral bands.

C. Pipeline stage 2: Defect prediction

To perform fault detection, state-of-the-art deep learning
models, especially LSTM networks, and Transformers are imple-
mented. Both are well-suited for capturing temporal and long-
range dependencies in sequential data, making them applicable for
analyzing fault patterns.

Annotated data are batched inside the dataset classes after
sorting by experiment time to produce time series training data on
the fly. Following inheritance-based design, trained PCA- and
AE-based dimensionality reductions are integrated on top as sepa-
rate datasets. For training on temporal data, an amount of lag is
defined to batch samples together, forming a time series sample.
While some deep learning architectures can operate on varying
input length, such as the Transformer, a fixed time step was chosen
for comparability between all presented models and seen as an
inherent result from usually fixed sample rates of sensors. It is
important to prevent cross-experiment batching to allow for tem-
poral coherence, and this will render all trailing samples of any
experiment not dividable by the selected time step unusable.

Through the previous synchronization step, the data were
resampled to around 5000 Hz or 0.2ms. As mentioned by Shevchik,4

relevant events regarding laser-based metal welding occur in the per-
ceptible time frame between 0.2 and 10ms. This limits the interest-
ing time lag, regarding defect formation, from 1 up to 50 samples.

Due to the collection of different advance speeds of work materials
during recording, as well as different gain settings selected for the
spectral sensor, no further normalization or regularization was per-
formed to mitigate absolute value drift. Instead, a grid search for all
lag values through the range of interest was performed, and the
highest accuracy was observed with a lag of 33 samples or 6.6ms.
The expressive power, therefore, solely relies on the relative signal
changes rather than absolute indications.

To establish a baseline for defect label predictability and dem-
onstrate the effectiveness of simpler architectures, an LSTM will act
as the starting point for the investigation into different deep learning
models at this pipeline stage. Due to its age of inception in 1997,11

they are a staple in sequence learning methods and included in virtu-
ally all modern machine learning libraries as function blocks. They
should always be considered when evaluating deep learning applica-
bility, and speed of development is paramount. In this work, the
default pytorch LSTM implementation was used, followed by a linear
layer to condense the output down to seven labels. Through hyper-
parameter grid search, a stacked configuration of 3 LSTMs with an
inner layer dropout of 0.5 was determined, where each block con-
tains a hidden layer size of 128 neurons. In addition, BiLSTM12 com-
prising two perpendicular-oriented LSTM networks were tested to
compare against and evaluate the influence of vanishing gradients on
feature attribution analysis.

To assess the viability of variable input length models, the
Transformer13 was implemented as well. A typical Transformer
acts as a sequence-to-sequence model, transforming one sequence
of features into another, by encoding an embedded representation,
applying multiple attention steps, and decoding the results again.
For a classification task, the last stage is not needed but rather the
attention-based outputs are used as inputs for a classifier stage directly.
Therefore, the Transformer in this work consists of three distinct
stages. A preprocessing, an attention, and a classification stage.

D. Reweighting training data

Defect introduction in machining is usually undesirable,
actively avoided, and meticulously looked out for, which challenges
the usage of normal operation data as training data. It can lead to
drastic imbalances between positive (1) and negative (0) classifica-
tions. In Fig. 9, such an imbalance in the utilized dataset class dis-
tribution can be observed. Training will become ineffective as
models can simply drop their weights to zero and collapse to a
constant function while still retaining high accuracy.

Ideally, additional experiments would be performed to inten-
tionally create samples for the missing class labels. If this option is
unavailable, as in this case, due to plant unavailability, cost, or
other reasoning, alternative solutions exist to balance the dataset.
Data augmentation aims to artificially inflate the dataset prior to
training based on injecting noise, manipulating statistical proper-
ties, or utilizing generative models to generate new and plausible
time series data. Wen et al.14 provide a comprehensive overview of
different time series augmentation methods to explore.

Due to real data availability in future DESY campaigns, an
alternative route of in-training adjustment of class label weights
was implemented. Pytorch offers the ability to introduce positive
weights during loss computations with torch.nn.BCEWithLogitsLoss.

FIG. 8. Pearson correlation coefficient pairwise across all wavelength samples
available in the dataset clamped between 0.999 and 1.
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Conceptually, sparse label classes contribute to higher losses than
abundant ones. Weights for the positive class probabilities are pro-
vided as the ratio of negative to positive class imbalance.

While this reweighting will solve the dataset skew regarding
the per label imbalance, a multiclass multilabel dataset introduces
an interlabel imbalance where labels correlate together, which can
be undesirable. The most reliable solution would be to split the
task into multiple classifiers to work on each label in a collective
and rejoin their results later. Alternatively, if one model is desired,
the loss at every training step can be weighted by the label class
contributions to reduce the overall imbalance. Weights are adjusted
by the label classes’ contribution to the overall positive classifica-
tions and renormalized to a weight tensor of one. By disabling the
default reduction technique at loss computation, multiplying the
weight tensor with the loss matrix, and reducing the loss, the per
class weighting is achieved. Both reweighting techniques presented
were implemented into this work’s training code.

The collected performance measures (see Tables II and III)
follow the assumption that more sophisticated architectures provide
better accuracy at the cost of training time. A basic LSTM utilizes the
lowest parameter count at 348k and subsequently the shortest train-
ing time of 245 s. While providing a modest baseline performance
with a total accuracy of 69.78%, it could surpass other models (in the
same features category) in bulging keyhole detection. This anomaly

could indicate further problems regarding the sparse definition of
positive samples in the label class. At a significant increase in model
parameters of nearly 200%, the BiLSTM could improve predictive
accuracy only marginally. By trading a third of the total parameter
count of the BiLSTM, the transformer model could still acquire the
overall performance crown at a total accuracy of 76.53%. As the most
complex architecture, it requires additional training time. This
ranking of model performance gets blurred when introducing labels
from previous time steps as features. On average, all models gained a
significant boost in performance of 15%, whereas the Transformer is
still marginally ahead at 90.80% (see Table IV). Surprisingly, both
LSTM closed the lead with a total accuracy of 90.26% and 90.49%,
respectively. The introduction of the previous prediction could intro-
duce an additional dimension of time progression to aid the LSTMs,
reducing the advantage Transformers get from their self-attention
mechanism.

All trained time series models can be used to perform live or
quasilive annotation of spectral data obtained during welding oper-
ations. In Fig. 10, a weld with the Trumpf TruDisk 6001 at
P ¼ 2000 (W), V ¼ 100 mm

s

� �
, and λ ¼ 1030 (nm) on Cu-ETP was

performed. By overlaying the predicted defect label annotations
onto a surface image, a clear coincidence of real-world defect for-
mation with class predictions can be observed. Nonstable welding
processes create irregular weld seams as shown by Kang et al.15

For porosity, the four classes are combined into a color code
of green, yellow, orange, and red depending on the severity of the
porosity. For the keyhole classes, only green (negative) and red

FIG. 9. Distribution of labels across the dataset.

TABLE II. Explored model architecture statistics with 32 features as inputs and 33
time steps.

Metric LSTM BiLSTM Transformer

Parameter (#) 348k 957k 599k
Epochs (#) 55 59 61
Training (s) 245.54 274.03 312.99
Inference (ns) 2.72 4.80 11.92

TABLE III. Model accuracies in percent with 32 features as inputs and 33 time
steps (best results bold).

Defect class LSTM BiLSTM Transformer

0%–1% 65.08 65.63 75.03
1%–5% 62.19 62.08 70.92
5%–15% 75.51 72.77 77.74
15%–100% 68.89 73.45 90.10
Bulging 78.63 75.13 69.57
Piercing 70.05 72.84 80.17
Splashing 68.15 67.35 72.17
Total 69.78 69.89 76.53

TABLE IV. Model accuracies in percent with 39 features (32 spectral, 7 previous
predictions) as inputs and 33 time steps (best results bold).

Defect class LSTM BiLSTM Transformer

0%–1% 93.82 94.18 94.34
1%–5% 91.91 92.27 92.66
5%–15% 95.06 95.48 94.93
15%–100% 97.27 97.41 97.36
Bulging 84.77 86.65 86.30
Piercing 88.20 88.55 89.42
Splashing 80.79 78.89 80.62
Total 90.26 90.49 90.80
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(positive) are used. The beginning of the weld cannot be annotated
due to the imposed fixed input size constraint. In the middle, a
combination of bulging and splashing with indications of medium
levels of porosity are indicated following a blowout of material
characterized by the irregular weld surface with some material
missing. Inspecting the annotations on the right, a problem with
stability becomes apparent. Piercing and bulging keyhole switch
rapidly between positive and negative classifications, resulting in a
barcode pattern. Improved model design or postprocessing in the
form of a rolling average could be investigated further.

E. Pipeline stage 3: Attribution analysis

The final stage in the proposed pipeline utilizes feature attri-
bution (also called salience) methods to infer relative importance
scores for input features. By focusing on integrated gradients
(IG),16 a wide range of machine learning models can be used
besides the one presented.

IG aims to provide a nuanced understanding of feature impor-
tance by considering the entire path of input changes from a base-
line to the actual input. By performing a feature attribution on a
per label basis and averaging the results over the whole dataset,
emerging patterns specific to the labels’ formation can be extracted.
Attribution scores, especially normalized, are relative measures and
should not be used to interpret features directly. Selecting an appro-
priate baseline vector to perform the path integration is paramount
in deriving meaningful interpretations. Sturmfels et al. have shown
that the selection of baseline vectors is not trivial, and no superior
sampling method exists.17 For this work, a Monte-Carlo-based
resampling of the feature space combined with averaging the result-
ing vectors was used. The process is stopped when either the baseline
vector does not change anymore up to a certain precision or the
feature space is exhausted.

While our brute-force approach by extensive sampling of
the feature space shows promising results, Hase et al. have shown
that explainability functions such as IG suffer an error called
out-of-distribution problem.18 By removing input features to gauge
their relative relevance to the output, model inputs often drop out
of the distribution they were trained on, yielding subpar results and
skewing attribution metrics in the process (called “socially mis-
aligned” in the paper). Training models with attributions in mind
can mitigate that problem by injecting those “counterfactual”
inputs during training as part of the dataset. It is unclear whether
this work is significantly impacted by this problem, which is still an
active field of research. Considering that our results are numerically

stable and physically sound, it is expected that the magnitude of
this error is negligible. Introducing a vast number of features and
not performing dimensionality reduction can also lead to attribu-
tions approaching or even surpassing random features selections, as
shown by Hooker et al. from the Google Brain project in Ref. 19.
In their performance test, they discovered that for the Resnet-50
architecture, 90% of input features had a near-zero impact on the
overall decision making. This leads IG to perform poorly unless
additional retraining for distribution alignment was performed in a
technique they called ROAR. Like the results of Hase et al., the
introduction of “counterfactual” inputs during training is needed to
align the models’ input features distribution with the expected attri-
bution distribution.

In Fig. 11, the results of an IG attribution analysis for the pre-
viously trained 32 feature LSTM on the bulging defect class are
shown. For the baseline vector, the average of all negative samples
in the dataset regarding the class is picked. The resulting plot
depicts the integrated path from a classification as nonbulging to a
bulging keyhole. Positive values in attribution score indicate that a
rise in a certain wavelength at a specific time step would increase
the likelihood of switching from a negative (nonbulging) to a posi-
tive (bulging) class. Similarly, a negative attribution score indicates
a decrease in certain spectral emissions at specific timeframes to be
beneficial for a positive classification. For the presented example,
an overall increase in spectral emissions over the whole spectrum is
calculated with a peak at time step of −20 (−4 ms). This could
indicate improper absorption through destabilizing of the keyhole
area. It is followed by a decline in signal up until the time step of
−10 (−2 ms). Here, the visible spectrum continues to decline while
the UV stabilizes, and the SWIR is rising sharply. At the time step
of 0 (0 ms), the bulging keyhole is fully developed and absorption
is significantly enhanced via multiple reflections of the beam inside
the keyhole and increased vertical expansion.

As visual inspection of a static 3D landscape can be difficult,
projecting the results along either the time dimension (see Fig. 12)

FIG. 10. Annotation of weld experiment Cu-ETP-ID3 superimposed on the
weld-surface image (transformer model, wavelength data only, and truncated).

FIG. 11. Normalized LSTM IG attribution analysis for bulging keyhole defect
over the whole dataset (negative attributions in blue, positive attributions in red).
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or along the feature dimension [see Fig. 13] can aid in further
interpretation, which, in turn, also provides quantitative descrip-
tions of which spectral range is most relevant for a class of
defects.

V. CONCLUSION

In this paper, a general framework for multispectral sensor
calibration using sparsely available high-cost synchrotron data was
presented. A three-step pipeline was presented consisting of data
deduplication, defect prediction, and attribution analysis. Data
deduplication was achieved through principal component analysis
and autoencoders. Each provides benefits depending on the func-
tional correlation type but yields compression ratios of more than
90% without a perceivable loss in defect predictability. By compar-
ing LSTM, BiLSTM, and Transformer deep learning models, differ-
ent architectures were explored including a way to mitigate severe
dataset imbalance through the means of loss reweighting.
Deploying a trained model in a real-world environment has shown
promising results as automatically generated defect annotations
coincide with optically observed surface deformations. Using inte-
grated gradients spectral patterns indicates that defect formations
were extracted from trained deep learning models. This provides a
more robust understanding of feature importance and a semiauto-
mated pathway for the selection of useful wavelength channels.

The multispectral sensor system 4D.TWO offers a huge
variety of wavelength channels and is, therefore, a beneficial system
for machine learning analysis. Depending on the material and
process setup, the used channels can be individually chosen due to
their contribution to the algorithm’s accuracy. Further investiga-
tions can explore attribution scores more in-depth and create quali-
tative comparisons to other metals or for other laser wavelengths
following this pipeline.
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