000622553 001__ 622553
000622553 005__ 20250801212050.0
000622553 0247_ $$2doi$$a10.1007/JHEP12(2024)197
000622553 0247_ $$2INSPIRETeX$$aAnuar:2020sxt
000622553 0247_ $$2inspire$$ainspire:2782458
000622553 0247_ $$2ISSN$$a1126-6708
000622553 0247_ $$2ISSN$$a1029-8479
000622553 0247_ $$2ISSN$$a1127-2236
000622553 0247_ $$2arXiv$$aarXiv:2404.19014
000622553 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-00390
000622553 0247_ $$2altmetric$$aaltmetric:163007792
000622553 0247_ $$2WOS$$aWOS:001494469400004
000622553 0247_ $$2openalex$$aopenalex:W4406092680
000622553 037__ $$aPUBDB-2025-00390
000622553 041__ $$aEnglish
000622553 082__ $$a530
000622553 088__ $$2arXiv$$aarXiv:2404.19014
000622553 088__ $$2DESY$$aDESY-24-059
000622553 088__ $$2Other$$aIFT--UAM/CSIC-24-042
000622553 1001_ $$0P:(DE-H253)PIP1021338$$aAnuar, Afiq$$b0
000622553 245__ $$aALP-ine quests at the LHC: hunting axion-like particles via peaks and dips in $ t\overline{t} $ production
000622553 260__ $$aHeidelberg$$bSpringer$$c2024
000622553 3367_ $$2DRIVER$$aarticle
000622553 3367_ $$2DataCite$$aOutput Types/Journal article
000622553 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1754041283_3349145
000622553 3367_ $$2BibTeX$$aARTICLE
000622553 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000622553 3367_ $$00$$2EndNote$$aJournal Article
000622553 500__ $$aJHEP 2024, 197 (2024). 28 pages, 9 figures
000622553 520__ $$aWe present an analysis of the sensitivity of current and future LHC searches for new spin-0 particles in top–anti-top-quark $ \left(t\overline{t}\right) $ final states, focusing on generic axion-like particles (ALPs) that are coupled to top quarks and gluons. As a first step, we derive new limits on the effective ALP Lagrangian in terms of the Wilson coefficients c$_{t}$ and $ {c}_{\overset{\sim }{G}} $ based on the results of the CMS search using 35.9 fb$^{−1}$ of data, collected at $ \sqrt{s} $ = 13 TeV. We then investigate how the production of an ALP with generic couplings to gluons and top quarks can be distinguished from the production of a pseudoscalar which couples to gluons exclusively via a top-quark loop. To this end, we make use of the invariant $ t\overline{t} $ mass distribution and angular correlations that are sensitive to the $ t\overline{t} $ spin correlation. Using a mass of 400 GeV as an example, we find that already the data collected during Run 2 and Run 3 of the LHC provides an interesting sensitivity to the underlying nature of a possible new particle. We also analyze the prospects for data anticipated to be collected during the high-luminosity phase of the LHC. Finally, we compare the limits obtained from the $ t\overline{t} $ searches to existing experimental bounds from LHC searches for narrow di-photon resonances, from measurements of the production of four top quarks, and from global analyses of ALP–SMEFT interference effects.
000622553 536__ $$0G:(DE-HGF)POF4-611$$a611 - Fundamental Particles and Forces (POF4-611)$$cPOF4-611$$fPOF IV$$x0
000622553 536__ $$0G:(GEPRIS)390831469$$aDFG project G:(GEPRIS)390831469 - EXC 2118: Precision Physics, Fundamental Interactions and Structure of Matter (PRISMA+) (390831469)$$c390831469$$x1
000622553 536__ $$0G:(GEPRIS)390833306$$aDFG project G:(GEPRIS)390833306 - EXC 2121: Quantum Universe (390833306)$$c390833306$$x2
000622553 542__ $$2Crossref$$i2024-12-27$$uhttps://creativecommons.org/licenses/by/4.0
000622553 542__ $$2Crossref$$i2024-12-27$$uhttps://creativecommons.org/licenses/by/4.0
000622553 588__ $$aDataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
000622553 650_7 $$2INSPIRE$$atop: pair production
000622553 650_7 $$2INSPIRE$$aspin: correlation
000622553 650_7 $$2INSPIRE$$ainterference: effect
000622553 650_7 $$2INSPIRE$$ainterpretation of experiments: CERN LHC Coll
000622553 650_7 $$2INSPIRE$$agluon
000622553 650_7 $$2INSPIRE$$aaxion-like particles
000622553 650_7 $$2INSPIRE$$asensitivity
000622553 650_7 $$2INSPIRE$$atwo-photon
000622553 650_7 $$2INSPIRE$$ainterpretation of experiments: CMS
000622553 650_7 $$2INSPIRE$$aangular correlation
000622553 650_7 $$2INSPIRE$$anew particle
000622553 650_7 $$2INSPIRE$$apseudoscalar
000622553 650_7 $$2INSPIRE$$amass spectrum
000622553 650_7 $$2INSPIRE$$adip
000622553 650_7 $$2INSPIRE$$aTeV
000622553 650_7 $$2autogen$$aAxions and ALPs
000622553 650_7 $$2autogen$$aMulti-Higgs Models
000622553 650_7 $$2autogen$$aSpecific BSM Phenomenology
000622553 650_7 $$2autogen$$aTop Quark
000622553 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000622553 7001_ $$00000-0003-1665-9814$$aBiekötter, Anke$$b1
000622553 7001_ $$0P:(DE-H253)PIP1090818$$aBiekötter, Thomas$$b2
000622553 7001_ $$0P:(DE-H253)PIP1015292$$aGrohsjean, Alexander$$b3
000622553 7001_ $$aHeinemeyer, Sven$$b4
000622553 7001_ $$0P:(DE-H253)PIP1087563$$aJeppe, Laurids$$b5
000622553 7001_ $$0P:(DE-H253)PIP1024695$$aSchwanenberger, Christian$$b6$$eCorresponding author
000622553 7001_ $$0P:(DE-H253)PIP1010814$$aWeiglein, Georg$$b7$$eCorresponding author
000622553 77318 $$2Crossref$$3journal-article$$a10.1007/jhep12(2024)197$$bSpringer Science and Business Media LLC$$d2024-12-27$$n12$$p197$$tJournal of High Energy Physics$$v2024$$x1029-8479$$y2024
000622553 773__ $$0PERI:(DE-600)2027350-2$$a10.1007/JHEP12(2024)197$$gVol. 24, no. 12, p. 197$$n12$$p197$$tJournal of high energy physics$$v2024$$x1029-8479$$y2024
000622553 7870_ $$0PUBDB-2024-01594$$aAnuar, Afiq et.al.$$d2024$$iIsMemberOf$$rDESY-24-059 ; arXiv:2404.19014 ; IFT-UAM/CSIC-24-042 ; KA-TP-06-2024 ; MITP-24-044$$tALP-ine quests at the LHC: hunting axion-like particles via peaks and dips in $t \bar{t}$ production
000622553 8564_ $$uhttps://link.springer.com/article/10.1007/JHEP12(2024)197
000622553 8564_ $$uhttps://bib-pubdb1.desy.de/record/622553/files/JHEP12%282024%29197.pdf$$yOpenAccess
000622553 8564_ $$uhttps://bib-pubdb1.desy.de/record/622553/files/JHEP12%282024%29197.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000622553 8767_ $$8225738$$92024-06-27$$a52894939$$d2025-03-24$$eAPC$$jFlatrate$$lSCOAP3
000622553 8767_ $$81$$92024-06-27$$a52894939$$d2025-03-24$$eAPC$$jStorniert$$lSCOAP3$$zDFG OAPK (Projekt)
000622553 8767_ $$81$$92024-06-27$$a52894939$$d2025-03-24$$eAPC$$jZahlung erfolgt$$lSCOAP3$$zDFG OAPK (Projekt)
000622553 909CO $$ooai:bib-pubdb1.desy.de:622553$$popenaire$$pdriver$$pOpenAPC$$popen_access$$pdnbdelivery$$popenCost$$pVDB
000622553 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1021338$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000622553 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1021338$$aExternal Institute$$b0$$kExtern
000622553 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1090818$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000622553 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1015292$$aExternal Institute$$b3$$kExtern
000622553 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1087563$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY
000622553 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1024695$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY
000622553 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1010814$$aDeutsches Elektronen-Synchrotron$$b7$$kDESY
000622553 9131_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0
000622553 9141_ $$y2024
000622553 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000622553 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000622553 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000622553 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000622553 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-16
000622553 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-16
000622553 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000622553 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-16
000622553 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ HIGH ENERGY PHYS : 2022$$d2024-12-16
000622553 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ HIGH ENERGY PHYS : 2022$$d2024-12-16
000622553 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T09:05:11Z
000622553 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T09:05:11Z
000622553 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-16
000622553 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-16
000622553 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-16
000622553 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000622553 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2024-12-16
000622553 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-16
000622553 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-16$$wger
000622553 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-16
000622553 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T09:05:11Z
000622553 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3
000622553 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-16
000622553 9201_ $$0I:(DE-H253)T-20120731$$kT$$lTheorie-Gruppe$$x0
000622553 9201_ $$0I:(DE-H253)CMS-20120731$$kCMS$$lLHC/CMS Experiment$$x1
000622553 980__ $$ajournal
000622553 980__ $$aVDB
000622553 980__ $$aI:(DE-H253)T-20120731
000622553 980__ $$aI:(DE-H253)CMS-20120731
000622553 980__ $$aAPC
000622553 980__ $$aUNRESTRICTED
000622553 9801_ $$aAPC
000622553 9801_ $$aFullTexts
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.38.1440$$uR.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.16.1791$$uR.D. Peccei and H.R. Quinn, Constraints Imposed by CP Conservation in the Presence of Instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.40.223$$uS. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.40.83$$uF. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].
000622553 999C5 $$1L Di Luzio$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2020.06.002$$p1 -$$tPhys. Rept.$$uL. Di Luzio, M. Giannotti, E. Nardi and L. Visinelli, The landscape of QCD axion models, Phys. Rept. 870 (2020) 1 [arXiv:2003.01100] [INSPIRE].$$v870$$y2020
000622553 999C5 $$1K Choi$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-nucl-120720-031147$$p225 -$$tAnn. Rev. Nucl. Part. Sci.$$uK. Choi, S.H. Im and C. Sub Shin, Recent Progress in the Physics of Axions and Axion-Like Particles, Ann. Rev. Nucl. Part. Sci. 71 (2021) 225 [arXiv:2012.05029] [INSPIRE].$$v71$$y2021
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/sciadv.abj3618$$uF. Chadha-Day, J. Ellis and D.J.E. Marsh, Axion dark matter: what is it and why now?, Sci. Adv. 8 (2022) abj3618 [arXiv:2105.01406] [INSPIRE].
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(84)90422-2$$uE. Witten, Some Properties of O(32) Superstrings, Phys. Lett. B 149 (1984) 351 [INSPIRE].
000622553 999C5 $$1P Svrcek$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2006/06/051$$p051 -$$tJHEP$$uP. Svrcek and E. Witten, Axions In String Theory, JHEP 06 (2006) 051 [hep-th/0605206] [INSPIRE].$$v06$$y2006
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(83)90606-5$$uJ.M. Frere, D.R.T. Jones and S. Raby, Fermion Masses and Induction of the Weak Scale by Supergravity, Nucl. Phys. B 222 (1983) 11 [INSPIRE].
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(83)90637-8$$uJ. Preskill, M.B. Wise and F. Wilczek, Cosmology of the Invisible Axion, Phys. Lett. B 120 (1983) 127 [INSPIRE].
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(83)90638-X$$uL.F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett. B 120 (1983) 133 [INSPIRE].
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(83)90639-1$$uM. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett. B 120 (1983) 137 [INSPIRE].
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2005/08/074$$uE. Katz, A.E. Nelson and D.G.E. Walker, The Intermediate Higgs, JHEP 08 (2005) 074 [hep-ph/0504252] [INSPIRE].
000622553 999C5 $$2Crossref$$uATLAS collaboration, Search for Higgs boson decays into two new low-mass spin-0 particles in the 4b channel with the ATLAS detector using pp collisions at $$ \sqrt{s} $$ = 13 TeV, Phys. Rev. D 102 (2020) 112006 [arXiv:2005.12236] [INSPIRE].
000622553 999C5 $$2Crossref$$uATLAS collaboration, Search for Higgs boson decays into a pair of pseudoscalar particles in the bbμμ final state with the ATLAS detector in pp collisions at $$ \sqrt{s} $$ = 13 TeV, Phys. Rev. D 105 (2022) 012006 [arXiv:2110.00313] [INSPIRE].
000622553 999C5 $$2Crossref$$uCMS collaboration, Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state with two muons and two b quarks in pp collisions at 13 TeV, Phys. Lett. B 795 (2019) 398 [arXiv:1812.06359] [INSPIRE].
000622553 999C5 $$2Crossref$$uATLAS collaboration, Search for Higgs Boson Decays into a Z Boson and a Light Hadronically Decaying Resonance Using 13 TeV pp Collision Data from the ATLAS Detector, Phys. Rev. Lett. 125 (2020) 221802 [arXiv:2004.01678] [INSPIRE].
000622553 999C5 $$2Crossref$$uATLAS collaboration, Measurement of light-by-light scattering and search for axion-like particles with 2.2 nb−1 of Pb+Pb data with the ATLAS detector, JHEP 03 (2021) 243 [Erratum ibid. 11 (2021) 050] [arXiv:2008.05355] [INSPIRE].
000622553 999C5 $$2Crossref$$uCMS collaboration, Evidence for light-by-light scattering and searches for axion-like particles in ultraperipheral PbPb collisions at $$ \sqrt{s_{\textrm{NN}}} $$ = 5.02 TeV, Phys. Lett. B 797 (2019) 134826 [arXiv:1810.04602] [INSPIRE].
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1134/1.567390$$uV.A. Rubakov, Grand unification and heavy axion, JETP Lett. 65 (1997) 621 [hep-ph/9703409] [INSPIRE].
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(82)90228-0$$uB. Holdom and M.E. Peskin, Raising the Axion Mass, Nucl. Phys. B 208 (1982) 397 [INSPIRE].
000622553 999C5 $$1S Dimopoulos$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2016)052$$p052 -$$tJHEP$$uS. Dimopoulos, A. Hook, J. Huang and G. Marques-Tavares, A collider observable QCD axion, JHEP 11 (2016) 052 [arXiv:1606.03097] [INSPIRE].$$v11$$y2016
000622553 999C5 $$1T Gherghetta$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.93.115010$$tPhys. Rev. D$$uT. Gherghetta, N. Nagata and M. Shifman, A Visible QCD Axion from an Enlarged Color Group, Phys. Rev. D 93 (2016) 115010 [arXiv:1604.01127] [INSPIRE].$$v93$$y2016
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(81)90433-8$$uH.M. Georgi, L.J. Hall and M.B. Wise, Grand Unified Models With an Automatic Peccei-Quinn Symmetry, Nucl. Phys. B 192 (1981) 409 [INSPIRE].
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.56.432$$uG. Lazarides, C. Panagiotakopoulos and Q. Shafi, Phenomenology and Cosmology With Superstrings, Phys. Rev. Lett. 56 (1986) 432 [INSPIRE].
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(92)90491-L$$uR. Holman et al., Solutions to the strong CP problem in a world with gravity, Phys. Lett. B 282 (1992) 132 [hep-ph/9203206] [INSPIRE].
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.46.539$$uS.M. Barr and D. Seckel, Planck scale corrections to axion models, Phys. Rev. D 46 (1992) 539 [INSPIRE].
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(92)90019-Z$$uS. Ghigna, M. Lusignoli and M. Roncadelli, Instability of the invisible axion, Phys. Lett. B 283 (1992) 278 [INSPIRE].
000622553 999C5 $$1M Kamionkowski$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(92)90492-M$$p137 -$$tPhys. Lett. B$$uM. Kamionkowski and J. March-Russell, Planck scale physics and the Peccei-Quinn mechanism, Phys. Lett. B 282 (1992) 137 [hep-th/9202003] [INSPIRE].$$v282$$y1992
000622553 999C5 $$1A Hook$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.124.221801$$tPhys. Rev. Lett.$$uA. Hook, S. Kumar, Z. Liu and R. Sundrum, High Quality QCD Axion and the LHC, Phys. Rev. Lett. 124 (2020) 221801 [arXiv:1911.12364] [INSPIRE].$$v124$$y2020
000622553 999C5 $$1A Valenti$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP10(2022)025$$p025 -$$tJHEP$$uA. Valenti, L. Vecchi and L.-X. Xu, Grand Color axion, JHEP 10 (2022) 025 [arXiv:2206.04077] [INSPIRE].$$v10$$y2022
000622553 999C5 $$1RS Bedi$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.106.015030$$tPhys. Rev. D$$uR.S. Bedi, T. Gherghetta and M. Pospelov, Enhanced EDMs from small instantons, Phys. Rev. D 106 (2022) 015030 [arXiv:2205.07948] [INSPIRE].$$v106$$y2022
000622553 999C5 $$1R Bedi$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP06(2024)156$$p156 -$$tJHEP$$uR. Bedi et al., Small instanton-induced flavor invariants and the axion potential, JHEP 06 (2024) 156 [arXiv:2402.09361] [INSPIRE].$$v06$$y2024
000622553 999C5 $$1Q Bonnefoy$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.108.035023$$tPhys. Rev. D$$uQ. Bonnefoy, Heavy fields and the axion quality problem, Phys. Rev. D 108 (2023) 035023 [arXiv:2212.00102] [INSPIRE].$$v108$$y2023
000622553 999C5 $$1K Mimasu$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP06(2015)173$$p173 -$$tJHEP$$uK. Mimasu and V. Sanz, ALPs at Colliders, JHEP 06 (2015) 173 [arXiv:1409.4792] [INSPIRE].$$v06$$y2015
000622553 999C5 $$1J Jaeckel$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2015.12.037$$p482 -$$tPhys. Lett. B$$uJ. Jaeckel and M. Spannowsky, Probing MeV to 90 GeV axion-like particles with LEP and LHC, Phys. Lett. B 753 (2016) 482 [arXiv:1509.00476] [INSPIRE].$$v753$$y2016
000622553 999C5 $$1I Brivio$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-017-5111-3$$p572 -$$tEur. Phys. J. C$$uI. Brivio et al., ALPs Effective Field Theory and Collider Signatures, Eur. Phys. J. C 77 (2017) 572 [arXiv:1701.05379] [INSPIRE].$$v77$$y2017
000622553 999C5 $$1M Bauer$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP12(2017)044$$p044 -$$tJHEP$$uM. Bauer, M. Neubert and A. Thamm, Collider Probes of Axion-Like Particles, JHEP 12 (2017) 044 [arXiv:1708.00443] [INSPIRE].$$v12$$y2017
000622553 999C5 $$1N Craig$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP09(2018)028$$p028 -$$tJHEP$$uN. Craig, A. Hook and S. Kasko, The Photophobic ALP, JHEP 09 (2018) 028 [arXiv:1805.06538] [INSPIRE].$$v09$$y2018
000622553 999C5 $$1M Bauer$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP09(2022)056$$p056 -$$tJHEP$$uM. Bauer et al., Flavor probes of axion-like particles, JHEP 09 (2022) 056 [arXiv:2110.10698] [INSPIRE].$$v09$$y2022
000622553 999C5 $$1MB Gavela$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.124.051802$$tPhys. Rev. Lett.$$uM.B. Gavela, J.M. No, V. Sanz and J.F. de Trocóniz, Nonresonant Searches for Axionlike Particles at the LHC, Phys. Rev. Lett. 124 (2020) 051802 [arXiv:1905.12953] [INSPIRE].$$v124$$y2020
000622553 999C5 $$1S Carra$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.104.092005$$tPhys. Rev. D$$uS. Carra et al., Constraining off-shell production of axionlike particles with Zγ and WW differential cross-section measurements, Phys. Rev. D 104 (2021) 092005 [arXiv:2106.10085] [INSPIRE].$$v104$$y2021
000622553 999C5 $$1AM Galda$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP06(2021)135$$p135 -$$tJHEP$$uA.M. Galda, M. Neubert and S. Renner, ALP — SMEFT interference, JHEP 06 (2021) 135 [arXiv:2105.01078] [INSPIRE].$$v06$$y2021
000622553 999C5 $$1A Biekötter$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP09(2023)120$$p120 -$$tJHEP$$uA. Biekötter, J. Fuentes-Martín, A.M. Galda and M. Neubert, A global analysis of axion-like particle interactions using SMEFT fits, JHEP 09 (2023) 120 [arXiv:2307.10372] [INSPIRE].$$v09$$y2023
000622553 999C5 $$1T Biswas$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP05(2024)081$$p081 -$$tJHEP$$uT. Biswas, Probing the interactions of axion-like particles with electroweak bosons and the Higgs boson in the high energy regime at LHC, JHEP 05 (2024) 081 [arXiv:2312.05992] [INSPIRE].$$v05$$y2024
000622553 999C5 $$1K Choi$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2017)070$$p070 -$$tJHEP$$uK. Choi, S.H. Im, C.B. Park and S. Yun, Minimal Flavor Violation with Axion-like Particles, JHEP 11 (2017) 070 [arXiv:1708.00021] [INSPIRE].$$v11$$y2017
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.102.015023$$uJ. Martin Camalich et al., Quark Flavor Phenomenology of the QCD Axion, Phys. Rev. D 102 (2020) 015023 [arXiv:2002.04623] [INSPIRE].
000622553 999C5 $$1M Chala$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-021-08968-2$$p181 -$$tEur. Phys. J. C$$uM. Chala, G. Guedes, M. Ramos and J. Santiago, Running in the ALPs, Eur. Phys. J. C 81 (2021) 181 [arXiv:2012.09017] [INSPIRE].$$v81$$y2021
000622553 999C5 $$1M Bauer$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP04(2021)063$$p063 -$$tJHEP$$uM. Bauer et al., The Low-Energy Effective Theory of Axions and ALPs, JHEP 04 (2021) 063 [arXiv:2012.12272] [INSPIRE].$$v04$$y2021
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(79)90316-X$$uC.D. Froggatt and H.B. Nielsen, Hierarchy of Quark Masses, Cabibbo Angles and CP Violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(86)90688-X$$uH. Georgi, D.B. Kaplan and L. Randall, Manifesting the Invisible Axion at Low-energies, Phys. Lett. B 169 (1986) 73 [INSPIRE].
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0550-3213(00)00392-8$$uT. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [INSPIRE].
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysb.2005.04.035$$uK. Agashe, R. Contino and A. Pomarol, The Minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].
000622553 999C5 $$1B Gripaios$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2009/04/070$$p070 -$$tJHEP$$uB. Gripaios, A. Pomarol, F. Riva and J. Serra, Beyond the Minimal Composite Higgs Model, JHEP 04 (2009) 070 [arXiv:0902.1483] [INSPIRE].$$v04$$y2009
000622553 999C5 $$1F Esser$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP09(2023)063$$p063 -$$tJHEP$$uF. Esser, M. Madigan, V. Sanz and M. Ubiali, On the coupling of axion-like particles to the top quark, JHEP 09 (2023) 063 [arXiv:2303.17634] [INSPIRE].$$v09$$y2023
000622553 999C5 $$1S Blasi$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP06(2024)077$$p077 -$$tJHEP$$uS. Blasi et al., Top-philic ALP phenomenology at the LHC: the elusive mass-window, JHEP 06 (2024) 077 [arXiv:2311.16048] [INSPIRE].$$v06$$y2024
000622553 999C5 $$1S Bruggisser$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP01(2024)092$$p092 -$$tJHEP$$uS. Bruggisser, L. Grabitz and S. Westhoff, Global analysis of the ALP effective theory, JHEP 01 (2024) 092 [arXiv:2308.11703] [INSPIRE].$$v01$$y2024
000622553 999C5 $$1AV Phan$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP05(2024)075$$p075 -$$tJHEP$$uA.V. Phan and S. Westhoff, Precise tests of the axion coupling to tops, JHEP 05 (2024) 075 [arXiv:2312.00872] [INSPIRE].$$v05$$y2024
000622553 999C5 $$1K Cheung$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP09(2024)101$$p101 -$$tJHEP$$uK. Cheung, C.-T. Lu, C.J. Ouseph and P. Sarmah, Exploring interference effects between two ALP effective operators at the LHC, JHEP 09 (2024) 101 [arXiv:2404.14833] [INSPIRE].$$v09$$y2024
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP04(2023)131$$uT. Ferber, A. Filimonova, R. Schäfer and S. Westhoff, Displaced or invisible? ALPs from B decays at Belle II, JHEP 04 (2023) 131 [arXiv:2201.06580] [INSPIRE].
000622553 999C5 $$1JK Behr$$2Crossref$$9-- missing cx lookup --$$a10.3390/universe9010016$$p16 -$$tUniverse$$uJ.K. Behr and A. Grohsjean, Dark Matter Searches with Top Quarks, Universe 9 (2023) 16 [arXiv:2302.05697] [INSPIRE].$$v9$$y2023
000622553 999C5 $$1L Rygaard$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP10(2023)138$$p138 -$$tJHEP$$uL. Rygaard et al., Top Secrets: long-lived ALPs in top production, JHEP 10 (2023) 138 [arXiv:2306.08686] [INSPIRE].$$v10$$y2023
000622553 999C5 $$1Y Hosseini$$2Crossref$$9-- missing cx lookup --$$a10.3390/universe8060301$$p301 -$$tUniverse$$uY. Hosseini and M. Mohammadi Najafabadi, Prospects for Probing Axionlike Particles at a Future Hadron Collider through Top Quark Production, Universe 8 (2022) 301 [arXiv:2208.00414] [INSPIRE].$$v8$$y2022
000622553 999C5 $$1S Chigusa$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP01(2024)077$$p077 -$$tJHEP$$uS. Chigusa, S. Girmohanta, Y. Nakai and Y. Zhang, Aiming for tops of ALPs with a muon collider, JHEP 01 (2024) 077 [arXiv:2310.11018] [INSPIRE].$$v01$$y2024
000622553 999C5 $$1C-X Yue$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2023.138368$$tPhys. Lett. B$$uC.-X. Yue, H. Wang and Y.-Q. Wang, Detecting the coupling of axion-like particles with fermions at the ILC, Phys. Lett. B 848 (2024) 138368 [arXiv:2311.16768] [INSPIRE].$$v848$$y2024
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22323/1.449.0474$$uA. Biekötter et al., Distinguishing Axion-Like Particles and 2HDM Higgs bosons in $$ t\overline{t} $$ production at the LHC, PoS EPS-HEP2023 (2024) 474 [INSPIRE].
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(84)91711-8$$uK.J.F. Gaemers and F. Hoogeveen, Higgs Production and Decay Into Heavy Flavors With the Gluon Fusion Mechanism, Phys. Lett. B 146 (1984) 347 [INSPIRE].
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(94)91017-0$$uD. Dicus, A. Stange and S. Willenbrock, Higgs decay to top quarks at hadron colliders, Phys. Lett. B 333 (1994) 126 [hep-ph/9404359] [INSPIRE].
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.58.114031$$uW. Bernreuther, M. Flesch and P. Haberl, Signatures of Higgs bosons in the top quark decay channel at hadron colliders, Phys. Rev. D 58 (1998) 114031 [hep-ph/9709284] [INSPIRE].
000622553 999C5 $$1R Frederix$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2009/01/047$$p047 -$$tJHEP$$uR. Frederix and F. Maltoni, Top pair invariant mass distribution: a Window on new physics, JHEP 01 (2009) 047 [arXiv:0712.2355] [INSPIRE].$$v01$$y2009
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2016)159$$uM. Carena and Z. Liu, Challenges and opportunities for heavy scalar searches in the $$ t\overline{t} $$ channel at the LHC, JHEP 11 (2016) 159 [arXiv:1608.07282] [INSPIRE].
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP03(2019)119$$uA. Djouadi, J. Ellis, A. Popov and J. Quevillon, Interference effects in $$ t\overline{t} $$ production at the LHC as a window on new physics, JHEP 03 (2019) 119 [arXiv:1901.03417] [INSPIRE].
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22323/1.449.0057$$uH. Bahl, R. Kumar and G. Weiglein, Analysis of interference effects in the di-top final state for CP-mixed scalars in extended Higgs sectors, PoS EPS-HEP2023 (2024) 057 [INSPIRE].
000622553 999C5 $$2Crossref$$uATLAS collaboration, Search for Heavy Higgs Bosons A/H Decaying to a Top Quark Pair in pp Collisions at $$ \sqrt{s} $$ = 8 TeV with the ATLAS Detector, Phys. Rev. Lett. 119 (2017) 191803 [arXiv:1707.06025] [INSPIRE].
000622553 999C5 $$2Crossref$$uCMS collaboration, Search for heavy Higgs bosons decaying to a top quark pair in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV, JHEP 04 (2020) 171 [Erratum ibid. 03 (2022) 187] [arXiv:1908.01115] [INSPIRE].
000622553 999C5 $$2Crossref$$uATLAS collaboration, Search for heavy neutral Higgs bosons decaying into a top quark pair in 140 fb−1 of proton-proton collision data at $$ \sqrt{s} $$ = 13 TeV with the ATLAS detector, JHEP 08 (2024) 013 [arXiv:2404.18986] [INSPIRE].
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.8.1226$$uT.D. Lee, A Theory of Spontaneous T Violation, Phys. Rev. D 8 (1973) 1226 [INSPIRE].
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.43.103$$uJ.E. Kim, Weak Interaction Singlet and Strong CP Invariance, Phys. Rev. Lett. 43 (1979) 103 [INSPIRE].
000622553 999C5 $$1GC Branco$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2012.02.002$$p1 -$$tPhys. Rept.$$uG.C. Branco et al., Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].$$v516$$y2012
000622553 999C5 $$2Crossref$$uD0 collaboration, Evidence for spin correlation in $$ t\overline{t} $$ production, Phys. Rev. Lett. 108 (2012) 032004 [arXiv:1110.4194] [INSPIRE].
000622553 999C5 $$2Crossref$$uATLAS collaboration, Observation of spin correlation in $$ t\overline{t} $$ events from pp collisions at $$ \sqrt{(s)} $$ = 7 TeV using the ATLAS detector, Phys. Rev. Lett. 108 (2012) 212001 [arXiv:1203.4081] [INSPIRE].
000622553 999C5 $$2Crossref$$uCMS collaboration, Measurements of $$ t\overline{t} $$ Spin Correlations and Top-Quark Polarization Using Dilepton Final States in pp Collisions at $$ \sqrt{s} $$ = 7 TeV, Phys. Rev. Lett. 112 (2014) 182001 [arXiv:1311.3924] [INSPIRE].
000622553 999C5 $$2Crossref$$uATLAS collaboration, Measurements of top-quark pair spin correlations in the eμ channel at $$ \sqrt{s} $$ = 13 TeV using pp collisions in the ATLAS detector, Eur. Phys. J. C 80 (2020) 754 [arXiv:1903.07570] [INSPIRE].
000622553 999C5 $$2Crossref$$uCMS collaboration, Measurement of the top quark polarization and $$ \textrm{t}\overline{\textrm{t}} $$ spin correlations using dilepton final states in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV, Phys. Rev. D 100 (2019) 072002 [arXiv:1907.03729] [INSPIRE].
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.49.4481$$uW. Bernreuther and A. Brandenburg, Tracing CP violation in the production of top quark pairs by multiple TeV proton proton collisions, Phys. Rev. D 49 (1994) 4481 [hep-ph/9312210] [INSPIRE].
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.100.031801$$uV. Barger, T. Han and D.G.E. Walker, Top Quark Pairs at High Invariant Mass: a Model-Independent Discriminator of New Physics at the LHC, Phys. Rev. Lett. 100 (2008) 031801 [hep-ph/0612016] [INSPIRE].
000622553 999C5 $$1E Arganda$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2021)119$$p119 -$$tJHEP$$uE. Arganda, L. Da Rold, D.A. Díaz and A.D. Medina, Interpretation of LHC excesses in ditop and ditau channels as a 400-GeV pseudoscalar resonance, JHEP 11 (2021) 119 [arXiv:2108.03058] [INSPIRE].$$v11$$y2021
000622553 999C5 $$1T Biekötter$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-022-10099-1$$p178 -$$tEur. Phys. J. C$$uT. Biekötter et al., Possible indications for new Higgs bosons in the reach of the LHC: N2HDM and NMSSM interpretations, Eur. Phys. J. C 82 (2022) 178 [arXiv:2109.01128] [INSPIRE].$$v82$$y2022
000622553 999C5 $$1JM Connell$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.108.055031$$tPhys. Rev. D$$uJ.M. Connell, P. Ferreira and H.E. Haber, Accommodating hints of new heavy scalars in the framework of the flavor-aligned two-Higgs-doublet model, Phys. Rev. D 108 (2023) 055031 [arXiv:2302.13697] [INSPIRE].$$v108$$y2023
000622553 999C5 $$2Crossref$$uATLAS collaboration, Search for resonances decaying into photon pairs in 139 fb−1 of pp collisions at $$ \sqrt{s} $$ = 13 TeV with the ATLAS detector, Phys. Lett. B 822 (2021) 136651 [arXiv:2102.13405] [INSPIRE].
000622553 999C5 $$2Crossref$$uATLAS collaboration, Search for heavy resonances decaying into a Z or W boson and a Higgs boson in final states with leptons and b-jets in 139 fb−1 of pp collisions at $$ \sqrt{s} $$ = 13 TeV with the ATLAS detector, JHEP 06 (2023) 016 [arXiv:2207.00230] [INSPIRE].
000622553 999C5 $$2Crossref$$uCMS collaboration, Observation of four top quark production in proton-proton collisions at s=13 TeV, Phys. Lett. B 847 (2023) 138290 [arXiv:2305.13439] [INSPIRE].
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0370-2693(00)01392-7$$uZ. Berezhiani, L. Gianfagna and M. Giannotti, Strong CP problem and mirror world: the Weinberg-Wilczek axion revisited, Phys. Lett. B 500 (2001) 286 [hep-ph/0009290] [INSPIRE].
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2004/10/044$$uL. Gianfagna, M. Giannotti and F. Nesti, Mirror world, supersymmetric axion and gamma ray bursts, JHEP 10 (2004) 044 [hep-ph/0409185] [INSPIRE].
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2004.11.040$$uS.D.H. Hsu and F. Sannino, New solutions to the strong CP problem, Phys. Lett. B 605 (2005) 369 [hep-ph/0408319] [INSPIRE].
000622553 999C5 $$1A Hook$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.114.141801$$tPhys. Rev. Lett.$$uA. Hook, Anomalous solutions to the strong CP problem, Phys. Rev. Lett. 114 (2015) 141801 [arXiv:1411.3325] [INSPIRE].$$v114$$y2015
000622553 999C5 $$1H Fukuda$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.92.015021$$tPhys. Rev. D$$uH. Fukuda, K. Harigaya, M. Ibe and T.T. Yanagida, Model of visible QCD axion, Phys. Rev. D 92 (2015) 015021 [arXiv:1504.06084] [INSPIRE].$$v92$$y2015
000622553 999C5 $$1C-W Chiang$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.93.095016$$tPhys. Rev. D$$uC.-W. Chiang, H. Fukuda, M. Ibe and T.T. Yanagida, 750 GeV diphoton resonance in a visible heavy QCD axion model, Phys. Rev. D 93 (2016) 095016 [arXiv:1602.07909] [INSPIRE].$$v93$$y2016
000622553 999C5 $$2Crossref$$uA. Kobakhidze, Heavy axion in asymptotically safe QCD, arXiv:1607.06552 [INSPIRE].
000622553 999C5 $$1P Agrawal$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP12(2018)029$$p029 -$$tJHEP$$uP. Agrawal and K. Howe, Factoring the Strong CP Problem, JHEP 12 (2018) 029 [arXiv:1710.04213] [INSPIRE].$$v12$$y2018
000622553 999C5 $$1P Agrawal$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP12(2018)035$$p035 -$$tJHEP$$uP. Agrawal and K. Howe, A Flavorful Factoring of the Strong CP Problem, JHEP 12 (2018) 035 [arXiv:1712.05803] [INSPIRE].$$v12$$y2018
000622553 999C5 $$1MK Gaillard$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-018-6396-6$$p972 -$$tEur. Phys. J. C$$uM.K. Gaillard et al., Color unified dynamical axion, Eur. Phys. J. C 78 (2018) 972 [arXiv:1805.06465] [INSPIRE].$$v78$$y2018
000622553 999C5 $$1C Csáki$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP04(2020)031$$p031 -$$tJHEP$$uC. Csáki, M. Ruhdorfer and Y. Shirman, UV Sensitivity of the Axion Mass from Instantons in Partially Broken Gauge Groups, JHEP 04 (2020) 031 [arXiv:1912.02197] [INSPIRE].$$v04$$y2020
000622553 999C5 $$1RT Co$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.124.251802$$tPhys. Rev. Lett.$$uR.T. Co, L.J. Hall and K. Harigaya, Axion Kinetic Misalignment Mechanism, Phys. Rev. Lett. 124 (2020) 251802 [arXiv:1910.14152] [INSPIRE].$$v124$$y2020
000622553 999C5 $$1T Gherghetta$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP12(2020)094$$p094 -$$tJHEP$$uT. Gherghetta and M.D. Nguyen, A Composite Higgs with a Heavy Composite Axion, JHEP 12 (2020) 094 [arXiv:2007.10875] [INSPIRE].$$v12$$y2020
000622553 999C5 $$1A Kivel$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2022)088$$p088 -$$tJHEP$$uA. Kivel, J. Laux and F. Yu, Supersizing axions with small size instantons, JHEP 11 (2022) 088 [arXiv:2207.08740] [INSPIRE].$$v11$$y2022
000622553 999C5 $$1B Gavela$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP04(2024)056$$p056 -$$tJHEP$$uB. Gavela, P. Quílez and M. Ramos, The QCD axion sum rule, JHEP 04 (2024) 056 [arXiv:2305.15465] [INSPIRE].$$v04$$y2024
000622553 999C5 $$1Q Bonnefoy$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.130.111803$$tPhys. Rev. Lett.$$uQ. Bonnefoy, C. Grojean and J. Kley, Shift-Invariant Orders of an Axionlike Particle, Phys. Rev. Lett. 130 (2023) 111803 [arXiv:2206.04182] [INSPIRE].$$v130$$y2023
000622553 999C5 $$2Crossref$$uM. Bauer, M. Neubert and A. Thamm, The “forgotten” decay S → Z+h as a CP analyzer, arXiv:1607.01016 [INSPIRE].
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(95)00379-7$$uM. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].
000622553 999C5 $$1M Bauer$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.117.181801$$tPhys. Rev. Lett.$$uM. Bauer, M. Neubert and A. Thamm, Analyzing the CP Nature of a New Scalar Particle via S→Zh Decay, Phys. Rev. Lett. 117 (2016) 181801 [arXiv:1610.00009] [INSPIRE].$$v117$$y2016
000622553 999C5 $$1J Alwall$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP07(2014)079$$p079 -$$tJHEP$$uJ. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].$$v07$$y2014
000622553 999C5 $$1C Degrande$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2012.01.022$$p1201 -$$tComput. Phys. Commun.$$uC. Degrande et al., UFO - The Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].$$v183$$y2012
000622553 999C5 $$1J Bonilla$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2021)168$$p168 -$$tJHEP$$uJ. Bonilla, I. Brivio, M.B. Gavela and V. Sanz, One-loop corrections to ALP couplings, JHEP 11 (2021) 168 [arXiv:2107.11392] [INSPIRE].$$v11$$y2021
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2004/11/040$$uP. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].
000622553 999C5 $$1S Frixione$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2007/11/070$$p070 -$$tJHEP$$uS. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].$$v11$$y2007
000622553 999C5 $$1S Alioli$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP06(2010)043$$p043 -$$tJHEP$$uS. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].$$v06$$y2010
000622553 999C5 $$1S Frixione$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2007/09/126$$p126 -$$tJHEP$$uS. Frixione, P. Nason and G. Ridolfi, A Positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction, JHEP 09 (2007) 126 [arXiv:0707.3088] [INSPIRE].$$v09$$y2007
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-017-5199-5$$uNNPDF collaboration, Parton distributions from high-precision collider data, Eur. Phys. J. C 77 (2017) 663 [arXiv:1706.00428] [INSPIRE].
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.21468/SciPostPhysCodeb.8$$uC. Bierlich et al., A comprehensive guide to the physics and usage of PYTHIA 8.3, SciPost Phys. Codeb. 2022 (2022) 8 [arXiv:2203.11601] [INSPIRE].
000622553 999C5 $$1D Eriksson$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2009.09.011$$p189 -$$tComput. Phys. Commun.$$uD. Eriksson, J. Rathsman and O. Stal, 2HDMC: Two-Higgs-Doublet Model Calculator Physics and Manual, Comput. Phys. Commun. 181 (2010) 189 [arXiv:0902.0851] [INSPIRE].$$v181$$y2010
000622553 999C5 $$1RV Harlander$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2013.02.006$$p1605 -$$tComput. Phys. Commun.$$uR.V. Harlander, S. Liebler and H. Mantler, SusHi: a program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM, Comput. Phys. Commun. 184 (2013) 1605 [arXiv:1212.3249] [INSPIRE].$$v184$$y2013
000622553 999C5 $$1M Czakon$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2014.06.021$$p2930 -$$tComput. Phys. Commun.$$uM. Czakon and A. Mitov, Top++: a Program for the Calculation of the Top-Pair Cross-Section at Hadron Colliders, Comput. Phys. Commun. 185 (2014) 2930 [arXiv:1112.5675] [INSPIRE].$$v185$$y2014
000622553 999C5 $$1A Banfi$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP08(2024)112$$p112 -$$tJHEP$$uA. Banfi et al., Higgs interference effects in top-quark pair production in the 1HSM, JHEP 08 (2024) 112 [arXiv:2309.16759] [INSPIRE].$$v08$$y2024
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysb.2004.04.019$$uW. Bernreuther, A. Brandenburg, Z.G. Si and P. Uwer, Top quark pair production and decay at hadron colliders, Nucl. Phys. B 690 (2004) 81 [hep-ph/0403035] [INSPIRE].
000622553 999C5 $$1J Butterworth$$2Crossref$$9-- missing cx lookup --$$a10.1088/0954-3899/43/2/023001$$tJ. Phys. G$$uJ. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016) 023001 [arXiv:1510.03865] [INSPIRE].$$v43$$y2016
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.5281/zenodo.1169739$$uL. Heinrich, M. Feickert and G. Stark, pyhf: v0.7.4, https://doi.org/10.5281/zenodo.1169739.
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.21105/joss.02823$$uL. Heinrich, M. Feickert, G. Stark and K. Cranmer, pyhf: pure-Python implementation of HistFactory statistical models, J. Open Source Softw. 6 (2021) 2823 [INSPIRE].
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-011-1554-0$$uG. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. 73 (2013) 2501] [arXiv:1007.1727] [INSPIRE].
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0168-9002(99)00498-2$$uT. Junk, Confidence level computation for combining searches with small statistics, Nucl. Instrum. Meth. A 434 (1999) 435 [hep-ex/9902006] [INSPIRE].
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0954-3899/28/10/313$$uA.L. Read, Presentation of search results: the CLs technique, J. Phys. G 28 (2002) 2693 [INSPIRE].
000622553 999C5 $$1P Bechtle$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2009.09.003$$p138 -$$tComput. Phys. Commun.$$uP. Bechtle et al., HiggsBounds: Confronting Arbitrary Higgs Sectors with Exclusion Bounds from LEP and the Tevatron, Comput. Phys. Commun. 181 (2010) 138 [arXiv:0811.4169] [INSPIRE].$$v181$$y2010
000622553 999C5 $$1P Bechtle$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2011.07.015$$p2605 -$$tComput. Phys. Commun.$$uP. Bechtle et al., HiggsBounds 2.0.0: Confronting Neutral and Charged Higgs Sector Predictions with Exclusion Bounds from LEP and the Tevatron, Comput. Phys. Commun. 182 (2011) 2605 [arXiv:1102.1898] [INSPIRE].$$v182$$y2011
000622553 999C5 $$1P Bechtle$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-013-2693-2$$p2693 -$$tEur. Phys. J. C$$uP. Bechtle et al., HiggsBounds4: Improved Tests of Extended Higgs Sectors against Exclusion Bounds from LEP, the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2693 [arXiv:1311.0055] [INSPIRE].$$v74$$y2014
000622553 999C5 $$1P Bechtle$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-015-3650-z$$p421 -$$tEur. Phys. J. C$$uP. Bechtle et al., Applying Exclusion Likelihoods from LHC Searches to Extended Higgs Sectors, Eur. Phys. J. C 75 (2015) 421 [arXiv:1507.06706] [INSPIRE].$$v75$$y2015
000622553 999C5 $$1P Bechtle$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-020-08557-9$$p1211 -$$tEur. Phys. J. C$$uP. Bechtle et al., HiggsBounds-5: Testing Higgs Sectors in the LHC 13 TeV Era, Eur. Phys. J. C 80 (2020) 1211 [arXiv:2006.06007] [INSPIRE].$$v80$$y2020
000622553 999C5 $$1H Bahl$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2023.108803$$tComput. Phys. Commun.$$uH. Bahl et al., HiggsTools: BSM scalar phenomenology with new versions of HiggsBounds and HiggsSignals, Comput. Phys. Commun. 291 (2023) 108803 [arXiv:2210.09332] [INSPIRE].$$v291$$y2023
000622553 999C5 $$2Crossref$$uCMS collaboration, Search for physics beyond the standard model in high-mass diphoton events from proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV, Phys. Rev. D 98 (2018) 092001 [arXiv:1809.00327] [INSPIRE].
000622553 999C5 $$2Crossref$$uATLAS collaboration, Search for heavy resonances decaying into a W or Z boson and a Higgs boson in final states with leptons and b-jets in 36 fb−1 of $$ \sqrt{s} $$ = 13 TeV pp collisions with the ATLAS detector, JHEP 03 (2018) 174 [Erratum ibid. 11 (2018) 051] [arXiv:1712.06518] [INSPIRE].
000622553 999C5 $$2Crossref$$uCMS collaboration, Search for a heavy pseudoscalar boson decaying to a Z and a Higgs boson at $$ \sqrt{s} $$ = 13 TeV, Eur. Phys. J. C 79 (2019) 564 [arXiv:1903.00941] [INSPIRE].
000622553 999C5 $$2Crossref$$uCMS collaboration, Search for a heavy CP-odd Higgs boson decaying into a 125 GeV Higgs boson and a Z boson in final states with two tau and two light leptons at $$ \sqrt{s} $$ = 13 TeV, CMS-PAS-HIG-22-004, CERN, Geneva (2024).
000622553 999C5 $$2Crossref$$uCMS collaboration, Searches for Higgs Boson Production through Decays of Heavy Resonances, arXiv:2403.16926 [INSPIRE].
000622553 999C5 $$2Crossref$$uCMS collaboration, Evidence for Four-Top Quark Production in Proton-Proton Collisions at s=13TeV, Phys. Lett. B 844 (2023) 138076 [arXiv:2303.03864] [INSPIRE].
000622553 999C5 $$2Crossref$$uATLAS collaboration, Measurement of the $$ t\overline{t}t\overline{t} $$ production cross section in pp collisions at $$ \sqrt{s} $$ = 13 TeV with the ATLAS detector, JHEP 11 (2021) 118 [arXiv:2106.11683] [INSPIRE].
000622553 999C5 $$2Crossref$$uATLAS collaboration, Observation of four-top-quark production in the multilepton final state with the ATLAS detector, Eur. Phys. J. C 83 (2023) 496 [Erratum ibid. 84 (2024) 156] [arXiv:2303.15061] [INSPIRE].
000622553 999C5 $$1M van Beekveld$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.131.211901$$tPhys. Rev. Lett.$$uM. van Beekveld, A. Kulesza and L.M. Valero, Threshold Resummation for the Production of Four Top Quarks at the LHC, Phys. Rev. Lett. 131 (2023) 211901 [arXiv:2212.03259] [INSPIRE].$$v131$$y2023
000622553 999C5 $$2Crossref$$uCMS collaboration, Search for production of four top quarks in final states with same-sign or multiple leptons in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV, Eur. Phys. J. C 80 (2020) 75 [arXiv:1908.06463] [INSPIRE].
000622553 999C5 $$2Crossref$$uParticle Data Group collaboration, Review of Particle Physics, PTEP 2020 (2020) 083C01 [INSPIRE].
000622553 999C5 $$2Crossref$$uCDF collaboration, High-precision measurement of the W boson mass with the CDF II detector, Science 376 (2022) 170 [INSPIRE].
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(79)90605-9$$uG. ’t Hooft and M.J.G. Veltman, Scalar One Loop Integrals, Nucl. Phys. B 153 (1979) 365 [INSPIRE].
000622553 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0010-4655(98)00173-8$$uT. Hahn and M. Perez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].
000622553 999C5 $$2Crossref$$uATLAS collaboration, Search for the Zγ decay mode of new high-mass resonances in pp collisions at s=13 TeV with the ATLAS detector, Phys. Lett. B 848 (2024) 138394 [arXiv:2309.04364] [INSPIRE].