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1 Introduction

Deeply-virtual Compton scattering (DVCS) [1–3] is generally accepted to be the “gold-plated”

process with the highest potential impact on the determination of the generalized parton

distributions (GPDs) in the nucleon. The problem is, however, that at leading order (LO)

the DVCS and time-like Compton scattering (TCS) amplitudes only involve GPDs at the

x = ξ line, where x is the average parton momentum and ξ is the asymmetry parameter. The

double deeply virtual Compton scattering γ∗(q1)+N(p1) → γ∗(q2)+N(p2) (DDVCS) avoids

this restriction [4, 5] and can be accessed by studying exclusive electroproduction of a lepton

pair. Varying the invariant mass of the lepton pair, one can, in principle, directly extract the

GPDs from the observables. DDVCS can be measured in near future at both fixed target [6]

and collider facilities [7, 8]. A preliminary impact study of DDVCS phenomenology for the

JLAB12, JLAB20+ and EIC kinematics [9] reached promising conclusions.
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The main challenge of all GPD studies is that the quantities of interest are functions

of three kinematic variables. Their extraction requires a massive amount of data and very

high precision for both experimental and theory inputs. The future GPD determinations will

therefore have to be based on global fits of all available experiments and the constraints from

lattice measurements and PDFs in the forward limit. It is imperative that all ingredients in

such fits are calculated with the same precision. Ideally, one would like to reach the same level

of accuracy as in inclusive reactions, where the next-to-next-to leading order (NNLO) analysis

has become the standard in the field [10]. One-loop DVCS coefficient functions have been

known for a long time [11, 12] and the two-loop ones have been calculated recently [13–17].

Two-loop evolution equations for the GPDs are known from [18, 19]. Three-loop evolution

equations for flavor-nonsinglet GPDs in position space have been derived in [20, 21] and

for the first few moments of flavor-singlet GPDs in [22]. The DDVCS description has to be

extended to the same level of accuracy. As the first step in this direction, in this work we

calculate the two-loop DDVCS coefficient functions (CFs) for the flavor-nonsinglet vector

contributions using conformal symmetry techniques.

The idea to apply the conformal symmetry to off-forward reactions is not new but the

early work [23] was missing an important element: the scheme-dependent difference between

the dilatation and special conformal anomalies [24]. It was first shown in [12] that conformal

symmetry provides a connection between the CFs in DVCS and DIS. The general strategy

of our calculation follows ref. [13], but involves some new technical elements. We make

use of conformal symmetry of large-nf QCD in non-integer d = 4−2ǫ dimensions at the

Wilson-Fischer fixed point [25, 26]. In a conformal theory the contributions of operators with

total derivatives are related to the contributions of the operators without total derivatives

by symmetry transformations and do not need to be calculated separately. In this way, the

calculation of the ℓ-loop off-forward CF can be reduced to the ℓ-loop forward CF, known from

DIS, and the (ℓ−1)-loop calculation of the off-forward CF in 4−2ǫ dimensions, including

terms O(ǫℓ−1).

The presentation is organized as follows. Section 2 is introductory, it contains general

definitions and specifies our notation and conventions. In section 3 we present the general

framework and the procedure for the calculation of CFs in the OPE of two electromagnetic

currents using conformal symmetry of QCD at the Wilson-Fischer fixed point in non-integer

dimensions. A new ansatz for the solution is presented, which allows one to solve the

relevant equations for the case of arbitrary photon virtualities. Section 4 is devoted to the

particularities of the two-loop calculation and the discussion of the mathematical structure of

the results. Explicit expressions for the CFs in momentum fraction space are presented in

appendix E and in two supplementary material files using different representations for the

relevant generalized polylogarithms. Numerical estimates of the size of the two-loop correction

for realistic kinematics are presented in section 5. The final section 6 is reserved for a short

summary. The paper also contains several appendices explaining the construction of helicity

amplitudes, some useful integrals, expansion of the CFs in the threshold region, and more.
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2 Kinematics, notation and conventions, and one-loop results

The generalized Compton amplitude is given by a Fourier transform of the off-forward matrix

element of the time-ordered product of two electromagnetic currents,

Aµν = i

∫
d4xeiq1·x〈p2

∣∣T
{
jem

µ (x)jem
ν (0)

}∣∣p1
〉
, (2.1)

corresponding to the double deeply virtual Compton scattering process

γ∗(q1)+N(p1) → γ∗(q2)+N(p2) . (2.2)

Here q1 and q2 are the momenta of the incoming and outgoing photons, respectively, p1,p2

are the target (nucleon) momenta in initial and final states, and q2 = p1+p2−q1. Let

q =
1

2
(q1+q2), p =

1

2
(p1+p2), ∆ = p2−p1 = q1−q2 , Q2 = −q2, (2.3)

and

ξ = − ∆·q
2p·q , η =

Q2

2p·q , w =
ξ

η
=

q2
1 −q2

2

q2
1 +q2

2 −∆2/2
. (2.4)

In the following we assume ∆2 = 0.

The DVCS corresponds to w = 1 such that η = ξ ≃ xB/(2−xB), DIS corresponds to ξ = 0,

η = xB , TCS corresponds to w = −1, and exclusive electroproduction of a lepton pair (DDVCS)

to w < −1. For all processes of interest q2
1 −q2

2 < 0 and 0 < ξ < 1.

In the leading-twist approximation, the parity-even (vector) part of the DDVCS amplitude

can be written in terms of two Compton form factors (CFFs), e.g. [27]

Aµν =

(
−gµν +

qµ
2 qν

1

(q1 ·q2)

)
F1(ξ,η,∆2,Q2)+

2

pq

(
pµ+

1

2η
qµ

2

)(
pν +

1

2η
qν

1

)
F2(ξ,η,∆2,Q2).

(2.5)

A more convenient decomposition is in terms of the “transverse” and “longitudinal” CFFs

defined as

F⊥ = F1 , FL =
1

η
F2−F1 . (2.6)

For completeness, in appendix A, we also discuss the decomposition of the amplitude Aµν

in terms of helicity amplitudes.

The factorization theorem [28–30] relates flavor-nonsinglet contributions to the CFFs

Fi, i =⊥,L, to charge conjugation C = +1 combinations of quark GPDs

Fi(ξ,η,∆2,Q2) =
∑

q

e2
q

∫ 1

−1

dx

ξ
Ci

(
x

η
,
ξ

η
,
Q2

µ2

)
F (+)

q (x,ξ,∆2,µ2) ,

F (+)
q (x,ξ,∆2,µ2) = Fq(x,ξ,∆2,µ2)−Fq(−x,ξ,∆2,µ2) . (2.7)

The GPDs are defined by an appropriate matrix element of the light-ray operator

Oq(z1,z2) = q̄(z1n)/n[z1n,z2n]q(z2n) , (2.8)

– 3 –
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where nµ is a light-like vector, [z1n,z2n] is the Wilson line. For our present purposes one

can choose (see appendix A) nµ = qµ
1 /q2

1 −qµ
2 /q2

2 so that ξ = −∆+/(2p+) where ∆+ = ∆·n
and p+ = p·n. An off-forward matrix element of the renormalized light-ray operator (2.8)

can be parametrized as follows:

〈p2|[Oq(z1,z2)]|p1〉 = 2p+

∫ 1

−1
dxe−ip+ξ(z1+z2)+ip+x(z1−z2) Fq(x,ξ,∆2,µ2) , (2.9)

where the bracket [. . .] in the matrix element stands for renormalization in the MS scheme.

The quark GPD for a nucleon can further be decomposed in contributions of the two Dirac

structures Hq(x,ξ) and Eq(x,ξ) [31], but this decomposition is irrelevant for our present

purposes.

The scale dependence of the GPDs is governed by the renormalization group equa-

tion (RGE)

(
µ

∂

∂µ
+β(αs)

∂

∂αs
+H

)
[Oq(z1,z2)] = 0 , (2.10)

where H (evolution kernel) is an integral operator acting on the coordinates z1,z2. Translation-

invariant polynomials zN
12 = (z1−z2)N are eigenfunctions of the evolution kernel and the

corresponding eigenvalues define the anomalous dimensions of local operators with spin N ,

HzN−1
12 = γN zN−1

12 , (2.11)

see [13, 20] for the systematic presentation and details.

In what follows we drop electromagnetic charges and the sum over flavors, and introduce

a notation

z = x/η , Ci

(
x

η
,
ξ

η
,
Q2

µ2

)
≡ Ci

(
z,w,

Q2

µ2

)
. (2.12)

The CFs do not depend on the target and can be calculated in perturbation theory

Ci(z,w,Q2/µ2) = C
(0)
i (z)+asC

(1)
i (z,w,Q2/µ2)+a2

sC
(2)
i (z,w,Q2/µ2)+. . . , (2.13)

where

as = αs(µ)/(4π) . (2.14)

They are real functions in the Euclidean region w ∈ [−1,1], z ∈ (−1,1) and Q2 > 0, and can

be continued analytically [32] to the physical regions of different processes. Assuming x, ξ > 0

and q2
1 −q2

2 < 0 are real numbers and the usual causal prescription for q2
1 +q2

2 7→ q2
1 +q2

2 +i0

one obtains

Ci

(
x

η
,
ξ

η
,
Q2

µ2

)
7→ Ci

(
x

η−i0
,

ξ

η−i0
,
Q2

µ2
−i0

)
= Ci

(
x

ξ
(w+i0),w+i0,

Q2

µ2
−i0

)
. (2.15)

We have checked that the resulting one-loop CFs agree with the explicit evaluation in

Minkowski space in ref. [33].
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The tree-level CFs are well-known since the pioneering works [1, 2]

C
(0)
⊥ (z,w) =

w

1−z
− w

1+z
, C

(0)
L (z,w) = 0 . (2.16)

We find it convenient to present the results for loop corrections in the following generic form

to emphasize the symmetries and the structure of singularities:

C
(k)
i

(
z,w,

Q2

µ2

)
=

CF w

1−z

[
A

(k)
i

(
z,w,

Q2

µ2

)
+A

(k)
i

(
z,−w,

Q2

µ2

)]

+
CF

w−z

[
B

(k)
i

(
z,w,

Q2

µ2

)
−B

(k)
i

(
−z,−w,

Q2

µ2

)]
−(z ↔ −z) . (2.17)

The one-loop results have been available for a long time [11, 27, 33, 34]:

A
(1)
⊥

(
z,w,

Q2

µ2

)
= ln2(1−z)−ln2(1−w)− 3

2
ln(1−z)+3ln(1−w)− 9

2

+2ln
Q2

µ2

[
ln(1−z)−ln(1−w)+

3

4

]
,

B
(1)
⊥

(
z,w,

Q2

µ2

)
= −1+w

2

[
ln2(1−z)−ln2(1−w)

]
+3w

[
ln(1−z)−ln(1−w)

]

−ln
Q2

µ2
(1+w)

[
ln(1−z)−ln(1−w)

]
,

A
(1)
L

(
z,w,

Q2

µ2

)
= 0 ,

B
(1)
L

(
z,w,

Q2

µ2

)
= 2
[
ln(1−z)−ln(1−w)

]
. (2.18)

It is important that, despite the factor 1/(w−z) present in eq. (2.17), the one-loop CFs are

analytic functions at z = w. They are also analytic functions in the limit λ → 0, rescaling

Q2 7→ λQ2, w 7→ w/λ, z 7→ z/λ. The latter property ensures that collinear factorization holds

at the kinematic point q2
1 +q2

2 = 0, as expected from the leading regions analysis [27]. We

will find that the two-loop CFs have the same analytic properties.

The two-loop CFs contain contributions of three different color structures. We choose

them as follows:

C
(2)
i

(
z,w,

Q2

µ2

)
= CF

[
β0C

(2,β)
i

(
z,w,

Q2

µ2

)
+CF C

(2,P )
i

(
z,w,

Q2

µ2

)
+

1

Nc
C

(2,NP )
i

(
z,w,

Q2

µ2

)]
,

(2.19)

and use the same color decomposition for the A
(2)
i and B

(2)
i functions defined in eq. (2.17),

apart from the overall CF factor. The two-loop results turn out to be rather lengthy so that

we write them separating the renormalization group (RG) logarithms, with the notation

A
(2)
i

(
z,w,

Q2

µ2

)
= A

(2)
i (z,w)+ln

(
Q2

µ2

)
A

(2)
i,ln (z,w)+ln2

(
Q2

µ2

)
A

(2)

i,ln2 (z,w) , (2.20)

and similarly for B
(2)
i .

– 5 –
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3 General framework

One can consider, formally, the two-photon reactions in a generic 4−2ǫ-dimensional theory.

All definitions in section 2 can be taken over without modifications except for that the CFs

acquire an ǫ-dependence so that

Ci(z,w,Q2/µ2,as) 7→ Ci(z,w,Q2/µ2,as, ǫ) .

Hence their perturbative expansion involves ǫ-dependent coefficients:

C(as, ǫ) = C(0)+as C(1)(ǫ)+a2
s C(2)(ǫ)+O(a3

s) ,

C(k)(ǫ) = C(k)+ǫC(k,1)+ǫ2C(k,2)+O(ǫ3) . (3.1)

Note that the tree-level CF C(0) does not depend on ǫ.

We are interested in the CFs in four dimensions as a function of the coupling, but as an

intermediate step will calculate C∗ = C(α∗
s, ǫ) on the line in the (ǫ,αs) plane where β(α∗

s) = 0

so that α∗
s = α∗

s(ǫ) (Wilson-Fisher fixed point) or, equivalently,

ǫ∗ = ǫ∗(as) = −
(
β0as+β1a2

s +. . .
)

≡ −β̄(as) , β0 =
11

3
Nc− 2

3
nf , (3.2)

with Nc and nf being the numbers of colors and light flavors, respectively. Trading the

ǫ-dependence for the a∗
s dependence one can write the CFs on this line as an expansion

in the coupling alone,

C∗(as) = C(as, ǫ∗) = C(0)+asC
(1)
∗ +a2

sC
(2)
∗ +O(a3

s) , (3.3)

where, obviously,

C
(1)
∗ = C(1) , C

(2)
∗ = C(2)−β0C(1,1) , (3.4)

or, equivalently

C(1) = C
(1)
∗ , C(2) = C

(2)
∗ +β0C(1,1) . (3.5)

The rationale for organizing the calculation in this way is that QCD at the Wilson-Fischer

critical point is conformally invariant [26, 35]. Conformal symmetry allows one to obtain the

coefficients C
(2)
∗ from the known results from DIS avoiding explicit calculation. To restore

the result in 4 dimensions one also needs to know terms of order ǫ in the one-loop CFs. This

additional calculation is, however, rather simple.

It is straightforward to continue this construction to higher orders. The general statement

is that the ℓ-loop off-forward CFs in QCD in d = 4 in the MS scheme can be obtained from

the corresponding result in conformal theory (alias from the corresponding CFs in the forward

limit), adding terms proportional to the QCD beta-function. Such extra terms require

the calculation of the corresponding (ℓ−1)-loop off-forward CFs in d = 4−2ǫ dimensions

expanded to order ǫℓ−1.

– 6 –



J
H
E
P
0
1
(
2
0
2
5
)
0
6
9

3.1 Conformal OPE

The OPE for the product of currents has a generic form, schematically

T{jem
µ (x)jem

ν (0)} =
∑

N,k

CN,k∂k
+ON (0) , (3.6)

where ON (0) are local operators of increasing dimension and CNk are the corresponding CFs.

The power of conformal symmetry is that it allows one to restore the contributions of all

operators containing total derivatives from the ones without total derivatives, i.e. restore

CN,k from CN,0 using conformal algebra [36].

Retaining the contributions of twist-two vector operators only, the result reads [13]

T
{
jµ(x1)jν(x2)

}
=

∑

N,even

µγN

(−x2
12+i0)tN

∫ 1

0
du

{
−1

2
AN (u)

(
gµν − 2xµ

12xν
12

x2
12

)
+BN (u)gµν

+CN (u)xν
12∂µ

1 −CN (1−u)xµ
12∂ν

2 +DN (u)x2
12∂µ

1 ∂ν
2

}
Ox12...x12

N (xu
21) , (3.7)

where

∂µ
k =

∂

∂xµ
k

, x12 = x1−x2 , xu
21 = (1−u)x2+ux1 , (3.8)

and

Ox...x
N (y) = xµ1

. . .xµN
Oµ1...µN

N (y) . (3.9)

Further, Oµ1...µN

N (y) are the leading-twist conformal operators that transform in the proper

way under conformal transformations

[Kµ,Ox...x
N (y)] =

(
2yµyν ∂

∂yν
−y2 ∂

∂yµ
+2∆N yµ+2yν

(
xµ

∂

∂xν
−xν

∂

∂xµ

))
Ox...x

N (y). (3.10)

Here and below, N is the spin and ∆N the scaling dimension of Oµ1...µN

N , ∆N = d∗+N −2+γN

where d∗ = 4−2ǫ∗, γN = γN (as) is the anomalous dimension, tN = 2−ǫ∗− 1
2γN (as) is the twist

and jN = N +1−ǫ∗+ 1
2γN (as) is the conformal spin. We have separated in eq. (3.7) the scale

factor µγN to make the invariant functions AN (u), . . . ,DN (u) dimensionless. Note that only

vector operators with even spin N contribute to the expansion.

Conformal invariance and current conservation ∂µjµ = 0 constrain the functional form

of the invariant functions AN (u), . . . ,DN (u) in eq. (3.7) and also lead to certain relations

between them. One obtains [13]

AN (u) = aN (as)ujN −1(1−u)jN −1 , BN (u) = bN (as)ujN −1(1−u)jN −1 . (3.11)

Explicit expressions for CN (u) and DN (u) can be found in ref. [13, eq. (3.12)] and do not

involve new parameters. Thus the OPE of the product of two conserved spin-one currents

in a generic conformal theory involves two constants, aN (as) and bN (as), for each (even)

spin N . In QCD the expansion of aN (as) starts at order O(as).

– 7 –
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For the matrix elements between states with the same momentum (forward scattering),

the position of the operators on the r.h.s. of eq. (3.7) is irrelevant and the integration

over the u-variable can be taken explicitly. It is convenient to fix the normalization of

the operators such that

Oµ1...µN

N (0) = iN−1q̄(0)γ{µ1Dµ2 . . .DµN }q(0)+ total derivatives , (3.12)

where Dµ = ∂µ+igAµ and {. . .} denotes the symmetrization of all enclosed Lorentz indices

and the subtraction of traces. In this way the forward matrix elements of these operators can

be identified with the moments of quark parton distributions (PDFs)

〈p|Oµ1...µN

N (0)|p〉 = p{µ1 . . .pµN }fN . (3.13)

With this normalization one obtains [13]

Tµν(p,q) ≡ i

∫
ddxe−iqx〈p|T (jµ(x)jν(0)|p〉

=
∑

N,even

fN

xN
B

(
µ

Q

)γN
[(

−gµν +
qµqν

q2

)
c1N (as)+

(qµ+2xBpµ)(qν+2xBpν)

Q2
c2N (as)

]
,

(3.14)

where xB = Q2/(2qp) is the Bjorken scaling variable and

c1N = iN πd/22γN B(jN , jN )
Γ(N +γN /2)

Γ(tN )

(
tN −1

2tN
aN −bN

)
,

c2N = iN πd/22γN B(jN , jN )
Γ(N +γN /2)

Γ(tN )

(
−bN +

2N +d−tN −1

2tN
aN

)
. (3.15)

Here and below B(jN , jN ) is the Euler Beta function.

Comparing this expression with the usual expansion for the DIS structure functions,

see e.g. [37], we can identify

c2N (as)

(
µ

Q

)γN

= CDIS

2

(
N,

Q2

µ2
,as, ǫ∗

)
,

c1N (as)

(
µ

Q

)γN

= CDIS

2

(
N,

Q2

µ2
,as, ǫ∗

)
−CDIS

L

(
N,

Q2

µ2
,as, ǫ∗

)
≡ CDIS

1

(
N,

Q2

µ2
,as, ǫ∗

)
. (3.16)

where CDIS

2 and CDIS

L are the familiar CFs for the structure functions F2 and FL, respectively,

(in 4−2ǫ∗ dimensions) that are known to third order in the QCD coupling. With this

identification, the structure of the OPE for the product of two vector currents in conformal

QCD is completely fixed.

For the off-forward case there are two modifications. First, the position of the operator

ON (ux) in eq. (3.7) becomes relevant since

〈p2|ON (xu
21)|p1〉 = ei(xu

21
·∆)〈p2|ON (0)|p1〉 , (3.17)

– 8 –
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producing a u-dependent shift of the momentum in the Fourier integral. Second, the matrix

element becomes more complicated. It can be parameterized as

〈p2|nµ1 . . .nµN Oµ1...µN
(0)|p1〉 =

∑

k

(
−1

2

)k

f
(k)
N pN−k

+ ∆k
+ = pN

+ fN (ξ) ,

fN (ξ) ≡
∑

k

f
(k)
N ξk , f

(0)
N = fDIS

N . (3.18)

The leading-twist CFFs F1(ξ,η,∆2,Q2) and FL(ξ,η,∆2,Q2)(2.5) can be separated by taking

g⊥
µνAµν and ∆µAµν∆ν projections of the generalized Compton amplitude Aµν (2.5), respec-

tively, where the transverse projection of the metric tensor g⊥
µν is defined in eq. (A.3). In

this way the (complicated) CN (u) and DN (u) terms in (3.7) drop out, and one obtains

after a short calculation

F∗
⊥(ξ,η,Q2) =

∑

N

fN (ξ)η−N
CDIS

1 (N, Q2

µ2 ,as, ǫ∗)

(1+w)
1
2 γN +N

2F1

(
1
2γN +N,jN ,2jN ,

2w

1+w

)
, (3.19)

F∗
L(ξ,η,Q2) =

∑

N

fN (ξ)η−N
CDIS

L (N, Q2

µ2 ,as, ǫ∗)

(1+w)
1
2 γN +N+1

2F1

(
1
2γN +N +1, jN ,2jN ,

2w

1+w

)
, (3.20)

where the superscript ∗ indicates that these results refer to QCD at the critical point. Hereafter

we do not show the dependence of the CFFs on ∆2, which only enters through the matrix

elements and does not affect CFs.

3.2 Coefficient functions in momentum fraction space: master equation

As the next step, we have to find a way to obtain the CFs in momentum fraction space

C1,L(z,w) starting from these expressions. To this end one needs to write the GPD in terms

of the matrix elements of conformal operators, which is difficult. The form of these operators

is determined by the generator of special conformal transformation, which is modified in

an interacting theory compared to the “canonical” expression, and is rather complicated

in QCD in the MS scheme [38]. The way out [13, 20] is to go over to a different, “rotated”

renormalization scheme at the intermediate step,

Fi(ξ,η) =

∫ 1

−1

dx

ξ
Ci

(
x

η
,w,

Q2

µ2

)
Fq(x,ξ,µ2) =

∫ 1

−1

dx

ξ
Ci

(
x

η
,w,

Q2

µ2

)
Fq(x,ξ,µ2) , (3.21)

where

Fq(x,ξ) =

∫ 1

−1

dx′

ξ
U(x,x′, ξ)Fq(x′, ξ) ,

Ci

(
x

η
,w,

Q2

µ2

)
=

∫ 1

−1

dx′

ξ
Ci

(
x′

η
,w,

Q2

µ2

)
U(x′,x,ξ) . (3.22)

The operator

U = eX , X(as) = asX
(1)+a2

sX
(2)+. . . , (3.23)
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is defined in such a way that the “rotated” generators of conformal transformations S±,0 =

US±,0U−1 are given entirely in terms of the “rotated” evolution kernel (2.10) H = UHU−1.

In the light-ray operator (position space) representation

S− = S
(0)
− , (3.24a)

S0 = S
(0)
0 −ǫ∗+

1

2
H , (3.24b)

S+ = S
(0)
+ +(z1+z2)

(
−ǫ∗+

1

2
H

)
, (3.24c)

where

S
(0)
− = −∂z1

−∂z2
, S

(0)
0 = z1∂z1

+z2∂z2
+2 , S

(0)
+ = z2

1∂z1
+z2

2∂z2
+2(z1+z2) , (3.25)

are the canonical generators. Explicit expressions for X
(1) and X

(2) in the position-space

representation can be found in [20].

One obtains [13, eq. (3.49)] for the GPD at ξ = 1 in the “rotated” scheme

F(x,ξ = 1) =
1

4

∑

N

σN ωN

2N−1(N −1)!
fN (ξ = 1)P

(λN )
N−1 (x) , (3.26)

where

P
(λN )
N−1 (x) =

(
1−x2

4

)λN − 1

2

CλN

N−1(x) , λN =
3

2
−ǫ∗+

1

2
γN (as) , (3.27)

Cλ
N are Gegenbauer polynomials, σN (as) are eigenvalues of the rotation operator U

UzN−1
12 = σN zN−1

12 , σN (as) = 1+asσ
(1)
N +a2

sσ
(2)
N +. . . (3.28)

and

ωN =
(N −1)!Γ(2jN )Γ(2λN )

Γ(λN + 1
2)Γ(jN )Γ(N −1+2λN )

. (3.29)

The restriction to ξ = 1 is due to the well-known problem caused by non-uniform convergence

of a sum representation for GPDs in the DGLAP region ξ < |x|. This result is sufficient,

however, because the CFs only depend on the ratios of scaling variables x/η,ξ/η so that for our

purposes we can set ξ = 1 and eliminate the DGLAP region completely. Using this expression

in eq. (3.21) and comparing the result with the expansion in (3.19), (3.20) one obtains

∫ 1

−1
dxC⊥

(
wx,w, Q2

µ2

)
P

(λN )
N−1 (x) =

CDIS

1 (N, Q2

µ2 ,as, ǫ∗)

(1+w)
1
2 γN

( 2w

1+w

)N

2F1

(
1
2γN +N,jN ,2jN ,

2w

1+w

)

× 2Γ(λN + 1
2)Γ(jN )Γ(N −1+2λN )

σN Γ(2jN )Γ(2λN )
,

∫ 1

−1
dxCL

(
wx,w, Q2

µ2

)
P

(λN )
N−1 (x) =

CDIS

L (N, Q2

µ2 ,as, ǫ∗)

(1+w)1+
1
2 γN

( 2w

1+w

)N

2F1

(
1
2γN+N+1, jN ,2jN ,

2w

1+w

)

× 2Γ(λN+1
2)Γ(jN )Γ(N−1+2λN )

σN Γ(2jN )Γ(2λN )
. (3.30)
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DVCS corresponds to w = 1 in which case

1

(1+w)
1
2 γN +N

2F1

(
1
2γN +N,jN ,2jN ,

2w

1+w

)
7→ 1

2
1
2 γN +N

Γ(d
2 −1)Γ(2jN )

Γ(jN + d
2 −1)Γ(jN )

(3.31)

and the first equation in (3.30) reduces to the corresponding expression in ref. [13] apart from

the 2−γN /2 factor, which is due to a different choice of the hard scale: in [13] Q2 = −q2
1.

It remains to solve the equations (3.30) to obtain the CFs in “rotated” scheme, and apply

a finite renormalization (3.22) to arrive at the final expressions in the MS scheme. In the

next section we outline the general procedure for this calculation.

3.3 Solution ansatz and invariant kernels

The scale-dependent terms ∼ ln Q2

µ2 in the CFs can be restored from the renormalization group

equations, see appendix D. This task is easy, so that we concentrate on the case µ2 = Q2.

Hereafter Ci (wx,w) ≡ Ci (wx,w,1).

At leading order λN = 3/2 and the functions P
(λN )
N−1 (x) form an orthonormal system.

Hence one can write the CFs, at least formally, as a series over these functions. Beyond the

leading order this cannot be done, because P
(λN )
N−1 (x) with different N are not orthogonal

with any simple weight function. However, these functions are eigenfunctions of the Casimir

operator corresponding to the “rotated” conformal generators (3.24), and, therefore, also

eigenfunctions of the (exact) “rotated” evolution kernel
∫

dx′ H(x,x′)P
(λN )
N−1 (x′) = γN P

(λN )
N−1 (x) . (3.32)

This property suggests the following ansatz for the CFs:

Ci (wx,w) =

∫ 1

−1
dx′ ci(w,x′)Ki

(
x′,x,w

)
, (3.33)

where ci(w,x) are certain weight functions (see below), and Ki(x,x′,w) are SL(2)-invariant

operators, [Ki,S±,0] = 0. Since the polynomials P
(λN )
N−1 (x) are eigenfunctions of the quadratic

Casimir operator, they are also eigenfunctions of any SL(2)-invariant operator, i.e.
∫

dx′ Ki
(
x′,x,w

)
P

(λN )
N−1 (x′) = Ki (N,w) P

(λN )
N−1 (x) . (3.34)

Using the above ansatz (3.33) one obtains for the integrals on the l.h.s. of eqs. (3.30)
∫ 1

−1
dxCi(wx,w)P

(λN )
N−1 (x) =

∫ 1

−1
dx

∫ 1

−1
dx′ ci(w,x′)Ki(x

′,x,w)P
(λN )
N−1 (x)

= Ki(N,w)

∫ 1

−1
dxci(w,x)P

(λN )
N−1 (x) . (3.35)

The weight functions ci(w,x) can be fixed by the requirement that they lead to sufficiently

simple resulting expressions for the eigenvalues Ki(N,w) of the invariant kernels. We require

that (cf. (3.35))
∫ 1

−1
dxc⊥(w,x)P

(λN )
N−1 (x) =

∫ 1

−1
dx

{
w

(1−wx)1+ 1

2
γN

− w

(1+wx)1+ 1

2
γN

}
P

(λN )
N−1 (x),

∫ 1

−1
dxcL(w,x)P

(λN )
N−1 (x) =

∫ 1

−1
dx

{
w

(1−wx)2+ 1

2
γN

− w

(1+wx)2+ 1

2
γN

}
P

(λN )
N−1 (x). (3.36)

– 11 –



J
H
E
P
0
1
(
2
0
2
5
)
0
6
9

The functions ci(x,w) themselves can easily be restored from these expressions by observing

that the anomalous dimension γN is, by definition, the eigenvalue of the (exact) “rotated”

evolution kernel (3.32), so that effectively

(1±wx)−n− 1

2
γN 7→

∞∑

k=0

1

k!

∫ 1

−1
dx′ ln

k(1±wx′)

(1±wx′)n

(
−1

2
H(x′,x)

)k

, (3.37)

The integrals on the r.h.s. of (3.36) can be taken explicitly,

∫ 1

−1
dxc⊥(w,x)P

(λN )
N−1 (x) =

1+(−1)N

2

(
2w

1+w

)N( 1

1+w

)1
2 γN 2Γ(λN + 1

2)Γ(N −1+2λN )Γ(jN )

Γ(2λN )Γ(2jN )

× Γ(N + 1
2γN )

Γ(N)Γ(1+ 1
2γN )

2F1
(
N + 1

2γN , jN ,2jN , 2w
1+w

)
,

∫ 1

−1
dxcL(w,x)P

(λN )
N−1 (x) = (1+(−1)N )

(
2w

1+w

)N( 1

1+w

)1+
1
2 γN Γ(λN + 1

2)Γ(N−1+2λN )Γ(jN )

Γ(2λN )Γ(2jN )

× Γ(N +1+ 1
2γN )

Γ(N)Γ(2+ 1
2γN )

2F1
(
N +1+ 1

2γN , jN ,2jN , 2w
1+w

)
. (3.38)

Comparing these expressions with (3.30) one obtains

K⊥(w,N) =
Γ(N)Γ(1+ 1

2γN )

σN Γ(N + 1
2γN )

C1(N, Q2

µ2 ,as, ǫ∗) ≡ K⊥(N) ,

KL(w,N) =
Γ(N)Γ(2+ 1

2γN )

σN Γ(N +1+ 1
2γN )

CDIS

L (N, Q2

µ2 ,as, ǫ∗) ≡ KL(N) . (3.39)

Remarkably, with the choice (3.36), the invariant kernels K⊥,L do not depend on w: their

spectrum is given directly in terms of moments of the DIS CFs and the eigenvalues σN

of the rotation operator U.

Expanding all entries in (3.37), (3.39) in powers of the coupling constant

Ki(N) = 1+asK
(1)
i (N)+a2

sK
(2)
i (N)+. . . , H = asH(1)+a2

sH(2)+. . . (3.40)

one obtains to one loop accuracy

γ
(1)
N = 4CF

{
2S1(N)− 1

N(N +1)
− 3

2

}
,

K
(1)
⊥ (N) = 2CF

{
3S1(N)+

1

N(N +1)
− 9

2

}
,

K
(1)
L (N) = 4CF

1

N(N +1)
. (3.41)

An SL(2)-invariant operator, i.e., an operator that commutes with the generators S±,0 of

SL(2,R) transformations, is fixed uniquely by its spectrum. Therefore, eq. (3.41) unambigu-

ously defines the operators K
(1)
i , H(1), and, by virtue of eq. (3.33), also the CFs C

(1)
i (x). Let

[H+f ](z1,z2) =

∫ 1

0
dα

∫ ᾱ

0
dβ f(zα

12,zβ
21) ,

[Ĥf ](z1,z2) =

∫ 1

0

dα

α

[
2f(z1,z2)−ᾱf(zα

12,z2)−ᾱf(z1,zα
21)
]
. (3.42)
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These operators commute with the canonical generators S
(0)
±,0. Using f(z1,z2) = zN−1

12 it is

easy to check that

H+ zN−1
12 =

1

N(N +1)
zN−1

12 , ĤzN−1
12 = 2S1(N)zN−1

12 , (3.43)

Thus

H(1) = 4CF

(
Ĥ−H+− 3

2
1l

)
,

K
(1)
⊥ = 2CF

(
3

2
Ĥ+H+− 9

2
1l

)
,

K
(1)
L = 4CF H+ . (3.44)

The complete list of invariant kernels appearing in the two-loop calculation is given in

appendix C. They are sufficiently simple in the position-space representation and can be

transformed to the momentum fraction space, if desired.

The general procedure for the transformation from position to momentum space is as

follows. Let R be an integral operator in position space1

[Rf ](z1,z2) =

∫ 1

0
dα

∫ ᾱ

0
dβ r(α,β)f(zα

12,zβ
21) . (3.45)

Going over to the momentum fraction space (z1,z2) 7→ (x,ξ) corresponds to a Fourier trans-

formation in two variables (cf. (2.9)),

f(z1,z2) =

∫
dx

∫
dξ e−i(ξ−x)z1−i(ξ+x)z2fξ(x) . (3.46)

One obtains

[Rξfξ](x) =

∫ ∞

−∞
dx′ rξ(x,x′)fξ(x′) , (3.47)

where

rξ(x,x′) =

∫ 1

0
dα

∫ ᾱ

0
dβ δ

(
x′−(α−β)ξ−(1−α−β)x

)
r(α,β) . (3.48)

The expressions for the momentum fraction kernels rξ(x,x′) are in general much more

involved as compared to their position-space counterparts r(α,β). Fortunately, these expres-

sions are not needed since the convolution integrals of the kernels with the weight functions

ci(x,w) (3.36), (3.37) can be calculated starting from the position space expressions directly:

∫
dx′ ln

k(1−wx′)

(1−wx′)n
rξ=1(x′,x) =

∫ 1

0
dα

∫ ᾱ

0
dβ r(α,β)

lnk((1−x)wα
+−+(1+x)wβ

−+)(
(1−x)wα

+−+(1+x)wβ
−+

)n , (3.49)

where w+ = (1+w)/2, w− = (1−w)/2. The α,β integral in the r.h.s. in (3.49) can be calculated

with the help of HyperInt package [39] for sufficiently large class of functions r(α,β). Note

1Operators of this form commute with translations, RTa = TaR, where [Taf ](z1,z2) = f(z1+a,z2+a). As a

consequence, ξ, which is the Fourier-conjugate variable to z1+z2, is conserved.
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also that for −1 < w,x < 1 the combination (1−x)wα
+−+(1+x)wβ

−+ is positive in the whole

integration domain.2

Let us introduce a short-hand notation for the functions

Y (k)
n (x,w) =

w(−1)k

2kk!

(
lnk(1−wx)

(1−wx)n
− lnk(1+wx)

(1+wx)n

)
(3.50)

and for the convolution

(f ⊗R)(x) ≡
∫

dx′f(x′)R(x′,x) . (3.51)

In this notation, the one-loop CFs in the MS scheme take the form

C
(1)
⊥ (wx,w) = Y

(0)
1 ⊗

(
K

(1)
⊥ +X

(1)
)

+Y
(1)

1 ⊗H(1) ,

C
(1)
L (wx,w) = Y

(0)
2 ⊗K

(1)
L , (3.52)

where X
(1) (3.23) is given by [20]:

[X(1)f ](z1,z2) = 2CF

∫ 1

0
dα

lnα

α

(
2f(z1,z2)−f(zα

12,z2)−f(z1,zα
21)
)

. (3.53)

Calculating the convolution integrals in eq. (3.52) we reproduce the known one-loop expres-

sions [11, 27, 33, 34] collected in eqs. (2.18).

4 Two-loop coefficient functions

Beyond one-loop, reconstruction of the operator Ki (i = 1,L) from its eigenvalues Ki(N) is

more complicated since, by definition, it commutes with deformed generators S±,0 (3.24)

which differ from the canonical generators (3.25). It has been shown recently [21] that any

invariant operator [S
(0)
±,0,K] = 0 can be cast in the form

K = T −1K̂T, (4.1)

where K̂ is the canonically invariant operator, [S
(0)
±,0, K̂] = 0, and the operator T intertwines

the deformed symmetry generators S±,0, eq. (3.24), and the canonical ones, S
(0)
±,0, eq. (3.25),

TS±,0 = S
(0)
±,0T. (4.2)

One finds [21]

T =
∞∑

k=0

1

k!
lnk |z12|

(
β̄(as)+

1

2
H

)k

, (4.3)

where β̄(as) = −β(a)/(2a) (3.2) is the usual QCD beta-function (in 4 dimensions) and H(as)

is the (rotated) evolution kernel.

2If R is given by a product of several operators of the form (3.45), the right hand side of (3.49) can be

written as a multifold integral of the same type, cf. [13].
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The eigenvalues of K and K̂ are related by the so-called reciprocity relation [40, 41]

K(N) = K̂

(
N +β̄(as)+

1

2
γN (as)

)
. (4.4)

It turns out that the eigenvalues of K̂(N) are invariant under the replacement N → −N −1

at large N . As a consequence, only special combinations of the harmonic sums [42] — the so

called parity-invariant harmonic sums [43, 44] — appear in the expansion of K̂(N).

Expanding everything in powers of the coupling, Ki = asK
(1)
i +a2

sK
(2)
i +· · · , etc., one

obtains

K
(1)
i = K̂

(1)
i ,

K
(2)
i = K̂

(2)
i +

[
K̂

(1)
i , ln |z12|

](
β0+

1

2
H(1)

)
, (4.5)

etc.

Expanding the entries in the second equation in (3.39) to second order in as and taking

into account eq. (4.4) we obtain (for even N)

K̂
(2)
L (N) = β0CF K̂

(2,β)
L (N)+C2

F K̂
(2,P )
L (N)+

CF

Nc
K̂

(2,NP )
L (N) (4.6)

with

K̂
(2,β)
L (N) =

26

3

1

N(N +1)
,

K̂
(2,P )
L (N) =

24

N(N +1)
S1− 130

3

1

N(N +1)
,

K̂
(2,NP )
L (N) = − 12+16S−2

(N −2)(N +3)
+

16

N(N +1)

(
5

6
−3ζ3+S3+S1

)

+
32

N(N +1)

(
S1,−2− 1

2
S−3

)
− 16

N(N +1)

(
1+

2

N(N +1)

)
S−2 . (4.7)

Here S~a ≡ S~a(N) are the harmonic sums [42]. The harmonic sums S1, S−2, S3 and S1,−2− 1
2S−3

are parity invariant [44] so that the whole expression has this property.

Canonically invariant operators with the spectrum of eigenvalues corresponding to

different terms in these expressions are collected in appendix C. We obtain

K̂
(2,β)
L =

26

3
H+ ,

K̂
(2,P )
L = 12H1,+− 130

3
H+ ,

K̂
(2,NP )
L = −8Hsing+8

(
5

3
+ζ2−3ζ3

)
H++16H+H3−8H+H−3+8(1−ζ2)H1,+

−8H+H−2−16H++H−2+16ζ2H++ , (4.8)

and using (4.5)

K
(2,β)
L = K̂

(2,β)
L +4T+ ,

K
(2,P )
L = K̂

(2,P )
L +8T+

(
Ĥ−H+− 3

2

)
,

K
(2,NP )
L = K̂

(2,NP )
L , (4.9)
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where

[T+f ](z1,z2) =

∫ 1

0
dα

∫ ᾱ

0
dβ ln(1−α−β)f(zα

12,zβ
21) . (4.10)

The longitudinal CF at the critical point in 4−2ǫ∗ dimensions in the MS scheme is given by

C
(2)
∗,L(wx,w) = Y

(0)
2 ⊗

(
K

(2)
L +K

(1)
L X

(1)
)

+Y
(1)

2 ⊗H(1)K
(1)
L . (4.11)

All convolutions can be taken using eq. (3.49).

The analysis of the transverse CFs is more complex but follows the same pattern. The

expressions for the invariant kernel K̂
(2)
⊥ are given in appendix B. The remaining convolution

integrals were done starting from the position-space expressions (as explained above) with

the help of a Maple HyperInt package by E. Panzer [39]. The results are obtained in terms

of generalized polylogarithms [45],

G(a1, . . . ,an;x) =

∫ x

0

dt

t−a1
G(a2, . . . ,an; t) if ai 6= 0 for at least one i ∈N , (4.12)

G(0, . . . ,0︸ ︷︷ ︸
n times

;x) =
1

n!
lnn(x) for n ∈N0 , (4.13)

in a filtration basis consisting of

G(a1, . . . ,an;z) with ai ∈ {±1,±w}, (4.14)

G(a1, . . . ,an;w) with ai ∈ {±1,0}, (4.15)

with transcendental weight n ≤ 4. The final expressions for all 1-loop and 2-loop CFs contain

97 G functions and are provided in Mathematica format in the supplementary material file

CoefficientFunctions-FiltBasis.m attached to this paper. This representation is a con-

venient starting point for analytic continuations from the Euclidean region to the different

physical regions. It has, however, the disadvantage that individual G functions contain

spurious structures, as can be seen using symbol calculus [46] for the transcendental functions.

Indeed, the symbols of the functions have letters {w,w±1,w±z,z±1,2}, and all of them

also appear as first entries, corresponding to logarithmic singularities. The symbol of the

sum entering the CFs has first entries {w±1,z±1}, implying only singularities ∼ lnk(w±1)

and ∼ lnk(z±1) in the results. We note that the cancellation of spurious singular terms

may lead to numerical instabilities near w = 0 and w = ±z in this representation. For the

numerical evaluation of generalized polylogarithms, we have used the implementation of [47]

in Ginac [48] and the FastGPL package [49].

To avoid spurious singularities and to reduce the number of transcendental functions

which are difficult to numerically evaluate, we also consider alternative functional bases. The

Duhr-Gangl-Rhodes algorithm [50] allows us to construct a basis of functions with nested

sums of low depth, which can significantly improve numerical evaluations, see e.g. [51, 52].

Here, we were able to map our results map our 1-loop and 2-loop results to a functional basis

consisting of 29 Li2,2, Li1,3 and Li1,2 functions plus classical polylogarithms and logarithms,

all of which are free of spurious singularities and real-valued in the Euclidean region. We
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provide our results in the supplementary material file CoefficientFunctions.m, with all

Li functions expressed in the G function notation (see (E.1) for the Li function notation).

Using transformations of individual functions, we produced another representation free of

spurious singularities. While the resulting functions are more involved than in the previous

case, this result is the most compact representation of our results in the Euclidean region

that we could find, and we show it in appendix E. Unfortunately, analytic continuation to

the physical region in Minkowski space becomes more tricky with these functions, and the

prescription in (2.15) is only applicable for real values of the parameters x, η and ξ. These

representations cannot be used, therefore, if the final convolution of the CF and the GPD

is done using a deformed integration contour in the complex-x plane.

We have verified that in the DVCS limit w = 1 our results agree with [13, 16]. One more

check is provided by the structure of singular contributions ∼ lnk(1±z)/1±z) in the transverse

CF, see appendix F. Our results agree with an independent calculation by J. Schoenleber [53],

using threshold resummation techniques. Last but not least, we have verified that the two-loop

CFs are analytic functions in the limit when the ingoing and the outgoing photon momenta

have the same absolute value but differ by sign, q2
1 +q2

2 = 0. More precisely, the CFs are

analytic functions in λ, defined by the rescaling Q2 7→ λQ2, w 7→ w/λ, z 7→ z/λ, in the limit

λ → 0. Analyticity for λ → 0 is expected from the analysis of leading regions [27], which

suggests that collinear factorization holds at the kinematic point q2
1 +q2

2 = 0 as well.

5 Numerical estimates

The numerical results in this section are presented for the invariant mass of the µ+µ−-pair

q2
2 = 2.5 GeV2 , (5.1)

and two values

q2
1 = −0.6 GeV2 and q2

1 = −0.3 GeV2 , (5.2)

which are considered realistic for the first DDVCS measurements in the JLAB12, JLAB20+

and EIC kinematics, see ref. [9]. The corresponding values of the w-parameter (2.4) are

w = −1.63158 and w = −1.27273. The factorization scale is taken to be

µ2 =
1

2

(
q2

2 −q2
1

)
(5.3)

and the value of the strong coupling (the same in both cases) αs = 0.4 for three active flavors,

nf = 3. The CFs are continued analytically from the Euclidean region using the prescription

in eq. (2.15). Here, we make use of the expressions collected in the supplementary material file

CoefficientFunctions-FiltBasis.m and the FastGPL C++ library [49] for the numerical

evaluation of generalized polylogarithms.

We employ the toy GPD model from ref. [27, eq. (3.331)] in order to estimate the size of

the NNLO correction to the Compton form factor F⊥(ξ,η) (2.7). It is based on the so-called

double-distributions ansatz [28] and allows for a simple analytic representation:

H(x,ξ) =
(1−n/4)

ξ3

[
θ(x+ξ)

(
x+ξ

1+ξ

)2−n(
ξ2−x+(2−n)ξ(1−x)

)
−(ξ → −ξ)

]
. (5.4)
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Figure 1. Real (blue) and imaginary (red) parts of the CFF F⊥(ξ,η) (2.7) as a function of ξ for

ξ/η = −1.63158 (upper panel) and ξ/η = −1.27273 (lower panel) for the GPD model in eq. (5.4). The

leading-order results, and the results including one-loop and two-loop corrections are shown by the

short dashes, long dashes and solid curves, respectively.

An overall normalization is irrelevant for our purposes so we omit it. We use the value

of the parameter n = 1/2 which corresponds to a valence-like PDF q(x) ∼ x−1/2(1−x)3 in

the forward limit.

For a numerical evaluation of the convolution integrals in the x < ξ region it proves

to be convenient to shift the integration contour to the complex plane. We have checked

that the results do not depend on the shape of the integration contour, which is a good

test of numerical accuracy. The results for the transverse and the longitudinal CFFs (2.7)

are shown in figure 1 and figure 2, respectively. We show real (blue) and imaginary (red)

parts of the CFFs as a function of ξ for the fixed value of w = ξ/η = −1.63158 (upper panels)

and w = ξ/η = −1.27273 (lower panels). The leading-order (LO) results are shown by short

dashes, and the calculation including one-loop (NLO) and two-loop corrections (NNLO) by

the long dashes and solid curves, respectively.
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Figure 2. Real (blue) and imaginary (red) parts of the CFF FL(ξ,η) (2.7) as a function of ξ for

ξ/η = −1.63158 (upper panel) and ξ/η = −1.27273 (lower panel) for the GPD model in eq. (5.4) The

leading-order results, and the results including both one-loop and two-loop corrections are shown by

the long dashes and solid curves, respectively.

One sees that the corrections are in general quite large (for the chosen kinematics) and

have a nontrivial structure. In particular for F⊥(ξ,η), the NLO (one loop) corrections are

large for the real part and small for imaginary part of the CFF, whereas the NNLO (two-loop)

corrections, on the contrary, are small for the real part and large for imaginary part. The

NNLO corrections for FL(ξ,η) are very large so that the perturbative expansion does not

show any sign of convergence for this case. These features certainly call for an increase of the

invariant mass of the lepton pair which, hopefully, will become possible in future experiments.

As far as the relative contributions of the three color structures (2.19) in the NNLO

correction are concerned, the terms proportional to the QCD β-function prove to be the largest,

but are partially compensated by contributions of “planar” diagrams ∼ C2
F . The non-planar

contributions ∼ CF /Nc are in all cases an order of magnitude below the planar ones.
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6 Summary

Using the approach based on conformal symmetry [13, 25] we have calculated the two-loop

coefficient functions in double deeply virtual Compton scattering in the MS scheme for the

flavor-nonsinglet vector contributions. Analytic expressions for the coefficient functions in

momentum fraction space are presented in appendix E and in two supplementary material

files using different representations for the relevant generalized polylogarithms. Numerical

estimates in section 5 suggest that the two-loop contribution to the Compton form factors

at the scale of proposed experiments is significant.

The technique developed in this work can be used to calculate the two-loop contributions

to the flavor-nonsinglet coefficient functions for the correlation functions of all quark-antiquark

currents with applications to, e.g., the light-cone sum rules for the pion electromagnetic

and transition form factors [54, 55].

Acknowledgments

We thank J. Wagner and L. Szymanowski for the discussion of analytic continuation properties

of the DDVCS amplitudes. This study was supported by Deutsche Forschungsgemeinschaft

(DFG) through the Research Unit FOR 2926, “Next Generation pQCD for Hadron Structure:

Preparing for the EIC”, project number 40824754. In addition, H.-Y.J. gratefully acknowledges

support from the National Natural Science Foundation of China with Grant No. 12405114.

A Helicity amplitudes

In this appendix, we discuss the decomposition of the generalized Compton amplitude in

terms of helicity amplitudes. It is convenient [56] to use the photon momenta q1, q2 to

define the longitudinal plane spanned by two light-like vectors nµ, ñµ. In the present context

we can put ∆2 = 0 and define

nµ =
qµ

1

q2
1

− qµ
2

q2
2

, ñµ = qµ
1 −qµ

2 = ∆µ , (nñ) =
1

2

(q2
1 −q2

2)2

q2
1q2

2

=
2w2

1−w2
. (A.1)

The amplitude (2.1) can be expanded in terms of helicity amplitudes to twist-two accuracy

as follows:

At2
µν = ǫ+

µ ǫ−
ν A+−+ǫ−

µ ǫ+
ν A−++ǫL

µ(q)ǫL
ν (q′)AL = −g⊥

µνAV +ǫ⊥
µνAA+ǫ̂L

µ(q1)ǫ̂L
ν (q2)AL . (A.2)

Here

g⊥
µν = gµν − nµñν +nν ñµ

(nñ)
, ǫ⊥

µν =
1

(nñ)
ǫµναβnαñβ, (A.3)

ǫ±
µ are orthogonal unit vectors in the transverse plane that can be taken as transverse

polarization vectors for both initial and final photons, and the longitudinal photon polarization

vectors are given by

ǫ̂µ
L(q1) =

1

wQ
√

1+w

[
qµ

1 −qµ
2 (1+w)

]
,

ǫ̂ν
L(q2) =

1

wQ
√

1−w

[
qν

2 −qν
1 (1−w)

]
. (A.4)
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The longitudinal helicity amplitude can therefore be projected as

AL = ǫ̂µ
L(q1)Tµν ǫ̂ν

L(q2) = −
√

1−w2

w2Q2
∆µTµν∆ν , (A.5)

where we used that, since qµ
1 Tµν = Tµνqν

2 = 0, one can replace

ǫ̂µ
L(q1) 7→

√
1+w

wQ
∆µ, ǫ̂ν

L(q2) 7→ −
√

1−w

wQ
∆ν . (A.6)

Comparing these expressions with the conventional decomposition in terms of (generalized)

Compton form factors in (2.5), we get

AV = F1 = F⊥ , AL = −
√

1−w2FL . (A.7)

Note that the longitudinal CFF FL does not vanish for w = ±1, but it does not contribute

to DVCS and TCS thanks to the
√

1−w2 prefactor.

B The K̂⊥ kernel

Here, we present the eigenvalues of the K̂⊥ kernels employed in section 4:

K̂(2,β)
⊥ (N) =

(
2ζ2+

5

9

)
S1−

(
ζ2+

10

9

)
1

N(N +1)
+2ζ3− 65

6
ζ2+

45

8
,

K̂(2,P )
⊥ (N) =

=
1

2

(
K(1)

⊥ (N)
)2

+4ζ2(γ̄
(1)
N )2+4ζ3

(
11+

12

N(N +1)

)
−64ζ3S1−8ζ2S2

1 +
6S−2

N(N +1)

+
2S2

1

N(N +1)
+12ζ2

(
−1+

2

3N(N +1)

)
S1+

(
149

9
− 8

N(N +1)
− 2

N2(N +1)2

)
S1

+
11

8
+

11

3
ζ2+8ζ2

2 − 19

9N(N +1)
− 16

N2(N +1)2
− 2

N3(N +1)3
,

K̂(2,NP )
⊥ (N) =

= −12S2
−2−8S−4+4

(
2S1,3−S4

)
− 12S3

N(N +1)
+

24(S−3−2S1,−2)

N(N +1)
+

16S1S−2

N(N +1)

+

(
36

N2(N +1)2
+

24

(N −2)(N +3)
+

52

N(N +1)
+8

)
S−2

+

(
− 8

N3(N +1)3
− 8

N2(N +1)2
− 10

N(N +1)
+

70

9

)
S1

− 68

9N(N +1)
+

18

(N −2)(N +3)
− 35

4
+

(
50

N(N +1)
+54

)
ζ3

−4ζ2
2 −36ζ3S1− 12ζ2S1

N(N +1)
+ζ2

(
8

N2(N +1)2
+

4

N(N +1)
− 20

3

)
. (B.1)

C SL(2)-invariant kernels

We collect here the invariant kernels and their eigenvalues used in section 4. Let

Mn[ω] =

∫ 1

0
dα

∫ ᾱ

0
dβ ω(τ)(1−α−β)n−1 , τ =

αβ

ᾱβ̄
, τ̄ = 1−τ , (C.1)
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where n is even. One obtains

H+ : Mn[1] =
1

n(n+1)
, H++ : Mn[− ln τ̄ ] =

1

n2(n+1)2
,

H1,+ : Mn[− lnτ ] =
2S1(n)

n(n+1)
, H−2 : Mn[τ̄ ] = 2S−2(n)+ζ2 ,

H−2,+ : Mn[Li2(τ)] =
2S−2(n)+ζ2

n(n+1)
, H3 : Mn

[
τ̄

2τ
ln τ̄

]
= S3(n)−ζ3 , (C.2)

and

H−3 : Mn [−τ̄ ln τ̄ ] = 2S−3(n)−4S1,−2(n)−2ζ2S1(n)+ζ3 ,

H−4 : Mn

[
τ̄

(
Li2(τ)+

1

2
ln2 τ̄

)]
= 2S−4(n)+

7

10
ζ2

2 ,

H1,3 : Mn

[
τ̄

4τ

(
Li2(τ)+

1

2
ln2 τ̄

)]
= S1,3(n)− 1

2
S4(n)−ζ3S1(n)+

3

10
ζ2

2 ,

Hsing : Mn

[
τ2+4τ+1

(τ −1)2

[
Li2(τ)−ζ2

]
+3
(τ+1

τ−1

)
ln(1−τ)− 3

2

3τ +1

(τ −1)

]
=

2S−2(n)+3/2

(n−2)(n+3)
. (C.3)

D Restoring the scale dependence

In this appendix, we provide details for the restoration of the scale dependence of the coefficient

functions mentioned in section 3.3. The scale-dependent terms ∼ lnQ/µ, ln2 Q/µ in the CFs

are completely fixed by the renormalization group equations. Since the evolution kernel in

the MS scheme does not depend on ǫ, H(as, ǫ) =H(as), in a generic d-dimensional theory
(
µ∂µ+β(as, ǫ)∂as

)
C
(
Q2/µ2,as, ǫ

)
= C

(
Q2/µ2,as, ǫ

)
⊗H(as) , (D.1)

where

C⊗H=

∫ 1

−1
dx′ C(x′)H(x′,x) . (D.2)

Solving this equation one obtains [13]

C(σ,as, ǫ) =
(
C(0)+asC(1)(ǫ)+a2

sC(2)(ǫ)+. . .
)

⊗
(
1− 1

2
lnσH(as)+

1

8
ln2σH

2(as)+. . .
)

−β(as, ǫ)

(
−1

2
C1(ǫ) lnσ+

1

8as
ln2 σ C0⊗H(as)

)
+O(a3

s,a2
sǫ,asǫ2) . (D.3)

Here σ = Q2/µ2 and C(0),C(1)(ǫ),C(2)(ǫ) are the CFs in d dimensions (3.1) at µ2 = Q2, alias

σ = 1. Note that the contribution in the second line vanishes at the critical point, β(as, ǫ∗) = 0.

For the physical case d = 4 one obtains

C(σ,as, ǫ = 0) = C(0)+as

(
C

(1)
∗ − 1

2
lnσ C(0)⊗H

(1)
)

+a2
s

{
C

(∗)
2 +β0C(1,1)

− 1

2
lnσ

[
C(0)⊗H

(2)+2C(1)⊗
(
β0+

1

2
H

(1)
)]

+
1

4
ln2σ C(0)⊗H

(1)
(
β0+

1

2
H

(1)
)}

, (D.4)

where the CFs in d = 4 are related to the ones at the critical point as C(1)(ǫ = 0) = C
(1)
∗ and

C(2)(ǫ = 0) = C
(2)
∗ +β0C(1,1), see eq. (3.5).
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E Two-loop coefficient functions

In this appendix, we present explicit results for the two-loop coefficient functions discussed in

section 4. We express our results in terms of multiple polylogarithms

Lin1,...,nr
(z1, . . . ,zr) =

∑

0<k1<...<kr

zk1

1 · · ·zkr

r

kn1

1 · · ·knr
r

, (E.1)

where the depth r denotes the number of summations. We note that this convention follows

those of refs. [45, 57] and the HyperInt package [39], whereas the order of subscripts and

arguments need to be reversed to match the conventions of Ginac’s Li functions [47]. The Li

functions can easily be converted into G function notation (4.13) and vice versa. Threshold

expansions of our results are presented in appendix F below.

E.1 Longitudinal CF

As was discussed in section 3, the difference between the critical and four dimensional CFs at

two loops, C
(2)
L (z,w)−C

(2)
∗,L(z,w) = βC

(11)
L (z,w) comes from the ǫ-expansion of the one-loop

CF in d = 4−2ǫ dimensions. Taking this contribution into account and adding the RG

logarithms as explained in appendix D, we write the two-loop longitudinal CF using the

notations in eqs. (2.17), (2.19), (2.20). The AL -type contributions all vanish. The terms

∼ ln(Q2/µ2) in the BL-functions corresponding to the different color structures, eq. (2.19),

take the following form:

B
(2,β)
L,ln (z,w) = −2L1(z,w) ,

B
(2,P )
L,ln (z,w) = L2(z,−w)−L2(w,−w)+L1(z,w)

(
L1(z,−w)+

3

2

)
,

B
(2,NP )
L,ln (z,w) = 0 . (E.2)

The remaining contributions are:

• Terms ∼ β0CF :

B
(2,β)
L (z,w) = 2L2(z,w)+

13

3
L1(z,w)+

[
−ln2(1−z)+ln2(1−w)+2L1(z,w)

]
. (E.3)

The terms in square brackets in eq. (E.3) originate from C(11).

• Planar contributions ∼ C2
F :

B
(2,P )
L (z,w) = 4

{
L12(z,w)+L3(z,−w)−L3(w,−w)+

(
L2(z,−w)−L2(w,−w)

)
ln(1+w)

+
1

3

(
ln3(1−z)−ln3(1−w)

)
− 3

2
L2(z,w)+

1

4

(
ln2(1−z)−ln2(1−w)

)

− 1

2

(
ln2(1+w)+ln2(1−w)−ln(1−w2)+

47

6

)
L1(z,w)

}
. (E.4)
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• Non-planar contributions ∼ CF /Nc are considerably more complicated:

B
(2,NP )
L (z,w) =

= 4

{
L2(z,w)

[
L2(z,−w)+L2(−z,w)

]
+ M̂22(−z,−w)− M̂22(−w,−z)+6L112(z,w)

+L1(z,w)
[
L̂3(z,w)+4L12(z,w)−6ζ3

]
− 1

2

[
L2

1(z,−w)−L2
1(w,−w)

]
L2(−z,w)

+L2(z,w)
[
L2

1(z,w)+
1

2
L2

1(w,−w)
]
+L1(−z,−w)L2(z,w)+L1(−z,w)L2(z,−w)

− 1

6
L3

1(w,−w)L1(z,w)− 1

4
L2

1(w,−w)L1(z,−z)−L1(z,−z)L1(z,w)+
5

3
L1(z,w)

}

− 2(w2−3)

w2

{
L1(−z,−w)L2(z,w)+L1(−z,w)L2(z,−w)− 1

4
L2

1(w,−w)L1(z,−z)

}

− 12

w

{
L2(z,−w)+

1

4
L2

1(w,−w)− 1

2
(w−2)L1(z,w)

}

+6(w−z)

{
z

w4
(w2−3)

[
D̂L(w)−M22(z,w)+

1

2
L2(z,w)

(
L2(−z,w)+

1

2
L2

1(w,−w)

)

−L4(−z,−w)+L2(z,w)L2(−1,−w)− 1

4
L1(w,−w)

[
L̂3(z,w)+6ζ3

]

− 2w

z

(
L1(z,−w)L2(−z,w)+

1

4
L2

1(w,−w)L1(z,w)

)]

+
6z

w3

[
1

4
L̂3(z,w)− 1

2
L̂12(z,w)− 3

2
ζ3−

(
1

4
L2

1(w,−w)+L2(−z,−w)

)
L1(z,w)

]

+2
w−3

w2
L2(z,w)− 2

w
L1(z,w)

}
. (E.5)

Here,

D̂L(w) = − 1

24
ln3 w+

(
lnw+−4lnw−

)
−3Li13 (w−)+6Li4 (w−)

−
(

lnw++2lnw−

)
Li3 (w−)− 1

2
ζ2 ln2 w−+2ζ3 lnw− , (E.6)

where w± = (1±w)/2, and we use the following notation:

L~n(z,w) =





ln
(

1−z
1−w

)
~n = 1

Li~n
(
1, . . . ,1, z−w

1−w

)
~n 6= 1

(E.7)

and

M22(z,w) = Li22

(
z−w

1−w
,
w−1

w+1

)
, M̂22(z,w) = Li22

(
1+z

1+w
,
z+w

1+z

)
, (E.8)

where Li~n(~z) are the multiple polylogarithms defined in (E.1). The hatted letters stand

for the following combinations

L̂3(z,w) = L3(z2,w2)−L3(z,w)−L3(−z,w)−L3(z,−w)−L3(−z,−w),

L̂12(z,w) = L12(z2,w2)−L12(z,w)−L12(−z,w)−L12(z,−w)−L12(−z,−w). (E.9)
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All BL-functions are regular at z = w. Moreover, B
(2,β)
L (w,w) = B

(2,P )
L (w,w) = 0, and for

the non-planar contribution the following identity holds: B
(2,NP )
L (w,w)

−B
(2,NP )
L (−w,−w) = 0. It can also be checked that B

(2,NP )
L (z,w) is regular at the

point w = 0. Thus the longitudinal CF is a real analytic function in the whole Euclidean

domain −1 < z < 1, −1 < w < 1 with logarithmic branching cuts outside this region.

E.2 Transverse CF

The resulting expression for the transverse CF can be brought to the form in eqs. (2.17), (2.19),

(2.20). The double logarithmic contributions ∼ ln2(Q2/µ2) are rather simple in this case too:

A
(2,β)

⊥,ln2(z,w) = −L1(z,w)− 3

4
,

B
(2,β)

⊥,ln2(z,w) =
1

2
(1+w)L1(z,w) ,

A
(2,P )

⊥,ln2(z,w) = 4L2(z,w)+4L2
1(z,w)−L2

1(w,−w)+6L1(z,w)+
9

4
,

B
(2,P )

⊥,ln2(z,w) = (1+w)
[
L2(w,−w)−L2(z,−w)−2L1(z,w)

(
L1(z,−w)+

3

2

)
−L1(−z,−w)

]
,

A
(2,NP )

⊥,ln2 (z,w) = B
(2,NP )

⊥,ln2 (z,w) = 0 . (E.10)

For the single-logarithmic contributions ∼ ln(Q2/µ2) we obtain

A
(2,β)
⊥,ln (z,w) = 2L2(z,w)−ln2(1−z)+ln2(1−w)+

29

6
L1(z,w)− 3

2
ln(1−w)+

19

4
,

B
(2,β)
⊥,ln (z,w) =

1+w

2

[
ln2(1−z)−ln2(1−w)−2L2(z,w)− 19

3
L1(z,w)−L1(−z,−w)

]
,

A
(2,P )
⊥,ln (z,w) = 8L3(z,w)+4L3

1(z,w)+4
[
2ln(1−w)−3

]
L2(z,w)

+
[
4ln(1−w2)−3

]
L2

1(z,w)−L1(z,w)
[
4L2

1(w,−w)−6ln(1−w2)+
103

6

]

− 47

4
+

1

3
ln3(1−w2)− 8

3
ln3(1−w)+

9

2
ln(1−w),

B
(2,P )
⊥,ln (z,w) = −2(1+w)

{
L12(z,w)+L3(z,−w)+L3

1(z,w)− 3

2
L2(z,w)− 3

2
L2(−z,w)

+
(
ln(1+w)−1

)
L2(z,−w)− 1

2

(
ln(1+w)−5ln(1−w)+3

)
L2

1(z,w)

−L2
1(−z,−w)− 1

2
L1(z,w)

(
ln2(1−w2)−4ln2(1−w)−6ln(1+w)+

65

6

)

− 1

2
L1(−z,−w)

(
ln(1+w)−3ln(1−w)+

19

2

)

−L3(w,−w)−
(
ln(1+w)−1

)
L2(w,−w)+

3

2
L2(−w,w)

}
,

A
(2,NP )
⊥,ln (z,w) = −2L̂3(z2,w2)+4L̂12(z,w)+8L1(z,w)L2(−z,−w)+2L2

1(w,−w)L1(z,w)

+
8

3
L1(z,w)+

1

2
,
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B
(2,NP )
⊥,ln (z,w) = 4w

(
P12(z,w)+L3(z,w)− 1

2
L̂12(z,w)

)
−2(1−w)L1(w,−w)L2(z,−w)

−2(1+w)L1(z,w)
(
L2(−z,−w)+L2(−z,w)+

1

2
L2

1(w,−w)
)

−
(

10

3
− 2

3
w

)
L1(z,w)−2w

(
L12(w,−w)+L12(−w,w)

)

+2(1−w)L1(w,−w)L2(w,−w). (E.11)

The function P12 is defined in eq. (E.17).

The remaining contributions are:

• Terms ∼ β0CF :

A
(2,β)
⊥ (z,w) = L3(z,w)−2L12(z,w)+2L2(z,w)

(
ln(1−w)− 7

3

)
− 3

4
ζ2− 25

48

+
5

3

(
ln2(1−z)−ln2(1−w)

)
−
(

121

36
+ζ2

)
L1(z,w)+

1

4
ln(1−w)

+

{
−1

3

[
ln3(1−z)−ln3(1−w)

]
+

3

4

[
ln2(1−z)−2ln2(1−w)

]

+ζ2L1(z,w)− 7

2
ln(1−z)+8ln(1−w)−9+

3

4
ζ2

}
, (E.12a)

B
(2,β)
⊥ (z,w) =

1+w

2

[
2L12(z,w)−L3(z,w)−2L2(z,w)

[
ln(1−w)− 10

3

]
+

31

9
L1(z,w)

+ζ2L1(z,w)

]
− w+4

3

[
ln2(1−z)−ln2(1−w)

]
−2L2(z,w)+

1

6
L1(z,w)

+

{
(1+w)

(
1

6
L3

1(z,w)+
1

2
ln(1−w)L2

1(z,w)− 3

4

[
L2

1(z,w)+L2
1(−z,−w)

])

−L1(z,w)

(
w [3 ln(1−w)−6]+

1+w

2
ζ2−2− 1

2
(1+w) ln2(1−w)

)}
. (E.12b)

The terms in the curly brackets in eq. (E.12) originate from the ǫ-correction term C(1,1),

see eq. (3.5).

• Planar contributions ∼ C2
F :

A
(2,P )
⊥ (z,w) =

= 4

{
701

192
+

9

2
ζ3+L4(z,w)+L13(z,w)+5L112(z,w)+L1(z,w)

(
L3(z,w)+2L12(z,w)

)

− 3

2
L12(z,w)+

(
2ln(1−w)− 9

4

)
L3(z,w)+

1

4

[
ln2(1−z)−ln2(1−w)

]2

− 1

16

[
ln2(1−w)−ln2(1+w)

]2
− 3

4

[
ln2(1−z)−ln2(1−w)

](
L1(z,w)−ln(1+w)

)

+

(
ln2(1−w)−3ln(1−w)+

37

12

)
L2(z,w)− 9

4
ln(1−w)

[
ln(1−z)− 1

2
ln(1+w)

]

− 49

48
ln2(1−z)+

65

24
ln2(1−w)+

(
6ζ3+

167

144

)
L1(z,w)− 47

16
ln(1−w)

}
, (E.13a)
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B
(2,P )
⊥ (z,w) =

= (1+w)

{
−L1(z,w)

[
L3(z,w)+2L12(z,w)

]
−3L13(z,w)−3L112(z,w)+

3

2
L3(z,w)

−ln(1−w)
[
2L12(z,w)−3L2(z,w)

]
− 8

3
L2(z,w)−L4(z,−w)−L13(z,−w)

−L1(z,−w)
[
L3(z,−w)+2L12(z,−w)

]
−5L112(z,−w)−2ln(1+w)L3(z,−w)

−ln2(1+w)L2(z,−w)+L12(z,−w)− 1

2

[
ln2(1−z)−ln2(1−w)

][
ln2(1−z)

−ln2(1+w)+3ln(1−w2)
]
−12ζ3L1(z,w)+

1

2
L3(−z,w)−L1(−z,−w)L2(−z,−w)

−L1(−z,w)L2(−z,w)−3L12(−z,w)+
5

2

[
L3(z,−w)+L3(−z,w)

]

+2
[
ln3(1−z)−ln3(1−w)

]
+

2

3

[
ln3(1+z)−ln3(1+w)

]
+2ln(1+w)L2(z,−w)

+
(
3ln(1−w)−1

)
L2(−z,w)− 5

2

[
(L2(z,−w)+L2(−z,w)+

1

2
L2

1(w,−w)
]

−3
[
L2(z,w)+L2(−z,−w)

]
− 3

2

[
ln2(1−w)+ln2(1+w)

][
L1(z,w)+L1(−z,−w)

]

+
1

2
ln(1+w)L1(z,w)+

1

2
ln(1−w)L1(−z,−w)+

7

6

[
ln2(1−z)−ln2(1−w)

]

+
3

2

[
ln2(1+z)−ln2(1+w)

]
+ln(1−w2)

[
4L1(z,w)+3L1(−z,−w)

]

− 295

36
L1(z,w)− 223

12
L1(−z,−w)−D̂⊥(w)

}
, (E.13b)

where

D̂⊥(w) = −L4(w,−w)−L1(w,−w)L3(w,−w)−L13(w,−w)−2L1(w,−w)L12(w,−w)

−5L112(w,−w)−2ln(1+w)L3(w,−w)−ln2(1+w)L2(w,−w)+L12(w,−w)

−L1(−w,w)L2(−w,w)−3L12(−w,w)+
1

2
L3(−w,w)+3ln(1−w)L2(−w,w)

−L2(−w,w)+
5

2
(L3(w,−w)+L3(−w,w))+2ln(1+w)L2(w,−w). (E.14)

It can be checked that B
(2,P )
⊥ (w,w) = 0.

• Non-planar contributions ∼ CF /Nc:

A
(2,NP )
⊥ (z,w) =

= 2L13(z2,w2)−4L1(z,w)L3(z2,w2)−6L2(z,w)L2(−z,w)+12L1(z,w)L3(−z,−w)

−L4(z2,w2)−4L2(z,w)L2(z,−w)−4
[
M̂22(−z,w)− M̂22(w,−z)− 1

2
L2

1(z,w)L2(−z,w)
]

+2
[
M̂22(z,w)− M̂22(w,z)−4L1(z,w)L12(−z,w)+2L1(−z,w)L̂12(z,w)

]

+
3

2
L2

1(−z,w)
[
L2(z,w)+L2(z,−w)

]
+2L2

2(z,w)+8L1(z,w)L3(z,w)−16L13(z,w)

−2L2
1(z,w)L2(z,w)−4L1(z,w)L12(z,w)+2

[
L4(z,w)+L4(−z,w)

]
−4L13(−z,w)

+2L2
1(−z,w)L2(−z,w)+8L1(−z,w)L12(−z,w)+12L112(−z,w)
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−ln(1−w2)
[
L3(z2,w2)−2L12(z2,w2)+4L12(z,w)

]
+3L1(w,−w)L1(−z,w)L2(z,w)

−2
[
ln(1+w)−3ln(1−w)

][
2L1(z,w)L2(−z,w)−2L12(z,−w)+L3(z,w)

+L3(−z,−w)
]
−
[

3

2
L2

1(w,−w)+
7

3

]
L2(z,w)+

4

3
L2

1(z,w)

+
[
L1(w,−w)

(
7ln(1−w)+ln(1+w)

)
+4
]
L2(−z,w)+L2

1(w,−w)L2
1(−z,w)

−
[

1

3
ln3(1−w2)− 4

3
ln3(1−w)− 4

3
ln3(1+w)− 4

3
ln(1−w2)+

73

18
−24ζ3

]
L1(z,w)

+
1

4
ln(1−w2)+

1

3
L2

1(w,−w)− 13

24
L4

1(w,−w)+27ζ3− 73

24
, (E.15a)

B
(2,NP )
⊥ (z,w) =

= (w+3)L1(z,w)L3(z2,w2)+(2w+3)L2(z,w)L2(−z,w)−w
[
M̂22(z,w)− M̂22(z,−w)

+L13(z2,w2)
]
+2(2−w)

[
L1(−z,−w)L3(z,w)+L1(−z,w)L3(z,−w)

]
+M22(z,w)

+7M22(z,−w)+3L2(z,w)L2(z,−w)+2w
(
P211(z,−w)+2P121(z,w)+P13(z,w)

+P13(z,−w)+P31(z,−w)−P22(z,w)+P22(z,−w)
)

−2(w+3)
[
M13(z,w)+M13(z,−w)+M112(z,w)+M112(z,−w)+M22(z,w)+M22(z,−w)

]

−2(1+w)
[
M121(z,w)+M121(z,−w)

]
−(2w−5)L4(z,w)+(4w−1)L4(z,−w)

+(9w+7)L13(z,w)+(5w+7)L13(z,−w)+2L22(z,w)+2(1+w)L22(z,−w)

+(w+3)
[
L31(z,w)+L31(z,−w)

]
+L121(z,w)+(2w+1)L121(z,−w)

−(3w+1)L211(z,w)+(w−1)L211(z,−w)+w
[
ln(1−w2)L3(z2,w2)−10P12(z,w)

−4ln(1−w)P12(z,−w)
]
−
[
2(1+w) ln(1+w)+5(1−w)

]
M21(z,w)

−
[
2(1+w) ln(1−w)+5(1−w)

]
M21(z,−w)+wL1(w,−w)

[
L21(z,w)+L21(z,−w)

]

−
[
2w ln(1−w2)−2(1−w) ln(1−w)−5(1−w)

]
L3(z,w)

+
[
6(1−w) ln(1−w)−4(1+w) ln(1+w)+5(1+w)

]
L3(z,−w)

+(w+2)L2
1(−w,w)

[
L2(z,w)+L2(z,−w)

]
−
[1

2
ln2 w−+Li2(w+)− 10

3
w+−ζ2

]
L2(z,w)

−
[7

2
ln2 w++7Li2(w−)−w−7ζ2

]
L2(z,−w)+L2

1(z,w)
[
ζ2(w+3)+

10

3
w− 25

6

]

+L1(z,w)
[1

3
(2w+3)

(
ln3 w−+ln3 w+

)
−(w+2)lnw+ lnw− ln(w+w−)

−(1+w)L1(w,−w)
(

Li2(w−)−Li2(w+)
)

−2(3+w)
(

Li3(w+)+Li3(w−)
)

+ζ2

(
(1+w) ln(1−w2)+2(w+3)lnw−+5(1−w)

)

− 5

2
(1−w)L1(w,−w)− 2

3
(5−w) ln(1−w)− 1

9
(8w−49)

]
−D̂

(NP )
⊥ (w)
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− 3(w2−1)

w2

(
L1(−z,−w)L2(z,w)+L1(−z,w)L2(z,−w)−2wL2(z,−w)

− 1

4
L1(z,−z)L2

1(w,−w)− 1

2
wL2

1(w,−w)− w(w+2)

w+1
L1(z,w)

)

+(w−z)

(
6(2w+3)(w−1)

w2
L2(z,w)+

9

w4
(w2−1)

(
z

[
1

2
L2(−z,w)L2(z,w)+M̃22(z,w)

+
1

2
L2

1(w,−w)L2(z,w)− 1

4
L1(w,−w)

(
L̂3(z,w)−6ζ3

)
− 1

24

(
ln4 w+−4ln3 w+ lnw−

)

−(lnw++2lnw−)L3(−w,−1)+6L4(−w,−1)−3L13(−w,−1)− 1

2
ζ2 ln2 w−−4ζ3 lnw−

]

+2w

[
L1(−z,−w)L2(z,w)− 1

8
L2

1(w,−w)L1(z,−z)

])
−6z

(2w2−3)

w3

[
1

4

(
L̂3(z,w)−6ζ3

)

−L1(−z,−w)L2(z,w)− 1

2
L̂12(z,w)− 1

4
L2

1(w,−w)L1(z,w)

]
− 3

w
L1(z,−z)

)
. (E.15b)

The subtraction term D̂
(NP )
⊥ (w) is determined by condition B

(2,NP )
⊥ (w,w) = 0 and takes

the form

D̂
(NP )
⊥ (w) = −w M̂22(w,w)+2(2−w)L1(−w,w)L3+7M22+2w(P211+P13+P31+P22)

−2(w+3)(M13+M22+M112)−2(1+w)M121+(4w−1)L4+(5w+7)L13

+2(1+w)L22+(w+3)L31+(2w+1)L121−(1−w)L211−4w ln(1−w)P12

−(2(1+w) ln(1−w)+5(1−w))M21+wL1L21+(w+2)L2
1L2

+(−4(1+w) ln(1+w)+6(1−w) ln(1−w)+5(1+w))L3

−
(

7

2
ln2 w++7Li2(w−)−w−7ζ2

)
L2, (E.16)

where we used a shorthand notation (L,M,P)a,b,c ≡ (L,M,P)a,b,c(w,−w), and

P~n(z,w) = Li~n

(
1, . . . ,1,

w−z

2w
,

2w

w−1

)

Mn1,n2
(z,w) = Lin1,n2

(
z−w

1−w
,
w−1

w+1

)
,

M112(z,w) = Li112

(
z−w

1−w
,1,

w−1

w+1

)
,

M121(z,w) = Li121

(
1,

z−w

1−w
,
w−1

w+1

)
(E.17)

and

M̃2,2(z,w) = Li22

(
w−1

w+1
,
z−w

1−w

)
.

F Threshold expansion

In this appendix, we provide threshold expansions of our results for the coefficient functions.

The transverse CF is singular at the points z = ±1

C
(k)
⊥

(
z,w,

Q2

µ2

)
=

wCF

1−z

[
A

(k)
⊥

(
z,w,

Q2

µ2

)
+A

(k)
⊥

(
z,−w,

Q2

µ2

)]
+. . . (F.1)

– 29 –



J
H
E
P
0
1
(
2
0
2
5
)
0
6
9

and the functions A
(2)
⊥

(
z,w, Q2

µ2

)
contain a series of logarithmic contributions ∼ ln z̄, z̄ = 1−z

up to power ln2k z̄. In what follows we collect the corresponding expressions for the sum

Ã
(k)
⊥

(
z,w,

Q2

µ2

)
= A

(k)
⊥

(
z,w,

Q2

µ2

)
+A

(k)
⊥

(
z,−w,

Q2

µ2

)
. (F.2)

At one loop, up to terms O(z̄1), one gets

Ã
(1)
⊥ (z,w) = 2ln2 z̄−3ln z̄−ln2(1+w)−ln2(1−w)+3ln(1−w2)−9+. . . ,

Ã
(1)
⊥,ln(z,w) = 4ln z̄−2ln(1−w2)+3+. . . . (F.3)

To the two-loop accuracy, we obtain

Ã
(2,β)
⊥ (z,w) = −2

3
ln3 z̄+

29

6
ln2 z̄− 247

18
ln z̄+

(
2ζ2+

209

18

)
ln(1−w2)− 19

6
ln2(1+w)

− 19

6
ln2(1−w)+

1

3
ln3(1+w)+

1

3
ln3(1−w)− 28

3
ζ2−2ζ3− 457

24
+. . . ,

Ã
(2,β)
⊥,ln (z,w) = −2ln2 z̄+

29

3
ln z̄− 19

3
ln(1−w2)+ln2(1+w)+ln2(1−w)+4ζ2+

19

2
+. . . ,

Ã
(2,β)

⊥,ln2(z,w) = −2ln z̄+ln(1−w2)− 3

2
, (F.4)

Ã
(2,P )
⊥ (z,w) = 2ln4 z̄−6ln3 z̄+

[
6ln(1−w2)−2ln2(1+w)−2ln2(1−w)− 49

6

]
ln2 z̄

+

[
3ln2(1+w)+3ln2(1−w)−9ln(1−w2)+72ζ3+

167

18

]
ln z̄

+
1

2

(
ln2(1−w)+ln2(1+w)−3ln(1−w2)

)2

+
(19

3
+4ζ2

)[
ln2(1+w)+ln2(1−w)

]
−
(
28ζ3+12ζ2+

295

18

)
ln(1−w2)

+20ζ2
2 +30ζ3+

74

3
ζ2+

701

24
+. . . ,

Ã
(2,P )
⊥,ln (z,w) = 8ln3 z̄−4

[
ln(1−w2)+

3

2

]
ln2 z̄−4

[
ln2(1+w)+ln2(1−w)− 9

2
ln(1−w2)

+
103

12

]
ln z̄+2ln(1−w2)

[
ln2(1−w)+ln2(1+w)

]
+6ln(1−w) ln(1+w)

−9ln2(1−w2)+
(65

3
+8ζ2

)
ln(1−w2)+16ζ3−24ζ2− 47

2
. . . ,

Ã
(2,P )

⊥,ln2(z,w) = 8ln2 z̄+8
[3

2
−ln(1−w2)

]
ln z̄+2ln2(1−w2)−6ln(1−w2)+8ζ2+

9

2
+. . . , (F.5)

Ã
(2,NP )
⊥ (z,w) =

(
−4ζ2+

8

3

)
ln2 z̄+

(
40ζ3− 73

9

)
ln z̄+

(
2ζ2− 4

3

)[
ln2(1+w)+ln2(1−w)

]

+
(

−26ζ3+
41

9

)
ln(1−w2)+

31

5
ζ2

2 − 26

3
ζ2+54ζ3− 73

12
+. . . ,

Ã
(2,NP )
⊥,ln (z,w) =

(
−8ζ2+

16

3

)
ln z̄+

(
4ζ2− 8

3

)
ln(1−w2)−12ζ3+1+. . . . (F.6)

Note that the limits w → 1 and z → 1 do not commute so that the above expressions do not

reduce to the corresponding DVCS results [13, 58] in the limit w → 1.
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