
Higgs branch of 6D (1, 0) SCFTs and little string theories with Dynkin
DE-type SUSY enhancement

Craig Lawrie * and Lorenzo Mansi †

Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany

(Received 11 June 2024; accepted 20 August 2024; published 19 September 2024)

We detail the Higgs branches of 6D (1, 0) superconformal field theories (SCFTs) and little string theories
(LSTs) that exhibit supersymmetry-enhancing Higgs branch renormalization group flows to the 6D (2, 0)
SCFTs and LSTs of type DE. Generically, such theories are geometrically engineered in F-theory via a
configuration of (−2)-curves, arranged in an (affine) DE-type Dynkin diagram, and supporting special
unitary gauge algebras; this describes the effective field theory on the tensor branch of the SCFT. For the
Higgsable to D-type (2, 0) SCFTs/LSTs, there generically also exists a type IIA brane description,
involving a Neveu-Schwarz orientifold plane, which allows for the derivation of a magnetic quiver for the
Higgs branch. These are 3DN ¼ 4 unitary-orthosymplectic quivers whose Coulomb branch is isomorphic
to the Higgs branch of the 6D theories. From this magnetic quiver, together with an extended quiver
subtraction algorithm that we explain, the foliation structure of the Higgs branch as a symplectic singularity
is unveiled. For this class of 6D SCFTs, we observe a simple rule, which we refer to as “slice subtraction,”
to read off the transverse slice in the foliation from the tensor branch. Based on this slice subtraction
observation, we conjecture the transverse slices in the Higgsable to E-type (2, 0) Hasse diagram, where the
SCFTs lack any known magnetic quiver for their Higgs branches.
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I. INTRODUCTION

In recent years, the study of six-dimensional super-
conformal fields theories (SCFTs) with minimal supersym-
metry has been burgeoning. While the existence of these
novel quantum fields theories has been established for many
years [1–4], their concrete construction and the extraction
of their physical features has been rendered challenging by
the absence of supersymmetry-preserving relevant or mar-
ginal deformations [5–9], and thus of direct bottom-up
Lagrangian descriptions.
Nevertheless, 6D SCFTs have been fruitfully explored

via top-down constructions from string theory.1 The max-
imally supersymmetric SCFTs in 6D were first con-
structed [15] by considering the compactification of type
IIB string theory on the orbifold

C2=Γ with Γ ⊂ SUð2Þ: ð1:1Þ

The finite subgroups, Γ, of SUð2Þ organize themselves
into an ADE classification, consisting of two infinite
series and three sporadics,

An≥1; Dn≥4; E6; E7; E8; ð1:2Þ

and thus, each 6D (2, 0) SCFT is associated with a choice
of simple and simply-laced Lie group via the McKay
correspondence [16].
To construct 6D SCFTs with minimal supersymmetry,

one can replace type IIB, used in the construction of 6D
(2, 0) SCFTs, with F-theory [17–19]. In [11,12], it was
argued that F-theory compactified on certain noncompact
elliptically fibered Calabi-Yau threefolds engineers 6D (1, 0)
SCFTs, and furthermore a mechanism was provided for the
construction of a vast landscape of such Calabi-Yau spaces.
In particular, we need a noncompact Calabi-Yau threefold
Y that is elliptically-fibered over a noncompact base B,
containing no compact complex curves, and such that the
elliptic fiber over every point of B is irreducible. Since we
are interested in nonproduct SCFTs, B may contain at most
one singular point, b0, and at most one nonminimal fiber,
which must be supported over b0.

2 A method to determine
such elliptically fibered Calabi-Yau threefolds was provided
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1See [10–14] for recent reviews of such explorations.

2An explanation of these technical conditions can be found in
the review [13].
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in [11,12]. In particular, take a noncompact elliptically
fibered Calabi-Yau threefold

π∶ Ỹ → B̃; ð1:3Þ

such that B̃ has no singular points, and the fiber over each
point of B is irreducible and minimal. Suppose that B̃
contains a network of connected compact curves, Ci. If there
exists a contraction map

ρ∶ B̃ → B; ð1:4Þ

that shrinks all compact curves to zero volume such that
either the image of the Ci under the map is singular, or,
uplifting ρ to a map ρ∶ Ỹ → Y, the singular fiber above the
image of the Ci is nonminimal, then the resulting Y
engineers a 6D (1, 0) SCFT. All possible Ỹ can be
constructed from a small set of building blocks; see [20]
for a recent review. F-theory compactified on Ỹ directly
gives rise to a 6D (1, 0) quantum field theory, not an SCFT,
which is referred to as the SQFT living at the generic point
of the tensor branch of the SCFT associated with Y.
Therefore, we often refer to Ỹ as the “tensor branch
geometry” or the “tensor branch curve configuration.”
Since Ỹ is nonsingular, it is generally easier to extract
physical properties from Ỹ rather than Y directly; therefore
this tensor branch description is particularly powerful for
determining SCFT properties which are protected under the
curve contraction map.
There is an extensive family of 6D (1, 0) SCFTs

associated with each 6D (2, 0) SCFT in the following
manner. Let Y be a noncompact elliptically fibered Calabi-
Yau threefold that engineers some 6D (1, 0) SCFT in
F-theory, and further suppose that there exists a sequence of
complex structure deformations of Y such that

Y⟶
cx:str:def:

T2 × C2=Γ; ð1:5Þ

where Γ is a finite subgroup of SUð2Þ. Then the SCFT
engineered by Y belongs to the family of the (2, 0) SCFT
labeled by Γ.3 Since complex structure deformations cor-
respond physically to Higgs branch renormalization group
(RG) flows, we can refer to any such 6D (1, 0) SCFT as
“Higgsable to the 6D (2, 0) SCFT of type Γ” [21,22]. The
most famous examples are the rank N ðg; gÞ conformal
matter theories [23], which are Higgsable to the 6D (2, 0)
SCFTof type Γ ¼ AN−1. Our focus in this paper is precisely
this set of 6D (1, 0) SCFTs where Γ is of DE-type; such
theories have received limited attention (see, e.g., [24,25])
compared to their A-type cousins.

Avital aspect of the study of any supersymmetric quantum
field theory is the exploration of the moduli space of
supersymmetric vacua. A 6D (1, 0) SCFT can have a
Higgs branch which captures the half-BPS (Bogomol’nyi–
Prasad–Sommerfield) operators of the theory. There are
many interesting physical questions related to the Higgs
branch, for example:
(1) What are the interacting fixed points on the Higgs

branch? How are they related?
(2) What are the half-BPS operators belonging to the

Higgs branch chiral ring?
(3) Is the Higgs branch chiral ring freely generated?
(4) What are the generators (and relations if it is not

freely generated)?
Asaneight-supercharge theory, theHiggsbranchof a6D(1, 0)
SCFT is both a hyperkähler space and a symplectic singularity
[26,27]. A symplectic singularity possesses a natural foliation
by symplectic leaves, and this induces a partial ordering on the
leaves given by inclusion; from this partial ordering, we can
associate a Hasse diagram, the so-called Higgs branch Hasse
diagram. The physical interpretation of this Hasse diagram is
that it encompasses all of the patterns of partial Higgsing of a
given theory; a 6D SCFT is associated with each symplectic
leaf in the foliation, and the transverse slice between two
leaves captures the parameters that need to be tuned to perform
a Higgs branch renormalization group flow between the two
associated SCFTs [28,29].
In terms of the elliptically fibered Calabi-Yau threefold,

Y, engineering the SCFT, the Higgs branch is related to the
space of complex structure deformations of Y [30]. In
particular, if there exists a complex structure deformation

Y⟶
cx:str:def:

Y 0; ð1:6Þ

then there exists a Higgs branch renormalization flow
between the SCFTs associated with Y and Y 0. However,
the question of whether such complex structure deforma-
tions exist can be difficult to answer from the study of the
nonsingular Calabi-Yau geometries engineering the tensor
branch effective field theories; Ỹ and Ỹ 0. As the geometry
does not provide a particularly transparent window on the
structure of the Higgs branch, especially on the vacuum
expectation values that are given to trigger a particular flow,
we use alternative methods to study the Higgs branch Hasse
diagram in this paper, and we then compare to the expected
geometric structure.
One particularly powerful method to study the structure

of the Higgs branch of a 6D (1, 0) SCFT is the method of
magnetic quivers [31–33]. Let T be an arbitrary 6D (1, 0)
SCFT; if we can find a 3D N ¼ 4 Lagrangian theory T M
such that the Higgs branch of T is the same as the Coulomb
branch of T M,

HB½T � ¼ CB½T M�; ð1:7Þ
3It is straightforward to see that if there exists a Γ such that

Eq. (1.5) is satisfied, then it is unique.
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then we say that T M is a magnetic quiver for the Higgs
branch of T .4 Of course, for this to be a useful perspective,
it is necessary to have an algorithm for the construction of a
T M. Luckily, if T can be engineered via a brane system in
type IIA (or type I) string theory, then one can pass to the
magnetic phase of the brane system to obtain a quiver T M
satisfying Eq. (1.7). This process has been carried out for
certain 6D (1, 0) SCFTs in [34–36].
Knowing that the Higgs branch of the 6D SCFT is

isomorphic to the Coulomb branch of a Lagrangian 3D
N ¼ 4 quiver is particularly powerful, as we can then use
the sophisticated tools developed to study the Coulomb
branches of such quivers. For example, we can use the
monopole formulas [37] to calculate the Coulomb branch
Hilbert series, and thus understand the structure of the
6D Higgs branch chiral ring, or we can use a quiver
subtraction algorithm [38] or the decay and fission
algorithm [29,39] to determine the structure of the interact-
ing fixed points on the 6D Higgs branch. As one of the
principle results of this paper, we use the type IIA brane
system description of the Higgsable to (2, 0) D-type SCFTs,
which involves a Neveu-Schwarz orientifold [40], to deter-
mine unitary-orthosymplectic magnetic quivers for their
Higgs branches. Then, we use the quiver subtraction
algorithm to study the interacting fixed points and compare
them to the 6D (1, 0) SCFTs expected to lie along subloci of
the Higgs branch.
The structure of this paper is as follows. First, in Sec. II,

we review the geometric construction of 6D (1, 0) SCFTs
via F-theory and introduce the classes of theories that are
of interest in this paper. In Sec. III, we determine the
magnetic quivers for the Higgs branches of the Dsu2k

N ðOÞ
SCFTs from the type IIA brane engineering description
involving ON−-planes. We perform a consistency check
by comparing the unitary magnetic quivers obtained when
Γ ¼ A3 with the unitary-orthosymplectic magnetic quivers
obtained when Γ ¼ D3 in Sec. IV. With the magnetic
quiver firmly in hand, we turn, in Sec. V, to the determi-
nation of the Higgs branch Hasse diagram, and we observe
that the quiver subtraction algorithm leads to the same
result as expected from the F-theory geometry. In Sec. VI,
we make a brief digression to discuss the complex
structure deformations behind Higgsings that break an
SCFT into a product of SCFTs. In Sec. VII, we explore the
6D (1, 0) SCFTs with supersymmetry-enhancing RG flows
to 6D (2, 0) SCFTs of E-type; due to the lack of a magnetic

quiver, we study the Higgs branch purely from the 6D
perspective. Next, in Sec. VIII, we study the 6D (1, 0) little
strings theories (LSTs) that have DE-type supersymmetry-
enhancing Higgs branch RG flows, and determine the
magnetic quivers capturing the structure of their Higgs
branches. Finally, in Sec. IX, we summarize our results and
discuss some suggested future directions.

II. 6D (1, 0) SCFTs WITH SUSY-ENHANCING
RENORMALIZATION GROUP FLOWS

As we have mentioned in Sec. I, 6D (1, 0) SCFTs can be
engineered by considering F-theory compactified on cer-
tain noncompact elliptically fibered Calabi-Yau threefolds.
The atomic construction [11,12] provides a constructive
algorithm to produce such threefolds. This geometric
procedure has been reviewed in detail in [13], as well
as in recent work of the current authors [20], and so we
only briefly summarize the necessary aspects of the
construction here, and refer to these references for a fuller
exposition.
We begin with a noncompact elliptically-fibered Calabi-

Yau threefold Ỹ. The base of the fibration, B̃, contains a
collection of intersecting smooth rational curves, Ci, and
the intersection matrix of these compact curves is pre-
sumed to be negative-definite,

Ci · Cj ≺ 0: ð2:1Þ

Furthermore, the fibration over every point of B̃ is assumed
to be minimal, in the technical sense explained in [11,12].
Then, there exists a (unique) contraction map π∶Ỹ → Y,
which simultaneously takes the volume of all the Ci to
zero, such that F-theory compactified on Y leads to a 6D
(1, 0) SCFT.5 The construction of LSTs from F-theory [41]
proceeds in a similar way, except that the intersection
matrix of compact curves is negative semidefinite with a
single zero eigenvalue. Then, there exists a (possibly
nonunique) contraction map which simultaneously shrinks
all-but-one of the compact curves; F-theory compactified
on the Calabi-Yau space obtained after contraction gives
rise to an LST. We return to LSTs in Sec. VIII.
Therefore, a 6D (1, 0) SCFTengineered in such a way can

be encoded in the relevant data of Ỹ, which is simply the
configuration of curvesCi, and the singular fibers supported
over the generic points of each Ci. Each Ci has a negative
self-intersection number, (−n) for some positive n, due to
the condition in Eq. (2.1). The minimal singular fiber
supported over the curve Ci can be captured by a simple

4More generally, the Higgs branch can be isomorphic to a
union of Coulomb branches of magnetic quivers,

HB½T � ¼ ∪
i
CB½T ðiÞ

M �: ð1:8Þ

This will not be relevant for this paper, where the Higgs branch is
always given by a single magnetic quiver.

5Depending on the Ỹ, the 6D SCFTengineered in this way may
be noninteracting.
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Lie algebra, gi.
6 The intersections of the Ci necessarily

occur pairwise, and with intersection number 1, for the
contraction to lead to a Y that gives rise to a 6D (1, 0) SCFT.
Therefore, we can simply use the now standard notation
where we denote a curve Ci of self-intersection number
ð−niÞ and supporting singular fiber associated with the Lie
algebra gi as

ni
gi : ð2:2Þ

Then, we can depict several such expressions adjacent to
each other to indicate a nontrivial intersection of the
associated curves. Such a notation captures all the salient
data of the elliptically fibered Calabi-Yau threefold Ỹ. For
example,

1 3
su3

1; ð2:3Þ

denotes three genus-zero curves, with self-intersection num-
bers (−1), (−3), and (−1), that intersect in a linear chain,
where only the (−3)-curve carries a nontrivial singular fiber,7

which is associated with the Lie algebra suð3Þ. Such data,
which we refer to as a “curve configuration,” then specifies
an interacting 6D (1, 0) SCFT.8

When considering F-theory compactified on Ỹ, as
opposed to Y, we obtain a 6D (1, 0) QFT; this is a gauge
theory where the gauge algebras are specified by the
singular fibers over the Ci. In addition to the gauge sector,
there are also hypermultiplets associated with matter fields.
In the cases of interest to us, the number of hypermultiplets
and the representations of gi under which they transform
are prescribed, via gauge-anomaly cancellation, by the
choice of self-intersection number of the corresponding
curve Ci. The resulting QFT is the effective description at
the generic point of the tensor branch of the 6D (1, 0) SCFT
associated with the Calabi-Yau geometry Y.

A. Higgsable to D-type (2, 0)

The first family of theories that we explore in this paper
are those that possess supersymmetry-enhancing Higgs
branch renormalization group flows to the (2, 0) SCFT of
type DN . In the atomic construction, the 6D (2, 0) SCFT of

type DN is associated with the following curve configu-
ration:

22
2
2 � � � 2|fflffl{zfflffl}
N−3

: ð2:4Þ

That is, a DN Dynkin diagram formed out of intersecting
(−2)-curves, where the elliptic fiber over each (−2)-curve is
just a smooth torus.9

One family of theories that are Higgsable to the 6D (2, 0)
SCFTs of type DN are associated with the curve configu-
rations where the (−2)-curves in Eq. (2.4) are decorated
with singular fibers associated with special unitary gauge
algebras,

2
suk1

2
suk3

2
suk2

2
suk4 � � � 2

sukN|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
N−3

: ð2:5Þ

Gauge-anomaly cancellation mandates that when an suðkÞ
gauge algebra is supported over a (−2)-curve there must be
precisely 2k-hypermultiplets transforming in the fundamen-
tal representation of suðkÞ.10 Thus, we need to have that

XN
j¼1

Aijkj ¼ mi ≥ 0; ð2:6Þ

where Aij is the (positive-definite) Cartan matrix for theDN
Lie algebra and all the ki and mi are non-negative. In
general, this is a necessary condition, but it is not sufficient;
for example, any curve configuration of the form

2
su2

2
su3

2
su2

2
su4 � � � ; ð2:7Þ

does not, in fact, correspond to a 6D (1, 0) SCFT [43], even
though it may satisfy Eq. (2.6). The mi appearing in
Eq. (2.6) are referred to as “dangling hypermultiplets,”
and they are associated with suðmiÞ flavor algebras rotating
these hypermultiplets. We can depict all this information
together in one curve configuration as

2
suk1

½m1�
2

suk3

suk2

½m2 �

2

½m3�
2

suk4

½m4�
� � � 2

sukN

½mN �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
N−3

; ð2:8Þ6There are Kodaira-Neron singular fibers that correspond to
the same simple Lie algebra, e.g., I3 and IV fibers both
correspond to suð3Þ, however, such distinctions are not generally
relevant in this paper.

7For ease of notation, we refer to the smooth torus as the trivial
singular fiber.

8In some circumstances, such as those discussed in [42],
additional data may be required to uniquely describe the 6D (1, 0)
SCFT, however, for the theories discussed in this paper, this is not
necessary.

9One can continue to N ¼ 1 and N ¼ 2, which correspond to
either a single (−2)-curve, or to two disjoint (−2)-curves,
respectively. Throughout this paper, we assume that N ≥ 3 to
avoid these edge cases.

10Care must be taken when any k ¼ 0, 1.
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although themi are, of course, already implicitly fixed when
writing the configuration as in Eq. (2.5).11

For theories described by tensor branch configurations as
in Eq. (2.5), there is a straightforward approach to under-
standing the Higgs branch renormalization group flows
between theories. Consider a pair of consistent SCFTs of
the form in Eq. (2.5), with the same value of N, where the
gauge algebras are captured by the tuples

ðk1; k2;…; kNÞ and ðk01; k02;…; k0NÞ; ð2:10Þ
respectively. Then, there exists a Higgs branch renormal-
ization group flow from the unprimed to the primed theory
if and only if

k0i ≤ ki; ð2:11Þ

for all i. This is equivalent to the existence of a complex
structure deformation of the Calabi-Yau engineering
the unprimed SCFT, Y, to that engineering the primed
SCFT, Y 0.
The formulation in Eq. (2.5) is highly redundant; most

combinations of positive integers ðk1;…; kNÞ are ruled out
as they violate the condition in Eq. (2.6). Instead, all valid
tensor branch configurations of the form in Eq. (2.5) arise
as elements of a family parametrized by a choice of algebra
g ¼ suð2kÞ and a nilpotent orbit, O, of g. For fixed N with
N ≥ 2kþ 1,12 every combination of ðg; OÞ corresponds to
an interacting SCFT, and every interacting SCFT arises via
a unique pair ðg; OÞ. These families are obtained by starting
with a parent theory with a g flavor symmetry, and the
children in the family are those that can be obtained from
the parent theory by giving a nilpotent vacuum expectation
value to the moment map of the g flavor symmetry. The
parent of each family is an SCFT which we denote as

Dsu2k
N : ð2:12Þ

The description of these SCFTs at the generic point of their
tensor branch is given by the configuration

2
suk

2
su2k

2
suk

2
su2k � � � 2

su2k|fflfflfflfflfflffl{zfflfflfflfflfflffl}
N−3

½su2k�; ð2:13Þ

where we have highlighted the existence of an suð2kÞ
flavor symmetry.
As we have said, each suchDsu2k

N SCFT forms the parent
for a whole family of theories related by Higgs branch
renormalization group flow via giving nilpotent vacuum
expectation values to the moment map of the suð2kÞ flavor
symmetry. We label the resulting SCFTs as

Dsu2k
N ðOÞ; ð2:14Þ

where O is a nilpotent orbit of suð2kÞ. Nilpotent orbits of
suð2kÞ are in one-to-one correspondence with integer
partitions of 2k, and the mapping between integer parti-
tions and tensor branch configurations is given in the
appendices of [44]. From the tensor branch description,
the anomaly polynomial can be determined following the
usual algorithm [45–48], and thus the dimensions of the
Higgs branches of each of the SCFTs Dsu2k

N ðOÞ can be
obtained [21,22,44]. We find

dimðHÞ ¼ N þ 2k2 − dimðOÞ; ð2:15Þ

where dimðOÞ is the dimension of the nilpotent orbit O.13

The trivial orbit has dimension zero—consistent with it
corresponding to the trivial Higgsing.
More than just the dimension of the Higgs branch, we

would like to understand the structure of the Higgs branch.
This can mean several things. For example, we would like
to understand the effective theory (especially when that is
an interacting SCFT) which exists along the different
subloci of the Higgs branch; we would like to know when
there exists an RG flow from a theory on one subloci to
another, the transverse slice corresponding to that transi-
tion, as well as the operator(s) to which one gives a vacuum
expectation value, and how the spectrum of the theory
changes under the flow.
First, it is clear from Eq. (2.10) and the tensor branch

description of the Dsu2k
N ðOÞ theories that there exists a

Higgs branch renormalization group flow between the
following SCFTs

Dsu2k
N ðOÞ ⟶ Dsu2k

N ðO0Þ; ð2:16Þ

if O0 < O under the partial ordering on nilpotent orbits of
suð2kÞ defined via the dominance ordering of their asso-
ciated integer partitions. That is, there exists a subloci of the

11As almost all of the theories studied in detail in this paper
consist of suðkÞ algebras supported over (−2)-curves, we
introduce a simplifying notation where we write the dual Coxeter
numbers of the gauge algebras arranged in the same way as the
(−2)-curves. For example,

2
su3

2
su6

2
su3

½1�
2
su5

2
su4

½3�
⇒

will be

denoted as
3 6
3

½1�
54½3�: ð2:9Þ

While this could, a priori, be confusing, in every case that we
consider in this paper, it is unambiguous whether we are referring
to a curve configuration in the usual notation, or in this simplified
notation.

12When we refer to N as “sufficiently large” throughout this
paper, we mean that this condition is satisfied.

13Note: this holds for all k ≥ 0. When k ¼ 0, for notational
convenience, we formally consider the existence of a single
nilpotent orbit of dimension zero.
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Higgs branch of the theoryDsu2k
N ðOÞ along which the theory

Dsu2k
N ðO0Þ lives, and the Higgs branch of the latter theory is

contained within that of the former. The specific operators
belonging to the Higgs branch chiral ring whose vacuum
expectation value triggers the renormalization group flow
for the class of Higgsings in Eq. (2.16) are the same as those
studied for ðA; AÞ conformal matter in [49]. In addition, it is
straightforward to see that one can Higgs from a family with
suð2kÞ to a family with suð2k − 2Þ,

Dsu2k
N ⟶ Dsu2k−2

N : ð2:17Þ

More generally, it is straightforward to see, using
Eq. (2.10),14 precisely when there exists a Higgs branch
renormalization group flow between theories

Dsu2k
N ðOÞ ⟶ Dsu2k−2

N ðO0Þ: ð2:18Þ

This provides a partial ordering on the set of theories of the
formDsu2k

N ðOÞ, and the Hasse diagram of such theories with
this partial ordering provides a subdiagram of the Hasse
diagram of the Higgs branch of Dsu2k

N . We emphasize that
this is a priori only a subdiagram, as there may be subloci of
the Higgs branch where there are interacting fixed points not
of the formDsu2k

N ðOÞ, or else product theories, theories with
a free sector. We depict this Hasse diagram for theories
Dsu2l

N ðOÞ, for 2l ≤ 8, in Fig. 1.
While the SCFTs associated with tensor branch con-

figurations as in Eq. (2.5) are the main subject of analysis in
this paper, there are other 6D (1, 0) SCFTs which are
Higgsable to the D-type (2, 0) SCFTs. We briefly review
these theories here for completeness. There are 6D (1, 0)
SCFTs that we label as

De6
N ðOÞ; ð2:19Þ

where O is a nilpotent orbit of e6. These theories are so-
named as they behave similarly to the theories described
around Eq. (2.14). When O is the nilpotent orbit of
dimension zero, the tensor branch configuration takes
the form,

3
su3

1 6
e6
1
3
su3

1 3
su3

16
e6
1 3
su3

1 � � � 6
e6
1 3
su3

1

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{N−3

½e6�; ð2:20Þ

where we have also depicted the e6 flavor symmetry on the
right. When O is nontrivial, the configuration is modified
following the rules described in the appendices of [44]. In
addition, there are a small number of exceptional theories,
which we denote only by their tensor branch configura-
tions. We have the parent theories

2 2
su2

2

2
su3 � � � 2

su3|fflfflfflfflffl{zfflfflfflfflffl}
N−3

½su3� and 2
su2

3
so7
2
su2

1 4
so8

1 � � � 4
so8
1|fflfflfflfflfflffl{zfflfflfflfflfflffl}

N−3

½so8�; ð2:21Þ

together with their descendants obtained via nilpotent
Higgsing of the suð3Þ and soð8Þ flavor symmetries,
respectively.
These four classes of theories exhaust the 6D (1, 0)

SCFTs that are Higgsable to D-type (2, 0), where N can be
taken to be arbitrarily large. When considering SCFTs
Higgsable to the D-type (2, 0) SCFTs with small N, there
are more options available.
For an SCFT Dsu2k

N with N ≥ 2kþ 1, then for each
nilpotent orbit O of suð2kÞ there exists a unique child
theory associated with O, and the set of interacting non-
product fixed points on the Higgs branch of Dsu2k

N is
saturated by the set of theories Dsu2l

N ðOÞ, for all l ≤ k
and O a nilpotent orbit of suð2lÞ. We refer to this as the
“long quiver” case. In contrast, for short quivers, there may
be no child SCFTs associated with particular nilpotent
orbits, and there may be interacting nonproduct fixed points
on the Higgs branch which are not of the form Dsu2l

N ðOÞ.
Let O be a nilpotent orbit of suð2kÞ associated with a
partition

P ¼ ½p1; � � ��; ð2:22Þ

of 2k, written in weakly decreasing order. It is straightfor-
ward to see that the SCFT Dsu2k

N ðOÞ is well-defined when

p1 ≤ N − 1: ð2:23Þ

One can also check that the anomaly polynomial of the
Dsu2k

N ðOÞ SCFT is exactly what one would expect from
the nilpotent Higgsing of the moment map operator for the
suð2kÞ flavor symmetry, as in [44]. Therefore, the first
speciality of short quivers is that nilpotent orbits where the
partition contains an element > N − 1 do not exist.
If N < 2kþ 1, then the interacting fixed points on the

Higgs branch of Dsu2k
N can be captured by Dsu2l

N ðOÞ where

14Without using the tensor branch configuration, we can ask
abstractly when there exists a flow between theories defined by
the data ðN; 2k;OÞ and ðN; 2l; O0Þ, whereO andO0 are nilpotent
orbits of suð2kÞ and suð2lÞ, respectively. The answer is a
D-type analog of what is called “simultaneous two-box deletion”
in [49]. This is triggered via giving a vacuum expectation value to
the D-type analog of an “end-to-end” operator, which has been
studied in the A-type theories in [49–53]. However, in this paper,
we proceed case-by-case, and thus we do not need to explore the
general behavior of such transitions.
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l ≤ k and O is a generalized partition. A generalized
partition of 2l is either an integer partition of 2l such no
element is larger than N − 2,

½ðN − 2ÞmN−2 ;…; 1m1 � such that
XN−2

i¼1

imi ¼ 2l; ð2:24Þ

or else it can be written as

½ðN − 1ÞmL
N−1 ; ðN − 1ÞmR

N−1 ; ðN − 2ÞmN−2 ;…; 1m1 �: ð2:25Þ

Here, the exponents are non-negative integers such that
there exist non-negative integers ki, k

L;R
N−1 satisfying,

[18]

[2, 16]

[22, 14]

[3, 15]

[3, 2, 13]

[16]

[23, 12]

[4, 14]

[4, 2, 12]

[2, 14]

[3, 22, 1]

[5, 13]

[5, 2, 1] [3, 13]

[24]

[4, 22] [22, 12]

[32, 12]

[32, 2]

[6, 12]

[6, 2] [4, 12]

[5, 3] [3, 2, 1]

[4, 3, 1]

[42]

[7, 1]

[8] [5, 1]

[23]

[4, 2]

[6]

[14]

[2, 12]

[32]

[3, 1]

[22]

[4] [12]

[2]

[0]

[18]

[2, 16]

[22, 14]

[3, 15]

[3, 2, 13]

[16]

[23, 12]

[4, 14]

[4, 2, 12]

[2, 14]

[3, 22, 1]

[5, 13]

[5, 2, 1] [3, 13]

[24]

[4, 22] [22, 12]

[32, 12]

[32, 2]

[6, 6; 12]

[6, 6; 2] [4, 12]

[5, 3] [3, 2, 1]

[4, 3, 1]

[42]

[62, 60; 1]

[5, 1]

[23]

[4, 2]

[14]

[2, 12]

[32]

[6, 6; 0] [3, 1]

[22]

[4] [12]

[2]

[0]

[18]

[2, 2; 16]

[22, 22; 14]

[23, 23; 12][22, 20; 15]

[24, 24; 0][23, 2; 13]

[24, 22; 1]

[16]

[2, 2; 14]

[24, 20; 12][22, 22; 12]

[24, 20; 0][22, 20; 13]

[23, 2; 1]

[23, 23; 0]

[14]

[2, 2; 12]

[22, 22; 0]

[22, 20; 1]

[12]

[2, 2; 0]

FIG. 1. We depict the Hasse diagram of the theories Dsu2l≤8
N ðOÞ under the partial ordering given in Eq. (2.10). In (a), we assume that

N > 9. We label each vertex byO, which we write as an integer partition of 2l. Vertices bordered in blue, green, yellow, purple, and red
denote l ¼ 4, 3, 2, 1, and 0, respectively; dashed edges indicate a change in l. We use ½0� for convenience to denote the 6D (2, 0) SCFT
of type DN . In (b) and (c), we depict the Hasse diagrams when N ¼ 7 and N ¼ 3, respectively, where the labels are instead given by
generalized partitions.
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kLN−1 ¼ l;

2kLN−1 − kN−2 −mL
N−1 ¼ 0;

2kRN−1 − kN−2 −mR
N−1 ¼ 0;

2kN−2 − kLN−1 − kRN−1 − kN−3 −mN−2 ¼ 0;

2kN−3 − kN−2 − kN−4 −mN−3 ¼ 0;

� � � ;
2k1 − k2 −m1 ¼ 0; ð2:26Þ

where we have assumed, without loss of generality,
that mL

N−1 ≥ mR
N−1 and mL

N−1 ≠ 0. For the generalized
partition written in Eq. (2.24), the description of the
associated tensor branch is straightforward, and is written
in [44]; in particular, it is treated as a regular partition of
2l. For a generalized partition of the form in Eq. (2.25),
the curve configuration follows from the solutions to
Eq. (2.26); it is

2

sukL
N−1

2
sukN−2

2

su
kR
N−1

� � � 2
suk1

: ð2:27Þ

There are simple rules for determining the partial order-
ing on these generalized partitions, similar in style to those
given in [49], however, we do not go into details here as,
case-by-case, it is straightforward to determine the partial
ordering using Eq. (2.10). To give the reader a clear picture
of the generalized partitions, we have included in Fig. 1 the
Hasse diagram of interacting fixed points on the Higgs
branch ofDsu8

N for N ¼ 3; 7. They are of the formDsu2l
N ðOÞ

where l ≤ 4 and O is a generalized partition.15

The structure of the generalized partition in Eq. (2.25) is
particularly natural when considering type IIA brane
engineering with ON−-planes, as we shall see in Sec. III.

B. Higgsable to E-type (2, 0)

We now turn to those 6D (1, 0) SCFTs that have
SUSY-enhancing Higgs branch renormalization group
flows to the 6D (2, 0) SCFTs of exceptional type. In fact,
there is not a lot of variety in such 6D (1, 0) SCFTs. There
are three infinite families which are associated with the
configurations

2
suk1

2
suk2

2
suk3

2
suk6

2
suk4

2
suk5

; 2
suk1

2
suk2

2
suk3

2
suk4

2
suk7

2
suk5

2
suk6

;

2
suk1

2
suk2

2
suk3

2
suk4

2
suk5

2
suk8

2
suk6

2
suk7

; ð2:28Þ

which have SUSY-enhancing flows to the 6D (2, 0) SCFTs
of type E6, E7, and E8, respectively. We refer to the SCFTs
associated with these tensor branch curve configurations as

ENðk1;…; kNÞ; ð2:29Þ

for each of N ¼ 6, 7, 8. As in the Higgsable to D-type case,
most of the tuples ðk1;…; kNÞ need to be discarded since
they give rise to gauge-anomalous theories; only those
obeying the E-type analog of Eq. (2.6), i.e., where the
Cartan matrix is the EN Cartan matrix, realize physical 6D
(1, 0) SCFTs.
For each of these theories, it is straightforward to

determine the dimension of the Higgs branch using the
standard anomaly polynomial machinery, just as we did for
the Dsu2k

N ðOÞ SCFTs in Sec. II A. We find that the
dimension of the Higgs branch of ENðk1;…; kNÞ is

dimðHÞ ¼ N þ 1

2

XN
i;j¼1

Aijkikj; ð2:30Þ

where Aij is the positive-definite Cartan matrix of EN . Note
that this expression holds for all ki ≥ 0 satisfying the E-
type analog of Eq. (2.6).
For the families in Eq. (2.29), the presence of a Higgs

branch renormalization group flow between two theories is
particularly straightforward. If

ðk01;…; k0NÞ < ðk1;…; kNÞ; ð2:31Þ

applied element-by-element,16 then there exists a flow
between the SCFTs,

ENðk1;…; kNÞ → ENðk01;…; k0NÞ: ð2:32Þ

We have depicted a part of the Hasse diagram, under the
partial ordering defined in Eq. (2.31), of consistent SCFTs
of this form with N ¼ 6 in Fig. 2. We further analyze the
types of elementary transition in this Hasse diagram in
Sec. VII.
In addition to these standard families of 6D (1, 0) SCFTs

that have supersymmetry-enhancing RG flows to the 6D
(2, 0) SCFTs of type E6;7;8, there are a small number of
exceptional curve configurations that also realize such15The observant reader may notice that there is no ½0� at the

bottom of Fig. 1(c). This is special to N ¼ 3 and is related to the
fact that Dsu2

3 ð½12�Þ has enhanced suð3Þ flavor symmetry [43],
instead of suð2Þ.

16I.e., if k0i ≤ ki for all i ¼ 1;…; N, excepting the trivial case
where the inequality is saturated for all i.
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flows. When considering the E6 theory, there are four such
exceptional curve configurations, which are

2 2
su2

2
g2
2
su2

2
su2

2; 2
su2

3
g2
1 5

f4
1
3
su3

13
g2

2
su2

; 2
su2

3
so7

2
su2

1 8
e7
1
2
su2

3
g2

1 2
su2

3
so7

2
su2

;

2
su2

3
so7

2
su2

1 8
e7
1
2
su2

3
so7

1 2
su2

3
so7

2
su2

: ð2:33Þ

We have incorporated the SCFTs associated with these
curve configurations into the Hasse diagram that we have
drawn in Fig. 2.17 For the E7 theory, there is only a single
exceptional configuration,

2 2
su2

3
g2
1 5

f4
1
3
su3

13
g2

2
su2

: ð2:34Þ
There are no exceptional curve configurations which have
Higgs branch RG flows to the 6D (2, 0) SCFT of type
E8 since every putative base fibration would be too
singular to admit a crepant resolution and therefore fails
to construct a consistent Calabi-Yau threefold on which to
compactify F-theory [11].

III. MAGNETIC QUIVER FOR THE Dsu2k
N ðOÞ SCFTS

Now that we have enumerated the 6D (1, 0) SCFTs that
have supersymmetry-enhancing renormalization group
flows to the 6D (2, 0) SCFTs of DE-type, we would like
to analyze the structure of the Higgs branch of these
SCFTs. Conveniently, the Dsu2k

N ðOÞ theories can be
obtained via a brane construction in type IIA string theory.
This allows us to obtain a magnetic quiver for the Higgs
branch of Dsu2k

N ðOÞ, and we can then study the structure of
the Higgs branch using techniques from the study of the
Coulomb branch of 3D N ¼ 4 Lagrangian theories. This
approach will provide nontrivial insights into the Higgs
branch renormalization group flows which can then be
generalized to the ENðk1;…; kNÞ SCFTs that do not have
such a brane construction.

A. The electric type IIA description

A construction in type IIA string theory for D-type quiver
theories has been long known [40]. The ingredients are the
usual D6-D8-NS5-branes that engineer six-dimensional
theories, together with a Neveu-Schwarz orientifold plane;
ON−. These are arranged in the ten-dimensional spacetime
as depicted in Table I. This provides us with a mechanism to

FIG. 2. The Hasse diagram of the 6D (1, 0) SCFTs that have
SUSY-enhancing Higgs branch RG flows to the 6D (2, 0) SCFT
of type E6. For symmetric configurations, we have depicted only
one rather than both.

TABLE I. Spacetime brane extension in type IIA string theory
for D-type quivers.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D6 ✗ ✗ ✗ ✗ ✗ ✗ ✗ · · ·
NS5 ✗ ✗ ✗ ✗ ✗ ✗ · · · ·
D8 ✗ ✗ ✗ ✗ ✗ ✗ · ✗ ✗ ✗
ON− ✗ ✗ ✗ ✗ ✗ ✗ · · · ·

17It is interesting to note that, when Higgsing from these
exceptional configurations to the ENðk1;…; k6Þ configurations,
not only do the ranks of several algebras get reduced simulta-
neously but also a sequence of curves are shrunk. This behavior
has been appreciated in previous works, such as [54,55].
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engineer the 6D SQFTs that are the effective field theory
living on the generic point of the tensor branch of the SCFTs
of interest.
To understand the gauge theories engineered on the brane

world volume, it is useful to pass to the T-dual type IIB
description [40]. Of primary importance is the counterpart
of the Neveu-Schwarz orientifold plane. This plane, char-
acterized by a negative NS5-charge, is inevitably paired
with an NS5-brane to create an uncharged object.
Consequently, its type IIB dual is an O5−-plane paired
with a D5-brane, such that the total Ramond-Ramond
charge is vanishing. The worldvolume of this combined
O5−-plane plus D5-brane carries an SOð2Þ gauge theory,
and D3-branes ending on this combined object can have one
of two possible boundary conditions. Different stacks with
different boundary conditions lead to the characteristic
bifurcation in the D-type Dynkin diagram. The analogous
picture for D6-branes ending on the combined ON−-plane
and paired NS5-brane explains the bifurcation in the 6D
tensor branch description.
Focusing on the type IIA engineering, the ON− orienti-

fold plane can interplay with D8-branes to construct bound
states [56]. In fact, binding D8-branes to the ON−-plane
(this case will be drawn as D8-branes between the ON− and
its paired NS5-brane) provides a flavor symmetry factor
only in one direction of the bifurcation. Differently,
inserting D8-branes between the NS5-brane paired to the
ON− and the adjacent NS5-brane, the heavy branes act as a
source of flavor symmetry on both branches of the
bifurcation. Both these possibilities are shown in Fig. 3,
where for the sake of a more intuitive flavor assignment, we
drew the NS5-brane that lives on top of the ON−-plane as
displaced from it and connected to D6 branes wrapping
around the orientifold plane, so that the Z2 symmetry of the
quiver’s shape is broken.
Hence, it is straightforward to write down the brane

construction for Dsu2k
N . It is realized as follows. Consider a

linear chain of N NS5-branes, with an ON− on the left. In
the rightmost interval between NS5-branes, we place a
stack of 2k D8-branes. This configuration is depicted in

Fig. 4(a). The generalization to Dsu2k
N ðOÞ, where O is a

partition of 2k with no element larger than N − 2, is also
clear; there are instead mi D8-branes in the interval
between the ith and (iþ 1)th NS5-branes. Since mi ¼ 0
for i ≥ N − 1, the D8-branes do not lie in an interval that
affect the number of D6-branes in the bifurcation. We show
this schematically in Fig. 4(b).
Finally, it remains for us to write down the brane

configuration associated with Dsu2k
N ðOÞ where O is a

generalized partition given in the form written in
Eq. (2.25). Again, there are N NS5-branes arranged in a
linear chain, together with the ON−-plane to the left of
the left-most NS5-brane. Between the ith and (iþ 1)th
NS5-branes, counting from the right, for i ¼ 1;…; N − 2,
there aremi D8-branes, wheremi is as defined in Eq. (2.25).
Furthermore, we define the following two integers:

h ¼ jmL
N−1 −mR

N−1j
2

; s ¼ minðmL
N−1; m

R
N−1Þ: ð3:1Þ

From Eq. (2.26), we can see that h is always an integer. In
the brane configuration, we have s D8-branes between the
(N − 1)th and the Nth NS5-branes, and h D8-branes
between the Nth NS5-brane and the ON−-plane. The
number of D6-branes in each interval is fixed by the
anomaly cancellation condition in Eq. (2.26), and this is
analogous to setting the number of D6-branes ending on the
left and on the right of an NS5-brane via the type IIA
cosmological constant whilst taking into account the pres-
ence of D8-branes [33,57]. We have depicted this brane
system in Fig. 4(c).
While we have given a prescription to associate a

brane description to a generalized partition, it remains
for us to motivate the connection to Higgsing. Each
D6-brane ends on a D8-brane that can be consider as
brought in from infinity on the right. The generalized
partition then specifies which D6-brane emanating from
which NS5-branes end on which D8-branes. The gener-
alized nature of the partition is necessary as the D6-branes
coming out of the two left-most NS5-branes are paired due

FIG. 3. Quiver obtained by placing D8-branes between the ON−-plane and its paired NS5-brane (in red) and between the paired NS5-
brane and NS5-brane to the right (in blue). We use the standard convention, throughout this paper, of depicting NS5-branes with crossed
circles, D6-branes as horizontal lines, and D8-branes as vertical lines.
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to the ON−. Hanany-Witten transitions can then be trans-
formed to pull all of the D8-branes into the intervals
between the necessary pair of NS5-branes, leading to the
configurations that we have described in Fig. 4. We have
depicted the configurations before and after the Hanany-
Witten transitions for an example generalized partition
in Fig. 5.

B. Magnetic quivers at finite coupling

The realization via a brane description for the electric
phase of the theories Dsu2k

N ðOÞ is significant because it
allows us to gain insights into the properties of the Higgs
branch of these theories by transitioning to the magnetic
phase. This approach has been partially explored in
previous works such as [40,56,58–60]. By studying the

brane configurations in the magnetic phase, we can obtain
valuable information about the behavior and characteristics
of the Higgs branch in the corresponding electric phase.
This provides a powerful tool for understanding the
dynamics and properties of these six-dimensional theories
from a three-dimensional perspective.
The general procedure for transitioning from an electric

brane system to a magnetic one in a type IIA D6-D8-NS5
configuration involves two stages. In the first stage,
D8-branes are pulled from infinity and used to suspend
between them the available D6-branes. In the second stage,
the NS5-branes located in the segment between the ON−-
plane and the first (counting from the left) D8-brane are put
at different positions on the x6 axis. The result of the
process is illustrated in Fig. 6 for the Dsu2k

N ðOÞ theory,

FIG. 4. Type IIA brane configuration engineering the effective field theory on the tensor branch of the Dsu2k
N ðOÞ SCFTs. The number

of D6-branes between each pair of NS5-branes, when not written, can be determined from the anomaly cancellation conditions.
(a) Dsu2k

N . (b) Dsu2k
N ðOÞ where O is a partition of 2k with no element larger than N − 2. (c) Dsu2k

N ðOÞ where O is a generalized partition
of 2k of the form in equation (2.25), under the general assumption mL ≥ mR.
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where O is the nilpotent orbit corresponding to the
partition ½12k�.
In the brane configuration, be it electric or magnetic, the

distance in the x6 direction between adjacent NS5-branes
determines the gauge couplings of the corresponding
gauge nodes and, consequently, the volumes of the
associated curves in the F-theory description. Similarly,
the x6-distance between the ON−-plane and the leftmost
NS5-brane determines the gauge coupling of one of the

nodes in the fork. By separating the NS5-branes from the
ON−-plane and the leftmost D6-brane in space, a finite
coupling six-dimensional N ¼ ð1; 0Þ theory is realized.
This is then the magnetic description of the (1, 0) SQFT
that exists at the generic point of the tensor branch. For the
SCFT to emerge no scales can be present, otherwise,
conformality would be ruined, and thus all the curves have
to be shrunk to zero volume; equivalently, all gauge
couplings must be taken to infinity. It is a special feature
of the magnetic phase that this infinite-coupling limit can
be taken in a controlled manner, and thus information
about the SCFT itself is obtained, see Sec. III C.
The rules to read a magnetic quiver from the associated

brane system are given in [34,35,60]; a stack of k D6-branes
contributes as a uðkÞ gauge node whereas a stack of n NS5-
branes is responsible for a uðnÞ node together with an
adjoint hypermultiplet, the ON−-plane is responsible for the
projection uð2kÞ → uspð2kÞ associated with D6-branes
crossing it and uðnÞ þ adjoint → soð2nÞ þ antisymmetric
associated with a stack of k NS5-branes on top of the
orientifold.

FIG. 5. Type IIA brane configuration associated with the tensor branch of Dsu22

6 ðOÞ where the generalized partition of 22 is given by
O ¼ ½53; 5; 4; 32; 1�. We show the configurations before and after having performed Hanany-Witten transitions to bring the D8-branes
from infinity into their respective interval. At the bottom, we depict the corresponding curve configuration.

FIG. 6. Magnetic brane system for the tensor branch of the
Dsu2k

N ð½12k�Þ SCFT.
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The characteristic of this finite coupling magnetic quiver
is the presence of a bouquet of uð1Þ ¼ soð2Þ nodes coming
from the spatially separated NS5-branes. To illustrate this
with an example, the magnetic quiver for the tensor branch
SQFT of Dsu2k

N is

ð3:2Þ

The uspð2kÞ node has been drawn as a filled blue circle
following the conventions of [60] whilst uð1Þ s in the
bouquet have been drawn as an empty red circle anticipat-
ing the fact that when the NS5-branes are put on top of the
ON−-plane they give rise to an so gauge node that,
according to the aforementioned conventions, is drawn
as a filled red circle.
In this way, a 3D N ¼ 4 quiver gauge theory can be

obtained for each Dsu2k
N ðOÞ, where O is an arbitrary

generalized partition. This is a magnetic quiver for the
Higgs branch of the SQFT living at the generic point of the
tensor branch of the associated SCFT. In Sec. III C, we
discuss the extension required to understand the Higgs
branch of the SCFT at the origin of the tensor branch;
however, we can already answer questions about the
operators belonging to the Higgs branch of the tensor
branch SQFT from this magnetic quiver perspective.
One of the most immediate pieces of information that

can be extracted from a magnetic quiver is the global
symmetry, to wit, the presence of 1=2-BPS moment map
operators in the Higgs branch chiral ring. Of course, this
can be directly determined by computing the leading order
terms in the (refined) Coulomb branch Hilbert series of the
magnetic quiver. Instead, a balance algorithm was intro-
duced in [34] which allows for a straightforward identi-
fication of the global symmetry in certain cases. In many of
our cases, the balance algorithm only provides a subset of
the full global symmetry [61], and more refined compu-
tations are necessary. We compute the global symmetry and
determine the Coulomb branch Hilbert series for several
explicit examples in Sec. IV.

C. Magnetic quivers at infinite coupling

In six dimensions, the Higgs branch can be thought of
as the fibers of a fibration over the tensor branch of a given
theory [58]. Over the generic point of the tensor branch,
the fiber is simply the Coulomb branch of the finite-
coupling magnetic quiver discussed in Sec. III B. Moving
around on the tensor branch corresponds to adjusting
the various distances in the x6 direction between the

NS5-branes. Special subloci of the tensor branch occur
when some number of these distance moduli are taken to
zero; typically the fiber, and thus the Higgs branch, is
modified along these subloci as some tensionful strings
become tensionless. These are referred to as the phases of
the theory.
In addition to the finite-coupling phase associated with

the generic point of the tensor branch, two interesting
phases are the “discretely-gauged” phase and the “infinite-
coupling” phase. The former occurs when the distances
between all of the N NS5-branes are taken to zero, but the
distance between this NS5-brane stack and the ON−-plane
is nonzero. The infinite-coupling phase occurs when all
NS5-branes are atop the ON−-plane; in this latter con-
figuration all of the scales have been removed from the
theory and we are at the origin of the tensor branch where
the SCFT is located.
The discretely-gauged phase is so-named due to the

observation of the phenomenon of discrete gauging as
described in [58,62–65] along this subloci of the tensor
branch. The magnetic quiver for the Higgs branch in this
phase, Qdg, is related to Qfin by a discrete gauging of the
SN symmetry that permutes the uð1Þ nodes of the bouquet.
This replaces the bouquet with a uðNÞ gauge node together
with an adjoint hypermultiplet. At the level of the Hilbert
series, the discrete-gauging action is rephrased in the
following identity:

HSðQdgÞ ¼ HSðQfinÞ=SN: ð3:3Þ

When tuning the x6 moduli to reach the infinite-coupling
phase, a new phenomenon is found that results in a Z2

projection of the discretely gauged phase. As a result of the
orientifold projection rules mentioned before, the uðNÞ
gauge algebra coming from the discrete gauging of the
permutation symmetry on the N NS5-branes, and similarly,
the coupled adjoint hypermultiplet, are projected onto an
soð2NÞ gauge algebra paired with a matter hypermultiplet
in the rank two antisymmetric representation. Therefore,
the SCFT Dsu2k

N has the following magnetic quiver for the
Higgs branch:

ð3:4Þ

The Coulomb branch Hilbert series of Q∞, which counts
the 1=2-BPS operators belonging to the Higgs branch chiral
ring of the 6D SCFT, is related to the Hilbert series of the
aforementioned discretely-gauged phase as
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HSðQ∞Þ ¼ HSðQdgÞ=Z2: ð3:5Þ

For completeness, we now write the magnetic quiver for
the Higgs branch of an arbitrary phase of the SCFT Dsu2k

N .
The N NS5-branes can be arranged in stacks. Let mi
denote the number of NS5-brane stacks containing i
branes, which are not sitting on top of the ON−. We also
assume that there arem1̂ NS5-branes on top of the ON

−. In
this generic phase, the magnetic quiver for the Higgs
branch takes the following form:

ð3:6Þ

While we have only discussed the Dsu2k
N theories explicitly

in this section, the same considerations about phases,
discrete gauging, and Z2 quotients apply for every theory
Dsu2k

N ðOÞ where O is a generalized partition. In particular,
we can determine the infinite coupling magnetic quiver in
each case, which provides the Higgs branch for each
SCFT Dsu2k

N ðOÞ.

IV. EXPOLITING THE A3 ≅ D3 ISOMORPHISM

In the previous section, we determined the magnetic
quiver for the Higgs branch of the Dsu2k

N ðOÞ SCFTs from
the brane engineering of the theory in type IIA string
theory. In fact, we have determined the magnetic quiver for
the Higgs branch emanating from each sublocus of the
tensor branch, not just for the SCFT at the origin.
Generically, this is a unitary-orthosymplectic quiver; how-
ever, when N ¼ 3 we can use the isomorphism between
soð6Þ and suð4Þ to write a dual unitary quiver. In this
section, we briefly use this isomorphism to provide a cross-
check on the unitary-orthosymplectic quivers that we have
derived.
At the generic point of the tensor branch, the SCFTDsu2k

3

is described via the curve configuration,

2
suk

2
su2k

2
suk

½su2k�: ð4:1Þ

Rearranging, we can write this curve configuration as

2
suk

2
su2k

½su2k�
2
suk

; ð4:2Þ

which is nothing other than the description at the generic
point of the tensor branch of rank four ðsuð2kÞ; suð2kÞÞ

conformal matter, Higgsed on both the left and the right by
the nilpotent orbit associated with the partition ½2k�. We
refer to this theory as Asu2k

3 ð½2k�; ½2k�Þ. The type IIA brane
engineering of this latter theory, and thus the magnetic
quiver for the Higgs branch, was studied in [64], where it
arises through D6-NS5-D8-branes; however, without the
presence of any ON−-plane.
We consider only the case of k ¼ 1; this is sufficient to

demonstrate the subtleties of the various phases,18 and is
particularly interesting as the structure of the non-Abelian
flavor symmetry is special [11,22,43,45]. That is, we wish
to compare the magnetic quivers of

2 2
su2

½su3�
2 and 2 2

su2

2

½su3�; ð4:3Þ

where we can already see that the flavor symmetry is
enhanced from the naive suð2Þ to an suð3Þ. The two
different type IIA brane systems engineering these theo-
ries, at the generic point of the tensor branch, are depicted
in Fig. 7. Using the A3-type brane description, we have
determined the magnetic quivers for each phase, and
furthermore, we have determined the Coulomb branch
Hilbert series using the standard methods [37]. These
quivers and their Coulomb branch Hilbert series appeared
already in previous studies [64].
We can then perform the same analysis for the phases of

the D3-type brane description. A priori, there appear to be
seven phases, as opposed to five, however, there is a
redundancy in the D3-type brane description; if only a
single NS5-brane is placed on top of the ON−-plane, then
the resulting quiver is the same as if that NS5-brane was
placed elsewhere. Removing this redundancy, we find the
five phases listed in Table II. Again, we can compute the
Coulomb symmetry of the resulting magnetic quivers and
their Coulomb branch Hilbert series; these quantities
precisely match those from the unitary magnetic quivers
listed in Table III.

FIG. 7. Two different type IIA brane systems engineering the

2 2
su2

2 theory at the generic point of the tensor branch.

18For the generic case the phase structure is identical.
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V. HIGGS BRANCH RG FLOW
FOR THE Dsu2k

N ðOÞ SCFTS
The Coulomb branches of the magnetic quivers that we

have just determined are isomorphic to the Higgs branches
of the 6D (1, 0) SCFTs that we are interested in. However,
we have not yet answered any of the questions posed in
Sec. I about the Higgs branch, except in the abstract. We
would now like to explore how to extract some of these
properties from the magnetic quivers. For example, to
understand the operators/generators/relations of the Higgs
branch chiral ring, we can use the monopole formula to
compute the Coulomb branch Hilbert series of the magnetic
quiver. In this section, we utilize the magnetic quiver to
enumerate the interacting SCFT fixed points that arise on

different subloci of the Higgs branch and provide some
understanding of the operators which trigger the RG flow
between a pair of theories on nested subloci.

A. Quiver subtraction
for unitary-orthosymplectic quivers

The quiver subtraction algorithm, first formulated in [38]
and then extended in [66] to also include instanton moduli
spaces, provides a means to read the transverse slice
between two 3D N ¼ 4 unitary gauge theories related
by a Coulomb branch RG flow. That is, given a unitary
quiver theory Q for which we can turn on some Coulomb
branch moduli such that under an RG flow it reaches a
quiver theory Q0, the subtraction Q −Q0 outputs another

TABLE II. The D-type construction of the phases of the SCFT associated with the tensor branch configuration 2 2
su2

2, arising from
D6-NS5-D8-branes together with the ON−-plane in type IIA. We list the magnetic quiver for each phase and determine the Coulomb
symmetry and the Coulomb branch Hilbert series.

Brane system Magnetic quiver
Global

symmetry Coulomb branch Hilbert series

soð8Þ ðt2þ1Þðt8þ17t6þ48t4þ17t2þ1Þ
ð1−t2Þ10

soð7Þ ðt2þ1Þðt8þ10t6þ20t4þ10t2þ1Þ
ð1−t2Þ10

suð4Þ t20þ10t18þ55t16þ150t14þ288t12þ336t10þ288t8þ150t6þ55t4þ10t2þ1
ð1−t2Þ10ðt2þ1Þ5

g2 ðt2þ1Þðt8þ3t6þ6t4þ3t2þ1Þ
ð1−t2Þ10

suð3Þ t20þ3t18þ13t16þ25t14þ46t12þ48t10þ46t8þ25t6þ13t4þ3t2þ1
ð1−t2Þ5ð1−t4Þ5
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unitary quiver S, whose Coulomb branch moduli space
gives exactly the transverse slice that connects the two
theories; in a more physical language, S gives information
about the moduli we had to tune to trigger the flow from Q
to Q0.
The algorithm stemmed from observations made in the

context of brane dynamics in [67]. There, borrowing the
definition of the theories Q and Q0 of the last paragraph,
and observing the type IIB D3-D5-NS5-brane system
realization of Q and Q0, assuming that is exists, it was
possible to associate with the Higgsing process and the
corresponding transverse slice, a “move” in the brane
system. In a subsequent work [68], the same authors
explored with the same analysis pure 3D N ¼ 4 ortho-
symplectic quiver gauge theories, but the observations
made in this case culminated only in a partial quiver
subtraction algorithm [35] for orthosymplectic quiver
theories.
In this section, we pursue the brane dynamics approach

to craft a unitary-orthosymplectic quiver subtraction

algorithm that can be applied to the magnetic quivers for
the Higgs branch that we wish to study. We consider the
following procedure:
(1) Engineer all the magnetic brane systems and mag-

netic quivers associated with the Higgsed phases of
Dsu2k

N ðOÞ theories, for arbitrary generalized parti-
tions O.

(2) Look at the magnetic brane system of two theories
we believe to be connected by an elementary RG
flow according to the ordering in Eq. (2.11), and try
to fit this flow to a known transition identified in
[67,68] from a brane dynamics perspective.

(3) When, after such a transition, the brane system
obtained is exactly one of the theories we want to
flow to, take the quivers of the theories at the two
ends of the flow and work out the rules for a quiver
subtraction algorithm.

Proceeding in this way, we find that in the brane system
description, three kinds of transitions occur, namely
the an minimal singularity, and the AN and DN Kleinian

TABLE III. The type IIA brane description, the magnetic quiver, and the Coulomb branch Hilbert series together with global

symmetry for the various phases in the A-type description of the theories associated with the tensor branch configuration 2 2
su2

2 [64]. The
last entry is the magnetic quiver for the Higgs branch of the 6D SCFT.

Brane system Magnetic quiver Global symmetry Coulomb branch Hilbert series

soð8Þ ðt2þ1Þðt8þ17t6þ48t4þ17t2þ1Þ
ð1−t2Þ10

soð7Þ ðt2þ1Þðt8þ10t6þ20t4þ10t2þ1Þ
ð1−t2Þ10

suð4Þ t20þ10t18þ55t16þ150t14þ288t12þ336t10þ288t8þ150t6þ55t4þ10t2þ1
ð1−t2Þ10ðt2þ1Þ5

g2 ðt2þ1Þðt8þ3t6þ6t4þ3t2þ1Þ
ð1−t2Þ10

suð3Þ t20þ3t18þ13t16þ25t14þ46t12þ48t10þ46t8þ25t6þ13t4þ3t2þ1
ð1−t2Þ5ð1−t4Þ5
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singularities. In the brane systems, we find that they occur
as follows:

(i) an transitions are realized by aligning a single
D6-brane between nþ 1D8-branes and then pulling
the merged D6-brane transversely to infinity, see
Fig. 8(a) for an example.

(ii) AN transitions occur when only a single D6-brane
that sits between D8-branes is pulled away trans-
versely to infinity, and in the intervals adjacent to
the boundary D8-branes there are precisely N þ 1
D6-branes exceeding the number necessary for
balance. For an example see Fig. 9(a).

(iii) DN transitions: These one-dimensional transitions
are realized by pulling away a D6-brane stretching
between the ON−-plane and the D8-brane next to it
and are possible only when the adjacent D8 interval
hosts D6-branes with balance of at least 2. This
minimal move requires the simultaneous pulling of
the image D6-brane arising from the ON− projection
as the orientifold plane induces an SOð2Þ charge on
the D6-branes that needs to be neutralized.

The comparison of the magnetic quiver associated with
theories connected by the aforementioned brane system
transitions leads to the proposal of the following quiver

subtraction rules for unitary-orthosymplectic quiver
theories19:
(1) Consider all soð2NÞ gauge nodes with matter in the

rank-two antisymmetric representation as flavor
nodes20;

(a) The quiver theoryQ0 can be subtracted from the theory
Q if there exists an alignment of the two theories such
that the gauge nodes in Q0 correspond to gauge nodes
in Q with same type of gauge algebras but ranks not
greater than that of Q.

(b) The subtraction Q −Q0 is defined as the quiver gauge
theory S having same links and nodes gauge algebra as
Q, but with gauge group rank given by the difference
between that of the node in Q and the corresponding
one in Q0.

FIG. 8. An example of an a3 transition via brane dynamics and quiver subtraction transitioning from the Dsu4

3 ð½14�Þ theory to the
Dsu4

3 ð½2; 12�Þ theory. The rebalancing node introduced in the subtraction has been drawn with an orange dashed border. (a) Brane
realization. (b) Quiver subtraction.

19We emphasize that these rules are not proposed for arbitrary
unitary-orthosymplectic quivers, but for those of the form we
consider in this paper.

20We remark that point �) is necessary since there has been no
understanding of an analogous concept to “decoration” [66] in the
case of nonunitary gauge nodes.
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(c) The quiver theory S must be rebalanced according to
the following procedure:
(i) Call N the rank of the flavor node obtained

from point �), k the rank of the connected
symplectic gauge node, and h the total rank of
the unitary nodes connected to the symplectic
node. If after the subtraction that very same
symplectic gauge node has nonzero rank then

its flavor symmetry node changes to an SOð2fÞ
node with

2f ¼
�
2N þ h− 2k 2N þ h ¼ 0mod 2;

2N þ h− 2kþ 1 2N þ h ¼ 1mod 2:

ð5:1Þ

(ii) If, after the subtraction, the quiver S splits into a
fully orthosymplectic part and a unitary part,
the unitary part must be rebalanced via the
introduction of the usual Uð1Þ node as in the
standard quiver subtraction algorithm [38].

We depicted in Figs. 8(a), 9(a), and 10 some examples of
the subtraction algorithm applied to each transition encoun-
tered in the Higgsing of the Dsu2k

N ðOÞ theories.
A much more direct approach that still manages to

reproduce the Higgs branch Hasse diagram of Dsu2k
N ðOÞ

involves the application of an extended version of the decay
and fission algorithm [29,39] to unitary-orthosymplectic
quivers.21 In fact, while the quiver subtraction algorithm

FIG. 10. Quiver subtraction operation on Q and Q0 that results
in a Df transition. The quantity f is defined in Eq. (5.1).

FIG. 9. An example of an A2 transition via brane dynamics and quiver subtraction taking us from the Dsu6

6 ð½3; 2; 1�Þ theory to the
Dsu6

6 ð½32�Þ theory. As before, the Uð1Þ rebalancing node introduced into S has been drawn with a dashed orange border. (a) Brane
realization. (b) Quiver subtraction.

21This extension is valid only for the magnetic quivers that are
the subject of this paper. Even a first extension of the decay and
fission algorithm to the case of a purely orthosymplectic quiver is
deemed to be challenging since “bad” magnetic quivers appear in
Higgsed phases of theories associated with “good” magnetic
quivers [69]. Such ubiquitous pathologies are absent from the
quivers we study here.
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leverages on the knowledge of a quiver realization of the
slice22 one wants to subtract (the Q0 quiver in the afore-
mentioned description of said algorithm), the decay and

fission algorithm is intrinsically free from such a constraint.
The approach here is in fact the same as the one adopted in
the original paper and consists of writing all the possible
good, in the sense of [70], quiver gauge theories with the
same shape and type of gauge algebras as the considered
theory, but with not greater gauge rank for each node. First,
discard the equivalent theories, and then connect them

FIG. 11. (a) The Hasse diagram for a Dsu4

5 ð½14�Þ theory where each vertex is represented by its tensor branch geometry is depicted.
(b) The same Hasse diagram is proposed, but vertices show the corresponding magnetic quiver, and slices are identified via the quiver
resulting from quiver subtraction of connected theories, depicted together with the standard nomenclature. (a) Hasse diagram from the
tensor branch. (b) Hasse diagram from quiver subtraction.

22Here we use the word “slices” to refer to more general
Slodowy slices of which transverse slices constitute a particular
subset.
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according to whether, via this very same algorithm, a theory
with smaller gauge group ranks can be obtained from a
higher dimensional one. This procedure realizes the same
Hasse diagram as the quiver subtraction algorithm that we
have just delineated.

B. The Higgs branch

Now that we have utilized the brane system both to
derive the magnetic quivers for the Higgs branches of the
6D (1, 0) SCFTs Higgsable to the D-type (2, 0) SCFTs, and
the quiver subtraction algorithm for such magnetic quivers/
brane systems, we are ready to explicate the structure of the
Higgs branch. Since it is a straightforward application of
the algorithm of Sec. VA to the magnetic quivers for the
Higgs branch derived in Sec. III, in this section we simply
present some explicit examples.
We begin by considering the Dsu4

5 ð½14�Þ SCFT. We
determine each of the tensor branches satisfying
Eq. (2.6) and such that the ranks of the gauge algebras

are less than or equal to that of the gauge algebras for the
tensor branch of the original theory. That is, we determine
all consistent tensor branch configurations satisfying
Eq. (2.10), and construct a provisional Hasse diagram
using the partial ordering defined in Eq. (2.11). We have
depicted this in Fig. 11(a). The next step is to determine the
nature of the slices connecting neighboring theories, this
feat can be accomplished by extracting the magnetic quiver
for all the theories in the provisional Hasse and subtracting,
according to the rules explained in Sec. VA, adjacent
theories. Each subtraction will produce a 3D quiver whose
Coulomb branch moduli space determines the slice nature.
Therefore, from this procedure, it is possible to label each
edge in the Hasse diagram, as shown in Fig. 11(b).
Having played this exercise with the Dsu4

5 ð½14�Þ model,
we can apply the same philosophy to study more general
longDsu2k

N ð½12k�Þ theories. The quiver subtraction algorithm
correctly predicts the full nilpotent cone N ðsu2lÞ for 1 ≤
2l ≤ 2k as a subset of the Hasse diagram for each long

FIG. 12. Hasse diagram for the long Dsu6

N≥9 theory. At each node, we depict the tensor branch curve configuration. Blue slices refer to
the nilpotent cone of suð6Þ, whereas red is used for the nilpotent cone of suð4Þ, and orange for suð2Þ. Dashed lines denote D-type
transitions that link cones of different algebras together.
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theory. Moreover, nilpotent cones of different algebras are
connected byDn slices, giving a nested inclusion relation. It
is interesting to notice that the DN slice only appears once
and at the bottom of the diagram where the supersymmetry
enhancement appears. In Fig. 12, we explicitly considered
the Higgs branch of the longDsu6

N ð½16�Þ theory, while taking
care to highlight the different nilpotent cones appearing in
the Hasse diagram, namely N ðsu2Þ;N ðsu4Þ;N ðsu6Þ,
with different colors. The nested structure of the diagram
is rendered explicit from the presence of D-slices inter-
connecting the various nilpotent subdiagrams, with the DN
slice itself leading to the (2, 0) theory of type DN .
The case of short theories can be understood as well with

the same approach; in fact, the quiver subtraction algo-
rithm, as well as the magnetic quiver for the Higgs branch,
is not sensitive to the location of the flavor symmetries in
the tensor branch description. Therefore, there is no
qualitative distinction between the procedure for determi-
nation of the Higgs branch for long and short theories.
What is different is the fact that the full nilpotent cone of
the ultraviolet flavor algebra is no longer realized as a
subset of the Hasse diagram as highlighted in Fig. 1. On the
other hand, it is partially realized and still nested to other
(partially realized) cones via D-type transverse slices. One
further caveat is that there may also be additional theories
between one partial nilpotent cone and another. Figures 13
and 14 provide examples of Hasse diagrams for short
theories, respectively Dsu6

5 ð½16�Þ and Dsu8

5 ð½18�Þ. In these
examples, it is clear to see that, in contrast to the long
theories of Fig. 12, there are many possibilities for the RG

flow that are not associated with elements of any nilpo-
tent cone.

C. An observation on Higgsing from the tensor branch

We have derived the interacting nonproduct subdiagram
of the Higgs branch Hasse diagram of any given 6D (1, 0)
SCFT Higgsable to D-type 6D (2, 0) SCFTs, of the form in
Eq. (2.5), via quiver subtraction on the associated magnetic
quiver. For the (both long and short) theories Dsu2k

N ðOÞ,
which have a tensor branch description of the form in
Eq. (2.5), it is straightforward to observe that whenever the
tensor branch geometry takes a specific form, then there
exists a Higgs branch RG flow to another SCFT where the
transverse slice also takes a particular form. We elucidate
this observation in this subsection.
There are precisely three kinds of transverse slices that

appear in the Hasse diagram: an, An, andDn. The first is the
closure of the minimal nilpotent orbit of suðnþ 1Þ, and the
latter two are orbifold singularities of AD-type, respec-
tively. By studying the tensor branch geometries before and
after such elementary transverse slices, we observe that
they occur under the following circumstances:

(i) An an transverse slice exists whenever there is an
suðnþ 1 ≥ 2Þ flavor algebra attached to a single
curve supporting a nontrivial gauge algebra. After
the transition, the rank of that gauge algebra is
reduced by one, and the flavor algebras are fixed via
anomaly cancellation. To illustrate this, we consider
the following example:

5 10
5

½2�
8 6½4� ⇒

8>>>>>>><
>>>>>>>:

½1�5 9
5
½1�

8
½1�

6½4� Higgsing the½2�flavor via an a1transition;

5 10
5

½2�
8
½1�

5½2� Higgsing the½4�flavor via an a3 transition:

ð5:2Þ

That is, the Higgsable to D5 tensor branch on the left has
two elementary Higgsings where the transverse slice is of
an type, to the two tensor branch configurations on the
right. We emphasize that we know that these two transitions
exist via the construction of the magnetic quiver and the
application of the quiver subtraction algorithm; however,
a posteriori, we note that are observed to correspond to the
presence of the ½2� and the ½4�, respectively.
(ii) An An transverse slice occurs whenever there are

two curves supporting nontrivial gauge algebras
each with a single dangling fundamental flavor (that
is, each has a ½1�), and an inclusive linear chain of n
curves, without attached flavor algebras, between
them. After the Higgsing, the ranks of the gauge
algebras on each of the n curves are reduced by one.

Again, it is best to illustrate via an example. There
exists the following elementary transition between
the SCFTs associated with the tensor branches:

2 4
½1�

7
4
½1�

6
½2�

3 ⟶
A3 ½1�2 3 6

3
6
½3�

3: ð5:3Þ

We can see there is a linear chain of three curves of
the form

½1� 4 7 4 ½1�; ð5:4Þ

indicating the existence of a Higgsing to a new SCFT
where the transverse slice in the foliation of the
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FIG. 13. Hasse diagram for theDsu6

5 theory. At each vertex, the tensor branch curve configuration is drawn. Blue transitions are used to
identify slices in the nilpotent cone of suð6Þ, whereas red is used for the nilpotent cone of suð4Þ. We note that there are also black edges
which do not correspond to any nilpotent cone.

CRAIG LAWRIE and LORENZO MANSI PHYS. REV. D 110, 066014 (2024)

066014-22



FIG. 14. The (partial) Higgs branch Hasse diagram for the Dsu8

5 SCFT. We have drawn the tensor branch curve configuration in each
vertex. Blue transitions are used to identify slices in the nilpotent cone of suð8Þ, whereas red is used for the nilpotent cone of suð6Þ.

HIGGS BRANCH OF 6D (1, 0) SCFTS AND LITTLE STRING … PHYS. REV. D 110, 066014 (2024)

066014-23



symplectic singularity is A3. Turning to, for example,
Fig. 14, we can see this structure realized in each
instance of such a tensor branch configuration.

(iii) Finally, we turn to the Dn transverse slice. Such a
transition occurs whenever we have a tensor branch
configuration of the form

k1k3
k2
k4 � � � kn−1

½1�
kn � � � ; ð5:5Þ

where k1; k2; kn ≥ 1 and ki ≥ 2 for i ¼ 3; � � � n − 1.
It is important to note that there are no dangling
hypermultiplets attached to any of the depicted
curves. After Higgsing, each of the k1; k2; kn is
decreased by one, the ki for i ¼ 3;…; n − 1 are each
decreased by two, and the infrared flavor symmetry
is determined from anomaly cancellation. An exam-
ple is the following elementary Higgsing:

3 6
3

½1�
5 4½3� ⟶

D4
2 4
2
4 4½4�: ð5:6Þ

There is one special case of the Dn transverse
slice, which occurs at the bottom of the Hasse
diagram, i.e., the final Higgsing before the (2, 0)
supersymmetry enhancement occurs. This Higgsing
is always between tensor branches of the form,

12
1
2 � � � 2

½3
2
�
1 ⟶

DN
00
0
0 � � � 00; ð5:7Þ

where there are N compact curves in the configu-
ration. In this case, there is a ½3=2� instead of a ½1�,
but otherwise, the standard rule for theDn transverse
slice applies.

From this experimental reverse engineering of the trans-
verse slices in terms of the tensor branch configurations, we
can produce a catalog of “slices” that need to be subtracted
from the tensor branch to generate the Higgs branch Hasse
diagrams for Dsu2k

N ðOÞ. To wit, we denote these tensor
branch slices as

an ≔ 1 − ½nþ 1�; ð5:8Þ

An ≔ ½1� − 1 − � � � − 1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
ncurves

− ½1�; ð5:9Þ

Dn ≔ 1 − 2

1
j
− 2 − � � � − 2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

n−5curves

− 2
j
½1�

− 1: ð5:10Þ

In particular, if the tensor branch configuration contains
one of these subgraphs, then there exists an elementary
Higgs branch RG flow, with transverse slice as given, to a

new SCFT where the ranks of the gauge algebras on the
tensor branch are obtained via subtracting the gauge ranks
of the subgraph. We refer to this as performing “slice
subtraction” directly on the 6D tensor branch.
Working out the Higgsing pattern for Dsu2k

N ðOÞ theories
and drawing the associated Hasse diagram is a straightfor-
ward computation with the slice subtraction algorithm, and
it can be checked from the previously drawn Hasse
diagrams in Fig. 12 for long theories and in Figs. 13
and 14 for short theories.
We emphasize once again that this is an experimental

observation, based on the transverse slices as worked out
from the quiver subtraction algorithm as applied to the
magnetic quiver for the Higgs branch. The slice subtraction
pattern holds for the Dsu2k

N ðOÞ SCFTs, but it does not
a priori hold beyond that regime. In the case of the family
of the 6D (1, 0) SCFTs known as conformal matter, there is
a similar set of slice subtraction rules, which can be
understood microscopically in terms of giving vacuum
expectation values to specific Higgs branch chiral ring
operators directly in 6D. For conformal matter, this analysis
appears in [49], and the generalization to the microscopics
of the slice subtraction algorithm for Higgsable to D-type
(2, 0) SCFTs can be determined.

VI. GEOMETRIC APPROACH
TO PRODUCT HIGGSING

In the previous section, one of the approaches to under-
standing the Higgs branch of Dsu2k

N was via a magnetic
quiver for the Higgs branch. That is, we applied the quiver
subtraction algorithm to the magnetic quiver for the Higgs
branch worked out in Sec. III. Such a procedure allows us to
extract both the symplectic leaves and the transverse slices
between them; however, due to the incompleteness of the
quiver subtraction algorithm for the unitary-orthosymplectic
quivers that we are considering [see, e.g., Eq. (3.4)], we
do not see the structure of the full Higgs branch in this
way, only the leaves/slices corresponding to interacting
nonproduct 6D (1, 0) SCFTs. In particular, the subtlety
arises from the soð2NÞ gauge node with the antisymmetric
hypermultiplet.
We can partially overcome this limitation if instead of the

structure of the Higgs branch, i.e., knowing both the leaves
and the transverse slices between them, we only focus on
the possible Higgsing results, i.e., only the leaves. The
geometry itself automatically encodes the Higgsing pattern
of an SCFT, since the former is realized as complex
structure deformation of the elliptically fibered Calabi-
Yau threefold Y on which F-theory is compactified. Thus
we can study such complex structure deformations to extract
the Hasse diagram of a 6D SCFT. One drawback of this
approach is that the information about the transverse slice
corresponding to any particular Higgsing is obscured.
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The second drawback is that, given a noncompact
elliptically-fibered Calabi-Yau threefold engineering a
6D (1, 0) SCFT, it is generally challenging to study the
space of complex structure deformations. In particular, it is
not straightforward to explore the complex structure moduli
space of the geometry engineering the tensor branch SQFT,
which has the advantage of a smooth base and only
minimal singularities in the fiber, to learn about the
complex structure deformations of the SCFT geometry.
Therefore, in this section, we review the complex structure
deformation approach as applied to the geometries engi-
neering the 6D (2, 0) SCFTs. From the magnetic quiver of
those theories that are Higgsable to 6D (2, 0) SCFTs of type
Γ, we have seen that the “end” of the Hasse diagram
corresponds to the 6D (2, 0) theory of type Γ itself. In fact,
these (2, 0) theories themselves possess a nontrivial Higgs
branch, which must be further studied; this continuation of
the Higgs branch Hasse diagram is what we explore here.
Recall that the (2, 0) theories are realized geometrically as a
trivial fibration over a base space of the form C2=Γ, with
Γ ⊂ SUð2Þ a finite subgroup.
The deformation space of a C2=Γ orbifold singularity

was worked out in [71], following [72–75], amongst others.
We first consider a simple example; the AN−1 ¼ C2=ZN
orbifold can be written as the zero-locus of the polynomial

uv ¼ zN; ð6:1Þ

in C3, where the singular point is at the origin. There exists
a complex structure deformation which modifies this
hypersurface equation as follows:

uv ¼ zN ⟶ uv ¼ ðz − t1ÞN1ðz − t2ÞN2 ; ð6:2Þ

where N1 þ N2 ¼ N. Now, there is locally a C2=ZN1

singularity at u ¼ v ¼ z − t1 ¼ 0 and a C2=ZN2
singularity

at u ¼ v ¼ z − t2 ¼ 0. The space of all such deformations,
together with the foliation structure of the symplectic
singularity, is simply SymNðC2Þ, as discussed previously
in [66]. The general result can be summarized as follows.
By abuse of notation, let Γ denote the Dynkin diagram of
the Lie algebra associated with the finite group Γ via the
McKay correspondence. Let Γ0 denote a subgraph of Γ.
The graph

Γ0 ¼ Γ − Γ0 ¼⨆
n

i¼1

Γ0
i; ð6:3Þ

consists of a disjoint union of Dynkin diagrams Γ0
i. There

exists a deformation of C2=Γ to a space with n isolated
singular points locally of the form

C2=Γ0
i; ð6:4Þ

respectively. Again, we have abused notation and used Γ0
i to

denote both the Dynkin diagrams and the associated finite
subgroups of SUð2Þ.
It is clear that a partial ordering exists on such deforma-

tions given via inclusion of subgraphs. Let Γ0 denote the
(possibly disconnected) Dynkin diagram after an arbitrary
number of deformations, then the elementary transitions
under this partial ordering occur when the subgraph
removed from Γ0 consists only of a single vertex, that is,
removing an A1 Dynkin diagram. Thus, the Hasse diagram
of deformations of C2=Γ under this partial ordering can be
straightforwardly determined once the single vertex dele-
tions of each simple Dynkin diagram are known. For
convenience, we list these in Table IV.23 This provides
the symplectic leaves of the Hasse diagram for the Higgs
branch of the 6D (2, 0) SCFTs of type Γ, however, it does
not, in general, provide the data of the transverse slice, even
though it is easy to see that each of these slices is one-
dimensional.
In the first case in Table IV, where an A-type orbifold

splits into two, we do have an understanding of the
transverse slice [66]. The slice is A1 if the orbifold splits
into two copies of the same Dynkin diagram, otherwise it
is m,24

A2kþ1 ⟶
A1 Ak × Ak;

Ak ⟶
m

Ak−1−p × Ap; p ≥ 0: ð6:5Þ

While it is unknown for the generic case, the geometry
allows us to draw Hasse diagrams, without the slice data,
for cases where brane constructions are not viable or only
partially understood. As an example, we have depicted the
Hasse diagram of the complex structure deformations of the
C2=D5 singularity in Fig. 15; we have labeled each vertex
by the resolution of the deformed singularity. This is then
the Hasse diagram for the Higgs branch of the 6D (2, 0)

TABLE IV. Complex structure deformations of a C2=Γ singu-
larity. Such deformations can be applied recursively. Here, we
implicitly allowed the trivial A0 and D0 cases.

Γ Possible deformations

An An−k × Ak−1
Dn Dn−k × Ak−1
E6 D5; A5; A4 × A1; A2 × A2 × A1

E7 E6; D6; A6; D5 × A1; A5 × A1; A4 × A2; A3 × A2 × A1

E8 E7; D7; A7; E6 × A1; A6 × A1; D5 × A2; A4 × A3; A4 × A2 × A1

23We thank Amihay Hanany for pointing out that this pro-
cedure determines the Levi subgroups of the algebra g associated
with Γ.

24For the definition of the one-dimensional m slice, see [76].
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SCFT of type D5. Even more, since we have a brane
construction from each of the theories appearing in the
D5-type Hasse diagram of Fig. 15, and in general for every
theory in the Dn-type Hasse diagram, we can associate a

magnetic quiver to each of the theories as done in Fig. 16
and take it as a future starting point for a more systematic
understanding of subtraction in the context of orthosym-
plectic quivers.

FIG. 16. Hasse diagram of the 6D N ¼ ð2; 0Þ SCFT of type D5 with the magnetic quiver for the Higgs branch of the theory at each
vertex depicted. Known slices are labeled and colored according to their nature (black for A1 slices and blue for m), whereas unknown
slices are depicted via dashed lines.

FIG. 15. Hasse diagram of the 6DN ¼ ð2; 0Þ SCFTof typeD5. Known slices are labeled and colored according to their nature (black
for A1 slices and blue for m ones), whereas unknown slices are depicted with dashed lines.
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VII. HIGGS BRANCH OF HIGGSABLE
TO E-TYPE (2, 0) SCFTS

In addition to the Higgsable to D-type (2, 0) SCFTs,
Dsu2k

N ðOÞ, in Sec. II we also introduced the SCFTs
ENðk1;…; kNÞ which have supersymmetry-enhancing
Higgs branch RG flows to the E-type (2, 0) SCFTs.
While we could determine the (interacting, nonproduct
subdiagram of the) Higgs branch Hasse diagram from the
geometric perspective, following Eq. (2.31), there is no
known brane description of these theories and thus no
magnetic quiver for the Higgs branches.25 As a result, we
lack a method to learn about the structure of the Higgs
branch as a foliation of a symplectic singularity; this is, we
are missing the information on the transverse slices.
Specifically, given an elementary Higgsing,

ENðk1;…; kNÞ ⟶
S

ENðk01;…; k0NÞ; ð7:1Þ

what can we learn about the transverse slice S?
In Sec. V C, we proposed an empirical “slice subtrac-

tion algorithm” that allowed for the determination of the
transverse slice directly via studying the structure of the
tensor branch field theory before Higgsing. This algorithm
is conjectural and based on the matching with the trans-
verse slices as determined from the magnetic quiver for
the Dsu2k

N ðOÞ SCFTs. However, we may suppose that the
algorithm applies more broadly, in particular to the
ENðk1;…; kNÞ SCFTs, and test whether it provides a
transverse slice consistent with the known properties of
the 6D (1, 0) theories before and after the flow.
The an slice subtraction involves reducing the rank of a

single gauge algebra by one. It is straightforward to check
the change in the Higgs branch dimension using Eq. (2.30).
Let i denote the index of the compact curve to which the
suðnþ 1Þ flavor algebra is attached, and we find that the
difference in the Higgs branch dimension is

δ dimðHÞ ¼
XN
j¼1

Aijkj −
1

2
Aii ¼ mi − 1 ¼ n: ð7:2Þ

This is the dimension of the closure of the minimal
nilpotent orbit of suðnþ 1Þ, as expected for an an trans-
verse slice. Similar arguments can be made to show that the
change in the Higgs branch dimension whenever there is an
An or Dn transition according to Eq. (5.8) is one. This
provides a consistency check that the transverse slices that
we have associated via slice subtraction are consistent with
the expectation from the Higgs branch dimension.

However, we can see that there are a small number of
transitions in the Higgs branch Hasse diagram of the
ENðk1;…; kNÞ SCFTs where there is no transverse slice
associated via the slice subtraction rules. In each of these
cases, the transverse slices must be one-dimensional due to
the known change in the Higgs branch dimension. These
are best illustrated by the lower part of the E8ðk1;…; k8Þ
Hasse diagram, which we depict in Fig. 17. Blue transitions
denote elementary Higgsings where the transverse slice
follows from the slice subtraction rules in Eq. (5.8),
whereas the red transitions do not. However, these red
transitions have a very evocative form; they appear to
involve the subtraction of an EN type Dynkin diagram,
weighted by the Dynkin labels, from the gauge ranks of the
tensor branch configuration. This suggests that we should
propose the following slice subtraction rules, in addition to
those in Eq. (5.8):

FIG. 17. The bottom of the (intersecting, non-product part of
the) Hasse diagram for the E8ðk1;…; k8Þ SCFTs; we depict only
configurations with k5 ≤ 16. At each vertex we write the tensor
branch description of the SCFT as well as the dimension of the
Higgs branch. Vertices are connected according to Eq. (2.31), and
the transverse slice labeling each link is conjectured from the slice
subtraction algorithm in Eqs. (5.8) and (7.3).

25In the spirit of Sec. IV, if we were to obtain a potential
magnetic quiver for the EN series with arbitrary N, we should
match following the isomorphisms E4 ≅ A4 and E5 ≅ D5.
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E6 ≔ 1− 2− 3

2

½1�
j

j
− 2− 1; E7 ≔ ½1�− 2− 3− 4

2
j
− 3− 2− 1;

E8 ≔ 2− 4− 6

3
j
− 5− 4− 3− 2− ½1�: ð7:3Þ

Interestingly, the slice subtraction rules in Eqs. (5.8)
and (7.3) are sufficient to provide a transverse slice, with
the correct change in the Higgs branch dimension, to each
link in the Hasse diagram of interacting nonproduct
theories on the Higgs branch of ENðk1;…; kNÞ. For
example, see Fig. 18 where we have taken the Hasse
diagram from the F-theory geometric engineering (for
N ¼ 6) that was drawn in Fig. 2 and added the transverse
slices obtained using the slice subtraction algorithm. Of
course, the change in the Higgs branch dimension is a
relatively crude invariant, and further study is necessary to
verify that this algorithm is producing the correct transverse
slices for this class of Higgsable to E-type (2, 0) SCFTs.
Further evidence for these assignments of transverse

slices arises from the 3D reduction of the tensor branch
SQFT, which we briefly summarize here. For an arbitrary
E6ðk1;…; k6Þ SCFT, it is believed that the T3 reduction of
the tensor branch theory gives rise to the following unitary
3D N ¼ 4 quiver:

ð7:4Þ

and similarly for the N ¼ 7 and N ¼ 8 cases. Since these
3D reductions have only unitary gauge/flavor nodes and
bifundamental matter, we can apply the technique of
inversion [77] to understand their Higgs branches,26 which
are isomorphic to the Higgs branches of the 6D tensor
branch SQFTs. Inversion notes that the Coulomb branch
Hasse diagram and the Higgs branch Hasse diagram are
identical as graphs, and the only difference is the labeling of
the edges via transverse slices. If a transition in the
Coulomb branch is labeled by the closure of a minimal
nilpotent orbit of a simple and simply-laced Lie algebra g,
min :g, then the corresponding transition in the Higgs branch is labeled by the Kleinian singularity C2=Γg, where

Γg is the finite subgroup of SUð2Þ related to g via the
McKay correspondence, and vice versa. To wit,

min :g ↔ C2=Γg: ð7:5Þ

FIG. 18. Portion of the bottom part of the Higgs branch Hasse
diagram obtained via slice subtraction on a Higgsable to E6 (2, 0)
theory: E6ðk1;…; k6Þ. This figure is the same as Fig. 2, but with
the addition of the transverse slice labeling.

26More precisely, if the Coulomb branch Hasse diagram only
has transverse slices which are closures of minimal nilpotent
orbits or Kleinian singularities, then we can use inversion to
derive the Higgs branch Hasse diagram.
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Therefore, we can use quiver subtraction to determine the
Coulomb branch Hasse diagram of the 3D reduction and
use inversion to determine the transverse slices in the Higgs
branch Hasse diagram. When performing this process, we
note that the slices obtained in this way are the same as the
slices obtained when following the slice subtraction algo-
rithm. As an example, we carry this out in Fig. 19 for a
Higgsable to E8-type theory, where the resulting Higgs
branch Hasse diagram can be compared to that from slice
subtraction in Fig. 17. While this is a statement about the
Higgs branch of the tensor branch theories, as opposed to
the SCFT Higgs branches, we generally (though not
always) expect that operators of the Higgs branch chiral
ring on the generic point of the tensor branch survive the
contraction to the SCFT point, and thus can still trigger
Higgsing.
We would also like to understand such a Higgsing

microscopically in six dimensions. For example: when
considering the E8 transverse slice that appears in Fig. 17,
it is natural to ask: what is the operator in the Higgs branch

chiral ring of the UV 6D (1, 0) SCFT to which a vacuum
expectation value is given to trigger this renormalization
group flow? First, one can analyze the 1=2-BPS Higgs
branch operators belonging to the tensor branch SQFT, and
attempt to understand how the E8 transition is triggered
between the tensor branch SQFTs in the UV and the IR.
Then, it is necessary to make an argument that the relevant
operators survive in the SCFT limit where all of the
compact curves are shrunk to zero volume. Some of these
questions are answered in the conformal matter theories
(or Higgsable to A-type (2, 0) SCFTs) in [49]. We leave the
general case for future work.

VIII. 6D (2, 0) LSTs WITH SUSY-ENHANCING
RG FLOWS

Thus far, we have considered 6D (1, 0) SCFTs which
have supersymmetry-enhancing renormalization group
flows. There exists a closely related class of six-dimensional
theories known as LSTs. These are nongravitational

FIG. 19. Quiver subtraction technique applied to the 3D reduction of the tensor branch SQFT of the E8ð5; 10; 15; 12; 9; 6; 3; 8Þ SCFT
together with its Coulomb branch Hasse diagram and its Higgs branch Hasse diagram derived via inversion. The Hasse diagrams are
ordered according to the foliation induced by the underlying symplectic singularity, which is converse to the ordering used in other
figures of this paper that decrease in Higgs branch dimension.
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theories, but they differ from their SCFTs cousins as they
are nonlocal and have an intrinsic length scaleMstring. While
the UV completion of such theories is not a standard
quantum field theory, below the scale set by Mstring, we
can treat the theory as a QFT with a cutoff [78,79]. This
nonlocal nature allows LSTs to experience T-duality; in [20]
it was recognized that a robust feature for the exploration of
the T-duality landscape of LSTs is the magnetic quiver of
the Higgs branch.
As we have mentioned in Sec. II, 6D (1, 0) LSTs have a

similar geometric construction in F-theory to the 6D (1, 0)
SCFTs [41]. In this construction, the 6D (2, 0) LSTs arise
when the curve configuration consists of an affine ADE
Dynkin diagram formed out of (−2)-curves, with no
reducible singular fibers supported over the compact
curves. Thus, in this section, we consider 6D (1, 0)
LSTs, and the magnetic quivers for their Higgs branches,
which have Higgs branch renormalization group flows that
evince SUSY-enhancement. This class of 6D (1, 0) LSTs
has been considered, for example, in [41,80–87].

First, we revisit the 6D (1, 0) LSTs that are Higgsable to
the 6D (2, 0) LSTs of A-type. These theories consist of a
ring of conformal matter theories fused together. The LSTs
that result from fusing N copies of ðg; gÞ conformal matter,
where g is an ADE Lie algebra, in this way are denoted
Âg
N−1. We have written their tensor branch curve configu-

rations in Table V,27 together with a variety of their well-
studied properties. In fact, for Higgsable to (2, 0) LSTs of
types A1 and A2 there are additional configurations; these
occur when the endpoint configuration, obtained by
repetitively blowing-down all (−1)-curves, consists of
either two smooth rational curves of self-intersection
(−2) intersecting at the single point of multiplicity two,
or of three smooth rational curves of self-intersection (−2)
all intersecting at a single point. These endpoints are
referred to as III and IV, as these intersection patterns

TABLE V. We list 6D (1, 0) LSTs that have SUSY-enhancing Higgs branch renormalization group flows to the (2, 0) LSTs. For their
properties, we list the dimension of the Coulomb branch of the S1 compactification, and the generalized symmetry structure constant κR.

LST Curve configuration dimðCÞ κR

ÂsuK
N−1 == 2

suK

2
suK � � � 2

suK

2
suK|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Nð−2Þ-curves
==

NK − 1 NK

Âso2K
N−1 == 4

so2K
1

spK−4 � � � 4
so2K

1
spK−4|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Nð−4Þ-curves
==

2NðK − 1Þ − 1 4NK − 8N

Âe6
N−1 ==6

e6
1 3
su3

1 � � � 6
e6
1 3
su3

1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Nð−6Þ-curves

==
12N − 1 24N

Âe7
N−1 ==8

e7
1 2
su2

3
so7

2
su2

1 � � � 8
e7
1 2
su2

3
so7

2
su2

1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Nð−8Þ-curves

==
18N − 1 48N

Âe8
N−1 ==ð12Þ

e8
12 2

su2

3
g2
15
f4
13
g2

2
su2

21 � � � ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Nð−12Þ-curves

==
30N − 1 120N

D̂su2K
N

2
suK

2
suK

2
su2K

2
su2K � � � 2

su2K|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
N−5ð−2Þ-curves

2
suK

2
su2K

2
suK

2KðN − 1Þ − 1 4NK − 8K

D̂su3

N

2 2
su2

2

2
su3 � � � 2

su3|fflfflfflfflffl{zfflfflfflfflffl}
N−5ð−2Þ-curves

2
su2

2

2

3N − 8 6N − 18

D̂so8
N

2
su2

3
so7
2
su2

1 4
so8

1 � � � 4
so8

1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
N−5ð−4Þ-curves

3
so7
2
su2

2
su2

6N − 14 16N − 48

D̂e6
N

3
su3

1 6
e6
1
3
su3

1 3
su3

16
e6
1 3
su3

1 � � � 6
e6
1 3
su3

1

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{N−5ð−6Þ-curves

6
e6
1
3
su3

1 3
su3

12N − 26 48N − 144

27A note on the notation of [41], when we write == � � � ==, we
are indicating that the leftmost and rightmost curves in � � �
intersect, with intersection number one.
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match those of the Kodaira-Neron fibers of the same
labelling. Since we are principally concerned with DE-type
SUSY enhancement in this paper, we do not enumerate
these exceptional Higgsable to A-type (2, 0) LSTs.
Let us now consider 6D (1, 0) LSTs Higgsable to D-type

(2, 0) LSTs. The generic class takes the form,28

2
suk1

2
suk3

2
suk2

2
suk4 � � � 2

sukN−2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
N−5

2
sukN−1

2
sukNþ1

2
sukN

: ð8:1Þ

Anomaly cancellation fixes that the ki must satisfy the
condition that

Aijkj ¼ mi ≥ 0; ð8:2Þ

where Aij is the affine Cartan matrix of DN . In fact, almost
all solutions are parametrized by a single positive integerK,
and take the form

2
suK

2
su2K

2
suK

2
su2K � � � 2

su2K|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
N−5

2
su2K

2
suK

2
suK

: ð8:3Þ

Therefore, we refer to this class of LSTs as

D̂su2K
N : ð8:4Þ

Here, we have removed those solutions of Eq. (8.2) which
are incompatible with the F-theory geometry, as discussed
around Eq. (2.7).
We can also consider the LSTs that arise as the

affinization of the tensor branch configuration in Eq. (2.20)

3
su3

1 6
e6
1
3
su3

1 3
su3

16
e6
1 3
su3

1 � � � 6
e6
1 3
su3

1

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{N−5

6
e6
1
3
su3

1 3
su3

: ð8:5Þ

Finally, we note that there are two additional 6D (1, 0)
LSTs Higgsable to 6D (2, 0) D-type LSTs, analogous to
those appearing in Eq. (2.21). These have tensor branch
configurations of the following forms:

2 2
su2

2

2
su3 � � � 2

su3|fflfflfflfflffl{zfflfflfflfflffl}
N−5

2
su2

2

2 and 2
su2

3
so7
2
su2

1 4
so8
1 � � � 4

so8
1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

N−5

3
so7
2
su2

2
su2

: ð8:6Þ

In Eqs. (8.3) and (8.5), and the left of Eq. (8.6),29 we can
take N ¼ 4, in which case the two curves which intersect
three other curves are identified. Note: for particularly
small values of N, there are additional 6D (1, 0) LSTs that
are Higgsable to the (2, 0) LSTs of D-type, however, we do
not consider them further in this work.
A similar analysis can be performed for the 6D (1, 0)

LSTs that are Higgsable to the 6D (2, 0) LSTs of E-type.
For E6 the only possibilities are

2
suK

2
su2K

2
su3K

2
su2K

2
suK

2
su2K

2
suK

; 2 2
su2

2
g2
2
su2

2

2
su2

2;

2
su2

3
so7

2
su2

1 8
e7
1
2
su2

3
so7
2
su2

1 2
su2

3
so7

2
su2

: ð8:8Þ
For E7 there is still one exceptional theory, in addition to
the standard family; altogether,

2
suK

2
su2K

2
su3K

2
su4K

2
su2K

2
su3K

2
su2K

2
suK

; 2 2
su2

3
g2
1 5

f4
1
3
su3

13
g2

2
su2

2; ð8:9Þ
whereas for E8 we have simply,

2
suK

2
su2K

2
su3K

2
su4K

2
su5K

2
su6K

2
su3K

2
su4K

2
su2K

: ð8:10Þ

Each of the 6D (1, 0) LSTs which have SUSY-enhancing
Higgs branch RG flows to the 6D (2, 0) LSTs that we have
just found are written in Tables V and VI.
We now turn to a discussion of the physical properties

of little string theories. LSTs possess a uð1Þð1ÞLST one-
form symmetry. The symmetry structure of LSTs typi-
cally involves combined transformations involving the

28Recall that a 6D (1, 0) LST is associated with a tensor branch
curve configuration together with a choice of contraction map.
Such contraction maps are in general not unique [88], and thus we
should consider each curve configuration as being associated with
a family of LSTs parametrized by possible contraction maps.

29For the configuration on the right in Eq. (8.6), when we take
the N ¼ 4 limit we have the configuration,

2
su2

2
g2
2
su2

2
su2

2
su2

: ð8:7Þ
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background field of the one-form symmetry, together with
the background fields of the zero-form symmetries;
suð2ÞR, p, and f [89,90]. Here, suð2ÞR is the R-symmetry,
p denotes the Poincaré symmetry, and f encodes any
additional flavor symmetry. This symmetry structure,
sometimes referred to as Green-Schwarz symmetry,30

can be written as

ðsuð2ÞR ⊕ p ⊕ fÞð0Þ × κR; κP; κF uð1Þð1ÞLST: ð8:11Þ

The quantities κR, κP, and κF capture how the
R-symmetry, Poincaré symmetry, and flavor symmetries,
respectively, mix with the one-form symmetry; they are
referred to as the generalized symmetry structure con-
stants. For each of the LSTs that have SUSY-enhancing
Higgs branch RG flows, we have κP ¼ 0 and there
generically is no non-Abelian flavor symmetry31; there-
fore, we only consider κR from this point onwards. One of

the key results of [90,92] is that the structure constants can
be determined from the F-theory geometry; in particular,

κR ¼
X
i

lih∨gi : ð8:12Þ

Here, the sum runs over the compact curves at the generic
point of the tensor branch, li is the normalized zero
eigenvector associated with the zero eigenvalue of the
intersection matrix,

Aijlj ¼ 0 such that lj > 0 and gcdðl1;l2; � � �Þ ¼ 1;

ð8:13Þ

and h∨gi is the dual Coxeter number of the algebra gi
supported over the ith curve.32

Furthermore, we can consider moduli spaces of super-
symmetric vacua associated with the LSTs. We can
consider the dimension of the Coulomb branch of the
five-dimensional theory that is obtained via compactifica-
tion of the LST on an S1. This quantity can be obtained
from the configuration at the generic point of the tensor
branch as follows:

dimðCÞ ¼
X
i

ð1þ rankðgiÞÞ − 1: ð8:14Þ

The sum runs over the compact curves Ci supporting
algebras gi.
For each of the Higgsable to (2, 0) LSTs that we study in

this paper, we compute these two physical quantities, κR
and dimðCÞ, and we list them in Tables V and VI. We
remind the reader that these quantities depend only on the
tensor branch curve configuration, and not the choice of
contraction map, and thus we can write them down without
specifying the latter.
One of the exciting features of LSTs that follows from

their nonlocal nature is T-duality. Two LSTs are said to be
T-dual if they give rise to the same theory after circle
compactification. More specifically, if T 1 and T 2 are 6D
LSTs, then we can consider the S1 compactifications, with
radii R1 and R2, where, along the circles, we can turn on
Wilson lines valued in the (continuous) flavor symmetry of
the LSTs. We denote these compactified theories as

T 1hS1R1
;WL1i and T 2hS1R2

;WL2i; ð8:15Þ
where WLi abstractly specifies which Wilson lines are
turned on. If these two 5D theories are identical, at some
point on the Coulomb branch and for some choices of WL1

and WL2, then T 1 and T 2 are said to be T-dual.
To identify a T-dual pair, we should see that both T 1 and

T 2 are engineered in string theory from the same com-
pactification space, up to inequivalent fibration structures

TABLE VI. The continuation of Table V; see the caption there
for the details.

LST Curve configuration dimðCÞ κR

Êsu3K
6

2
suK

2
su2K

2
su3K

2
su2K

2
suK

2
su2K

2
suK

12K − 1 24K

Êg2
6

2 2
su2

2
g2
2
su2

2

2
su2

2

11 27

Êe7
6

2
su2

3
so7

2
su2

1 8
e7
1
2
su2

3
so7
2
su2

1 2
su2

3
so7

2
su2

34 144

Êsu4K
7

2
suK

2
su2K

2
su3K

2
su4K

2
su2K

2
su3K

2
su2K

2
suK

18K − 1 48K

Êf4
7

2 2
su2

3
g2
1 5

f4
1
3
su3

13
g2

2
su2

2

22 96

Êsu6K
8

2
suK

2
su2K

2
su3K

2
su4K

2
su5K

2
su6K

2
su3K

2
su4K

2
su2K

30K − 1 120K

30See [91], for a careful analysis of such continuous Green-
Schwarz symmetries, highlighting several major subtleties.

31Even in the cases of (2, 0) LSTs realized as a cluster of
undecorated (−2)-curves intersecting as an affine Dynkin dia-
gram where an SUð2Þ flavor symmetry can be identified, we
choose not to consider κF for simplicity.

32If the singular fiber is irreducible over the curve Ci, then we
define h∨gi ¼ 1.
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on that space; this approach was pioneered in [88].
Alternatively, one can identify putative T-dual pairs by
determining invariants of the theories T 1 and T 2 which are
known to either be unchanged or change predictably under
the S1-compactification with Wilson lines. Some examples
of such T-duality invariant properties are [90]

κP; κR; κF; dimðCÞ; rankðfÞ; ð8:16Þ
where the latter is the rank of the 6D flavor algebra. This
provides a necessary, but not sufficient, condition for
T-duality. In general, the 6D Higgs branch does not match
across T-duality, as the choice of Wilson lines modifies the
5D Higgs branch from the 6D Higgs branch. However, in
cases where there is no flavor symmetry in 6D, there are no
Wilson lines to turn on, and the 5D Higgs branch is
identical to the 6D Higgs branch, and thus any T-dual pair
ðT 1; T 2Þ must satisfy

HT 1
¼ HT 2

; ð8:17Þ

whereHT denotes the Higgs branch of theory T . For some
of the Higgsable to DE-type (2, 0) LSTs that we consider in
this paper, there is no 6D flavor symmetry, and thus the
Higgs branches of any T-dual pair must match.
In Tables V and VI, we have written the putative T-dual

for each 6D (1, 0) LSTs evincing DE-type SUSY enhance-
ment by identifying another LSTs where the numerical
invariants in Eq. (8.16) match. Importantly, each of these
quantities is independent of the choice of contraction map,
and thus they can be determined directly from the curve
configuration; the Higgs branch itself is sensitive to the
choice of contraction map, and we discuss this particular
subtlety anon.
Since we have enumerated a collection of LSTs that

realize Higgs branch RG flows with SUSYenhancement in
Tables V and VI, together with their T-duality invariant
properties, we can identify pairs of LSTs for which dimðCÞ
and κR [as well as κP, κF, and rankðfÞ] match. We find that
the putative T-duals for each of the five classes of LSTs
whose base geometry is a ring of (−2)-curves are as
follows:

ÂsuK
N−1 ↔ ÂsuN

K−1;

Âso2K
N−1 ↔ D̂su2N

K ;

Âe6
N−1 ↔ Êsu3N

6 ;

Âe7
N−1 ↔ Êsu4N

7 ;

Âe8
N−1 ↔ Êsu6N

8 : ð8:18Þ
We note that this is expected from fiber-base duality, as was
already pointed out in [41]; see also [83] for a careful
analysis of the second row. Next, we can consider a
possible T-dual for the D̂e6

N LST. It is easy to see that there
is no other theory in Tables Vor VI for which the numerical

invariants match. Instead, consider the LSTs associated
with the following tensor branch curve configuration:

4
so2N

1
sp2N−8

4
so6N−16

1
sp2N−8

4
so2N

1
sp2N−8

4
so2N

: ð8:19Þ

The endpoint configuration for this theory is type IV; that
is, it is three (−2)-curves that intersect simultaneously at
one point. We label the associated LSTs as IVso6N−16 . We
can determine the T-duality invariant numerical quantities,

dimðCÞ ¼ 12N − 26; κR ¼ 48N − 144: ð8:20Þ

Therefore, as all the numerical invariants we can compute
agree, we have the putative T-duality,

D̂e6
N ↔ IVso6N−16 : ð8:21Þ

While a similar discussion for the putative LSTs T-dual to
the D̂su3

N , D̂so8
N , Êg2

6 , Ê
e7
6 , and Ê

f4
7 theories can be carried out,

it is beyond the scope of this paper and we leave it for future
work.33 Here, following the theme of this paper, we discuss
the Higgs branches of some of these LSTs.
There are two approaches that we can take to determine

the Higgs branch of the LSTs under discussion. We would
like to capture a Higgs branch by providing a magnetic
quiver, that is, a 3DN ¼ 4 Lagrangian quiver such that the
Coulomb branch is isomorphic to the Higgs branch of the
theory we are interested in. The first approach is to engineer
the LSTs via a brane system in type IIA (or type I) string
theory, and then pass to the magnetic phase; this is the
approach we have taken for SCFTs throughout this paper.
Alternatively, we can take advantage of the fact that

LSTs satisfy the tensor decoupling condition [41], that is,
if one takes the volume of any compact curve in the curve
configuration of an LST to infinity, then one obtains either
an SCFTor a product of SCFTs. In reverse, we can think of
an LST as arising from the fusion of a non-Abelian flavor
algebra of a product of SCFTs. If we know magnetic
quivers for the Higgs branches of the fused SCFTs, then
we can determine the magnetic quiver for the LST via
Coulomb gauging of the Coulomb symmetry of the SCFT
magnetic quivers.
We first consider the LSTs that we denote via ÂsuK

N−1; the
tensor branch curve configuration of such LSTs takes the
form of a ring of (−2)-curves, each supporting an suðKÞ
algebra. This LST can be obtained from the rank N
ðsuðKÞ; suðKÞÞ conformal matter theory, and fusing the
two suðKÞ flavor factors. We depict this as

33A detailed analysis of T-duality for nonheterotic LSTs
recently appeared in [93].
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½suðKÞ� 2
suK � � � 2

suK|fflfflfflfflffl{zfflfflfflfflffl}
N−1

½suðKÞ� ⟶fusion == 2
suK � � � 2

suK|fflfflfflfflffl{zfflfflfflfflffl}
N

==: ð8:22Þ

The magnetic quiver for the Higgs branch of rank N
ðsuðKÞ; suðKÞÞ conformal matter is [64]

ð8:23Þ

where the suðKÞ ⊕ suðKÞ Coulomb symmetry arises from
the balanced nodes highlighted in blue. The behavior of the
3D quiver under Coulomb gauging follows from [94], and
thus we find that the Higgs branch of the LST ÂsuK

N−1 is

simply the Coulomb branch of the following quiver:

ð8:24Þ

As we can see, this quiver is identical under K ↔ N, which
is consistent with the T-duality34

ÂsuK
N−1 ↔ ÂsuN

K−1: ð8:25Þ

Next, we consider the LSTs Âso2K
N−1; these theories can be

obtained via the diagonal fusion of the soð2KÞ ⊕ soð2KÞ
flavor algebra of rank N ðsoð2KÞ; soð2KÞÞ conformal
matter. Pictorially, we have

½soð2KÞ� 1
spK−4

4
so2K � � � 1

spK−4
4

so2K
1

spK−4|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N−1ð−4Þ-curves

½soð2KÞ� ⟶fusion == 1
spK−4

4
so2K � � � 1

spK−4
4

so2K|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Nð−4Þ-curves

==: ð8:26Þ

The magnetic quiver for the conformal matter theory is
known [64]; it is

ð8:27Þ

where, again, we have highlighted the balanced nodes
giving rise to the soð2KÞ ⊕ soð2KÞ Coulomb symmetry.35

The Coulomb gauging is described in [94], and thus we
find that the magnetic quiver for the LST Âso2K

N−1 is

ð8:28Þ

We are now ready to turn to the LSTs D̂su2K
N . Such LSTs

can be obtained via the diagonal fusion of the suð2KÞ
flavor symmetry of the SCFTs Dsu2K

N0 and Dsu2K
N00 where

N0 þ N00 ¼ N. The magnetic quivers of the Higgsable to D-
type (2, 0) SCFTs have been determined in this paper;
therefore, for the LSTs D̂su2K

N , we have

ð8:29Þ

where the ⊕ indicates Coulomb gauging along the Cou-
lomb symmetries that arise from the blue-highlighted
balanced nodes. When Coulomb gauging suð2KÞ sym-
metries that are connected to uspð2KÞ gauge nodes, the
post-gauging uspð2KÞ node picks up an antisymmetric
hypermultiplet due to the decomposition of the adjoint
representation of suð2KÞ, as discussed in [94–96]. There-
fore, the result of the Coulomb gauging is

34Notice that this theory actually enjoys the triality [81];

ÂsuK
N−1 ↔ ÂsuN

K−1 ↔ Â
suNK

l
l−1 with l ¼ gcdðN;KÞ, not seen from

the magnetic quiver.
35The loop on the uspð2NÞ gauge node denotes an antisym-

metric hypermultiplet.
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36We thank Paul-Konstantin Oehlmann for this observation.

ð8:30Þ

We can see that there are different Higgs branches for each
of the combinations of ðN0; N00Þ ≥ ð3; 3Þ such that N0 þ
N00 ¼ N andN0 ≤ N00. This reflects the fact that to prescribe
an LST we must give both a tensor branch curve configu-
ration and a contraction map; the contraction map is not
unique, and the choice can be captured by the splitting of N
into N0 and N00. We require that both N0 and N00 are ≥ 3 as
we have engineered this LST via fusion ofDsu2K

N0 andDsu2K
N00

SCFTs, and we have only defined such theories when the
number of (−2)-curves in the tensor branch configuration is
at least three. The Higgs branch given by Eq. (8.30) does
not match, under interchange of N and K, the Higgs branch

of the putative T-dual as given in Eq. (8.28) for any such
choice of N0 and N00. However, the fusions that we have
written here are not necessarily all of the distinct contrac-
tion maps for the tensor branch configuration in Eq. (8.3);
with a sensible analytic continuation, we could believe that
formally N0 ¼ 0 and N00 ¼ N captures a valid contraction
map, and does in fact result in the same Higgs branch
across the T-duality. A more careful matching and verifi-
cation of these Higgs branches under T-duality would be an
interesting subject for future research.
As a final point in this section, we highlight a family of

LSTs which arise from the fusion of aDsu2K
N SCFT together

with a rank N0 ðe8; suð2KÞÞ orbi-instanton SCFT. The
latter is the SCFT that arises on a stack of N0 M5-branes
probing a C2=Z2K orbifold singularity, and contained
inside of an M9-brane [23]. We can depict this fusion as
follows:

2
suK

2
su2K

2
suK

2
su2K � � � 2

su2K|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Nð−2Þ-curves

½suð2KÞ� ⊕ ½suð2KÞ� 2
su2K � � � 2

su2K|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
N0−1ð−2Þ-curves

2
su2K−1 � � � 2

su2

21

⟶ 2
suK

2
suK

2
su2K

2
su2K � � � 2

su2K � � � 2
su2NK|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

NþN0ð−2Þ-curves
2

su2K−1 � � � 2
su2

21; ð8:31Þ

where the ⊕ denotes the fusion of two suð2KÞ flavor
symmetries. We note that these LSTs have κP ¼ 2, and
thus they cannot be T-dual to the Higgsable to (2, 0) LSTs
we have discussed above; in fact, one can recognise the
quiver structure as a frozen phase of F-theory36 [97]
corresponding to a Spinð32Þ=Z2 model without vector
structure, from which T-dual models can be found in the
realm of heterotic LSTs, recently been explored in, for

example, [20,98–103] by matching the generalized sym-
metry structure constants. The magnetic quiver for the
orbi-instanton theory and its Higgsed products is well-
known [34,104] (see [20] for a recent summary). There-
fore, the procedure of Coulomb gauging again reveals the
magnetic quiver for the Higgs branch of this family of
LSTs; we find that it is the Coulomb branch of the
following quiver:

ð8:32Þ
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where the⊕ now indicates the Coulomb gauging of the two
highlighted suð2KÞ Coulomb symmetries.
From the magnetic quivers for the Higgs branches of the

LSTs, we can determine the foliation of the symplectic
singularity capturing the fixed points under Higgs branch
RG flow via the technique of quiver subtraction, as we
have done for Higgsable to D-type SCFTs throughout this
paper. We leave a careful analysis of the structure of the
Higgs branches of LSTs, and the implications with regards
to T-duality, for future work.

IX. DISCUSSION

In this paper, we have studied the renormalization group
flows along the Higgs branch of 6D (1, 0) SCFTs which
present supersymmetry enhancement along some locus
inside of the Higgs branch. In particular, we were interested
in the lesser-studied 6D (1, 0) SCFTs that have an enhance-
ment to the DE-type (2, 0) SCFTs. From the geometric
engineering perspective, almost all such theories are con-
structed in terms of elliptically fibered Calabi–Yau three-
folds where the base contains a collection of (−2)-curves
intersecting according to the associated DE-type Dynkin
diagram. The singular fibers over these curves were of
special unitary type, and interacting nonproduct SCFTs on
the Higgs branch were obtained by (consistently) reducing
the ranks of these special unitary algebras. Thus, this
geometric picture allows the derivation (of the interacting
nonproduct subdiagram) of the Higgs branch Hasse dia-
gram, but without the information of the transverse slices in
the foliation of the symplectic singularity.
Focusing on the Higgsable to D-type (2, 0) theories, a

type IIA realization is explicitly given via a system of D6-
D8-NS5-branes in the presence of an ON−-plane. This
brane construction of the theory is crucial since it allows,
with due extensions, the application of the magnetic quiver
technique to study the Higgs branch of the six-dimensional
theory. In fact, from a joint approach intertwining tensor
branch geometries and magnetic quivers, it has been
rendered possible to describe not only the various leaves
in the Higgs branch of Dsu2k

N ðOÞ theories but also the
transverse slices between them. The lessons learnt from the
D-type case can then be conjectured to extend to Higgsable
to E-type (2, 0) models, for which a controlled type IIA
brane system is not available. Therefore, the proposed new
slice subtraction method allows the construction of the
Hasse diagram by simply looking at the tensor branch
curve configuration and subtracting the Dynkin labels of
the appropriate Dynkin diagram from the ranks of the
gauge algebras.
While most of this paper was concerned with the 6D

(1, 0) SCFTs that have a Higgs branch renormalization
group flow to the 6D (2, 0) SCFTs; the same techniques can
be used to study the Higgs branch of little string theories.
We considered the natural “affinized extension” of the
SCFTs considered in this paper, that is, the 6D (1, 0)

LSTs that are Higgsable to the 6D (2, 0) LSTs. We derive
the magnetic quivers for the Higgs branches and determine
the structure constants of the generalized symmetries, which
led to some interesting observations about T-dualities
of LSTs.
Quiver subtraction for (unitary-)orthosymplectic quiv-

ers: As we highlighted throughout Sec. V, when construct-
ing the Hasse diagram from the unitary-orthosymplectic
magnetic quiver there are several subtleties. One important
caveat was that the unitary-orthosymplectic quiver subtrac-
tion algorithm that we motivated from the brane dynamics
perspective is incomplete; subtractions involving the special
orthogonal gauge node with antisymmetric matter were not
defined. Thus, the Hasse diagram as derived via the
subtraction algorithm is only a subdiagram of the Higgs
branch Hasse diagram of the 6D SCFT. This subtlety is
deeply connected to the orthosymplectic analog of the
notion of decoration [58], which has yet to be understood.
Relatedly, the 6D (2, 0) SCFT that lives at the “end” of the
Higgs branch RG flow still has a nontrivial Higgs branch,
indicating that there exist further Higgsings which we have
not captured; in Sec. VI, we understood some of these
Higgsings from a geometric perspective.
An extreme example of this subtlety with decoration in

the unitary-orthosymplectic case can be seen in the
Dsu2

3 ð½12�Þ SCFT. In addition to the unitary-orthosymplectic
magnetic quiver for the Higgs branch that has been the
principle object of study in this paper, there exist two unitary
3D N ¼ 4 quivers which have the same Coulomb branch
Hilbert series as the unitary-orthosymplectic quiver [62].
These three quivers are depicted on the right in Fig. 20.
Whereas in the unitary case, the extraction of the Hasse
diagram (shown on the left in Fig. 20) from the quiver is
fully under control and reproduces that expected from the
6D geometry, for the unitary-orthosymplectic quiver the
lack of a notion of decoration hinders an analogous
procedure, and only a subdiagram of the full Hasse diagram
can be produced.37 This plurality of descriptions, from the
geometry and alternative unitary quivers, should provide an
important hint at the nature of decoration for orthosym-
plectic quivers.
Noninvertible symmetries across the Higgs branch: The

6D (2, 0) SCFTs of type D2n have noninvertible global
symmetries [105], realized via the duality defect construc-
tion [106,107]. This occurs because the intermediate defect
group, Z2 ⊕ Z2, admits distinct polarizations, related via
gauging of two-form symmetries, and there exists a Green-
Schwarz automorphism/duality [108] which acts on the
charge lattice of stringlike defects. When combined, these
lead to noninvertible duality defects; see [105,109] for

37In fact, in this Dsu2

3 ð½12�Þ example, the subdiagram observ-
able from the unitary-orthosymplectic quiver consists only of a
single vertex; in more general examples it is a more involved
subdiagram.
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details and references. For long 6D (1, 0) SCFTsDsu2k
N ðOÞ,

the Z2 Green-Schwarz automorphism still exists, and thus
the noninvertible symmetries are also realized in such
theories; that is, at any interacting nonproduct fixed point
on the Higgs branch of these Higgsable to D-type (2, 0)
SCFTs, the noninvertible symmetry is preserved. In con-
trast, for short quivers, certain choices of generalized
partition can break the Z2 Green-Schwarz automorphism,
thereby destroying the duality defect construction of the
noninvertible symmetries. Thus, for short quivers, the
noninvertible symmetries appear to be alternatively broken
and emergent along various loci in the Higgs branch. It
would be interesting to make a detailed study of the
microscopic behavior of such noninvertible symmetries
along Higgs branch renormalization group flows.
Higgs branches and 4d reductions: While we have

studied the Higgs branches of 6D (1, 0) SCFTs in
this paper, it is well-known that compactifying on a
d-dimensional torus Td leads to a lower-dimensional field
theory which has the same Higgs branch as the original 6D
SCFT. Such lower-dimensional theories may have dual
constructions, and this may lead to different perspectives
on the Higgs branch. For example, a 6D (1, 0) SCFT
compactified on a T2 may have a dual description via the
class S construction [110,111]. That is, starting from a 6D
(2, 0) SCFT and compactifying on a punctured Riemann
surface. Class S theories have known magnetic quivers,
see e.g., [94], and thus any class S duals can lead to
distinct magnetic quivers for the 6D Higgs branch, and
patching together these different descriptions may lead to
an understanding of aspects of the Higgs branch that are
obscured in one formulation. This plurality of origins was
vital for studying the Higgs branch of 6D conformal
matter in [45,49].

Furthermore, when compactifying on a torus, one is
free to turn on a nontrivial Stiefel-Whitney twist,
which leads to classes of novel 4D N ¼ 2 SCFTs related
to S-folds [112–117]; these theories often have an inter-
esting Higgs branch structure that can be related to the
magnetic quiver for the 6D (1, 0) Higgs branch via
folding-type operations [118,119]. Determining the struc-
ture of the Higgs branch of such SCFTs originating in the
6D (1, 0) SCFTs Higgsable to D-type would be a natural
extension of the current work. In another direction, the 6D
(1, 0) SCFTs Higgsable to the A-type (2, 0) SCFT were
important for proving subtle dualities amongst class S
theories in [120]; it is natural to ask if there are analogous
dualities that can also be studied from the perspective of
the Higgs branch in the D-type sector.
Complex structure deformations of CY3: From the

geometric engineering perspective, the Higgs branch of
6D (1, 0) SCFTs is encoded in the complex structure
deformations of the associated Calabi-Yau threefold. A
systematic study of such deformation spaces has not been
carried out (however, see [121,122]), even at the level of
determining when two Calabi-Yau threefolds associated
with 6D (1, 0) SCFTs are connected, let alone the extraction
of the transverse slice between them. Given that the
approach via the magnetic quiver for the Higgs branch,
for theories which admit a brane engineering description,
can be utilized to determine the structure of the Higgs
branch, it should be possible to draw a clearer connection
between the quiver subtraction algorithm for 3D N ¼ 4
quivers and complex structure deformations of singular
elliptically-fibered Calabi-Yau threefolds. For specific
geometries engineering little string theories, steps have
been taken in this direction in [102], where all the
deformations have been tracked and associated with differ-
ent transverse slices in the Hasse diagram for LSTs where
the tensor branch geometry involves a single curve of self-
intersection 0. We hope to return to such questions in the
future.
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