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Stochastic modeling of superfluorescence in compact systems
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We propose an approach based on stochastic differential equations to describe superfluorescence in compact
ensembles of multilevel emitters in the presence of various incoherent processes. This approach has a numerical
complexity that does not depend on the number of emitters. The stochastic differential equations are derived
directly from the quantum master equation. In this study, we present a series of numerical examples, comparing
our solution to exact calculations and discussing the limits of applicability. For many relevant cases, the proposed
stochastic differential equations provide accurate results and correctly capture quantum many-body correlation
effects.
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I. INTRODUCTION

Superfluorescence is a notable phenomenon in quantum
optics that is observed when incoherently excited atoms col-
lectively emit radiation in the form of a highly energetic and
short burst of light. The initially produced spontaneous emis-
sion couples the dipole moments of atoms, allowing them to
synchronize the emission of photons. The phenomenon of su-
perfluorescence traces its origins back to the seminal work of
Dicke [1]. Since then, it has garnered significant theoretical in-
terest [2–7] and has been a source of inspiration for numerous
experimental studies. These studies included early demon-
strations in gases [8–11] and solids [12], as well as more
recent demonstrations in quantum dots [13], nitrogen-vacancy
centers [14], cold atoms [15,16], and nuclei [17]. Earlier in-
vestigations spanned from optical [11] and infrared [18,19]
to millimeter [20,21] wavelengths. The recent emergence of
x-ray free-electron lasers has provided exciting opportunities
to observe the phenomenon of superfluorescence in the x-
ray domain [22–26]. Nevertheless, these new opportunities
bring additional complications to the theoretical description
of the underlying phenomena. For example, x-ray transitions
often undergo significant decoherence in the form of the
Auger-Meitner effect, which can intensely compete with the
excitation process and substantially disrupt the synchroniza-
tion of atomic dipoles. Therefore, the theoretical models that
previously proved efficient need thorough revision.

In Ref. [1], Dicke introduced a minimal model necessary
for observing collective spontaneous emission. This model
comprises a system of identical two-level quantum emitters
interacting with a quantized electromagnetic field assumed to
be uniform across the ensemble. Being indistinguishable, N
emitters evolve through a ladder of (N + 1) collective many-
body states, synchronizing the radiation phases of the different
emitters. This basic model can be generalized to include mul-
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tilevel emitters [27] and incoherent processes [28,29], which
only partially diminish the collective nature of the interaction
with the field. Providing invaluable insight from a theoretical
point of view, these approaches, however, do not suggest
an efficient strategy for numerical studies. Decomposing the
quantum states in the basis set that accounts for the permuta-
tion symmetry results in a system of equations, the number of
which grows polynomially with the number of atoms N . Al-
though the resulting polynomial complexity allows treating a
moderately large number of atoms (N � 100) with a relatively
acceptable computational effort [28], the problems involving
a realistically large number of atoms still remain challenging.

This numerical complexity has been acknowledged previ-
ously, as experiments often involve macroscopic numbers of
atoms N � 1. As outlined in Ref. [4], when the system is
instantaneously excited, and there are no competing incoher-
ent processes, quantum effects dominate in the early stages
of superfluorescence. Subsequently, the evolution becomes
classical, and we can effectively simulate the dynamics of
quantum emitters by solving Bloch equations with statistically
distributed initial dipole moments. By considering multiple
regions with independently distributed initial conditions, we
can conduct a numerical analysis of macroscopic distributed
systems.

However, if the initial incoherent excitation triggering su-
perfluorescence is not instantaneous, and the quantum stage is
further complicated by various incoherent processes, random
initial conditions are no longer applicable. In such cases,
several phenomenological strategies have been proposed.
For instance, in Refs. [30–33], random initial conditions
were replaced by phenomenological noise terms acting as
source terms in the Maxwell-Bloch equations. Nevertheless,
as these methods were not derived from first principles, they
came with certain limitations. For example, the widely used
methodology proposed in Ref. [31] produced an incorrect
temporal profile of spontaneous emission, as highlighted in
Refs. [34,35].

In summary, there is currently no numerically efficient
and sufficiently accurate methodology available for providing
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a reliable quantitative characterization of collective sponta-
neous emission involving an arbitrary number of multilevel
emitters, especially in the presence of incoherent processes
and excitation. Therefore, our objective is to establish such a
formalism based on first principles. The development of this
formalism draws inspiration from a many-body phase-space
description utilizing the positive P function (for more details
and examples, see Refs. [36–40]). While this approach offers
a direct path to stochastic equations that can be efficiently
sampled in a Monte Carlo style, unfortunately, it features
certain limitations that manifest in practice as spiky, diverg-
ing solutions. These limitations and a potential method for
mitigating them are thoroughly discussed in Refs. [41–43].
In these works, it was demonstrated that quantum many-body
systems allow a certain freedom when modeled by stochastic
differential equations. It turns out that there is more than one
system of equations leading to the same expectation values.
In practice, different systems of equations may exhibit dif-
ferent degrees of divergent behavior. The technique, which
provides several strategies for choosing a more stable system
of equations, is commonly referred to as stochastic gauges.
The present article offers an analysis of how the mentioned
instability issue impacts the simulation of superfluorescence
and how we adopt stochastic gauges to resolve them.

Given the need to benchmark the proposed theoretical
methodology, this article focuses exclusively on superfluo-
rescence in compact systems. This choice is motivated by
the fact that it can be exactly solved using methods based
on the decomposition of the quantum state. Specifically, we
adopt the methodology presented in Ref. [28]. The numerical
benchmark suggests that the proposed methodology provides
satisfactory results for a wide range of parameter values.
Discrepancies, however, arise when the system evolves into a
dark many-body state. Furthermore, we demonstrate that the
presence of incoherent processes mitigates the prominence of
this issue.

In our formalism, neither the form nor the number of
equations depends on the number of emitters N in the sys-
tem. N only enters the equations as a parameter, making the
methodology free from the numerical difficulties inherent in
techniques based on quantum state decomposition. For the
extended methodology suitable for analyzing distributed sys-
tems, we refer the interested reader to Ref. [44].

Let us outline the structure of the article. In Sec. II, we
construct the master equation for superfluorescence in com-
pact systems. In Sec. III, we rephrase the quantum-mechanical
problem in terms of stochastic differential equations. We also
address numerical challenges encountered during the simula-
tions and propose potential solutions. In Sec. IV, we analyze
various conditions under which the phenomenon of superfluo-
rescence can be observed. We begin with the simplest example
in Sec. IV A, involving the cooperative emission of instantly
excited two-level atoms. By comparing our simulations with
those based on the methodology presented in Ref. [28], we
evaluate the performance of our proposed method for various
numbers of atoms and initial conditions. We demonstrate that
under specific circumstances when the system evolves into
a dark many-body state, our methodology fails to reproduce
the correct behavior. When the influence of such states is
not significant, we achieve adequate results with minimal

computational resources. In Sec. IV B, we explicitly include
excitation via incoherent pumping. This accentuates the chal-
lenge posed by dark states. We demonstrate how this issue can
be mitigated by introducing the decoherence typically present
in experimental conditions. In Secs. IV C and IV D, we con-
clude the numerical examples by studying multilevel effects
in the superfluorescence observed in V and � systems. In this
case, we demonstrate the performance of the methodology by
constructing nontrivial three-particle correlation functions. In
Sec. V, we give an overview of the accuracy and efficiency
of our methodology and share empirical observations made
during the numerical studies.

II. COMPACT SYSTEMS

The dynamics of the field in distributed systems is
generally complex and depends on many factors that are
insignificant for our goal to introduce the key ideas of our
stochastic formalism applied to superfluorescence. In Ref. [1],
it was supposed that in a compact ensemble of atoms, the
system size was considerably smaller than the wavelength
of the field. As a result, the atoms saw an identical field.
This simplified model neglected the influence of dipole-dipole
interactions between the atoms that was shown to be detri-
mental to observing superfluorescence [4,45–47]. In certain
cases of strong dipole-dipole interactions, the so-called dipole
blockade [48], suppresses the electronic transitions initiated
by a narrow-band field. The effects of dipole-dipole interac-
tions strongly depend on the geometry and distances between
the emitters, thus defining the minimal interatomic distance
beyond which the superradiant behavior takes place [49,50].

Numerical analysis with fully implemented dipole-dipole
interactions is quite involved since it requires individual treat-
ment of each atom due to the broken symmetry. One possible
work around is to replace the dipole-dipole interacting atoms
with atoms that interact only through the radiative field but
possess different transition frequencies, mimicking the impact
of the dipole-dipole interactions [51]. Another approach is to
reduce the effect of the dipole-dipole interactions by intro-
ducing a bad cavity or an elongated dilute atomic system. The
first approach will ultimately lead us to superfluorescence in
compact systems. As shown in Ref. [52], proper use of a cav-
ity eliminates the effect of dipole-dipole interactions, which
may explain the good agreement between experiments in
Refs. [53,54] and a simple Dicke model without any account
of dipole-dipole interactions. Indeed, a cavity selects optical
wave vectors close to the transition frequency ω0, which filters
out the dipole-dipole interactions and simplifies the spatial
dependence of the field. Based on these assumptions, the
problem of superfluorescence is considerably simplified and
reduces to a Dicke master equation that we aim to solve by
means of stochastic differential equations.

Consider a system of N identical multilevel atoms char-
acterized by a system of levels {|p〉}, energies h̄ωp, and the
following free Hamiltonian:

Ĥ0 =
∑

p

h̄ωp

∑
a

σ̂a,pp.

Here, we utilize the operators σ̂a,pq = |p〉a〈q|a to describe
transitions between states for each atom a. Initially, atoms
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are uncorrelated and described by a density matrix symmetric
under any permutation.

The atomic levels are coupled to the quantized electric
displacement field D̂(r). The presence of the cavity makes
its amplitude uniform across the sample. We suppose a field
of single carrier wave vector k0 associated with the transition
frequency ω0 = ck0 given by

D̂(r) ≈ D̂(+)eik0·r + D̂(−)e−ik0·r

=
∑

λ

(
D0âλeλeik0·r + D∗

0â†
λe∗

λ e−ik0·r).
Here, D0 = i

√
h̄ω0ε0/[2V ], V is the quantization volume, âλ

and â†
λ are the bosonic field operators, and the vectors eλ

are the polarizations of the field perpendicular to k0. Among
all the atomic levels, the light only couples two subsets:
the ground-state manifold |g〉 and the excited-state manifold
|e〉. Their energy splittings, denoted as ωee′ = ωe − ωe′ and
ωgg′ = ωg − ωg′ , are assumed to be much smaller than the
carrier frequency ω0. Later in this article, we use indices
p, q, r, s, i, j to represent any arbitrary state, while specifically
reserving indices g and e for states from the ground and
excited state manifolds, respectively. The dynamics of the
atomic populations is supposed to change on timescales that
are large compared to 1/ω0, so that nonresonant contributions
are neglected. Based on these approximations, we write the
following interaction Hamiltonian:

V̂ = − 1

ε0
D̂(+)

∑
e,g

deg

∑
a

σ̂a,egeik0·ra + H.c., (1)

where dpq are the matrix elements of the dipole moment
operators. The atomic coherences assemble in the sum∑

a σ̂a,egeik0·ra reflecting the collective interaction with the
field mode.1 Henceforth, we omit the multiplier eik0·ra since
it can be adjusted by shifting the phases of the states |e〉 and
|g〉. We introduce collective dipole moments P̂(±) composed
of the phased operators σ̂a,pq as follows:

P̂(−) =
∑

eg

deg

∑
a

σ̂a,eg,

P̂(+) =
∑

eg

dge

∑
a

σ̂a,ge.

This gives a compact expression for the interaction Hamilto-
nian in Eq. (1)

V̂ = − 1

ε0

(
P̂(−) · D̂(+) + P̂(+) · D̂(−)

)
. (2)

Having only one mode in a cavity simplifies the spatial dy-
namics; however, it can only lead to optical phenomena such
as quantum Rabi oscillations, collapse, and revivals [55,56],
which we do not intend to analyze in this article. Additionally,
achieving collective spontaneous emission requires a substan-
tial leakage of photons, as discussed in, for example, Ref. [5].

1In Ref. [53], the atomic sample was positioned at an antinode
of a standing wave, which can be taken into account by neglecting
e±ik0 ·ra .

After an atom emits a photon, it effectively makes Q/[k0L]
passes2 through the cavity before it gets damped. Here, Q is
the quality factor and L is the length of the cavity. To have
collective spontaneous emission, the dynamics of the atomic
populations and coherences must be much slower than the
leakage of the field. In these circumstances, we can trace out
the field degrees of freedom by applying the Born-Markov
approximation, which leads to the well-known Dicke master
equation formulated for multilevel atoms

d ρ̂(t )

dt
=L[ρ̂(t )] = i

h̄
[ρ̂(t ), Ĥ0 + V̂in(t )]

+ Lcoll.[ρ̂(t )] + Lincoh.[ρ̂(t )]. (3)

Initially, the field is coupled to the atoms through the inter-
action Hamiltonian V̂ . After tracing out the field degrees of
freedom, its role is taken over by two operators Lcoll.[ρ̂(t )] and
V̂in(t ). The superoperator Lcoll.[ρ̂(t )] represents the collective
dissipation caused by the interaction of the atoms with their
own light from previous passes:

Lcoll.[ρ̂(t )] = γ

2

∑
α

([
P̂(+)

α ρ̂(t ), P̂(−)
α

] + [
P̂(+)

α , ρ̂(t )P̂(−)
α

])
,

where γ = 2Q/[V h̄ε0] and P̂(±)
α are components of the vector

operators P̂(±). Since the atoms interact with the light col-
lectively Lcoll.[ρ̂(t )] eventually involves only the collective
dipole moments P̂(±).

If the system is exposed to an externally applied field
Din(r, t ), which is uniform across the atomic ensemble

Din(r, t ) = D(+)
in (t )eik0·r + D(−)

in (t )e−ik0·r, (4)

it can be included in the master equation with the interaction
Hamiltonian V̂in(t ) constructed similar to V̂ (t ) in Eq. (2)

V̂in(t ) = − 1

ε0

(
P̂(−) · D(+)

in (t ) + P̂(+) · D(−)
in (t )

)
.

The amplitudes D(±)
in (t ) can be deterministic complex-valued

functions representing classical fields or quantum light in
a coherent state. Moreover, D(±)

in (t ) can have some statisti-
cal distribution that reproduces moments of normal-ordered
field operators. The amplitudes D(±)

in (t ) allow the inclusion
of black-body photons or any arbitrary external field causing
stimulated emission.

In addition to the collective interaction with the radiation,
atoms undergo a wide variety of incoherent processes, such
as nonradiative decay ionization. By introducing a separate
independent reservoir for each atom and assuming that atoms
interact with them identically, we apply the Markovian ap-
proximation [57,58] and derive the most general form of
Lincoh.[ρ̂(t )]:

Lincoh.[ρ̂(t )] = 1

2

∑
a,p,q,

r,s


pqrs(t )([σ̂a,pqρ̂(t ), σ̂a,sr]

+ [σ̂a,pq, ρ̂(t )σ̂a,sr]). (5)

2Q/[k0L] is the decay rate of the intensity. The field amplitudes
decay two times slower.
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FIG. 1. Schematic representation of (a) the completely factorized density matrix and (b) its interaction with the time derivative and
(c) L[ρ̂(t )]. In panel (a), we illustrate the density matrix of the entire ensemble as a product state composed of individual single-particle
density matrices. The time derivative of this density matrix leads to a sum of products, where only single-particle density matrices are affected,
as highlighted by the orange color in panel (b). Upon applying the collective Liouville operator, in addition to products where only a single
particle is affected La[. . .], there is an additional contribution from two-particle interactions La 	=b[. . .]. This is represented in panel (c).

The characteristics of the incoherent processes enter the equa-
tions through the rates 
pqrs(t ).

III. STOCHASTIC EQUATIONS

The master equation (3) is symmetric under atomic permu-
tations. When the system starts from any symmetric density
matrix, the problem can be solved for a moderately large
number of atoms (N � 100) by applying the methods from
Refs. [28,29]. A simplified method from Ref. [27] can be used
when the atoms start from a statistical mixture of symmetric
pure states and interact only collectively, namely, without
Lincoh.[ρ̂(t )]. The main drawback of these methods is their
polynomial scaling with N .

The development of our formalism draws inspiration from
the concept of a positive P function [36–40] used to generate
stochastic differential equations for the problems involv-
ing bosonic fields. The final equations possess an intuitive
form: the deterministic parts remind us of classical equations,
whereas the quantum effects are attributed to the noise terms.

We attempt to derive similar equations for a compact
system of quantum emitters. First, we analyze the distinc-
tions between the quantum description based on the master
equation and the semi-classical one based on the Bloch equa-
tions [4,55]. Further, we demonstrate how these equations can
be enhanced with supplementary stochastic terms, character-
ized by specific statistical properties, to restore the missing
quantum properties.

A. Optical Bloch equations

We start the derivation with the simplest possible ansatz
for the density matrix ρ̂(t ), assuming a complete factorization
of the atomic degrees of freedom in terms of single-particle
density matrices ρ̂a(t ):

ρ̂(t ) =
∏

a

ρ̂a(t ). (6)

Furthermore, since the system is symmetric under permuta-
tions, we assume that all ρ̂a(t ) have the same matrix elements
ρpq(t ), so that

ρ̂a(t ) =
∑

pq

ρpq(t )σ̂a,pq.

Figure 1(a) schematically depicts this ansatz. Although this
decomposition is suitable for the assumed initial state of a
fully symmetric density matrix of uncorrelated atoms, the
further evolution of the system can only be partially cap-
tured by this proposed ansatz. To obtain the equations for the
variables ρpq(t ), we generate the following equations for the
expectation values Tr[σ̂a,pqρ̂(t )]:

d

dt
Tr[σ̂a,pqρ̂(t )] = Tr(σ̂a,pqL[ρ̂(t )]).

Assuming the decomposition in Eq. (6), the expectation values
Tr[σ̂a,pqρ̂(t )] are equal to ρqp(t ). The considered ansatz for the
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density matrix factorizes second-order correlators, namely,

Tr[σ̂a,pqσ̂b,rsρ̂(t )] = ρqp(t )ρsr (t ), (7)

which leads to a closed system of equations known as Bloch equations [4,55]

ρ̇pq(t ) =−iωpqρpq(t ) + 1

2

∑
i, j

(2
piq j (t )ρi j (t ) − 
i jip(t )ρ jq(t ) − ρp j (t )
iqi j (t ))

+ γ

2

∑
r,s

(2ρrs(t )dp<r · ds>q − dp>r · dr<sρsq(t ) − ρpr (t )dr>s · ds<q )

+ i

h̄ε0
D(+)(t )

∑
r

(dp>rρrq(t ) − ρpr (t )dr>q ) + i

h̄ε0
D(−)(t )

∑
r

(dp<rρrq(t ) − ρpr (t )dr<q ), (8)

where p > q means that index p corresponds to the subset of excited states {|e〉} and index q represents the subset of ground states
{|g〉}. Each atom interacts with the field amplitudes D(±)(t ) that combine the incoming fields D(±)

in (t ) and the field produced by
the other N − 1 atoms:

D(+)(t ) = D(+)
in (t ) + ih̄ε0

γ

2
(N − 1)

∑
e,g

dgeρeg(t ), D(−)(t ) = D(−)
in (t ) − ih̄ε0

γ

2
(N − 1)

∑
g,e

degρge(t ). (9)

The factorization of the second-order correlators in Eq. (7) used in the derivations of the Bloch equations shows that
these equations are valid only for systems with strong classical behavior. Let us reconstruct the neglected terms in the master
equation (3) and analyze their structure. If we insert the decomposition from Eq. (6) in the master equation (3), and then apply
Bloch equations (8), we notice that the right-hand side of L[ρ̂(t )] in Eq. (3) is restored only partially

L[ρ̂(t )] − d ρ̂(t )

dt
=

∑
b	=c

χ̂b,c(t )
∏

a 	=b,c

ρ̂a(t ). (10)

This is schematically depicted in Figs. 1(b) and 1(c). The time derivative of Eq. (6) can generate the terms, where only one ρ̂a is
modified, as illustrated in Fig. 1(b). Consequently, the remaining terms in Eq. (10) entangle pairs of ρ̂a through χ̂b,c(t ) defined
as follows:

χ̂b,c(t ) =
∑

p,q,r,s

χpqrs(t )σ̂b,pqσ̂c,rs, (11)

where

χpqrs(t ) = γ

2

⎡
⎣

⎛
⎝∑

r′
ρpr′ (t )dr′>q − ρpq(t )

∑
g,e

degρge(t )

⎞
⎠ ∑

p′
(dr<p′ρp′s(t ) − ρr p′ (t )dp′<s)

+
∑

r′
(ρpr′ (t )dr′>q − dp>r′ρr′q(t ))

⎛
⎝∑

p′
dr<p′ρp′s(t ) − ρrs(t )

∑
e,g

dgeρeg(t )

⎞
⎠

⎤
⎦ + [p, q � r, s]. (12)

Here, the second term is generated by exchanging the pairs of
indices (p, q) and (r, s). The structure of χ̂b,c(t ) is schemati-
cally illustrated in Fig. 1(c) by a second term, which explicitly
shows two-particle interactions.

B. Stochastic terms

Although χpqrs(t ) looks complicated, the uncompensated
terms in the right-hand side of Eq. (10) contain only entangled
pairs of atoms, as Eq. (11) suggests. Nontrivial correlations of
higher orders are not involved, so the terms in Eq. (11) can be
correctly recaptured by adding appropriate stochastic terms to
the Bloch equations (8). In addition to the deterministic time
evolution, we introduce stochastic terms Fpq as described by
the following equation:

ρ̇pq(t )|noise = Fpq({ρi j (t )}, t ). (13)

It is important to note that the properties of the noise terms can
be generally parametrized by the dynamic variables ρi j (t ). We

only constrain Fpq to be Gaussian white-noise terms with zero
mean and the following second-order correlation properties:

〈Fpq({xi j}, t )Frs({xi j}, t ′)〉 = κpqrs({xi j}, t )δ(t − t ′). (14)

The coefficients κpqrs will be specified later. Note that Eq. (14)
is parameterized by free parameters xi j , which can take on
the role of the dynamic variables ρi j (t ), like, for instance,
in Eq. (13). When included in the noise terms, the dynamic
variables ρi j (t ) contribute their own statistics. To capture the
statistical properties inherent solely in the noise terms Fpq,
Eq. (14) is formulated without explicit dependence on ρi j (t ).

We assume that the noise terms are integrated in Itô’s sense.
Typically, the stochastic equations are solved with the Monte
Carlo approach. The proper statistics of the dynamic variables
ρpq(t ) is reconstructed by repeatedly solving equations with
a randomly sampled stochastic contribution in accordance
with their statistical properties. Since the variables are
independently integrated for each repetition, the problem is
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parallelizeable, which gives a great advantage in performance
compared to the methods based on the direct decomposition
of the quantum state in some basis set.

To reconstruct the density matrix ρ̂(t ), we insert each
realization of the variables ρpq(t ) into the decomposition in
Eq. (6) and aggregate all realizations of density matrices (6)
into a normalized linear combination

ρ̂(t ) =
〈∏

a

ρ̂a(t )

〉
=

〈∏
a

∑
pq

ρqp(t )σ̂a,pq

〉

=
∑

i

[ ∏
a

∑
pq

ρ (i)
qp(t )σ̂a,pq

]/
Nsample. (15)

This density matrix is no longer factorizable. Here, ρ (i)
qp(t ) rep-

resents the ith realization of the variables ρqp(t ), and Nsample

is the total number of statistical realizations. We anticipate
that this linear combination can restore missing entangled
terms in Eq. (10). The remaining step is to identify a specific
expression for κpqrs(t ).

Although the new decomposition in Eq. (15) does not
change the expression for the first term L[ρ̂(t )], the derivative
d ρ̂(t )

dt is modified by additional terms proportional to κpqrs, due
to Itô’s lemma. Consider an arbitrary function S that depends
on variables ρpq(t ). If the variables ρpq(t ) are governed by
equations that include the noise terms from Eq. (13), Itô’s
lemma can be expressed as

dS

dt
=

∑
p,q

∂S

∂ρpq

dρpq

dt
+ 1

2

∑
p,q,r,s

∂2S

∂ρpq∂ρrs
κpqrs. (16)

Consequently, the full derivative of the density matrix in Eq. (15) acquires the following additional contribution:

d ρ̂(t )

dt
= · · · +

〈∑
b	=c

∑
p,q,r,s

κpqrs({ρi j (t )}, t )σ̂b,pqσ̂c,rs

∏
a 	=b,c

ρ̂a(t )

〉
,

that entangles pairs of atoms and has exactly the same form as the right-hand side of Eq. (10). Consequently, if the correlators
of the noise terms taken as

κpqrs = χpqrs,

the Bloch equations (8), supplemented by the noise terms from Eq. (13), fully satisfy the master equation (3).
To simulate Fpq numerically, we have to decompose them in terms of independent noise terms. There is no unique

decomposition, however, the structure of Eq. (12) suggests the most compact one, given by the following expression:

Fpq({ρi j (t )}, t ) =
√

γ

2

∑
r

[(dp<rρrq(t ) − ρpr (t )dr<q )f (t ) + (ρpr (t )dr>q − dp>rρrq(t ))g(t )]

+
√

γ

2

⎛
⎝∑

r

ρpr (t )dr>q − ρpq(t )
∑
g,e

degρge(t )

⎞
⎠f†(t ) +

√
γ

2

⎛
⎝∑

r

dp<rρrq(t ) − ρpq(t )
∑
e,g

dgeρeg(t )

⎞
⎠g†(t ),

(17)

where we introduce vectors f (t ), f†(t ), g(t ), g†(t ) whose com-
ponents are Gaussian white-noise terms independent of the
dynamic variables ρrq(t ). The vectors f (t ), f†(t ) are statisti-
cally independent from the vectors g(t ), g†(t ). The vectors
f (t ), f†(t ) have the correlation properties

〈 fα (t ) fβ (t ′)〉 = 〈 f †
α (t ) f †

β (t ′)〉 = 0,

〈 fα (t ) f †
β (t ′)〉 = δαβδ(t − t ′), (18)

that can only be sampled by complex-valued Gaussian white
noise terms. Corresponding stochastic properties hold for g(t )
and g†(t ). The number of the components of the vectors f (t ),
f†(t ), g(t ), g†(t ) is defined by the dimensionality of the dipole
moment vector deg. Equation (18) does not uniquely define the
form of the noise terms. One can simply choose f†(t ), g†(t ) to
be complex conjugates of f (t ), g(t ). Another freedom is given
by rescaling of the noise terms: if f (t ) is divided and f†(t )
is multiplied by the same number, the statistical properties in
Eq. (18) are preserved. This freedom of choice is equivalent to
the diffusion gauge in the context of positive P representation

formalism [43]. The way we fix the form of the elementary
noise terms f (t ), f†(t ), g(t ), g†(t ) is discussed in Sec. III C.

Adding the noise terms enriches the Bloch equations with
the spontaneous nature of the quantum mechanics, allow-
ing a correct treatment of the spontaneous emission (an
indispensable triggering process of superfluorescence). As
mentioned in the Introduction, many authors recognized the
importance of adding stochastic terms into semi-classical
equations by different phenomenological approaches [30–33].
Our approach is based on rigorous derivation and hence can
serve as a base for further investigations and approximate
methods.

Note that the noise decomposition in Eq. (17) conserves
the “trace” of the effective density matrix ρpq(t )∑

p

ρ̇pp(t ) =
∑

p

Fpp({ρi j (t )}, t ) = 0.

This property is important for generating compact expressions
for the expectation values. Based on the decomposition in
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Eq. (15), one can show that the one- and two-particle ex-
pectation values possess intuitive expressions in terms of the
stochastic variables ρpq(t ):

Tr(σ̂a,pqρ̂(t )) = 〈ρqp(t )〉,
Tr(σ̂a,pqσ̂b,rsρ̂(t )) = 〈ρqp(t )ρsr (t )〉, (19)

where a 	= b. Similar expressions hold for high-order correla-
tion functions.

C. Stochastic freedom

Unfortunately, the stochastic terms Fpq(t ) break an im-
portant property of the variables ρpq(t ) expected from the
original, deterministic Bloch equations. Starting from Her-
mitian initial conditions, the Bloch equations preserve the
Hermiticity of the variables ρpq(t ). By Hermiticity, we hence-
forth refer to the condition where ρpq(t ) = ρ∗

qp(t ). However,
to sample the correlator χpqrs(t ), the noise terms must be
non-Hermitian, that is, Fpq(t ) 	= F ∗

qp(t ), which makes the
dynamic variables ρpq(t ) non-Hermitian as well, namely,
ρ∗

pq(t ) 	= ρqp(t ).
In a broader context, the non-Hermiticity of the effec-

tive density matrix signifies a doubling of the number of
independent dynamic variables compared to the anticipated
semi-classical scenario, where atoms are characterized by
Hermitian one-particle density matrices. This doubling of dy-
namic variables is also inherent in phase-space methods based
on positive P representation [36].

Breaking of the Hermiticity comes with the drawback of
diverging behavior of the solutions of the Bloch equations.
Even without any noise terms, the original Bloch equa-
tions written for non-Hermitian variables may lead to unstable
solutions with hyperbolic divergence:

ρpq(t ) ∼ 1

t − t0
.

As the singularity is approached, the dynamic variables be-
come anti-Hermitian, that is, ρeg(t ) = −ρ∗

ge(t ). Consequently,
attempting to simulate Eq. (8) with the noise terms in Eq. (17)
leads to an unstable temporal dependence of expectation val-
ues.

In the context of the positive P representation, the same
stability issues are encountered, which motivated the develop-
ment of so-called stochastic gauges [42,43] (in Appendix A,
we adopt these stochastic gauges for our formalism). In the
provided references, it has been discovered that a quantum
many-body system can be modeled by more than one sys-
tem of stochastic differential equations. Consequently, the
preferable choice is to opt for the system of equations that
demonstrates less divergent behavior, which is the key idea
behind stochastic gauges. Specifically, we employ two tech-
niques known as drift and diffusion gauges, as introduced in
Refs. [42,43].

The stochastic drift gauges allow us to alter the deter-
ministic components of the stochastic differential equations.
This modification must be compensated by an appropriate re-
weighting of the stochastic trajectories. According to the drift
gauging procedure reproduced in Appendix B, we include a
weight coefficient �(t ) = eC0(t ) in the decomposition of the

density matrix in Eq. (15)

ρ̂(t ) =
〈
�(t )

∏
a

∑
pq

ρqp(t )σ̂a,pq

〉
. (20)

This change is also reflected in the expressions for the expec-
tation values in Eq. (19)

Tr[σ̂a,pqρ̂(t )] = 〈�(t )ρqp(t )〉,
Tr[σ̂a,pqσ̂b,rsρ̂(t )] = 〈�(t )ρqp(t )ρsr (t )〉, (21)

where a 	= b.
The form of the equation for the weight coefficient directly

depends on how we modify the deterministic parts. The modi-
fication of the deterministic part of the Bloch equations should
counteract the unbounded growth of the dynamic variables
ρpq(t ).

Even for the determinstic Bloch equations, one can expect
divergent solutions for a small violation of Hermitcity of the
dynamic variables. Consequently, when the full stochastic
Bloch equations are considered, the noise terms seed this
non-Hermiticity, which then leads to divergence due to the
structure of the deterministic terms.

The structure of the deterministic terms can be slightly
modified to ensure that it does not lead to any instabil-
ity. Specifically, we implement the following substitution in
Eq. (9) ∑

g,e

degρge(t ) → 1

2

∑
g,e

deg(ρge(t ) + ρ∗
eg(t )),

∑
e,g

dgeρeg(t ) → 1

2

∑
e,g

dge(ρeg(t ) + ρ∗
ge(t )). (22)

The fields become Hermitian after this substitution, namely,
D(+)(t ) = D(−)∗(t ). This modification of the determinis-
tic parts can be achieved using stochastic drift gauges,
which requires introducing a weight coefficient �(t ) = eC0(t ).
According to the expressions given in Appendix B, the co-
efficient C0(t ) starts from zero and satisfies the following
equation:

dC0(t )

dt
= N − 1

2

√
γ

2

∑
g,e

[f†(t ) · deg(ρge(t ) − ρ∗
eg(t ))

+ g†(t ) · dge(ρeg(t ) − ρ∗
ge(t ))].

(23)

Note that the right-hand side of this equation is proportional
to the anti-Hermitian parts of the variables ρpq(t ). Since the
weight coefficient �(t ) involves the exponentiation of C0(t ),
which is itself proportional to (N − 1), �(t ) can rapidly grow
over time. Consequently, the averaging in Eq. (21) may re-
quire a large number of statistical realizations to converge. To
reduce the need for the proposed drift gauge, we introduce two
additional techniques.

First, we notice that the drift gauge is not always required
since the original equations do not always increase the anti-
Hermitian parts of the dynamic variables. We can apply the
drift gauge once the relative increase of the anti-Hermitian
parts per time step exceeds a certain limit. In practice, we
found that an individual stochastic trajectory requires gauging
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only when the population inversions are not negative, i.e.,
Re[ρee(t ) − ρgg(t )] � 0 for any excited state |e〉 and ground
state |g〉. Since the variables are complex at the level of single
trajectories, we take the real parts of the populations.

In the context of superfluorescence, the positive sign of
the population inversions causes exponential amplification of
the field components D(±)

α (t ), whereas negative population
inversions lead to their absorption. Consequently, positive
population inversions increase both the Hermitian and anti-
Hermitian parts of the field components, which can trigger
diverging behavior. Negative population inversions, in con-
trast, reduce the fields and their anti-Hermitian parts, making
gauging unnecessary.

A second technique is based on the flexibility provided by
the correlation properties of the elementary noise vectors f (t ),
f†(t ), g(t ), and g†(t ). This method is known as the diffusion
gauge, as discussed in Refs. [42,43]. In Eq. (18), we only
outlined their correlation properties without prescribing any
specific form. As mentioned before, there is no unique way
to define them. One of the possible representations, which we
later employ in the numerical simulations, takes the following
form:

fα (t ) = ηα (t ) f̄α (t ), f †
α (t ) = η−1

α (t ) f̄ ∗
α (t ),

gα (t ) = θα (t )ḡα (t ), g†
α (t ) = θ−1

α (t )ḡ∗
α (t ), (24)

where θα (t ) and ηα (t ) can take on any values. The only
constraint is that they must be statistically independent of
the noise terms from the future. Equation (24) explicitly as-
sociates the noise terms f (t ) and f†(t ) with a single vector
of independent complex noise terms f̄ (t ). Similarly, g(t ) and
g†(t ) are linked to ḡ(t ). These new noise terms, f̄ (t ) and ḡ(t ),
consist of independent and normal Gaussian white real-noise
terms f̄1(t ), f̄2(t ), ḡ1(t ), and ḡ2(t ):

f̄ (t ) = 1√
2

(f̄1(t ) + if̄2(t )), ḡ(t ) = 1√
2

(ḡ1(t ) + iḡ2(t )).

(25)

The explicit representation in Eq. (24) preserves the corre-
lation properties in Eq. (18) regardless of the form of θα (t )
and ηα (t ). To reduce the need for the drift gauge presented in
Eq. (22), we fix the form of the functions θα (t ) and ηα (t ) in
such a way that the anti-Hermitian part of the dipole moment〈∣∣∣∣∣

∑
g,e

deg(ρge(t ) − ρ∗
eg(t ))

∣∣∣∣∣
2〉

(26)

is minimized. The resulting expressions for θα (t ) and ηα (t )
can be found in Appendix C.

However, in certain cases, these two techniques aimed at
reducing the need for the stochastic drift gauge are insufficient
to control the growth of the weight coefficient �(t ). In these
circumstances, large absolute values of the weight coefficient
�(t ) lead to spikes in temporal profiles of expectation values.
While the proposed gauging techniques do not entirely resolve
the instability issue, they significantly mitigate it. To improve
convergence, trajectories with a weight coefficient exceeding
e5 in absolute value are removed in the numerical examples
given in Sec. IV.

In addition to the structure of the deterministic terms, an-
other source of divergence exists that cannot be efficiently
addressed with the stochastic drift gauge. In practice, we ob-
serve that quadratic contributions in the noise terms, as given
in Eq. (17), can, in certain cases, cause unbounded growth of
the density matrix ρpq(t ). When the absolute value of one of
the density matrix elements exceeds 100, such realizations are
removed from the statistical sample in the numerical examples
presented in Sec. IV.

The comparison with the full quantum-mechanical simula-
tions presented in Sec. IV shows that omitting the unstable
stochastic trajectories after applying the stochastic gauges
does not significantly compromise the accuracy. As demon-
strated in Sec. V, this strategy performs noticeably better than
using the ungauged original equations (8) with the noise terms
given in Eq. (17).

IV. NUMERICAL ANALYSIS

We illustrate the proposed formalism through a series
of numerical examples. The deterministic components of
the stochastic equations are numerically integrated using the
adaptive step-size method TSIT5, which is implemented in
the DIFFERENTIALEQUATIONS.JL library [59]. The noise com-
ponents are integrated using the Euler-Maruyama method
[60,61]. We use 105 stochastic trajectories to construct sta-
tistical averages. The simulations based on the stochastic
formalism are compared with those based on the methodology
presented in Ref. [28]. For both methods, the maximum al-
lowed timestep was limited to Tmax/104. Here, Tmax represents
the last point on the dimensionless time grid.

The dynamics of the stochastic density matrix ρpq(t ) is
defined by Eq. (8) with noise terms given in Eq. (17). As
proposed in Sec. III C, we apply stochastic gauges to miti-
gate the instabilities. We modify the equations according to
Eq. (22), namely, by making the deterministic part of the
field Hermitian. This adjustment requires the introduction of
an additional variable C0(t ), which reweights the trajectories,
as shown in Eq. (20). Additionally, we employ the diffusion
gauge presented in Eq. (24) and Appendix C to suppress the
increase of non-Hermitian dipole moment components. As
explained at the end of Sec. III C, a stochastic trajectory is
removed from the statistical sample if it exhibits diverging
behavior, with its weight coefficient �(t ) exceeding e5 or any
density matrix element growing above 100. The number of
excluded trajectories is given in the caption of each figure.

Before we proceed with numerical simulations, let us link
the expectation values of quantum-mechanical operators with
the respective stochastic variables. Specifically, we will ex-
amine the average populations of atomic levels using the
following expression:

pq(t ) = 1

N

∑
a

Tr[σ̂a,qqρ̂(t )] = 〈�(t )ρqq(t )〉,

where Eq. (20) is utilized.
In compact systems, the field properties can be expressed

through the atomic operators and, consequently, through the
associated stochastic variables. Up to an insignificant factor,

053703-8



STOCHASTIC MODELING OF SUPERFLUORESCENCE IN … PHYSICAL REVIEW A 110, 053703 (2024)

FIG. 2. Solutions to the stochastic equations, modified as described in Sec. III C. The semi-transparent lines correspond to quantum
expectation values, while the opaque lines represent stochastic averages. The intensities (d)–(f) are normalized to the maximum value in
the panel. The subplots below each row show the absolute difference between populations and normalized intensities based on stochastic
averages and quantum expectation values. For the cases of (a), (d) N = 2, 3, 4, we omit 22, 4, 3 unstable trajectories, respectively.

the intensity of the emission polarized along the α axis is
given by the product of collective dipole moments

Iα (t ) = Tr
[
P̂(−)

α P̂(+)
α ρ̂(t )

]
. (27a)

By utilizing Eq. (20), we express the intensities Iα (t ) in terms
of the stochastic variables ρpq(t ):

Iα (t ) = N
∑

e1,e2,g

de1g,α dge2,α

〈
�(t )ρe2e1 (t )

〉 + N (N − 1)

×
∑
e1,e2
g1,g2

de1g1,α dg2e2,α

〈
�(t )ρg1e1 (t ) ρe2g2 (t )

〉
. (27b)

The full intensity is found by summing all the components.

A. Cooperative emission of two-level atoms

Let us revisit the example of identical two-level atoms
collectively interacting with their own field. The ground-state
manifold {|g〉} collapses to a single state |1〉, and the excited-
state manifold {|e〉} reduces to a single state |2〉.

When the ensemble starts from the fully excited state, char-
acterized by ρ22(0) = 1, with all other matrix elements set to
zero, the phenomenon of superradiance is observed. Figure 2
shows the excited-state population and emission intensity for
different numbers of atoms N . We exclude the single-atom
case N = 1 since it does not require the extension of the
ansatz (6) beyond the single-particle density matrix. Thus, the
noise terms are unnecessary in this case. Increasing the value

of N leads to faster depopulation of the excited state and a
narrower, more pronounced peak in intensity. As depicted in
Fig. 2, the discrepancy between stochastic averages and quan-
tum expectation values remains less than 1.0%. Figures 2(a)
and 2(d) show that the difference is higher for smaller N . We
attribute this increase to the nonlinear noise terms that become
comparable to the deterministic parts for small N . Moreover, it
can lead to unstable trajectories and small spikes in intensities,
as observed in the simulations shown in Figs. 2(a) and 2(d).

In Fig. 2 we use 105 stochastic realizations. In practice,
much fewer trajectories are required for the convergence of
selected observables. Figure 3 demonstrates the convergence
of population and intensity for different numbers of stochas-
tic realizations. For qualitative analysis, averaging over 102

trajectories is enough, while averaging over 103 trajectories
already gives accurate averages. Based on our experience,
1000 trajectories are also sufficient to achieve good accuracy
for other systems discussed later. In addition to the direct com-
parison with quantum averages, we use another criterion of
convergence: imaginary parts of such observables as popula-
tions or intensities should vanish after averaging. For a single
trajectory, the imaginary part is comparable to the real part,
thus it does not have physical meaning. Statistical averages
represent observables only after averaging over a significant
amount of trajectories.

There is a special case when the initial state is statistically
mixed. As shown in Ref. [28], if the system is prepared in the
state without coherences ρ12(0) = ρ21(0) = 0 and only with
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FIG. 3. Convergence of the stochastic averages (dashed lines) to the exact quantum expectation values (solid lines) for different numbers
of atoms N . The atomic ensemble is initially fully excited, i.e., ρ22(0) = 1.0, and other matrix elements are zero. The observables chosen here
are (a)–(c) the probability of finding an excited atom and (d)–(f) the intensity of the emitted field. Intensity is normalized to the maximum. The
dotted lines represent the imaginary parts of corresponding quantities. As expected, they disappear with the increasing number of trajectories.

the diagonal elements

ρ11(0) = p1, ρ22(0) = p2, (28)

with p2 < 1, the collective emission process becomes weaker.
The ensemble reaches a steady state with a nonzero probabil-
ity of finding an excited atom, namely, 〈ρ (ss)

22 〉 > 0, where ss
stands for steady state.3 In this steady state, the field intensity,
as defined in Eq. (27), is zero, implying that〈

ρ
(ss)
22

〉 + (N − 1)
〈
ρ

(ss)
12 ρ

(ss)
21

〉 = 0. (29)

This, in turn, implies that 〈ρ (ss)
12 ρ

(ss)
21 〉 < 0, a condition that

can only be met when the dipole moments exhibit significant
non-Hermitian behavior at the level of individual stochastic
realizations. Our gauges aim to minimize the non-Hermitian
components, and finding appropriate gauging to account for
this particular case remains a separate challenge. Indeed, this
special case is not fully reproduced by the stochastic equa-
tions, see Fig. 4. Figures 4(a) to 4(c) show that, for a small
number of atoms N = 2, the excited-state population does
not converge to the correct curve, while the intensity exhibits
slow convergence and noisy behavior at later time moments.
As demonstrated in Figs. 4(d) to 4(i), the situation improves
when the number of atoms increases. Specifically, the per-
centage of unstable trajectories becomes lower. Additionally,

3Here, in averages we drop out the weight function for brevity.

the absolute difference between populations and intensities,
based on stochastic and full quantum-mechanical approaches,
decreases.

Note that the case of p1 = p2 = 0.5 consistently exhibits
worse performance in terms of absolute differences and num-
bers of unstable trajectories for any number of atoms. In
Ref. [28], an analytical expression for the steady-state density
matrix was found. Initial conditions enter this expression as
a single parameter (p1 p2) � 1/4. The larger this parameter,
the stronger the population trapping effect becomes, making
it more challenging to reproduce the correct curves using the
stochastic methodology.

The population trapping effect occurs due to the assump-
tion that all the atoms experience the same field. This field
is immediately updated according to the current value of the
dipole moments. At some point, the emission and absorption
processes balance each other, and the ensemble does not relax
to the ground state but rather evolves into a quasistationary
state.

B. Incoherent pumping

In a more realistic situation, the excitation of the ensemble
is not instantaneous. The system’s initial condition may be
prepared by continuous incoherent pumping, as in x-ray lasing
experiments [22,62]. A pump pulse ionizes neutral atoms,
opening the lasing transition in the ionized atoms, see Fig. 5(a)
for a sketch of the level structure. In Ref. [28], it was shown
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FIG. 4. The excited-state population and emission intensity plotted for different numbers of atoms N and varying initial conditions. The
semi-transparent lines correspond to the quantum expectation values, while the opaque lines represent the stochastic averages. The absolute
differences between these values are indicated by gray dotted lines. We label some plots with ×10−1, ×10−2, ×10−3 to highlight that the
corresponding difference values should be multiplied by this factor. We exclude the following numbers of unstable trajectories: (a) 131 (0.13%);
(b) 178 (0.18%); (c) 170 (0.17%); (d) 32 (0.03%); (e) 109 (0.11%); (f) 40 (0.04%); (h) 17 (0.02%).

that if the system is pumped incoherently, it reaches a steady
state similar to the ones in Fig. 4, in which the atoms are not
fully relaxed.

At the level of stochastic equations, the additional variable
describing the population of the neutral state is required, de-
noted by ρ00(t ). This state is coupled to the excited state only
through the incoherent pumping 0 → 2 with the rate κ (t ). The
time dependence of κ (t ) defines the pump profile. Pumping
results in an additional term in equation for ρ22(t ):

ρ̇22(t ) = · · · + κ (t ) ρ00(t ),

while the new variable satisfies the stochastic equation

ρ̇00(t ) = −κ (t )ρ00(t )

− ρ00(t )

√
γ

2

∑
e,g

{ρge(t )deg · f†(t ) + ρeg(t )dge · g†(t )}.

(30)

In our simulations, we use a Gaussian pump profile. The
stochastic averages are depicted in Fig. 5. Although the su-
perradiant dynamics is accurately reproduced, we encounter
the same issue as in Fig. 4, where the steady states are
captured incorrectly. While the populations do not maintain
constant values, the intensities show slow convergence and
small spikes at the end of the evolution time. For a larger
number of atoms N = 100 in Fig. 4(c), the situation does not
improve, in contrast to Figs. 4(g) to 4(i). Additionally, the
number of unstable trajectories increases. Perhaps, the contin-
uous pumping process generates a more intricate steady state,
posing challenges for accurate reproduction by our stochastic
formalism.

As pointed out in Ref. [28], additional dissipation chan-
nels disrupt the formation of the steady states. The authors
of Ref. [28] assumed the Meitner-Auger decay of the ex-
cited state. Alternatively, one could consider nonradiative
dissipation to the ground state (2 → 1) with a rate 


053703-11



STASIS CHUCHURKA et al. PHYSICAL REVIEW A 110, 053703 (2024)

FIG. 5. (a) Level structure of the pumped two-level atoms. Neutral atoms are photoionized by a pump pulse with a profile κ (t ). Excited ions
relax via collective emission 2 → 1 with a rate γ . We compare the stochastic (opaque lines) and quantum (semi-transparent lines) expectation
values for two cases: (b) N = 10 and (c) N = 100. We select a Gaussian envelope for the pump, κ (t ) = Ip exp

[− (t−t0 )2

2τ2

]/√
2πτ 2, with the

following parameters used for calculations: Ip = 10, t0 = 2.0/γ , and τ = 0.5/γ . We exclude (b) 199 (0.20%) and (c) 3871 (3.87%) unstable
trajectories.

as follows:

ρ̇11(t ) = · · · + 
ρ22(t ), ρ̇22(t ) = · · · − 
ρ22(t ),

ρ̇12(t ) = · · · − 


2
ρ12(t ), ρ̇21(t ) = · · · − 


2
ρ21(t ).

Figure 6 illustrates the impact of nonradiative dissipation on
the discrepancies observed in Fig. 5. For N = 10 and 100,
we increase the dissipation rate 
 from 0.1γ [Figs. 6(a) and
6(d)] to 0.3γ [Figs. 6(c) and 6(f)], which gradually improves
the performance of the stochastic method. Populations show
better agreement with the full quantum simulations, while
intensities exhibit better convergence and fewer spikes. Addi-
tionally, the number of unstable trajectories decreases. Based
on our experience, systems with a larger number of atoms
may require a higher dissipation rate. In the given examples,
the additional dissipation with the rate of the same order of
magnitude as spontaneous emission, i.e., 
 ∼ γ , is sufficient
for regularization.

In conclusion, the ratio between timescales of superradi-
ance, pumping, and dissipation directly influences the forma-
tion of steady states. Notably, when these steady states are
less prominent, the stochastic formalism consistently yields
accurate averages.

C. Quantum beats in V system

So far, we considered only models with lasing between two
levels. To demonstrate that our formalism correctly captures
many-level effects, we consider a V -type configuration with
two excited states |2〉, |3〉 and a single ground state |1〉, as
shown in Fig. 7(a). The energy gap between excited states �

is much smaller than the center frequency � � ω0. Fluores-
cence from emitters with such a level structure may exhibit
quantum beating, a fundamental quantum phenomenon that
was observed in various spectral ranges, including optical
[63,64], XUV [65,66], and x-rays [67]. In the context of

collective emission, quantum beating is superimposed with
superfluorescent behavior [68,69]. Here, we consider super-
fluorescence in helium gas under presence of a weak magnetic
field, in a manner similar to Ref. [66]. We consider transitions
from states 2 to 1 and 3 to 1 with slightly different strengths

d31 = d31√
2

(ex − iey), d21 = d21√
2

(ex + iey),

where |d31|2 = 1 and |d21|2 = 0.75. The transition between
the excited states is forbidden, namely, d32 = 0. If we assume
that each atom in the ensemble is initially prepared in a coher-
ent superposition of excited states, such as

|ψ〉a = |2〉a − |3〉a√
2

,

we can observe quantum beats in the intensity of both the x
and y components of the field [70]. In this scenario, the initial
collective state of the ensemble is separable, following Eq. (6),
and each atom is characterized by a single-particle density
matrix with the following components:

ρ22(0) = ρ33(0) = 0.5, ρ23(0) = ρ32(0) = −0.5,

while all other matrix elements are zero.
As demonstrated in Figs. 7(b) and 7(c), our formalism

reproduces the quantum beats. For N = 2 atoms in Fig. 7(b),
we additionally plot intensity curves in the logarithmic scale
(a small box at the top right corner). The stochastic formalism
agrees well with the full quantum-mechanical calculations.
Only the low-amplitude oscillations are not reproduced be-
cause they are at the level of statistical fluctuations.

Let us also analyze a system starting from a statistical
mixture. We focus on the most challenging scenario where
the initial state has no coherences, and the excited states are
statistically equally populated:

ρ22(0) = ρ33(0) = 0.5, ρ23(0) = ρ32(0) = 0.0.
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FIG. 6. Regularization of the incoherently pumped system from Fig. 5 by introducing an additional nonradiative dissipation channel
2 → 1 with a rate 
. The semi-transparent lines correspond to quantum expectation values, while the opaque lines represent stochastic
averages. We neglect (a) 268 (0.27%); (b) 119 (0.12%); (c) 59 (0.06%); (d) 2699 (2.70%); (e) 1061 (1.06%); and (f) 493 (0.49%) unstable
trajectories.

FIG. 7. Quantum beats in a V -type system, depicted on the (a) left, (b) calculated for N = 2, and (c) N = 20 atoms. In both cases, we
take � = 15 γ , and plot populations (upper row) and normalized intensities (lower rows) of the field for both polarizations. For (b) intensity
curves, we give the same plots in a logarithmic scale in small boxes. The intensities of different polarization components are normalized to
the maximum full intensity. The semi-transparent lines correspond to quantum expectation values, while the opaque lines represent stochastic
averages. We omit 47 (0.05%) diverging trajectories for the case of (b) N = 2.
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FIG. 8. The dynamics of the ensemble of N = 20 atoms with the V -type level structure depicted in Fig. 7(a). To mitigate the discrepancies,
we introduce additional nonradiative dissipation channels from the excited states to the ground state (2, 3 → 1) with a rate 
 [see Eqs. (31)].
The semi-transparent lines correspond to quantum expectation values, while the opaque lines represent stochastic averages. In the (a)–(c) upper
row, atoms start from the mixed state without coherence ρ22(0) = ρ33(0) = 0.5, the rest are zero. In the (d)–(f) lower row, atoms are
incoherently pumped, and similar issues with steady states arise. We chose the same profile as in Fig. 5 for the pump. The gray line demonstrates
the evolution of ρ00(t ). Overall we omit (a) 427 (0.43%); (b) 174 (0.17%); (c) 63 (0.06%); (d) 2503 (2.50%); (e) 239 (0.24%); and (f) 4 (0.004%)
unstable trajectories. Both polarization components of intensity exhibit identical profiles, and we depict only one of them.
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In this case, there are no quantum beats in the intensity, and
the ensemble evolves into a nontrivial steady state. As de-
picted in Fig. 8(a), our formalism does not entirely reproduce
this steady state for longer evolution times.

With multilevel atoms, we can construct another class of
observable, namely, a three-operator correlator

〈ρ12(t ) ρ23(t ) ρ31(t )〉

= (N − 3)!

N!

∑
μ1 	=μ2 	=μ3

Tr
[
σ̂μ1,13 σ̂μ2,32 σ̂μ3,21 ρ̂(t )

]
.

Such correlators are often factorized in semi-classical and
approximated approaches [35]. However, when there is no
initial coherence, any factorization of this operator results in
zero. Hence, it is important to demonstrate how our formalism
reproduces such correlators. As shown in Fig. 8(a), the conver-
gence of the three-operator correlator becomes problematic
only when the system approaches the steady state.

In reality, the atoms are not pumped instantaneously. To
simulate the effect of a pump pulse, we introduce an additional
level |0〉 described by ρ00(t ), as in Sec. IV B. All atoms start
from this state and are incoherently pumped to the excited
states according to

ρ̇ee(t ) = · · · + κ (t )

2
ρ00(t ), e = 2, 3,

while ρ00(t ) satisfies Eq. (30). The simulations in Fig. 8(d)
reveal that the convergence problems are more pronounced
when the system is pumped. Specifically, the intensity curves
have spikes and the three-operator correlator does not con-
verge after the emission peak around tγ ≈ 2.0. This is due to
the stronger influence of steady states since more population
is trapped in the excited states compared to the case without
pumping.

We regularize these issues by introducing additional non-
radiative damping of excited states to the ground states with a
rate 
:

ρ̇11(t ) = · · · + 

∑

e

ρee(t ) (31a)

ρ̇ee(t ) = · · · − 
ρee(t ), (31b)

where e = 2, 3. The coherences decay according to

ρ̇1e(t ) = · · · − 


2
ρ1e(t ), (31c)

ρ̇e1(t ) = · · · − 


2
ρe1(t ), (31d)

ρ̇e1e2 (t ) = · · · − 
ρe1e2 (t ). (31e)

In Figs. 8(b), 8(c), 8(e), and 8(f), we find a minimal value
of 
 required to mitigate the discrepancies. As in the previous
section, values of 
 ∼ γ are sufficient. To stabilize higher-
order correlators, larger dissipation rates are necessary. With
this additional damping, all observables are reproduced for
a chosen time range, including the three-operator correlator.
As in simulations illustrated in Fig. 6, larger 
 decreases
the number of unstable trajectories. This demonstrates that
our formalism goes beyond semi-classical models and, when
properly regularized, fully captures the quantum effects of
many-body correlations.

D. Lasing in � system

Quantum beats in V systems are predicted by semi-
classical models and stochastic electrodynamics approaches
[55]. However, some semi-classical and stochastic models
incorrectly predict quantum beats in � systems [55,71], with
one excited state |3〉 and two ground states |1〉 and |2〉, as
shown in Fig. 9(a). To demonstrate our formalism’s predictive
power as a true quantum model, we study such a � system
with orthogonal transition polarizations

d31 = d31√
2

(ex − iey), d32 = d32√
2

(ex + iey).

Here, |d31|2 = 1 and |d32|2 = 0.75. The transition between the
ground states is forbidden.

Our equations predict the absence of intensity beats, which
aligns with the results from quantum simulations. In Figs. 9(b)
and 9(c), we present population and intensity curves for N = 2
and N = 20. Both polarization components of the field do not
show any signs of beating and share the same profile. For this
reason, we depict only one polarization component for the
further examples. When the system has reached the ground
states, where no dynamics is expected, the population curves
exhibit a slight deviation from the quantum expectation values
for both N = 2 and 20. Additionally, spikes are observed
in the intensity curves for N = 2. For larger N , the number
of unstable trajectories increases. The observed discrepancy
suggests that, although the excited state is depopulated, a
nontrivial steady state forms, possessing specific correlations
between the ground states.

As in the previous section, we also consider the ensemble
prepared in a mixed state without coherences. We assume that
all levels are initially populated as follows:

ρ33(0) = 0.5, ρ22(0) = ρ11(0) = 0.25,

and other matrix elements are zero. The solution reveals that
the ensemble does not relax completely to the ground states,
but evolves into a steady state with some population remaining
in the excited state, as in Fig. 10(a). The formation of this
state is accompanied by unstable behavior of the three-body
correlator, which does not converge after tγ ≈ 1.0.

The same issues appear when the excited state is inco-
herently pumped with the following additional term in the
equations:

ρ̇33(t ) = · · · + κ (t ) ρ00(t ),

where κ (t ) defines the pump profile and ρ00(t ) satisfies
Eq. (30). The final state is also a steady state with a nonzero
probability of finding an excited atom, as shown in Fig. 10(d).
The stochastic averages converge to incorrect values, and the
three-body operator becomes unstable for later time moments.

We attempt to regularize these issues by introducing non-
radiative damping of the excited state to the ground states
(3 → 1, 2) with a rate 


ρ̇33(t ) = · · · − 2
ρ33(t ), (32a)

ρ̇gg(t ) = · · · + 
ρ33(t ), (32b)

ρ̇g3(t ) = · · · − 
ρg3(t ), (32c)

ρ̇3g(t ) = · · · − 
ρ3g(t ), (32d)
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FIG. 9. Lasing from an ensemble of atoms with a �-type level structure, as depicted in (a). The separation between ground states � is
much smaller than the center frequency ω0. We present the evolution of populations and intensity components for (b) N = 2 and (c) N = 20
atoms. Intensity components are normalized to the maximum full intensity. The semi-transparent lines correspond to quantum expectation
values, while the opaque lines represent stochastic averages. We neglect (b) 383 (0.39%) and (c) 2229 (2.23%) unstable realizations.

where g = 1, 2. Consequently, the excited state is depopulated
at a rate of 2
. We find the damping rates sufficient to regu-
larize populations and intensities in Figs. 10(b) and 10(c) and
10(e) and 10(f). However, the three-operator correlator still
does not converge, although it shows a right trend. A possible
explanation is that the ensemble does not simply evolve into
a mixture of ground states. Calculations based on Ref. [28]
reveal that the system in Fig. 10(c) evolves into a steady state
with the following nonzero correlation:〈

ρ
(ss)
12 ρ

(ss)
21

〉
< 0, (33)

where ss stands for steady state. As the product ρ
(ss)
12 ρ

(ss)
21

becomes negative upon averaging, it indicates that the coher-
ences ρ12(t ) and ρ21(t ) are non-Hermitian at the level of single
realizations. This nontrivial dynamics may cause slow con-
vergence of the three-operator correlators observed in Fig. 10.
The coherences between the ground states ρg1 	=g2 (t ) are not
damped by any additional nonradiative decay, which does
not prevent slow convergence of the observables involving
ρg1 	=g2 (t ), such as the analyzed three-particle correlator. Effec-
tive regularization would require either stronger decoherence
to prevent the buildup of the correlations or the introduction
of another dissipation channel for ρg1 	=g2 (t ).

V. DISCUSSION

A. Computational effort

First, we address the issue of computational efficiency.
Table I provides clear evidence of the effectiveness of the
stochastic methodology. For each system analyzed in this
article, we compare the average computational time required
to simulate a single stochastic trajectory with that of a full
quantum-mechanical simulation. The stochastic methodology
allows parallelization and remains independent of N across
all the examples provided. In contrast, the polynomial com-

plexity of full quantum-mechanical calculations sharply raises
the computational time with an increase in N . The perfor-
mance of the stochastic method is primarily determined by the
number of atomic levels M, which defines the number of un-
derlying stochastic differential equations M2. As depicted in
Fig. 3, convergence of stochastic averages for chosen observ-
ables is typically achieved with 102–103 trajectories. Based
on numerical simulations, pumped V and � systems also
require 103 trajectories to achieve good agreement with the
quantum-mechanical simulations. Even without paralleliza-
tion, the stochastic simulations for the twenty pumped V
systems demonstrated in Fig. 8(c) take between 3 and 30
seconds, noticeably less than the 178 seconds required by
full quantum-mechanical calculations. For larger N and with
the implementation of parallelization, the difference becomes
even more pronounced.

High-order correlation functions

Another crucial aspect is the convergence of various expec-
tation values. The higher the order of the correlation function,
the more pronounced the challenges with convergence be-
come. This issue is consistently observed when the system
reaches a special steady state, leading to the effective density
matrix ρpq(t ) becoming non-Hermitian at the level of individ-
ual realizations. This problem was demonstrated in the context
of superfluorescence from two-level atoms in Sec. IV A and
discussed following Eq. (29). A similar concern was ad-
dressed in the context of a �-type system after Eq. (33) in
Sec. IV D. Our drift gauge is designed to ensure the Hermitian
behavior of the effective density matrix, and finding appropri-
ate gauging methods to address these steady states remains an
open challenge. In our approach, the convergence issue can
only be avoided by introducing additional dissipation for the
problematic steady states.
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FIG. 10. The dynamics of an ensemble of N = 20 atoms with the �-type level structure depicted in Fig. 9(a). The figure composition
is the same as in Fig. 8. Semi-transparent lines represent quantum expectation values, while opaque lines show stochastic averages. The
(a)–(c) upper row considers atoms starting from the mixed initial state ρ11(0) = ρ22(0) = 0.25 and ρ33(0) = 0.50, with the rest are zero. The
(d)–(f) lower row shows atoms being incoherently pumped. To address convergence issues, nonradiative damping of the excited state at rate 


is introduced [see Eqs. (32)]. The gray line shows the evolution of ρ00(t ). Unstable realizations omitted: (a) 2383 (2.38%); (b) 985 (0.99%);
(c) 735 (0.74%); (d) 1550 (1.55%); (e) 351 (0.35%); (f) 159 (0.16%). Both polarization components of intensity exhibit identical profiles, so
only one is depicted.
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TABLE I. Comparison of computational efforts between the stochastic and quantum-mechanical methods. Each row corresponds to an
individual atomic system investigated in the article. The computational time for solving the master equation is averaged over ten runs. The
time required to integrate a single stochastic trajectory (along with one standard deviation) is evaluated based on over 100 realizations. The
asterisk (*) in front of the figure number indicates that the simulations are conducted under identical conditions but with a different number of
atoms.

Master equation Number of Master equation Single trajectory
System Section Figure complexity emitters N integration time, ms integratioin time, ms

4(d) ∼N2/2!
20 34 15 ± 2

Two-level systems IV A
4(g) 200 3600 15 ± 2

6(c) ∼N3/3!
10 56 16 ± 1

Pumped two-level systems IV B
6(f) 100 115 000 16 ± 2

7(b) ∼N6/6!
2 5 27 ± 2

V systems IV C
7(c) 20 53 000 27 ± 1

9(b) ∼N6/6!
2 4 27 ± 1

Λ systems IV D
9(c) 20 35 000 27 ± 1

8(f)∗ ∼N7/7!
2 7 28 ± 1

Pumped V systems IV C
8(f) 20 178 000 28 ± 2

10(f)∗ ∼N7/7!
2 6 28 ± 2

Pumped Λ systems IV D
10(f) 20 203 000 28 ± 2

B. Unstable trajectories

Despite the expectation that stochastic gauges can re-
duce instabilities, almost every numerical example in Sec. IV
features unstable trajectories, which we associate with the
presence of specific steady states. Keeping these unstable
trajectories causes large spikes in the temporal profiles of
the averages. A larger statistical sample does not smooth the
curves; instead, it leads to more diverging trajectories and a
higher number of spikes after averaging. Therefore, we omit
the unstable trajectories, as detailed in Sec. III C.

Figure 11 shows the percentage of omitted trajectories for
different level schemes and numbers of emitters, focusing
on systems with incoherent pumping. Since incoherent decay
processes can mitigate steady-state problems and divergences,
each panel in Fig. 11 displays multiple simulations with dif-
ferent decay rates 
.

Qualitatively, each system exhibits similar behavior. Be-
yond a certain number of atoms, the percentage of omitted
trajectories grows faster. This behavior systematically shifts
to larger numbers of atoms with an increase in decay rate 
.
We expect that the simulations yield more trustworthy results
when the percentage of disregarded trajectories decreases.

C. Stochastic gauging

Since both the gauged and ungauged equations can yield
diverging trajectories, comparing simulations based on them
could provide valuable insights. We revisit the example of
pumped two-level systems discussed in Sec. IV B. Specifi-
cally, we focus on the scenario depicted in Fig. 6(f) with 
 =
0.3γ . Figure 12 presents two examples, one with N = 100 and
another with N = 1000. For N = 100, a quantum-mechanical
solution is also included for comparison. Figures 12(a), 12(b),
12(f), and 12(g) demonstrate simulations based on the gauged
equations. The statistical averages shown in Figs. 12(a) and
12(f) are based on all realizations, including the unstable
ones, which have large weight coefficients and significantly
impact the resulting curves. After excluding 500 unstable
realizations, the curves become much smoother, as shown in
Figs. 12(b) and 12(g). In particular, Fig. 12(b) shows that re-
moving these unstable realizations leads to a good agreement
with the full quantum-mechanical simulations.

Figures 12(c) to 12(e) and 12(h) to 12(j) showcase simula-
tions based on the ungauged stochastic differential equations.
Comparing Figs. 12(a) and 12(c), we observe that conver-
gence issues emerge earlier with the ungauged equations.

FIG. 11. Percentage of omitted trajectories for different level schemes, numbers of emitters, and decay rates 
. Panel (a) depicts pumped
two-level systems (Sec. IV B), panel (b) pumped V systems (Sec. IV C), and panel (c) pumped � systems (Sec. IV D).
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FIG. 12. Simulations of population dynamics and intensity profiles for pumped two-level systems (Sec. IV B), comparing gauged and
ungauged equations for N = 100 and N = 1000. The semi-transparent lines correspond to quantum expectation values. The opaque lines
represent stochastic averages. The top row shows simulations for N = 100 based on gauged equations with (a) all realizations and (b) with
500 unstable realizations omitted), and (c) ungauged equations with all realizations, (d) 205 most diverging realizations omitted, and (e) all 13
464 diverging realizations omitted. The bottom row shows simulations for N = 1000 based on (f) gauged equations with all realizations and
(g) with 1745 unstable realizations omitted, and (h) ungauged equations with all realizations, (i) 65 most diverging realizations omitted, and
(j) all 4442 diverging realizations omitted.

Figures 12(d) and 12(e) illustrate how the averages change
as unstable trajectories are gradually removed. Notably, the
ungauged equations produce significantly more unstable tra-
jectories than the gauged ones. Furthermore, removing these
unstable trajectories does not improve the averages, as ev-
idenced by comparisons with the full quantum-mechanical
simulations.

Although we cannot compare the stochastic methodology
with full quantum-mechanical simulations for N = 1000, a
visual inspection suggests that the gauged simulations yield
more physically accurate results. Comparing Figs 12(f) and
12(h), we notice that convergence issues arise earlier with
the ungauged equations. Figures 12(i) and 12(j) demonstrate
that removing unstable trajectories leads to negative intensi-
ties when stochastic gauging is not applied. This unphysical
behavior does not occur in the gauged simulations shown in
Fig. 12(g).

The discrepancy between simulations based on the un-
gauged equations and those based on the full quantum-
mechanical approach is not always as drastic as in the example
of pumped two-level systems. For instance, superfluores-
cence in N = 20 � systems, studied in Sec. IV D, can be
accurately modeled using both the gauged and ungauged
equations. However, the gauged equations exhibit slightly
more unstable behavior due to the influence of the weight
coefficient. This suggests that the gauging condition proposed
in Sec. III C can be further refined, which is a topic for future
investigations.

D. Weight function

After highlighting the importance of stochastic gauging, let
us discuss some of its specifics. In all our numerical illustra-
tions, we employ the drift gauging technique by modifying the
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FIG. 13. Numerical simulations of the population dynamics and intensity profiles of superfluorescence in 100 pumped two-level atoms
studied in Sec. IV B, comparing different gauging strategies. Here, we introduce stronger nonradiative decay with a rate of 
 = 0.8γ . The
semi-transparent lines correspond to quantum expectation values, while the opaque lines represent stochastic averages. (a) The drift gauge is
applied only when population inversions are positive, with averaging performed with the weight function �(t ). The gray-filled area shows
gauging frequency. (b) Constant application of the drift gauge with the weight function. The results show strong intensity spikes and incorrect
averages. (c) Similar to panel (a), but averaging is done without the weight function. The expectation values are similar to (a) with a slight
discrepancy in intensity around tγ = 2. (d) Constant application of the drift gauge without the weight function. The expectation values worsen
compared to (b), with discrepancies appearing earlier. (e) Ungauged simulations provided for comparison, demonstrating the necessity of
gauging for accurate results.

deterministic terms only during the amplification of emission,
specifically when Re(ρee − ρgg) � 0 for any excited state |e〉
and ground state |g〉. In exchange for this modification we
introduce the weight function �(t ), which assigns a statistical
weight to each trajectory. Additionally, we constantly apply
the diffusion gauge that rescales noise terms. Although the
drift gauge can, in principle, be applied constantly, this ap-
proach leads to inaccurate simulations due to the exponential
growth of the weight function. However, when the gauging
is applied carefully, following the guidance in Sec. III C, our
simulations yield correct results.

Similarly to Sec. V C, we consider an example of N = 100
pumped two-level atoms. Here, we introduce a stronger non-
radiative decay, specifically, 
 = 0.8 γ .

In Fig. 13(a), the drift gauge is utilized only when there
is an amplification of emission and the statistical averages
include the weight function �(t ). The gray-shaded area in
the plot illustrates how frequently the drift gauge is applied.
On average, the drift gauge is mostly applied until the mean
intensity reaches its peak. After this peak, the probability of
applying the gauge drops abruptly to zero.

In the opposite case, when the drift gauge is constantly
applied, the obtained averages are incorrect, as demonstrated
in Fig. 13(b). More unstable trajectories are observed, and the
expectation values exhibit many spikes. This clearly shows
that the drift gauge should be applied as rarely as possible and
only when necessary.

When the drift gauge is used carefully and the system
features sufficiently strong dissipation, the weight function
�(t ) becomes less important. To demonstrate this, simulations

in Fig. 13 feature a higher dissipation rate compared to those
in Fig. 12. As shown in Fig. 13(c), if we apply the drift and
diffusion gauge as suggested in Sec. III C but without using
the weight function, the expectation values remain almost the
same as in Fig. 13(a). Only the intensity curve shows a small
discrepancy around tγ = 2.0. Additionally, since the weight
coefficient does not enter expectation values, there are no
unstable trajectories in the simulations shown in Fig. 13(c).

Notably, in the case when simulations are constantly
gauged, omitting the weight function makes expectation val-
ues even worse, as suggested by comparing Fig. 13(d) with
Fig. 13(b). Although the spikes disappear, discrepancies be-
tween the statistical and quantum-mechanical approaches
appear earlier.

Remarkably, not using the weight function results in fewer
discrepancies compared to the unnecessary application of the
drift gauge. Since the weight function does not significantly
impact the results, it is worth exploring whether gauging is
necessary at all. Figure 13(e) displays the expectation values
based on the ungauged equations. These expectation values
considerably deviate from the exact solution, unlike cases
in Figs. 13(a) and 13(c), proving that stochastic gauging is
indeed necessary and improves the stability and accuracy of
the simulations, even without the weight function.

It is important to note that omitting the weight function sig-
nificantly changes the expectation values if the dissipation is
not sufficiently strong. Specifically, if the simulations shown
in Figs. 12(b) and 12(g) did not include the weight function,
the intensity curves would feature a characteristic dip below
zero, as observed in Fig. 12(j). Therefore, we conclude that the
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weight coefficient can be safely disregarded when the system
features strong dissipation processes, a condition typically
encountered in experiments.

VI. CONCLUSION

The main achievement of this work is the development of a
numerically efficient formalism, grounded in first principles,
that reliably characterizes collective spontaneous emission for
any number of multilevel emitters, especially in the presence
of incoherent processes, within the established bounds of ap-
plicability.

In this work, we focused on compact systems for bench-
marking our methodology, as they can be solved exactly
through quantum state decomposition. While our method-
ology generally yielded satisfactory results across a wide
parameter range, we uncovered discrepancies when the sys-
tem entered specific steady states. We showed that the
presence of incoherent processes mitigated these issues.

Crucially, our formalism is characterized by equations that
do not depend on the number of emitters, eliminating the
numerical difficulties associated with traditional techniques
based on quantum state decomposition.

Throughout the article, we examined various scenarios and
cases, from cooperative emission of instantly excited two-
level atoms to complex multilevel systems, such as V - and
�-type systems, showcasing the versatility and performance
of our methodology.

Our formalism has broad applicability for studying su-
perfluorescence and superradiance across different spectral
regions and emitter level structures. In particular, the ap-
proach offers an extension to previous methodologies [4,10]
and incorporates the preparation of the excited-state manifold
through pumping. While our numerical examples primarily
focus on superfluorescence initiated by full inversion or in-
coherent pumping, the versatility of our proposed formalism
enables the examination of systems characterized by initial
macroscopic dipole moments and seeding fields resonant with
atomic transitions. Additionally, the stochastic formalism can
address superfluorescence in distributed media [44,72], allow-
ing for the study of propagation effects.

Our work offers valuable insights into the numerical chal-
lenges of simulating superfluorescence, the performance and
limitations of our methodology, and its practical applicability
in studying this fascinating quantum phenomenon.
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APPENDIX A: STOCHASTIC GAUGES

In Refs. [42,43], the derivation of the stochastic gauge
transformation was based on the freedom in decomposing
the density matrix in terms of projectors constructed from

coherent states. On one hand, the projectors are not defined
uniquely; on the other hand, these projectors are analytical
functions of their arguments, providing even more freedom.
All of these observations indicate that the probabilistic in-
terpretation of the density matrix is not unique. Since it is
sampled using stochastic equations, the choice of these equa-
tions is also not unique. The most natural choice of stochastic
equations does not necessarily lead to a stable numerical solu-
tion. Stochastic gauges offer the possibility of finding a more
stable system of equations.

To apply stochastic gauges to our equations, we intro-
duce stochastic freedom in a broader context. Let’s start by
investigating an arbitrary system of stochastic differential
equations that yield a vector of stochastic processes, denoted
as x(t ). The exact form of these equations and their origin
may be disregarded in this Appendix. Consider the following
characteristic function:

χ (λ, t ) = 〈exp [λ · x(t )]〉. (A1)

Its derivatives provide all the necessary information to calcu-
late any expectation values of interest, namely,

〈 f [x(t )]〉 = f

[
∂

∂λ

]
χ (λ, t )

∣∣∣∣
λ=0

.

Consequently, χ (λ, t ) is uniquely defined in the vicinity of
λ = 0 since its derivatives at the point λ = 0 determine all
observables.

Now, consider another system of equations that generates
a different vector of stochastic processes, denoted as x′(t ), but
yields exactly the same expectation values. The corresponding
characteristic functions χ ′(λ, t ) must be identical to χ (λ, t ):

χ (λ, t ) = χ ′(λ, t ). (A2)

The explicit form of the stochastic trajectories x(t ) or
x′(t ) is unknown, and only their stochastic differential
equations are provided. Therefore, we cannot immediately
construct the corresponding characteristic functions and com-
pare them. We can only proceed in the spirit of mathematical
induction. First, we ensure that the initial conditions for x′(0)
lead to the same characteristic function, satisfying Eq. (A2)
at t = 0. Then, assuming that Eq. (A2) holds for later times t ,
we guarantee that the temporal derivatives of the characteristic
functions are preserved:

∂

∂t
χ (λ, t ) = ∂

∂t
χ ′(λ, t ). (A3)

The possibility of having multiple equivalent differential
equations arises from the fact that the involved stochastic pro-
cesses are, generally speaking, complex. In other words, the
components of the vectors x(t ) and x′(t ) are, in reality, pairs of
independent dynamic variables. However, the construction of
expectation values does not involve these variables separately.
In Eq. (A1), the derivative with respect to λ cannot extract
only the real or imaginary part of xi(t ). This property is the
key source of stochastic freedom.
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APPENDIX B: DRIFT GAUGE

To provide an example of how the concept of stochastic
gauge transformations from Appendix A can be applied, we
will derive the so-called drift gauge [43] in the spirit of Gir-
sanov’s theorem [73]. In certain cases, stochastic differential
equations take the form

dx(t )

dt
= A(x(t ), t ) + ξ(x(t ), t ),

where the drift terms A(x, t ) can lead to diverging stochas-
tic trajectories. Here, ξ(x, t ) represents Gaussian white-noise
terms with zero first moments and arbitrary second-order cor-
relators. Unfortunately, neglecting diverging trajectories can
result in incorrect expectation values. To tackle the numerical
instability of divergent trajectories, one can opt for different
stochastic equations with alternative drift terms. We will de-
note the new solution as x′(t ) and the alternative drift term as
A′(x′, t ). The new stochastic differential equations have the
same initial conditions and read as follows:

dx′(t )

dt
= A′(x′(t ), t ) + ξ(x′(t ), t ).

To compensate for this change, one can introduce a weight
coefficient �(t ) = eC0(t ), which can be used to calculate ex-
pectation values based on the new stochastic variables

〈 f (x(t ))〉 = 〈 f (x′(t ))�(t )〉.
Consequently, the new characteristic function has the follow-
ing form:

χ ′(λ, t ) = 〈exp (λ · x′(t ) + C0(t ))〉.
We can always formally write an equation of motion for
C0(t ):

dC0(t )

dt
= A0(x′(t ), t ) + ξ0(x′(t ), t ),

where A0 is a new drift and ξ0 is a new Gaussian white-noise
term. We assume that ξ0(x, t ) has a zero average and yet
unknown correlation properties

〈ξ0(x, t )ξ0(x, t ′)〉 = σ0(x, t )δ(t − t ′),

〈ξ(x, t )ξ0(x, t ′)〉 = σ(x, t )δ(t − t ′).

The main goal is to find the drift A0 for the weight coefficient
and the correlation properties σ0 and σ that compensate for
the change in drift terms �A = A′ − A at the level of the
characteristic function. Following Appendix A, we proceed
in the spirit of mathematical induction and assume that
χ ′(λ, t ) = χ (λ, t ) is satisfied for a certain t . Let’s check if the

same holds for the derivatives:
∂

∂t
[χ ′(λ, t ) − χ (λ, t )]

=
(

λ ·
[
�A

(
∂

∂λ
, t

)
+ σ

(
∂

∂λ
, t

)]

× A0

(
∂

∂λ
, t

)
+ 1

2
σ0

(
∂

∂λ
, t

))
χ (λ, t ).

In the derivation of this expression, we use Itô’s lemma from
Eq. (16). To make the right-hand side equal to zero for any λ,
we have to choose the following correlation properties for the
noise terms

〈ξ0(x, t )ξ0(x, t ′)〉 = −2A0(x, t )δ(t − t ′),

〈ξ(x, t )ξ0(x, t ′)〉 = −�A(x, t )δ(t − t ′).

This constitutes the essence of the drift gauge. Notably, our
derivations are not based on the properties of projectors used
to decompose the density matrix; our result is applicable to
any system of stochastic trajectories, including the modified
Bloch equations for the variables ρpq(t ).

APPENDIX C: DIFFUSION GAUGE

In this section, we provide the expressions for ηα (t ) and
θα (t ) used in our numerical simulations. These expressions are
derived by substituting the decomposition from Eq. (25) into
the expression in Eq. (26). Subsequently, we minimize this
expression with respect to ηα (t ) and θα (t ), aiming to mitigate
the amplification of non-Hermitian components. The resulting
functions, ηα (t ) and θα (t ), take the following form:

η4
β (t) =

∑
α

(∣∣P(ee)
αβ (t) − P(+)

α (t)P(−)
β (t)

∣∣2 +∣∣P(−)
α (t)P(−)

β (t)
∣∣2)

∑
α

(∣∣P(ee)
βα (t) − P(gg)

αβ (t)
∣∣2) ,

θ4
β (t) =

∑
α

(∣∣P(ee)
βα (t ) − P(+)

β (t)P(−)
α (t)

∣∣2 +∣∣P(+)
α (t)P(+)

β (t)
∣∣2)

∑
α

(∣∣P(ee)
αβ (t) − P(gg)

βα (t)
∣∣2) ,

where for simplicity we introduced the following tensors:

P(gg)
αβ (t ) =

∑
e,g,g′

deg,α ρgg′ (t ) dg′e,β ,

P(ee)
αβ (t ) =

∑
e,e′,g

dge,α ρee′ (t ) de′g,β ,

and the following vectors that are stochastic counterparts of
the polarization fields:

P(+)(t ) =
∑
e,g

dge ρeg(t ),

P(−)(t ) =
∑
e,g

deg ρge(t ).
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