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1. Introduction

One of the ubiquitous challenges in lattice QCD simulations is the signal-to-noise ratio (S/N) of

correlation functions [1, 2]. Particularly demanding, even in pure gauge theory, is the computation

of the spectrum of glueballs, hypothetical particles composed predominantly of gluons. One major

difficulty of these computations is the analysis of disconnected contributions: while the signal

decays exponentially with the distance between the operators, the statistical noise remains constant

with standard sampling techniques. Alternative sampling methods, like the multilevel algorithm

[3], can be used to reduce the error in a more efficient way than standard samplings. In [4, 5], we

demonstrate that a two-level sampling can reduce more efficiently the statistical error of pure gauge

glueball two-point functions at large distances. At this lattice conference, similar algorithms have

been adopted to study for the first time glueball scattering in Yang-Mills theory [6]. In principle,

the same ideas can be applied to study glueball structure quantities like glueball gravitational form

factors [7], by adopting a three-level algorithm to estimate glueball three-point functions.

However, the inclusion of fermions makes the glueball calculations more demanding. First,

for sufficiently light quarks the glueballs are unstable bound states and a finite-volume formalism

is required to reconstruct information of the resonance. Due to this, the inclusion of multiparticle

operators with large overlap to all glueball decay modes is necessary, and it can be quite expensive.

For instance, there are more than 10 decay modes observed in the experiments for the scalar glueball

candidate 50(1500) [8], although the largest fraction is due to 2c and 4c modes. In addition to

this, a comprehensive lattice analysis must resolve accurately all the states in the spectrum which

lie below or close to the glueball energy.

The second two-fold challenge to face when simulating QCD is the presence of quark propa-

gators. From one side, they are very demanding to compute on each gauge configuration; however,

advanced solvers based on Krylov space solvers can be used to compute the propagators at a mod-

erate cost even at large volumes. On the other side, the non-locality of the quark propagator hinders

the application of multilevel algorithms, because they depend on the values of the gauge fields over

the full space-time. However, by factorizing the quark propagator in different regions, it is possible

to make the fermionic observables amenable for multilevel integration.

In quenched QCD, an important step forward has been made in [9] to rewrite the quark

propagator as a series of terms with a well defined hierarchical structure. This factorisation of

the quark propagator enables a two-level integration of the fermionic observables. In full QCD,

the application of multilevel integration requires more advanced techniques due to the presence of

the fermion determinant as the fermionic weight. A factorisation of the fermion determinant via a

multiboson approximation [10] makes the fermionic observable and fermionic weight amenable for

a local integration, as demonstrated in [11, 12].

As a step towards the computation of the glueball spectrum in full QCD, we combine for

the first time distillation techniques with the multilevel algorithm in quenched QCD to study the

correlation of singlet mesonic observables, which constitute the most demanding computations. In

particular, we discuss how we combine these advanced lattice techniques to estimate more efficiently

disconnected diagrams.

2



Update on two-level sampling for glueball observables in quenched QCD Lorenzo Barca

2. Distillation

We are interested in estimating two-point functions like

〈O( ®?, C1)Ō( ®?, C0)〉 =
1

Z

∫

[3*] [3@] [3@̄]4−( [@,@̄,* ]O( ®?, C1)Ō( ®?, C0), (1)

where O are interpolating operators with glueball quantum numbers, Z is the QCD partition

function and ( = ( 5 + (6 is the QCD action. After integrating out the fermionic degrees of

freedom, the correlation function in the quenched approximation reads

〈O( ®?, C1)Ō( ®?, C0)〉 =
1

Z

∫

[3*]4−(6 [* ] 〈O( ®?, C1)Ō( ®?, C0)〉� , (2)

where 〈O( ®?, C1)Ō( ®?, C0)〉� are Wick contractions expressed in terms of traces of products of Dirac

propagators. In particular, the interpolating operators that we consider in this work are singlet

meson OΓ interpolators projected to zero total momenta, whose expressions are given by

OΓ (®0, C1) =
∑

®G

@̄(G)Γ@(G) with Γ = 1, W5, W`, W4W5, W8W 9 ; (3)

with G = (®G, C1). The sum over spatial coordinates projects the operators to zero total momentum.

Given that the operators are all projected to zero momentum, we drop the momenta to simplify the

notation. The Wick contractions of these operators contain disconnected contributions which read

〈OΓ (C1)ŌΓ (C0)〉�,disc =

∑

®G, ®H

〈OΓ (G)〉� 〈ŌΓ (H)〉� , (4)

where the explicit expressions of the Wick contractions contain quark loops, which read

OΓ (G) := 〈OΓ (G)〉� = Tr
[

D−1(x, x)Γ
]

. (5)

In the distillation framework [13], the Wick contractions in eq. (4) are rewritten as

〈OΓ (C1)ŌΓ (C0)〉�,disc = Tr [q(C1)g(C1, C1)] Tr [q(C0)g(C0, C0)] (6)

where q and g are elementals and perambulators, respectively, whose expressions are

q8 9 (C)UV = ΓUV E8 (C)
†E 9 (C), (7)

g8 9 (C1, C2)UV = E8 (C1)
†�−1(C1, C2)UV E 9 (C2). (8)

In these expressions, E(C) are the eigenvectors of the 3D Laplacian operator

∇2(C) ®G, ®H = −6X ®G, ®H +

3
∑

:=1

[

*: (®G, C)X ®G+:̂, ®H +*
†
:
(®G − :̂ , C)X ®G− :̂, ®H

]

, (9)

which is constructed in terms of the gauge fields *. In this preliminary work, we consider only 10

eigenvectors and the subscripts 8, 9 run over the number of eigenvectors. To reduce UV fluctuations

in the observables, the gauge fields are appropriately smeared through APE smearing [14].
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Figure 1: Domain decomposition used in this analysis. The blue and white regions are the frozen and

dynamical regions, respectively.

3. Two-level sampling for fermionic observables

In the quenched approximation, the two-point functions in eq. (2) depend on the pure gauge

action (6 [*] and the Wick contractions 〈O(C1)Ō(C0)〉� . The pure gauge action (6 [*] is local in

the gauge fields as the action is constructed in terms of Wilson plaquettes. However, the Wick

contractions are expressed as traces of products of quark propagators, see for instance eq. (4), and

the quark propagator depends on the values of the gauge fields over the full space-time. In theories

with a mass gap like QCD or 4D Yang-Mills, the physical signal of a correlation function decays

exponentially with the distance between the operators O(C1) and Ō(C0). Supported by empirical

arguments [1], the quark propagator is suppressed on each gauge configuration according to

| |�−1(H, G) | | ∼ 4−
1
2<c |H−G | , (10)

where <c is the mass of the lightest pseudoscalar state and | | • | | is a gauge-invariant norm.

Therefore, contributions of the background gauge field configurations from points that are located

far away from the operators decay exponentially with the distance. Based on this exponential

locality, an approximated quark propagator can be constructed to remove the dependence of the

quark propagators from gauge fields located at distant points. This approximation allows a two-level

integration of the estimator in eq. (4), which reads

� (C1 − C0) =
1

Z[*�]

∫

[3*�]4
−(6 [*� ]

[

O(C1)
] [

Ō(C0)
]

. (11)

The two-level integration is possible when the operators are in different dynamical regions, say

C0 ∈ Λ0, C1 ∈ Λ2. Using the operators in eq. (3), the local integrations [•] of the quark loops read

explicitly

[OΓ (C1)] =

∫

[3*1]
∑

®G

Tr
[

�−1
Ω1
(G, G)Γ

]

. (12)

In the distillation framework, the local integration is performed for the elementals and perambulators,

and the local integration of the quark loop at C1 reads for instance

[OΓ (C1)] =

∫

[3*1]
∑

®G

Tr
[

q(G)gΩ1
(G, G)

]

, (13)

where the perambulators are computed using eq. (8) with the approximated propagator �−1
ΩA

.

In Fig. 1, we show the domain decomposition used in this work, where the temporal lattice

extent is split in four regions: Λ = Λ0 ⊕ Λ1 ⊕ Λ2 ⊕ Λ3 and the Dirac propagators are computed in

two overlapping regions: Ω0 = Λ3 ⊕ Λ0 ⊕ Λ1 and Ω1 = Λ1 ⊕ Λ2 ⊕ Λ3. Notice that we use periodic

boundary conditions. The details of the simulations are discussed in the next section.
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4. Numerical results

4.1 Details of the simulations

We discretise a four dimensional SU(3) theory using the Wilson action with periodic boundary

conditions. The gauge configurations are generated at V = 6.0 and with a volume +/04
= 163 × 64.

In order to perform a two-level integration, we use molecular dynamic integration to sample

independent gauge configurations as discussed in [5]. First, #0 gauge configurations are generated

by updating the gauge fields over the full space-time. These represent the fields *� over which

we integrate in eq. (11). Second, for each of these stored gauge configurations, we generate a

new trajectory of #1 gauge fields according to the same probability distribution. Along these new

trajectories, the gauge fields are updated only in certain regions of the temporal extent, which are

the regions Λ0 and Λ2.1 Therefore, Λ0 and Λ2 are the dynamical regions, while Λ1 and Λ3 are

the frozen regions. In the simulation, the frozen regions have C/0 ∈ {0, 1, 61, 62, 63} for Λ3 and

C/0 ∈ {29, 30, 31, 32, 33} for Λ1, while the remaining lattice sites compose Λ0 and Λ2.

We generate #0 = 101 level-0 gauge configurations and #1 = 200 level-1 (local) updates and

we label these gauge configurations * (8 9 ) , where the superscripts 8, 9 refer to the 8-th level-0 and

9-th level-1 gauge configuration * (8 9 ) , respectively. For each of the #0 × #1 gauge configurations,

we compute the full and approximated Wilson Dirac propagator using the Wilson clover action with

^ = 0.13393, where the lightest pseudoscalar state has a mass <c ≈ 760 MeV. The quark mass was

tuned such that the lowest non-interacting cc energy is very close to the pure gauge scalar glueball,

which at a similar scale (V = 5.99) is <0++

�
≈ 1560 MeV according to [15].

To compute the approximated quark propagator we adopt a domain decomposition method

[16] and impose Dirichlet boundary conditions. For instance, the quark propagator �−1
Ω0,8 9

(G, G) is

computed on the configuration* (8 9 ) in the region Ω0, neglecting contributions from Λ2, see Fig. 1.

4.2 Analysis of disconnected 2-points functions with 1- and 2-level estimators

Using the #0 × #1 gauge configurations, which we store on disk, we compute the traces of

quark loops using the full and approximated Wilson Dirac propagators:

OΓ,8 9 (C1) =
∑

®G

Tr
[

�−1
8 9 (G, G)Γ

]

(14)

OΩ1

Γ,8 9
(C1) =

∑

®G

Tr
[

�−1
Ω1,8 9

(G, G)Γ
]

, ŌΩ0

Γ,8 9
(C0) =

∑

®H

Tr
[

�−1
Ω0,8 9

(H, H)Γ
]

, (15)

with G = (®G, C1) and H = (®H, C0). In particular, we use distillation to estimate the traces. In

Fig. 2, we show a comparison between scalar quark loops using the full and approximated quark

propagators in eqs. (14), (15), respectively. The scalar quark loops computed with the full propagator

(orange) fluctuate within the errors around a constant value. The data points inside Λ1 and Λ3 are

noisier because the gauge fields are not updated in these regions. Notice that the orange data

points are shifted along the x-axis to increase visibility. The scalar quark loops computed with the

approximated quark propagator (blue) fluctuate also within the errors around the same constant value

when the quark loops are sufficiently distant from the other dynamical region. The approximation

1The gauge configurations are well spaced along both levels to suppress any autocorrelation effects.
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