001     622159
005     20251107113521.0
024 7 _ |a Angelides:2023noe
|2 INSPIRETeX
024 7 _ |a inspire:2739158
|2 inspire
024 7 _ |a arXiv:2312.12831
|2 arXiv
024 7 _ |a 10.1038/s41534-024-00950-6
|2 doi
024 7 _ |a 10.3204/PUBDB-2025-00211
|2 datacite_doi
024 7 _ |a altmetric:157679529
|2 altmetric
024 7 _ |a WOS:001397992900002
|2 WOS
024 7 _ |2 openalex
|a openalex:W4406516506
037 _ _ |a PUBDB-2025-00211
041 _ _ |a English
082 _ _ |a 530
088 _ _ |a arXiv:2312.12831
|2 arXiv
100 1 _ |a Angelides, Takis
|0 P:(DE-H253)PIP1100309
|b 0
|e Corresponding author
245 _ _ |a First-Order Phase Transition of the Schwinger Model with a Quantum Computer
260 _ _ |a London
|c 2025
|b Nature Publ. Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1737973243_1787058
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 21 pages, 10 figures, 1 table
520 _ _ |a We explore the first-order phase transition in the lattice Schwinger model in the presence of a topological $\theta$-term by means of the variational quantum eigensolver (VQE). Using two different fermion discretizations, Wilson and staggered fermions, we develop parametric ansatz circuits suitable for both discretizations, and compare their performance by simulating classically an ideal VQE optimization in the absence of noise. The states obtained by the classical simulation are then prepared on the IBM's superconducting quantum hardware. Applying state-of-the art error-mitigation methods, we show that the electric field density and particle number, observables which reveal the phase structure of the model, can be reliably obtained from the quantum hardware. To investigate the minimum system sizes required for a continuum extrapolation, we study the continuum limit using matrix product states, and compare our results to continuum mass perturbation theory. We demonstrate that taking the additive mass renormalization into account is vital for enhancing the precision that can be obtained with smaller system sizes. Furthermore, for the observables we investigate we observe universality, and both fermion discretizations produce the same continuum limit.
536 _ _ |a 611 - Fundamental Particles and Forces (POF4-611)
|0 G:(DE-HGF)POF4-611
|c POF4-611
|f POF IV
|x 0
536 _ _ |a QUEST - QUantum computing for Excellence in Science and Technology (101087126)
|0 G:(EU-Grant)101087126
|c 101087126
|f HORIZON-WIDERA-2022-TALENTS-01
|x 1
536 _ _ |a ENGAGE - Enabling the Next-Generation of Computational Physicists and Engineers (101034267)
|0 G:(EU-Grant)101034267
|c 101034267
|f H2020-MSCA-COFUND-2020
|x 2
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Naredi, Pranay
|0 P:(DE-H253)PIP1106829
|b 1
700 1 _ |a Crippa, Arianna
|0 P:(DE-H253)PIP1097418
|b 2
700 1 _ |a Jansen, Karl
|0 P:(DE-H253)PIP1003636
|b 3
700 1 _ |a Kühn, Stefan
|0 P:(DE-H253)PIP1086314
|b 4
700 1 _ |a Tavernelli, Ivano
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Wang, Derek S.
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1038/s41534-024-00950-6
|0 PERI:(DE-600)2841736-7
|p 6
|t npj Quantum information
|v 11
|y 2025
|x 2056-6387
787 0 _ |a Angelides, Takis et.al.
|d 2024
|i IsParent
|0 PUBDB-2024-07804
|r arXiv:2312.12831
|t First-Order Phase Transition of the Schwinger Model with a Quantum Computer
856 4 _ |u https://www.nature.com/articles/s41534-024-00950-6
856 4 _ |u https://bib-pubdb1.desy.de/record/622159/files/Article%20Approval%20Service.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/622159/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/622159/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/622159/files/Article%20Approval%20Service.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://bib-pubdb1.desy.de/record/622159/files/s41534-024-00950-6.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/622159/files/s41534-024-00950-6.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:622159
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1100309
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1106829
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1106829
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1097418
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1003636
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1086314
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-611
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Fundamental Particles and Forces
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-12
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NPJ QUANTUM INFORM : 2022
|d 2024-12-12
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NPJ QUANTUM INFORM : 2022
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-10T15:43:48Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-10T15:43:48Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-12
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-10T15:43:48Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-12
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DEAL: Springer Nature 01.01.2024
|2 APC
|0 PC:(DE-HGF)0178
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 1 _ |0 I:(DE-H253)CQTA-20221102
|k CQTA
|l Centre f. Quantum Techno. a. Application
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)CQTA-20221102
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21