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A reliable characterization of x-ray pulses is critical to optimally exploit advanced photon sources,

such as free-electron lasers. In this paper, we present amethod based onmachine learning, the virtual

spectrometer, that improves the resolution of non-invasive spectral diagnostics at the European XFEL

byup to 40%, and significantly increases its signal-to-noise ratio. This improves the reliability of quasi-

real-time monitoring, which is critical to steer the experiment, as well as the interpretation of

experimental outcomes. Furthermore, the virtual spectrometer streamlines and automates the

calibration of the spectral diagnostic device, which is otherwise a complex and time-consuming task,

by virtue of its underlying detection principles. Additionally, the provision of robust quality metrics and

uncertainties enable a transparent and reliable validation of the tool during its operation. A complete

characterization of the virtual spectrometer under a diverse set of experimental and simulated

conditions is provided in themanuscript, detailing advantages and limits, aswell as its robustnesswith

respect to the different test cases.

X-ray free electron lasers (XFELs) produce x-ray pulses characterized by
extreme brightness, high degree of transversal coherence, and temporal
duration of the order of femtoseconds or shorter1–5. The most common
mean of generating these pulses is the self-amplified spontaneous emission
(SASE)process6–8, which is initiated by the intrinsic shot noise of accelerated
electrons, and is therefore stochastic in nature. As such, x-ray pulses
inherently fluctuate in spectral, spatial and temporal properties. A detailed
characterization of these properties is instrumental to accurately interpret
measurements at XFELs, and to ensure full exploitation of the potentialities
of these machines, even more so accounting for the steady increase in
breadth and complexity of operation modes being developed9,10.

To this end, several x-ray beam diagnostics devices are available, each
with a set of advantages and disadvantages. These are characterized by a
certain degree of compatibility with experimental requirements, in terms of
measurement accuracy, fraction of x-ray pulses characterized, and inva-
siveness. Furthermore, diagnostic devices require a varying level of expert
intervention for their usage, suchas in thederivationof calibration constants
to transform their readings into physically-meaningful output.

The European XFEL5,11 is a megahertz-repetition-rate XFEL operating
in burst mode. It delivers 10 Hz trains of up to 2700 x-ray pulses, whose
separation can be as low as 222 ns, which is equivalent to a repetition rate of
4.5MHz. Among the diagnostic tools available at European XFEL12, a non-

invasive x-ray gas monitor (XGM)13,14 is used to quantify the energy of the
x-ray pulses and their average position. To characterize spectral properties
of soft x-ray pulses produced by the SASE3 beamline, mainly two different
devices can be utilized. The grating-based spectrometer (GS, example data
in Fig. 1a)15 consists of a variable-line-spacing grating monochromator
operating in spectrometermode togetherwith an imager16. TheGSprovides
high-resolution spectral measurements with an energy-dependent resolu-
tion δE/E < 0.05%15, but it is fully invasive and thus disrupts the beam for
further downstream experiments. Additionally, owing to its detection sys-
tem, only one spectrum per train can be collected. The gas-based photo-
electron spectrometer (PES, example data in Fig. 1b)17,18 consists of 16
detectors measuring the time-of-flight of photo-electrons at angles relative
to the beam (further details are given in Supplementary note I). Differently
from the GS, it allows for pulse-resolved beam spectral diagnostics at up to
4.5 MHz in a non-invasive manner12. While the grating spectrometer has a
high signal-to-noise ratio and a simple calibration, thePEShas amuchmore
complex non-linear calibration by virtue of the underlying measurement
principle, and a lower signal-to-noise ratio and resolution.

Using an approach based on ghost imaging, Li et al.19devised amethod
to combine the advantages of the two devices, providing thereforemeans to
characterize each x-ray pulse precisely, non-invasively, and exploiting the
calibration of the GS alone. To achieve so, data from both devices are
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collected for a short period of time, and amap between them is fitted. Once
this relationship is known, the non-invasive device alone can be operated to
obtain pulse-resolved, higher-resolution and calibrated spectra.

The routine utilization of similar procedures could significantly opti-
mize the beamtimeusage atXFELs, byproviding higher-quality data to steer
experiments and interpret their outcome. To sustain regular operation,
proceduresmust be as automated and robust as possible. Nonetheless, there
are several elements in the approach by Li et al. which might be difficult to
automate. Due to the abundant amount of noise in the PESmeasurements,
relevant data should be selected and denoising techniques applied, so that
the fit is not affected by it. Those steps are often done through careful
analysis of the data which are not trivial to automate. Another critical

element to enable reliable automation is the provision of an estimate of data
quality, as the devices in question have themselves limited resolution, which
propagates into the algorithm. Given that such a method requires stable
operating conditions, any deviation from themmust be established, in order
to immediately inform of a decrease in data quality, so that contingencies
can be planned. Overall, such methods must be easy to use and robust, so
that scientists focus on the science and not on tuning one extra tool.

In this paper, we present the virtual spectrometer (VS, example data in
Fig. 1c), a nondestructive diagnostic tool leveragingmachine learning (ML)
which improves the data quality of the PES, and automates its operation,
through the fusion of information coming from several data sources. This is
particularly advantageous during quasi-real-time monitoring of the

Fig. 1 | Schematic of the virtual spectrometer input andoutput sources, and of the

different operational phases. a Representative data from the grating spectrometer

(blue solid line), which is used during the training phase (dashed line), andb time-of-

flight data from the photo-electron spectrometer (dark green and orange lines),

which is used during the training and inference (thick solid black line) phases. For

the latter, only two out of sixteen channels are shown. Pulse energies provided by the

x-ray gasmonitor are employed during training and inference. cRepresentative data

generated by the virtual spectrometer (red line), together with the 68% confidence

level uncertainty band around the prediction (red band). d Selected region-of-

interest of manually calibrated photo-electron spectrometer with energy axis on the

top for each channel. Each channel has a different time-of-flight offset and inde-

pendent calibration constants. e Comparison between grating spectrometer and

virtual spectrometer in a selected region-of-interest. The Pearson correlation coef-

ficient, ρ, between the GS and VS spectra can be seen in the plot.
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experiment, allowing for its more reliable steering. By applying this corre-
lation method, higher spectral resolution and higher statistics is obtained,
e.g., in core-level photoelectron20 or x-ray emission spectra21, since the
electron or photon spectra can be recorded using directly the broad and
intense SASE pulse, and the reduced performances upon conventional
monochromatization of the x-ray pulses are avoided. Other examples, for
which thismethodwould be beneficial, are related to experiments involving
resonant excitations in the sequential photoionization22 or stimulated
Raman processes23. The detailed knowledge of the spectral content of each
pulse is in fact essential for the quantitative analysis of these nonlinear
phenomena. Furthermore, this machinery can be leveraged to enable
improved temporal diagnostics of XFEL pulses, for instance exploiting the
angular streaking technique9,24–26, for which high-quality spectral char-
acteristics of the pulse are required.

Advances inML have already been shown to be instrumental to either
improve control27–30 or diagnostics quality31–36 in photon facilities. Key ele-
ments of the VS are the transparency in providing data quality assessment,
obtained through continuous uncertainty and resolution evaluation, and
automation of the calibration procedure. Such automation is achieved by
taking advantage of the SASE beam inherent properties. The VS is robust
against noise, and has been tested anddeployed at EuropeanXFEL as part of
the portfolio of photon diagnostics tools available to scientists and XFEL
operators.

The underlying principles of the VS are explained in the “Methods”
section, while in the “Results and discussion”, we demonstrate the
enhancement in resolution with respect to the PES obtained with both
experimental andartificially produceddata.Theunderlyingprinciples of the
VS are explained in the next section. The following sections demonstrate
enhancement in resolution with respect to the PES obtained with both
experimental and artificially produced data. A summary and an outlook
conclude the paper.

Methods
Virtual spectrometer

Spectral measurements contain two elements: the signal produced by the
XFEL beam and low-variance noise. The highly stochastic pulse-to-pulse
behavior of a SASE beam8 can be used to devise a method for automated
selection of relevant data. We therefore exploit principal component ana-
lysis (PCA)37 to preserve high variance components of the input data.

The operation of the VS entails two main phases, training and infer-
ence. During the initial training, the XGM, the PES and the GS collect data
synchronously. Subsequently, during inference, the GS is removed and an
approximate estimate of the GS spectrum is obtained in a non-invasive
manner from the the PES data and XGM pulse energies. The resulting

spectrum is pulse-resolved, andwith better resolution, compared to the PES
one (see the “Simulation results” section). Figure 2 illustrates the general
approach, which is further discussed in the following paragraphs.

A region-of-interest of 600 samples is identified for all 16 PES sub-
detectors, by using a low-pass filter and identifying the maximum peak as
the region center. By taking such a large region-of-interest, we can ensure
that the relevant spectral features are stored. The large amount of noise
coming from such initial generous data selection is filtered out by per-
forming PCA on the photo-electron spectra, while preserving the key fea-
tures.Thepulse energy is also included in thePCA input, so that correlations
between the spectra and the pulse energy can be used to reduce the data
dimensionality. Thenumber of principal components is chosen by checking
the fraction of variables contributing to at least 90% of the cumulative
variance, with a minimum of 600 components. In the best scenario, such
approachcorresponds to anine-folddata reductionof the input data. PCA is
also applied to the grating spectrometer data, with a threshold for the
number of variables corresponding to a 90% cumulative variance, or at least
20 components.

After this pre-processing stage, a fit is performed, which maps the
principal components from the PES to the principal components of the GS.
Thefit is performedusing theAutomaticRelevanceDetermination (ARD)38

method. Weights with large uncertainty are set to zero, leading to a very
robust fit. Further information on the choicfe of hyper-parameters for the
method is given in Supplementary note IV. An uncertainty is also made
available by calculating the root-mean-squared error between the obtained
spectra and the GS measurement convolved with the obtained resolution
function (see Supplementary noteV). This allows scientists and operators to
understand limitations of the approach in different regions of the energy
spectrum.

Furthermore, the consistency between the training data and input data
during inference is continuously monitored using two methods, which
ensures that drifts in the data are identified, informing the operators that a
retraining is necessary. In general, such an operationmay be needed in case
of PES settings changes, or in case the training dataset is no longer repre-
sentative of the current conditions. The first method calculates a Z-score
between the XGMmeasured pulse energies and the training averages, such
that if such a value deviates strongly from zero, the operator knows that a
significant difference with respect to the training set arose. As a second
method, the PES input data is compared to the mean and covariance esti-
mated in training and an indication of out-of-dataset samples is produced.

The performance during the inference phase is sufficient to ensure
compatibilitywithquasi-real-time requirements, that is, theVScangenerate
spectra which can be used to effectively steer experiments. In the tests
performed, a typical training phase entailed 20 minutes of data-taking
(corresponding to about twelve thousand spectra collected at 10 Hz) fol-
lowed by roughly 2 minutes of model training. In case of retraining of the
VS, the GS setup takes roughly 30 minutes.

In the following and if not explicitly mentioned otherwise, when
making comparisons with the calibrated PES data, the measurement per-
formedat the channel at 0∘ (horizontal direction) is shown in this article. The
reason for this choice is the high signal-to-noise ratio in this channel, due to
the almost completely horizontal polarization of the XFEL beam.

Results and discussion
Experimental results

We have tested the VS under a diverse set of realistic operating conditions,
and estimated its resolution relative to the GS. In all cases, the data has been
collected in two separate datasets with identical configurations, such that the
first run is used for the model fit (training), and a second, statistically
independent one for producing the test results (inference). More informa-
tion on the datasets is given in Supplementary note II. As the reference
spectrum from the GS is also collected in our tests, we can model the
resolution loss in theVS as the convolutionwith a response functiondirectly,
and estimate a resolution within the scope of such a model. The estimated
resolution therefore assumes that the GS measurement is a very accurate

Fig. 2 | Schematic of the virtual spectrometer operation. a During the training

phase, data generated from the photo-electron spectrometer (PES, x), the grating

spectrometer (GS, y), and the x-ray gas monitor (XGM, I) are collected. From this,

the principal component analysis (PCA) projection maps Pp( ⋅ ) and Pg( ⋅ ), together

with the inverse PCA map Ug( ⋅ ), are derived. Finally, the function f( ⋅ ), which

predicts GS data from the PES and XGM inputs using data projected after the PCA

step, is defined. bDuring the inference phase, data generated from the PES (x0) and

the XGM (I0) are collected and used to infer the higher-resolution spectrum, using

the PCA projection map Pp( ⋅ ), the function f( ⋅ ), and the inverse PCA map Ug( ⋅ ).

Finally, uncertainty is propagated.
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reference in comparison to the virtual spectrometer. Details on the mathe-
matical model used for the resolution estimate are given in Supplementary
note V. An additional validation is shown in Supplementary note VI.

Figure 3 shows the resolution of theVS (filledmarkers), as a function of
the photon energy for different PES andmachine conditions. The resolution
of the PES direct measurement for the 0∘ channel is shown for comparison
using the samemethod fordatasetsDA,DB, andDC (unfilledmarkers),with a
manual calibration derived fromusing Simion39 simulations. Pointswith the
same markers correspond to the same analysed dataset and therefore, the
same beam conditions and instrument settings. For each of these, the four
different points correspond to a resolution estimate obtained after applying a
filter in the given energy rangehighlightedby thehorizontal bar (energybin).
This energy binning allows us to analyse the resolution as a function of
photon energy. The general loss of resolution as energy increases seen in the
PES is explored in the “Simulation results” sectionand it is related to thenon-
linear relationship between the measured time-of-flight and the photon
energy. It should also be noticed that the signal-to-noise ratio is significantly
lower in the highest-energy bin, leading to a worse resolution in that bin in
most datasets. Themean spectra and their root-mean-squared error over all
trains for each dataset are shown in Supplementary note XI, where it can be
appreciated that there is almost no signal in the last energy bin.

Note that the VS in datasets DA, DB, and DC has a significantly better
resolution, compared to the PES resolution achieved, and such a result has
been achieved in only approximately 20 min of data-taking and a few
minutes of model fitting, while otherwise a tedious and time-consuming
calibration procedure would be needed. In dataset DA, for instance, the
average resolution of the VS is about 40% better than the highest signal-to-
noise ratioPESchannel for the samedata.The improvement givenby theVS
in dataset DB is approximately 36%, while it is 25% in dataset DC. The VS
combines multiple PES channels using PCA to select high variance com-
ponents, together with its correlation to the GS, thereby taking advantage of
multiple sources of informationat once. Several effectsmay contribute to the
difference in theobserved level of improvement.The resolutionsobserved in
the PES data for datasets DA, DB, and DC vary at least due to the different
required PES settings in each acquisition energy range. In the “Simulation
results” section, we use simulations to show that miscalibrations of the PES
may affect the PES resolution significantly, while the VS is resilient to them,
as it takes advantage of both PES and GS data.

Comparing the tests with average photon energy of 917 eV (datasets
DB,DD,DE, andDG), we notice that the resolution is strongly influenced by
the pulse intensity, gas pressure, and other elements of the PES configura-
tion, which vary in those datasets (see Supplementary Table 1). DatasetsDC

andDF differ due to usage of the so-called “interleaved”mode, in which the

sampling rate is doubled, but half of the channels aremade unavailable.We
can see that the resolution is slightly worse in interleaved mode, indicating
that, in this particular test, the loss of the channels has a higher impact,
compared to doubling the sampling rate. To further explore more chal-
lenging conditions, in addition to target gas Ne, we also operated with N2

and Xe in datasets DH and DI. The high photo-electron kinetic energy and
the broad lifetimewidthswhenusingXe as the PES gas in datasetDI leads to
poorer resolution, compared to the previous situations. Additionally, the
spin-orbit interaction leads to splitting of the Xe orbitals 3d3/2 (binding
energy 689 eV) and 3d5/2 (binding energy 676.4 eV), which is expected to
have an effect in the PES resolution, and thereby, in the VS resolution.

Discrepancies between the VS and GS are not explained alone by the
mathematical description of the resolution in Supplementary note V. The
remaining effect is modeled as a residual uncertainty, which estimates the
potential effect of thePESnoise in the results. Supplementary noteVII of the
SupplementaryMaterial shows the signal-to-noise ratio for each dataset on
average. Notice that the estimated uncertainty band includes both the effect
of the resolution loss and such noise, although the breakdown of the
uncertainty band into resolution and noise is available to operators through
the graphical user interface (see Supplementary note X). One method to
reduce the effect of such mismodelling effects is detailed in the Supple-
mentary note VIII: the idea is to smear the initial GS data, such that thefinal
VS resolution is decreased, while the signal-to-noise ratio is increased.
Operators may profit from such a trade-off, in case a high signal-to-noise
ratio is favored to a worse resolution. This might be the case when the
number of spectral modes of the x-ray pulse is limited, and knowing the
average shape of the spectrum is desired.

As an additional validation step, the mean spectra and their root-
mean-squared error over all trains obtained by the VS are compared with
those by the GS in Supplementary note XI. There, average PES results for
datasets DA, DB, and DC are also reported. Excellent agreement is observed
between the output of GS and the VS, while large differences are observed
when compared with the PES data.

We further assess the fit quality in dataset DA, by examining the χ2

normalized by number of degrees of freedom, calculated by measuring the
deviation of the prediction after the PCA step, normalized by the fit
uncertainty. Such a variable is defined as

χ2=NDOF ¼
1

NDOF

X

k

�ypred;k � �ytrue;k

δ�yk

� �2

; ð1Þ

where �ypred is the PCA-transformed prediction, �ytrue is the PCA-
transformed expectation, δ�y is the fit uncertainty, and NDOF is the number

Fig. 3 | Resolution estimates for several x-ray beam conditions and photo-

electron spectrometer (PES) configurations. Smaller values in the resolution axis

(δE/E) mean better resolution. Virtual spectrometer (VS) results are shown in filled

markers. Each marker style corresponds to results from one of the datasets men-

tioned in the legend. Each result is shown in four photon energy bins (see the

“Experimental results” section for more details). The PES (channel at angle 0∘)

measurements are shown with open markers for a few test cases which have been

calibrated directly on the data indicated in Supplementary Table 1. The vertical

uncertainty band corresponds to a 95% confidence level band estimated through the

root-mean-squared error of the resolution in four random splits of the dataset. The

horizontal bar corresponds to different energy bins in a dataset. The vertical axis on

the right-hand-side shows the resolving power, defined as E/δE.
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of degrees of freedom. If the fit produces unbiased and uncorrelated
predictions of theGS principal components, itsmean value is expected to be
one. By assessing its deviation from unity as a function of the experimental
setup, onemay identify variables that contribute to the degradation of the fit
quality. The average normalized χ2 for the datasetDA is 1.14, with a sample
variance of 0.26 over the test dataset. Figure 4 shows the pulse energy versus
χ2 normalized by number of degrees of freedom. As it can be observed, the
quality of the fit decreases the more the pulse energy deviates from its
average value. For this reason, one of the data quality checks performed in
the VS is whether the pulse energy during inference is within three standard
deviations from the same quantity during training. The PES, GS and VS
spectra for the samples highlighted in Fig. 4 are shown in Supplementary
note III.We have also compared the root-mean-squared deviation between
the output of the PESand theGS, and between theVS and theGS in Fig. 5. It
shows that theVS spectra have a higher similarity with the GS, than the PES
does,while a clear correlationbetween themcan still be observed.Variations
in the spectral properties are therefore expected to be better modeled in
the VS.

A separate validation step has been taken by calculating the Pearson
correlation coefficient between the VS andGS spectra. This is shown as ρ in
Fig. 2d, as well as in Supplementary note III. The Supplementary note XII
shows the average and root-mean-squared error values for the per-spectra
correlation coefficients in each dataset. It is 91 ± 2% for dataset DA, and
always above 82% on average for the other datasets.

Simulation results

Statistical simulations of spectral data are an ideal proxy to investigate the
behavior of the spectrometers under controlled conditions. As for experi-
mental data, the reference spectrumof theGS is used tomodel the resolution
loss as the convolution with a response function. Figure 6 shows the

obtained resolution of thePESandVS relative to theGS for each simulation.
Filled markers correspond to the VS, while unfilled markers of the same
color correspond to the sum of all PES channels. Further simulation details
are available in Supplementary note IX.

Weproduced four simulations, and for each twostatistically independent
datasets, one for training andanother for inference. Inone simulation, thePES
channels are calibrated perfectly, while in another random small shifts in the
time-of-flight measurement simulate the effect of an incorrect offset in the
calibration parameters. In fact, a perfect calibration of the PES relies on the
precise alignment of the time-of-flight axis across different sub-detectors. In
most experiment use-cases, there is no clear need for analysing separate PES
channels, as they are expected to convey the same information and therefore,
onewouldwish to combine the information of separate channels tomaximize
the signal-to-noise-ratio. In this case, the sumof all its channels is the simplest
method to increase the signal-to-noise ratio of the data, provided that the
channels are correctly aligned. In fact, when there is a misalignment, the sum
has a worse resolution, due to the shifts in the energy axes between different
sub-detectors. The VS achieves a better resolution by combining information
fromPESchannels and correlating themwith the simulatedGSmeasurement.
In particular, the impact of the channel misalignment is not significant in the
VS, as it uses PCA for the selection of features.

In a third artificial dataset, the physical non-linear mapping between
time-of-flight and energy has been linearized. Since the PES measurements
happen as a functionof time-of-flight andnot photonenergy, thenon-linear
effect compresses spectral modes at several photon energies into a smaller
range of time-of-flight measurements, leading to a loss of resolution at
higher kinetic energies of the photo-electrons. This is verified by comparing
the resolution for the simulation in the perfect non-linear calibration
dataset, and the linearized dataset. Note, that, as δE is constant for “Line-
arized” dataset, the value of δE/E in the plot decreases as a function of the
photon energy.

In a fourth simulation, also linearized, the number of spectral modes
has been reduced to only two on average, while in previous cases it was on
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Fig. 4 | Effect of pulse energy as a function of the fit quality for dataset DA. Pulse

energy versus χ2normalized by the number of degrees of freedom a, together with the

marginal normalized χ2 distribution b, for dataset DA. The χ
2 is calculated using the

principal components' latent space, in which the features are— by construction—

uncorrelated. The spectra for the highlighted examples are given in Supplementary

note III of the Supplementary Material.

Fig. 5 | Correlation between the PES and VS reconstructed spectra. The root-

mean-squared deviation between the PES (0∘ channel) and grating spectrometer

versus the root-mean-squared error between the virtual spectrometer and the

grating spectrometer is shown for dataset DA. The spectra in both cases are nor-

malized to one, so that only the shapes are compared. The vertical and horizontal

dashed lines are a guide for the eye showing themedian of themarginal distributions.
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average ten. The VS achieves an improved resolution in this case, by taking
advantage of the correlation with the GS. This also explains how some
differences observed in the previous section arise: different XFEL config-
urations produce different number of spectral modes.

Conclusions and outlook
The accurate characterization of spectral properties ofXFELpulses is critical
for many experiments, and the ability to do so parasitically maximizes
beamtime utilization. In this paper, we have presented a virtual spectro-
meter, which leverages on machine learning to significantly enhance the
quality of x-ray diagnostics at the European XFEL. As part of our study, we
have shown an improved resolution of up to about 40%. Additionally, the
average spectra root-mean-squared deviation relative to the grating spec-
trometer is also shown to significantly improve (see Supplementary
note XI).

This virtual device combines the benefits of two spectrometers,
which are either based on a grating or on detection of photo-electrons,
and a pulse energymonitor. The former spectrometer is high-resolution,
but invasive and limited in repetition-rate. The latter one is lower in
resolution and its calibration is non-trivial, time-consuming, and
depends on several configuration parameters. However, it is non-
invasive and can resolve each x-ray pulse. The virtual spectrometer
combines the benefits of the two devices, by exploiting both in a training
phase, and only the latter afterwards. It is non-invasive, pulse-resolved,
and with resolution higher than the photo-electron spectrometer. Fur-
thermore, the virtual device does not need any calibration or pre-pro-
cessing, and therefore it enables a high degree of automation.

We firmly believe that any automation must found on extensive vali-
dation readily available to operators, so as to ensure that the data quality of
both the input and of the output match the expectations of the underlying
model. To this end,wedesignedandbuilt inquality checks andalerts, so that
operators can understand limitations of such a tool readily, and react
appropriately.

The virtual spectrometer is implemented and available to scientists at
European XFEL, both for quasi-real-time analysis, and after data has been
stored to disk. Such implementation includes an interface to train themodel
from saveddata, and to perform inference as soon as PESandXGMdata are
acquired, transforming them into an entry point to the virtual spectrometer.
It provides, additionally, an estimate of the uncertainty band, the reliability
of each input channel, and the compatibility of the pulse energy in training
and inference. Images of the graphical user interface can be seen in Sup-
plementary note X.

The performance and robustness of the virtual spectrometer have
been carefully examined in this paper by calculating its resolution
relative to a higher resolution device in a varied set of realistic experi-
mental conditions and using simulations. In any considered case, the

virtual device achieves better resolution than a directmeasurement using
only the PES, by taking advantage of multiple sources of information. It
should be noted that, in thismanuscript, themeasurement conditions, in
terms of x-ray properties and PES settings, were frozen between the
model training and the virtual spectrometer operation phase. This
limitation may be removed through the interpolation of the map for
variable PES settings. Such procedure requires a non-linear interpola-
tion method, which we have already implemented and tested using a
Bayesian neural network (BNN)40. Results using a BNN have not been
reported in this paper, and are left for further research.

While the tests described here focused on x-ray diagnostics at the
SASE3 FEL source, we intend to extend the procedure towards mea-
surements at other European XFEL beamlines, where similar combi-
nations of invasive/non-invasive devices can be exploited. The
improvement of beam characterization through the provision of auto-
mated, higher resolution, angle- and pulse-resolved spectral measure-
ments enables the automation of further diagnostics. In fact, the virtual
spectrometer is essential to enable accurate temporal diagnostics, for
instance based on angular streaking9,24–26. This is the subject of active
research at European XFEL, a critical step to enable the exploitation of
attosecond XFEL science.

Accession codes

The Virtual Spectrometer software is open-source and available at https://
git.xfel.eu/machineLearning/pes_to_spec. The software is licensed under
the terms of 3-clause BSD. Details on how to reproduce the manuscript
results with this software are provided in Supplementary note XIII.

Data availability
Thedataused in thismanuscript is public andavailable viaZenodo in ref. 41.
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