| Home > Publications database > First-Order Phase Transition of the Schwinger Model with a Quantum Computer > print |
| 001 | 622159 | ||
| 005 | 20251107113521.0 | ||
| 024 | 7 | _ | |a Angelides:2023noe |2 INSPIRETeX |
| 024 | 7 | _ | |a inspire:2739158 |2 inspire |
| 024 | 7 | _ | |a arXiv:2312.12831 |2 arXiv |
| 024 | 7 | _ | |a 10.1038/s41534-024-00950-6 |2 doi |
| 024 | 7 | _ | |a 10.3204/PUBDB-2025-00211 |2 datacite_doi |
| 024 | 7 | _ | |a altmetric:157679529 |2 altmetric |
| 024 | 7 | _ | |a WOS:001397992900002 |2 WOS |
| 024 | 7 | _ | |2 openalex |a openalex:W4406516506 |
| 037 | _ | _ | |a PUBDB-2025-00211 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 530 |
| 088 | _ | _ | |a arXiv:2312.12831 |2 arXiv |
| 100 | 1 | _ | |a Angelides, Takis |0 P:(DE-H253)PIP1100309 |b 0 |e Corresponding author |
| 245 | _ | _ | |a First-Order Phase Transition of the Schwinger Model with a Quantum Computer |
| 260 | _ | _ | |a London |c 2025 |b Nature Publ. Group |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1737973243_1787058 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 500 | _ | _ | |a 21 pages, 10 figures, 1 table |
| 520 | _ | _ | |a We explore the first-order phase transition in the lattice Schwinger model in the presence of a topological $\theta$-term by means of the variational quantum eigensolver (VQE). Using two different fermion discretizations, Wilson and staggered fermions, we develop parametric ansatz circuits suitable for both discretizations, and compare their performance by simulating classically an ideal VQE optimization in the absence of noise. The states obtained by the classical simulation are then prepared on the IBM's superconducting quantum hardware. Applying state-of-the art error-mitigation methods, we show that the electric field density and particle number, observables which reveal the phase structure of the model, can be reliably obtained from the quantum hardware. To investigate the minimum system sizes required for a continuum extrapolation, we study the continuum limit using matrix product states, and compare our results to continuum mass perturbation theory. We demonstrate that taking the additive mass renormalization into account is vital for enhancing the precision that can be obtained with smaller system sizes. Furthermore, for the observables we investigate we observe universality, and both fermion discretizations produce the same continuum limit. |
| 536 | _ | _ | |a 611 - Fundamental Particles and Forces (POF4-611) |0 G:(DE-HGF)POF4-611 |c POF4-611 |f POF IV |x 0 |
| 536 | _ | _ | |a QUEST - QUantum computing for Excellence in Science and Technology (101087126) |0 G:(EU-Grant)101087126 |c 101087126 |f HORIZON-WIDERA-2022-TALENTS-01 |x 1 |
| 536 | _ | _ | |a ENGAGE - Enabling the Next-Generation of Computational Physicists and Engineers (101034267) |0 G:(EU-Grant)101034267 |c 101034267 |f H2020-MSCA-COFUND-2020 |x 2 |
| 693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
| 700 | 1 | _ | |a Naredi, Pranay |0 P:(DE-H253)PIP1106829 |b 1 |
| 700 | 1 | _ | |a Crippa, Arianna |0 P:(DE-H253)PIP1097418 |b 2 |
| 700 | 1 | _ | |a Jansen, Karl |0 P:(DE-H253)PIP1003636 |b 3 |
| 700 | 1 | _ | |a Kühn, Stefan |0 P:(DE-H253)PIP1086314 |b 4 |
| 700 | 1 | _ | |a Tavernelli, Ivano |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Wang, Derek S. |0 P:(DE-HGF)0 |b 6 |
| 773 | _ | _ | |a 10.1038/s41534-024-00950-6 |0 PERI:(DE-600)2841736-7 |p 6 |t npj Quantum information |v 11 |y 2025 |x 2056-6387 |
| 787 | 0 | _ | |a Angelides, Takis et.al. |d 2024 |i IsParent |0 PUBDB-2024-07804 |r arXiv:2312.12831 |t First-Order Phase Transition of the Schwinger Model with a Quantum Computer |
| 856 | 4 | _ | |u https://www.nature.com/articles/s41534-024-00950-6 |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/622159/files/Article%20Approval%20Service.pdf |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/622159/files/HTML-Approval_of_scientific_publication.html |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/622159/files/PDF-Approval_of_scientific_publication.pdf |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/622159/files/Article%20Approval%20Service.pdf?subformat=pdfa |x pdfa |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/622159/files/s41534-024-00950-6.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/622159/files/s41534-024-00950-6.pdf?subformat=pdfa |x pdfa |y OpenAccess |
| 909 | C | O | |o oai:bib-pubdb1.desy.de:622159 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 P:(DE-H253)PIP1100309 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 1 |6 P:(DE-H253)PIP1106829 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1106829 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 2 |6 P:(DE-H253)PIP1097418 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 3 |6 P:(DE-H253)PIP1003636 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 4 |6 P:(DE-H253)PIP1086314 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Matter and the Universe |1 G:(DE-HGF)POF4-610 |0 G:(DE-HGF)POF4-611 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Fundamental Particles and Forces |x 0 |
| 914 | 1 | _ | |y 2025 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-12 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NPJ QUANTUM INFORM : 2022 |d 2024-12-12 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b NPJ QUANTUM INFORM : 2022 |d 2024-12-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-04-10T15:43:48Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-04-10T15:43:48Z |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-12 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2024-12-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-12 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-04-10T15:43:48Z |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2024-12-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-12 |
| 915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
| 915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
| 915 | p | c | |a DEAL: Springer Nature 01.01.2024 |2 APC |0 PC:(DE-HGF)0178 |
| 915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
| 920 | 1 | _ | |0 I:(DE-H253)CQTA-20221102 |k CQTA |l Centre f. Quantum Techno. a. Application |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-H253)CQTA-20221102 |
| 980 | _ | _ | |a APC |
| 980 | 1 | _ | |a APC |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|