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We revisit birefringence effects associated with the evolution of the polarization of light as it propagates
through axion dark matter or the background of a passing gravitational wave (GW). We demonstrate that
this can be described by a unified formalism, highlighting a synergy between searches for axions and high-
frequency GWs. We show that by exploiting this framework, the optical cavities used by the ALPS II
experiment can potentially probe axion masses in the range ma ∼ 10−9–10−6 eV, offering competitive
sensitivity with existing laboratory and astrophysical searches. Also building on this approach, we propose
using these optical cavities to search for high-frequency GWs by measuring changes in the polarization of
their circulating laser fields. This makes it a promising method for exploring, in the near future, GWs with
frequencies above 100 MHz and strain sensitivities on the order of 10−14 Hz−1=2. Such sensitivity allows
the exploration of currently unconstrained parameter space, complementing other high-frequency GW
experiments. This work contributes to the growing community investigating novel approaches for high-
frequency GW detection.
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I. INTRODUCTION

Axions are not only a compelling solution to the strong
CP problem of the Standard Model [1–4], but also a well-
motivated candidate for the dark matter (DM) of the
Universe [5–7]. They can be searched for through their
coupling to electromagnetic fields [8]. For instance, electro-
magnetic waves propagating through a strong magnetic
field can produce axions, which, unlike light, can pass
unhindered through physical obstacles and be detected if
they are converted back to electromagnetic waves. This
leads to the “light-shining-through-a-wall” approach of
axion searches [9,10], employed by experiments such as
ALPS II [11]. For a review, see Refs. [12,13].
Additionally, due to the same coupling to photons, an

axion background acts as a circularly birefringent medium,
causing light propagating through it to experience different
phase velocities for each circular polarization [14]. This has
inspired numerous experimental proposals to search for
axion DM using optical cavities, where this birefringent
effect can be precisely measured [15–23]. Remarkably, this
has also sparked a synergy between the communities

searching for gravitational waves (GWs) and axions,
as GW detectors such as LIGO and Virgo use powerful
optical cavities that can also be repurposed for axion
searches [21–24].
In this work, we explore an additional aspect of this

synergy by highlighting that optical cavities optimized for
detecting axion-induced birefringence can also function as
probes for GWs. This is because a varying gravitational
background can act as a birefringent medium, altering the
polarization of light as it propagates through it. We refer the
reader to Ref. [25] for a textbook treatment. In fact,
experiments leveraging this effect in resonant cavities have
been proposed to detect GWs [26–31]. In this context, we
present a unified formalism that describes the birefringent
effects of both axions and GWs within the same frame-
work. Furthermore, we illustrate this for several optical
cavities similar to those used in the ALPS II experiment,
which could be adapted to measure polarization effects. In
this way, we derive future sensitivity projections for
detecting axion DM or high-frequency GWs and show
that this approach is competitive with other experimental
methods.
A compelling motivation for this investigation is the fact

that no known astrophysical object is both small and dense
enough to emit GWs at frequencies above 10 kHz.
Detecting GWs at such high frequencies would therefore
suggest the presence of physics beyond the Standard Model
of particle physics. Indeed, recent years have seen a
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growing community [32] interested in searching for high-
frequency GWs, driven by the goal of detecting early-
Universe signals predicted to exist by several models of
physics beyond the Standard Model. Our work therefore
complements efforts in this direction.
This work is organized as follows. In Sec. II we outline

the fundamental principles of geometric optics that enable
the study of the polarization evolution of light in a slowly
varying background of axions or gravitational fields, with
particular emphasis on placing both phenomena in a unified
framework. In Sec. III we apply these principles to resonant
cavities, while in Sec. IV we focus on modifications to the
ALPS II cavities and present the corresponding sensitivity
prospects on the axion-photon coupling and GW strain.
Finally, in Sec. V we provide our conclusions, and in the
appendices we detail the geometric-optics limit in the
presence of axions and GWs. Throughout, we adopt a
Minkowski metric with ημν ¼ diagð−þþþÞ and work
with natural Heaviside-Lorentz units (ℏ ¼ c ¼ 1).
Moreover, Greek indices always represent spacetime var-
iables, while Latin indices exclusively represent three-
dimensional variables.

II. GEOMETRIC OPTICS IN THE PRESENCE
OF AXION DM OR GWs

We aim to study the polarization of light as it propagates
in the background of axion DM or a passing GW. We focus
on light with typical wavelengths, λ ¼ 1=fL, much smaller
than the characteristic length scale, d, over which the
background varies. Specifically, in the context of an optical
laser, which we analyze below, the wavelength lies in the
optical range, while d is assumed to be in the millimeter
range or larger. Then, the corresponding electromagnetic
field has a phase that changes very fast, while its amplitude
remains nearly constant. Under these circumstances,
Maxwell’s equations can be solved by formally casting
the field as

Fμν ¼ ðfμν þOðϵÞ þ…Þeiθ=ϵ ð2:1Þ

and expanding on ϵ, a fictitious parameter eventually set to
unity. This expansion is useful because a term multiplied by
ϵn is of order ðλ=dÞn. The leading term in this expansion is
the geometric-optics limit of electromagnetism [33].
For illustration, let us first examine geometric optics in
flat spacetime, using a standard experimental setup as the
background. While this analysis will simply show that
the polarization remains constant as light follows null
geodesics, it serves as a basis for generalizing to the cases
of axions and GWs. First, note that ∂λFμν ¼ iðfμν∂λθÞ 1ϵ þ
Oðϵ0Þ. Defining kν ≡ ∂νθ, the ordinary Maxwell’s equa-
tions

∂νFμν ¼ 0; ∂
λFμν þ ∂

μFνλ þ ∂
νFλμ ¼ 0 ð2:2Þ

lead to

kνfμν ¼ 0 and kλfμν þ kμfνλ þ kνfλμ ¼ 0: ð2:3Þ

Multiplying the second equation by kν and using the first
relation, we obtain

kνkν ¼ 0: ð2:4Þ

Hence, kμ can be thought of as a four-momentum, defining
the tangent vector of null geodesics,

kμ ¼ dxμ

dl
or; equivalently;

dxμ

dt
¼ kμ

k0
: ð2:5Þ

On the other hand, the wave equation for the electro-
magnetic field—which is, of course, a consequence of
Eq. (2.2)—gives rise to

∂ρ∂
ρFμν ¼ ∂ρθ∂

ρθ

�
−fμν

1

ϵ2
þ � � �

�

þ ð2i∂ρfμν∂ρθ þ ifμν∂ρ∂ρθÞ
1

ϵ
þOðϵ0Þ ¼ 0:

The first term always vanishes due to Eq. (2.4), while the
second vanishes only if

kρ∂ρfμν ¼ −
1

2
fμν∂ρkρ: ð2:6Þ

In particular, if we define the polarization vector as the
direction of the electric field

eμ ≡ f0μffiffiffiffiffiffiffiffiffiffiffiffiffi
f0νf�0ν

p ; ð2:7Þ

Eq. (2.6) indicates that kρ∂ρei ¼ 0. This can also be
written as

dei

dt
¼ 0; ð2:8Þ

because, according to Eq. (2.5), along null geodesics
kρ∂ρ ¼ k0 d

dt. Although this analysis is purely classical,
the interpretation of these equations—and, consequently, of
geometric optics—can be phrased as follows: the vector kμ

represents the four-momentum of photons, while ei spec-
ifies their polarization, which remains unchanged as they
propagate along null geodesics.

A. The case of axion DM

The geometric-optics limit can also be applied to axion
electrodynamics, that is, to the case where the Lagrangian
of Maxwell’s equations is augmented with
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L ¼ −
1

4
gaγγaðtÞFμνF̃μν ¼ gaγγaðtÞE · B; ð2:9Þ

where aðtÞ is a slowly changing axion field. If axions
comprise the DM of the galaxy,

aðtÞ ¼ a0 sinðmatþ φÞ; ð2:10Þ

wherema is the axion mass and a0 is fixed by the local DM
density according to ρa ¼ a20m

2
a=2 ¼ 0.3 GeV=cm3 (see,

e.g., [13]). Nevertheless, due to their velocity dispersion in
the galaxy, va, the axion field is coherent only for a time [13]

τ ¼ 2π

mav2a
≈
10−16 eV

ma
year: ð2:11Þ

To compute the evolution of the polarization vector in the
geometric-optics limit, we follow the same procedure out-
lined above, with further details provided in Appendix A. In
particular, we find that Eq. (2.8) generalizes to

de
dt

¼ −
1

2
gaγγȧðtÞk̂ × e: ð2:12Þ

If the initial polarization is linear, this equation states that the
vector e rotates with an angular velocity gaγγȧðtÞ=2 around
the direction k̂, while its absolute magnitude and the angle
with respect to this direction do not change. For right (left)
circular polarizations, k̂ × e ¼ −iλe, where λ isþ1 (−1). At
leading order in gaγγ , Eq. (2.12) implies that left- and right-
polarized light propagates with different phase velocities,
namely, 1þ λδcðtÞ, with

δcðtÞ ¼ gaγγȧðtÞ
2ωL

¼ gaγρaffiffiffi
2

p
ωL

cosðmatþ φÞ; ð2:13Þ

where ωL ¼ 2πfL is the frequency of the electromagnetic
wave. This is the origin of the term birefringence, which
resembles the Faraday effect, amagneto-optical phenomenon
where the polarization of linearly polarized light rotates as it
propagates through a magnetic field. In fact, such an effect
arises from an equation completely analogous to Eq. (2.12).

B. The case of curved spacetimes

The geometric-optics formalism leading to Eqs. (2.3)
and (2.6) can also be extended to a curved spacetime and, in
particular, to GWs. For this, we note that the corresponding
Maxwell’s equations can be obtained from those in flat
spacetime by replacing ordinary partial derivatives with
covariant derivatives. Hence, in an arbitrary spacetime, the
equations of geometric optics read1

kνfμν ¼ 0; kλfμν þ kμfνλ þ kνfλμ ¼ 0; and

kρ∇ρfμν ¼ −
1

2
fμν∇ρkρ: ð2:14Þ

As before, they also imply

kμkμ ¼ 0: ð2:15Þ

Moreover, a careful algebraic manipulation of Eq. (2.14),
outlined in Appendix B, shows that

kρ
�
∂ρei −

1

k0
Γ0
ρλk

ieλ þ Γi
ρλe

λ

�
¼ 0; ð2:16Þ

where eμ is defined as in Eq. (2.7). In particular, e0 ¼ 0
everywhere. We remind the reader that the position of
indices is now important. As above, along null geodesics,
Eqs. (2.5) and (2.16) give the evolution of the polarization
vector as

dei

dt
¼

�
Γ0
ρλ

dxi

dt
− Γi

ρλ

�
dxρ

dt
eλ: ð2:17Þ

This must be compared with the analogous Eqs. (2.12) and
(2.8) for a flat spacetime with and without axions, respec-
tively. As usual, the metric perturbation, hμν, associated
with the GW enters the Christoffel symbols as

Γμ
ρλ ¼

1

2
ημσð∂ρhσλ þ ∂λhσρ − ∂σhρλÞ: ð2:18Þ

We are interested in applying Eq. (2.17) to a passing
GW in the transverse-traceless frame. Assuming it comes
from a fixed direction, q̂, and allowing for an arbitrary
frequency,

hijðt;xÞ ¼
Z

∞

−∞
dfh̃ðfÞe−2iπfðt−q̂·xÞeijðq̂Þ; ð2:19Þ

in which

eijðq̂Þ ¼
8<
:

UiUj−ViVjffiffi
2

p ðþ polarization for theGWÞ;
UiVjþViUjffiffi

2
p ð× polarization for theGWÞ;

ð2:20Þ
with

q̂ ¼ sin θhêρ þ cos θhêz; V ¼ êϕh
; U ¼ V × q̂:

ð2:21Þ

Finally, let us note that, for a passing GW, both the
polarization vector change and the corresponding
momentum kμ change. This can be easily seen from

1In this regard, it is important to mention that the derivation of
Eqs. (2.3) and (2.6) was done without assuming ∂

α
∂
β ¼ ∂

β
∂
α and

they are therefore equally valid for covariant derivatives.
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ðημν þ hμνÞkμkν ¼ 0, as follows from Eq. (2.15). The
solution to this equation is known to be given by the
parallel transport of the four-momentum along null geo-
desics,

dkμ

dt
¼ −Γμ

ρλ

dxρ

dt
kλ

k0
: ð2:22Þ

This should be comparedwith Eq. (2.17), which has an extra
term whose origin has to do with the fact that e0 ¼ 0. More
specifically, it stems from the fact that eμ ¼ f0μ is not a true
vector.2 Moreover, it is possible to show from Eqs. (2.17)
and (2.22) that

kiei ¼ kμeμ ¼ 0;

ðδij þ hijÞeiej� ¼ ðημν þ hμνÞeμeν� ¼ 1: ð2:23Þ

Hence, as expected for polarization vectors, their evolution
ensures that they remain orthogonal to the momentum,
which also changes due to the parallel transport in Eq. (2.22).

C. Unified treatment

The evolution of the polarization vector in the presence
of a background of axion DM or GWs can then be
expressed as

dei

dt
¼ MijðtÞej; with MijðtÞ≡

Z
∞

−∞
dfe−2iπftM̃ij:

ð2:24Þ

A detailed calculation based on Eqs. (2.12) and (2.17)
yields

M̃ij ¼
�−δc̃ðfÞϵijnkn for axions;

½ð1 − k̂ · q̂Þeijðq̂Þ − einðq̂Þk̂nq̂j þ ejnðq̂Þk̂nq̂i − ejnðq̂Þk̂nk̂i� × iπfh̃ðfÞe2iπfq̂·xðtÞ for GWs:
ð2:25Þ

Here δc̃ðfÞ is the ordinary Fourier transformof δcðtÞ,
defined in terms of the axion field in Eq. (2.13).
In contrast, M̃jGW is not a proper Fourier transform

because of its time-dependent term e2iπfq̂·xðtÞ, where xðtÞ is
the photon trajectory and k̂ ¼ dx=dtþOðh̃Þ, as defined in
Eq. (2.5). We nevertheless keep this notation as it will be
useful below. The previous equations motivate us to define
the signal

sðfÞ ¼
�
δc̃ðfÞ for axions;

h̃ðfÞ for GWs:
ð2:26Þ

For instance, for a monochromatic signal—and assuming it
to be a cosine—we have

sðfÞ ¼ 1

2
s0δðf − f0Þ þ ðf → −fÞ; ð2:27Þ

where f0 is either the GW frequency or ma=2π, and s0
represents the amplitude of either the GW or the axion-
induced phase velocity difference [see Eq. (2.13)].
We emphasize that Eq. (2.26) provides the comparison

on equal footing between axions and GWs. Concretely, this
equation shows that the GW strain is to be compared with
the difference of phase velocities induced by axions, which

is, in turn, proportional to gaγγ when the DM density is
fixed to the observed value, cf. (2.13).

III. APPLICATION TO RESONANT CAVITIES

A. Evolution in the absence of a background

Before discussing a more realistic setup in the next
section, let us illustrate the use of Eq. (2.24) for a simplified
configuration: a p-polarized laser approaching the region
between two stationary mirrors, i.e., an optical cavity,
propagating back and forth multiple times before exiting;
see Fig. 1. With the notation introduced above the polari-
zation vector associated with the laser is described3 by
p̂ ¼ ð1; 0; 0Þ. If no axion DM or GW is present, the
resulting light remains p polarized. To see this more clearly
and to introduce notation that will be useful later, let us
calculate the resulting electric field at mirror 1, located at
z ¼ 0. We adopt a coordinate system such that, in the
absence of axions or GWs, the laser propagates along the z
direction starting at t ¼ −∞, with the two mirrors located
at z ¼ 0 and z ¼ l. As the field enters the cavity, it is
attenuated by the transmission coefficient of the first mirror.
Once the field is inside the cavity, it then propagates the
distance l between the mirrors and is reflected by the
second mirror, receiving a small attenuation in accordance
with the transmission coefficient of the mirror. The light
then propagates back to the first mirror, where it is reflected

2For a textbook discussion in the context of the cosmic
microwave background polarization, see Appendix G of Ref. [25],
which derived Eq. (2.17) by exploiting this property.

3Throughout, boldface vectors are contravariant, that is, e
refers to ei.
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and again attenuated slightly. Thus, with each round trip
through the cavity, a small portion of power leaves the
cavity, either through transmission at one of the mirrors, or
via some unintended loss channel such as scattering at the
mirror surface, absorption in the mirror coatings, or
clipping on the free aperture of the system. The field
transmission coefficients for the mirrors will be referred to
as t1 and t2, such that they have power transmissivity of t21
and t22, respectively. The total optical losses in the field
through one full round trip through the cavity are denoted
by l, with l2 giving the total excess power lost per round
trip. We define the reflectivity coefficients of the mirrors
using the following equations such that they include the
round trip excess optical losses:

1 ¼ r2i þ t2i þ l2=2; with i ¼ 1; 2: ð3:1Þ

After completing a round trip through the cavity, the field
interferes with the newly injected field at the first mirror.
Under these circumstances, at t ¼ 0, the electric field at
mirror 1 is the superposition of several waves, each of
which entered the region at t ¼ −2nl for a certain integer n.
Hence,

E1ð0Þ ¼
�X∞

n¼0

eiϕn

Yn
j¼0

Lj

�
t1Einð0Þ; ð3:2Þ

with

ϕn ¼ 2nωLl and Lj ¼ r1P × r2P: ð3:3Þ

Here, Einð0Þ is the incoming field, (see Fig. 1), while E →
LjE represents the change in the electric field after one
complete round trip through the cavity.4 In addition, ϕn is
the relative phase accumulated by the field from t ¼ −2nl
to t ¼ 0, while P is a matrix giving the specular image of
the photon three-momentum. This matrix inverts the three-
momentum while leaving the vectors normal to it invariant.
Due to this,

P2 ¼ I: ð3:4Þ

Putting these results together, we obtain the well-known
result

E1ð0Þ ¼
�X∞

n¼0

ðr1r2e2iωLlÞnI
�
t1Einð0Þ

¼ t1
1 − r1r2e4iπfLl

Einð0Þ: ð3:5Þ

Therefore, due to the reflection within the mirrors, the
incoming electric field is amplified, with a magnitude that
reaches a maximum value when 2fLl∈Z. If E0 ∝ p̂ as we
assume here, no s-polarized component is obtained as ŝ† ·
E ¼ 0 [where we define ŝ ¼ ð0; 1; 0Þ]. The frequency
spacing between these resonances is known as the free
spectral range.

Er( t = -2l )

Ec(t = -4l)

Ec(t = -2l )

Ein( t = -2l )

Et(t = -3l)

Et(t = -l )

Er( t = 0) Ec(t = 0)

Ein( t = -4l)

( j = 1)

( j = 2)

n = 2

Ein( t = 2l)

t

( j = 1)

n = 1

Ein( t = 0)

t

z = lz = 0

( j = 0)

n = 0

z( j = 0) ( j = 0)

Ein(t = -4l)

Er(t = -4l)

z

z = lz = 0

z = lz = 0

Ein( t = 0)

t

z

t

z

z = lz = 0

FIG. 1. The laser beam within the cavity can be seen as a superposition of waves that enter the cavity at t ¼ −2nl. Here n labels the
time at which the waves enter the cavity and j labels each bounce. For example, the wave that enters at t ¼ −4l corresponds to the n ¼ 2
term in the sum of Eq. (3.2) and travels two round trips labeled as j ¼ 1 and j ¼ 2. The full sum is then shown as the diagram on the
right.

4For a cavity with no time-dependent birefringence, Lj does
not depend on the index j; however, for a background axion field
or GW, we will see that that is not the case.
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B. The effect of axion DM or GWs

Equation (3.2) can be extended to account for the
presence of axion DM or GWs. To calculate the corre-
sponding Lj and ϕn, let us list the possible effects resulting
from them:
(1) Motion of the mirrors: Axions do not move the

mirrors. For GWs, we are interested in frequencies
high enough that the experimental apparatus
(mirrors, lasers, etc.) can be considered in free fall.
Specifically, this requires GW frequencies to be
much higher than those of the mechanical resonan-
ces (see, e.g., [34]), which imposes a lower bound of
the order vs=d, where vs is the sound speed
and d represents the characteristic device size.
Conservatively assuming d is on the order of a
few centimeters and taking a typical vs ∼ 103 m=s,
the free-fall limit sets a lower frequency of
approximately 105 Hz. Moreover, as is well known,
in the transverse-traceless frame adopted here,
objects in free fall initially at rest do not move5

when a GW passes [33]. Therefore, we can assume
that the mirrors do not move for axion DM or GWs
with frequencies above 105 Hz. Hence, as above, at
t ¼ 0 the light at mirror 1 is a superposition of all
waves that enter the cavity at t ¼ −2nl; see Fig. 1.

(2) Polarization change: As light propagates
between points a and b, its electric field, E ¼ jEje,
changes due to variations in both magnitude and
direction,

Eb ¼ Ea þ
Z

b

a
dt0

�
djEj
dt

eþ jEjMe

�
; ð3:6Þ

with the matrixM given by (2.24). While for axions
this matrix does not depend on the photon trajectory,
for GWs it does, requiring careful tracking of the
back-and-forth bounces of light within the mirrors.
This marks a qualitatively important distinction
between axions and GWs that will be detailed below,
together with the relevant limits of integration and
the argument of M. Moreover, as we expect the
axion to be weakly coupled and the GW to have a
small amplitude, Eq. (3.6) can be simplified by
expanding on the signal, sðfÞ, introduced in
Eq. (2.26). Then, since both M and djEj=dt are
proportional to sðfÞ, the polarization vector in the
integrand of Eq. (3.6) can be replaced by its initial
value at a. Hence,

Eb ¼ Ea þ
�Z

b

a
dt0

djEj
dt

I þ
Z

b

a
dt0jEjM

�
ea

¼
�
ð� � �ÞI þ

Z
b

a
dt0M

�
Ea: ð3:7Þ

As explained below, and similarly to the case with-
out a background, the term proportional to I does not
contribute to the overall change in polarization.
Consequently, its coefficient will not be specified
hereafter.6

(3) Reflection and transmission: For the case of GWs, as
explained above, the experimental apparatus and its
components are assumed to be in free fall. This allows
the use of standard Fresnel’s laws for reflection and
transmission, which can be phrasedE → PE, where
the matrix P is associated with the specular image of
the three-momentum of photons. Although this
momentum is affected by the GW according to
Eq. (2.22), the resulting matrix can be cast as

P ¼

0
B@

1 0 0

0 1 0

0 0 −1

1
CAþOðsÞ: ð3:8Þ

As axions do not affect the reflection of the laser,
this equation also applies in their case [in fact,without
the OðsÞ piece]. We also note that at
zeroth order in sðfÞ, the distinction between covar-
iant and contravariant indices in E → PE is incon-
sequential.

(4) Phase shift: The matrix M, by construction, does
not account for the global phase in Eq. (2.1)
associated with the propagation of the beam entering
the cavity at t ¼ −2nl. To account for this, in
Eq. (3.2) we include

ϕn ¼ 2nωLlþOðsÞ: ð3:9Þ

We note that the standard technique for detecting
GWs relies on measuring the OðsÞ contribution.
However, after accounting for the polarization
change, this becomes a second-order effect, as will
be clarified below. Therefore, we do not specify it
further.

Having listed all of the effects associated with an axion or
GW background, we can now generalize Eq. (3.2).
Discriminating its different contributions, the matrix Lj,
which accounts for the change in the electric field after one
bounce, is then given by

5We emphasize that this depends on the adopted coordinate
frame. For instance, in the proper detector frame, the mirrors do
move if the apparatus is in free fall.

6This coefficient is essential for calculating the effect of the
background on the p polarization. Beyond the geometric limit, it
provides an additional enhancement [35].
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Lj ¼ r1P|{z}
Reflection off mirror 1

×

�
ð� � �ÞI þ

Z
l

0

dt0Mðt0 − ð2jþ 1ÞlÞ
����
xðt0Þ¼ẑðl−t0Þ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Path frommirror 2 tomirror 1

× r2P|{z}
Reflection off mirror 2

×

�
ð� � �ÞI þ

Z
l

0

dt0Mðt0 − ð2jþ 2ÞlÞ
����
xðt0Þ¼ẑt0

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Path frommirror 1 tomirror 2

: ð3:10Þ

The arguments ofM can be readily understood from Fig. 1. Keeping only linear terms in sðfÞ and exploiting Eq. (3.4), we
find

Lj ¼ ð� � �ÞI þ r1r2

�Z
l

0

dt0PMðt0 − ð2jþ 1ÞlÞP
����
xðt0Þ¼ẑðl−t0Þ

þ
Z

l

0

dt0Mðt0 − ð2jþ 2ÞlÞ
����
xðt0Þ¼ẑt0

�
:

The product entering Eq. (3.2) can be performed in a similar manner,

Yn−1
j¼0

Lj ¼ ð� � �ÞI þ ðr1r2Þn
�Xn−1
j¼0

�Z
l

0

dt0PMðt0 − ð2jþ 1ÞlÞP
����
xðt0Þ¼ẑðl−t0Þ

þ
Z

l

0

dt0Mðt0 − ð2jþ 2ÞlÞ
����
xðt0Þ¼ẑt0

�	
: ð3:11Þ

Meanwhile, employing the matrix M̃ introduced in Eqs. (2.24), we find

Mðt0 − ð2jþ 2ÞlÞ
����
xðt0Þ¼ẑt0

¼
Z

∞

−∞
dfe−2iπfðt0−ð2jþ2ÞlÞM̃

����
xðt0Þ¼ẑt0

; ð3:12Þ

PMðt0 − ð2jþ 1ÞlÞP
�����
xðt0Þ¼ẑðl−t0Þ

¼
Z

∞

−∞
dfe−2iπfðt0−ð2jþ1ÞlÞPM̃P

����
xðt0Þ¼ẑðl−t0Þ:

ð3:13Þ

In this form, the sum over j of Eq. (3.11) can be performed easily, yielding the following result:

Yn−1
j¼0

Lj ¼ ð� � �ÞI − ðr1r2Þn
�Z

∞

−∞
df

e4iπfln − 1

e−4iπfl − 1

Z
l

0

dt0e−2iπft0
�
e−2πiflPM̃P

����
xðt0Þ¼ẑðl−t0Þ

þ M̃

����
xðt0Þ¼ẑt0

�	
: ð3:14Þ

According to Eq. (3.2), the total field inside the cavity is given by

E1ð0Þ¼ð���Þt1Einþ t1
X∞
n¼1

eiϕnðr1r2Þn
�
Ein−

Z
∞

−∞
df

e4iπfln−1

e−4iπfl−1

Z
l

0

dt0e−2iπft0
�
e−2iπflPM̃P

����
xðt0Þ¼ẑðl−t0Þ

þM̃

����
xðt0Þ¼ẑt0

�
Ein

	
:

ð3:15Þ

The corresponding s-polarized piece is therefore

ŝ† ·E1ð0Þ ¼ −
X∞
n¼1

ðr1r2Þneiϕn

Z
∞

−∞
df

e4iπfln − 1

e−4iπfl − 1

× ŝ†
�
e−2iπfl

Z
l

0

dt0e−2iπft0PM̃P

����
xðt0Þ¼ẑðl−t0Þ

þ
Z

l

0

dt0e−2iπft0M̃
����
xðt0Þ¼ẑt0

�
t1Ein: ð3:16Þ

AsM ¼ OðsÞ, the phase ϕn in the previous equation can be approximated at zeroth order in sðfÞ. Employing Eq. (3.9) for
this, we find at leading order in sðfÞ
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ŝ† · E1ð0Þ ¼ t1jEinj
Z

∞

−∞
df

�
r1r2e−4iπfLl

e−4iπfLl − r1r2

��
1

e−4iπðfLþfÞl − r1r2

�

× ŝ†
�
e−2iπfl

Z
l

0

dt0e−2iπft0PM̃P

����
xðt0Þ¼ẑðl−t0Þ

þ
Z

l

0

dt0e−2iπft0M̃
����
xðt0Þ¼ẑt0

�
p̂: ð3:17Þ

This motivates us to define a response function due to
polarization change as

ŝ† · E1ðtÞ ¼ t1jEinj
Z

∞

−∞
dfsðfÞHðfÞe2iπft; ð3:18Þ

with

sðfÞHðfÞ ¼ H0ðfÞ
Z

l

0

dt0e−2iπft0 ŝ†

× ðe−2iπflPM̃Pjxðt0Þ¼ẑðl−t0Þ þ M̃jxðt0Þ¼ẑt0 Þp̂;
ð3:19Þ

and

H0ðfÞ ¼
�

r1r2e−4iπfLl

e−4iπfLl − r1r2

��
1

e−4iπðfLþfÞl − r1r2

�
: ð3:20Þ

These response functions are reported in the upper panel of
Table I.7 This is a key result of this paper. Before discussing
its implications for each specific case, let us point out some
general features of HðfÞ. The integral in Eq. (3.19) gives
the relative amplitude of s-polarized component after one
round trip of the laser through the cavity, whereas the factor
H0ðfÞ accounts for the power buildup of the cavity.

On the one hand, the first factor inH0ðfÞ is independent
of the axion or the GW, and is nearly the same enhancement
as the one that the p polarization receives; see Eq. (3.5). If
the mirrors are tuned so that 2fLl∈Z, that is, e−4iπfLl ¼ 1,
we find

H0ðfÞ ¼
�

r1r2
1 − r1r2

��
1

e−4iπfl − r1r2

�

≈
F=π

e−4iπfl − r1r2
; with F ¼ π

ffiffiffiffiffiffiffiffiffi
r1r2

p
1 − r1r2

: ð3:23Þ

In this expression, we use the fact that the mirrors are
designed to be highly reflective such that 1 − r1;2 ≪ 1.
Hence, the response functions receive a large boost from
the finesse of the cavity, F , which reaches values of order
100 000 for cavities with lengths of a few hundred meters.
Due to this boost, from now on we assume that the laser is
held on the cavity resonance, that is, we take e−4iπfLl ¼ 1.
On the other hand, the second factor in H0ðfÞ depends on

TABLE I. Response functions for axion DM and GWs when
the laser is held on the cavity resonance.

HðfÞ=H0ðfÞ
Axions − ifL

f ð1 − e−2iπflÞ2

h× ð1−e−2iπflÞ2þ2e−2iπflð1−e2iπfl cos θh Þþ2ð1−e−4iπflÞ cos θh cos2 ϕh

2
ffiffi
2

p

h×ðf ¼ 1=2lÞ 1þeiπ cos θhffiffi
2

p

h×ðf ¼ 1=lÞ 1−e2iπ cos θhffiffi
2

p

hþ ð1 − e−4iπflÞ ð3þcos 2θhÞ sin 2ϕh

8
ffiffi
2

p

hþðf ¼ 1=2lÞ 0
hþðf ¼ 1=lÞ 0

Axions (QWP) − ifL
f ð1 − e−4iπflÞ

h× (QWP) 1−e−4iπflþ2ð1þe−4iπfl−2e−2iπflð1−cos θhÞÞ cos θh cos2 ϕh

2
ffiffi
2

p

h× (QWP,
f ¼ 1=2l)

ffiffiffi
2

p ð1þ eiπ cos θhÞ cos θh cos2 ϕh

h× (QWP,
f ¼ 1=l)

ffiffiffi
2

p ð1 − e2iπ cos θhÞ cos θh cos2 ϕh

hþ (QWP) ð1þ e−4iπfl − 2e−2iπflð1−cos θhÞÞ ð3þcos 2θhÞ sin 2ϕh

8
ffiffi
2

p

hþ (QWP,
f ¼ 1=2l)

ð1þ eiπ cos θhÞ ð3þcos 2θhÞ sin 2ϕh

4
ffiffi
2

p

hþ (QWP,
f ¼ 1=l)

ð1 − e2iπ cos θhÞ ð3þcos 2θhÞ sin 2ϕh

4
ffiffi
2

p

7For their derivation, we use

ŝ†PM̃Pepjxðt0Þ¼ẑðl−t0Þ

¼ ϵ ×

8>>>><
>>>>:

−ðPŝ × PepÞ · Pk for axions;

iωð−1þ2 cos θhcos2ϕhÞffiffi
2

p cos2


θh
2

�
e2iπfq̂·xðt0Þ for GWs ð×Þ;

iωð1þcos2θhÞ sin 2ϕh

2
ffiffi
2

p cos2


θh
2

�
e2iπfq̂·xðt0Þ for GWs ðþÞ;

ð3:21Þ

and

ŝ†M̃epjxðt0Þ¼ẑt0

¼ ϵ ×

8>>><
>>>:

−ðŝ × epÞ · k for axions;

iωð1þ2 cos θhcos2ϕhÞffiffi
2

p sin2


θh
2

�
e2iπfq̂·xðt0Þ for GWs ð×Þ;

iωð1þcos2θhÞ sin 2ϕh

2
ffiffi
2

p sin2


θh
2

�
e2iπfq̂·xðt0Þ for GWs ðþÞ:

ð3:22Þ
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the sidebands induced by the axion or the GW, namely,
fL þ f. For instance, for the monochromatic signal in
Eq. (2.27), ŝ† ·E1ðtÞ will have two terms associated with
sidebands at fL � f0. Then, a further resonance boost is
expected if one of these sideband frequencies is an integer
multiple of 1=2l.
The left panel of Fig. 2 illustrates the nontrivial angular

dependence of these functions forGWsmatching the second
resonant frequency. Let us also note that for θh ¼ 0, the GW
response functions do not vanish in general. At first glance,
this appears to contradict Ref. [36] (see also Ref. [26]),
which claimed that there can be no polarization change if the
laser propagates parallel to the GW and no other medium
(such as a dielectric) is present. However, a closer inspection
of Eqs. (3.21) and (3.22) indicates that our results actually
are in agreement with that: the part of the response function
associated with propagation parallel to the GW vanishes,
while the term corresponding to propagation antiparallel to
the GW does not. Having mirrors reflecting the laser is
therefore crucial.

C. Response function with a quarter-wave plate

To further exploit polarization effects, one might place a
birefringent device, such as a quarter-wave plate (QWP),
between the two mirrors. For illustration, we consider a pair
of QWPs, each positioned in close proximity to one of the
mirrors such that at each of them e → Qe, where

Q ¼

0
B@

1 0 0

0 −i 0

0 0 1

1
CA: ð3:24Þ

Hence, the effect of each QWP is to introduce a relative
phase difference of π=2 between the two polarization
components. Note that we assume that both QWPs have
the same Q, i.e., their fast axes are assumed to be aligned
with the vertical. Computing the response functions is
analogous to the case discussed above. In the absence of an
axion or a GW background, the electric field E1ð0Þ to the
right of the QWP near mirror 1 is also given by Eq. (3.2).
However, instead of Eq. (3.3), here we have

FIG. 2. Normalized antenna patterns of the response functions at the second cavity resonance, f ¼ 1=l, when the laser is held on the
cavity resonance. The pattern in the top left plot consist of multiple high-signal vertical stripes separated by regions of near-zero signal.
In the bottom left plot there is not signal and the color is homogeneous and correspond to 0. The pattern of the plots in the right is similar,
with ellipses where at the center we have the highest signal. The background color here correspond to the zero value.
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Lj ¼ r1P0 × r2P0; with P0 ¼ QPQ: ð3:25Þ

Clearly, the matrix P0 satisfies Eq. (3.4), as it describes the
reflection off of a QWP, i.e., the effect of light passing
through a QWP, being reflected, and then passing through
the QWP again. Applying this process twice simply yields

the identity. Consequently, we have Lj ¼ r1r21, implying
that the presence of two QWPs does not affect the result of
Eq. (3.5). In particular, the laser remains p polarized.
Similarly, in the presence of an axion or a GW background,
instead of Eq. (3.10) we now have

Lj ¼ Q|{z}
QWP

r1P|{z}
Reflection off mirror 1

Q|{z}
QWP

×

�
ð� � �ÞI þ

Z
l

0

dt0Mðt0 − ð2jþ 1ÞlÞ
����
xðt0Þ¼ẑðl−t0Þ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Path frommirror 2 tomirror 1

× Q|{z}
QWP

r2P|{z}
Reflection off mirror 2

Q|{z}
QWP

×

�
ð� � �ÞI þ

Z
l

0

dt0Mðt0 − ð2jþ 2ÞlÞ
����
xðt0Þ¼ẑt0

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Path frommirror 1 tomirror 2

: ð3:26Þ

The response functions with the QWP can be obtained from
those without the QWP by replacing P → P0. Plugging8

this expression into Eq. (3.19), we obtain the results in the
lower panel of Table I. Several comments are in order. The
axion response function without the QWP exactly matches
the one reported in Ref. [22], calculated by a slightly
different method. Table I shows that the suppression in this
response function arises when f ≪ 1=l can be avoided by
placing the QWPs. This is particularly useful for axion DM
because, as we will see, this improves the sensitivity in the
low mass range at the cost of suppressing the resonant
peaks at higher frequencies.
Likewise, the QWPs are also instrumental for GWs with

þ polarization. Without them, due to the multiplicative
factor, 1 − e−4iπfl, the response function is suppressed with
respect to that of × polarization when the sidebands are in
resonance.9 This is also evident in Fig. 2. This is reminis-
cent of the coupling of GWs to toroidal axion haloscopes,
where, in a similar fashion, the signal associated with the
þ mode is suppressed with respect to the × polarization
when the readout device is circular. As discussed in

Refs. [37,38], this stems from selection rules arising from
symmetry considerations. Although the suppression occurs
only when the sidebands are in resonance, the method
proposed here is most effective in that regime; otherwise,
the polarization rotation is of the order of the GW
amplitude.10 This motivates the use of a resonant cavity
to harness resonant boosts and the QWPs to eliminate
suppressions.
Before discussing realistic setups, let us note that there

are alternative formalisms to derive the response functions.
For instance, instead of following the trajectories of laser
rays as in geometric optics, one can directly solve
Maxwell’s equations in curved spacetimes with appropriate
boundary conditions. This approach, significantly harder
for realistic experimental configurations, has been applied
to simple setups in the case of high-frequency GWs [35],
yielding results that go beyond the geometric optics limit
(see footnote 6). We also note that these two approaches are
equivalent only within the geometric-optics limit, a con-
dition that can be safely assumed for the laser beams
employed in observatories such as LIGO or LISA for which
f ≪ fL, but this does not necessarily hold for high-
frequency GWs.

D. Realistic setups

A few modifications to the arrangement of Fig. 1 will
enable us to apply our formalism to a realistic experimental
setup. For concreteness, we propose the setup depicted in
Fig. 3, which consists of a cavity equipped with a detection
system capable of measuring the polarization change
induced by the background of axions or GWs. On the left
side of the diagram, an electro-optic modulator is used to
induce phasemodulation sidebands on themain laser, so that
the Pound-Drever-Hall (PDH) frequency stabilization

8In more detail, instead of Eq. (3.21), we now have

ŝ†P0M̃P0epjxðt0Þ¼ẑðl−t0Þ

¼ ϵ×

8>>>><
>>>>:

−ðP0ŝ×P0epÞ ·P0k¼−ðŝ×epÞ ·k foraxions;

− iωð−1þ2cosθhcos2ϕhÞffiffi
2

p cos2


θh
2

�
e2iπfq̂·xðt0Þ forGWsð×Þ;

− iωð1þcos2θhÞsin2ϕh

2
ffiffi
2

p cos2


θh
2

�
e2iπfq̂·xðt0Þ forGWsðþÞ:

ð3:27Þ
9Here we should emphasize that the definitions of þ and ×

polarizations given in Eq. (2.20) are coordinate dependent. The
coordinate-independent statement is that only a single combina-
tion of the GW polarizations will be unsuppressed for a given
polarization state of the laser. See Ref. [37] for a related
discussion in the context of axion haloscopes.

10This statement remains valid even beyond the geometric
limit (see, e.g., [35]).
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technique can be used to hold its frequency on resonance
with the cavity [39,40]. The laser then passes through a
Faraday isolator (FI) before being incident on the cavity. In
reflection of the cavity, the p-polarized light is reflected by
the port on the left side of the FI and is then incident on the
photodetector (PD) PDp PDp, which is used as the sensor for
the PDH frequency laser stabilization system. The s-polar-
ized light in reflection of the cavity is reflected at the port on
the right side of the FI and is incident on PDs. This is the PD
used to sense the signal associated with GWs or axion DM.
On the right side of the diagram is the length control system
for the cavity. Here a reference laser is also frequency
stabilized to the cavity via the PDH technique, but at a
different free spectral range from the main laser.11 The
interference beat note between the two lasers is then incident
onPDc. The phase of the interference beat note can be sensed
by mixing the electronic signal from PDc with a stable
oscillator, thus revealing the length changes in the cavity.
This signal can also be used to generate an error signal for a
feedback control loop that can maintain the absolute length
of the cavity at a fixed value. This is a critical system in the
experiment as, if the length of the cavity is left free-running,
the frequency associated with the resonances in HðfÞ will
constantly be changing with respect to f.
Under these conditions, the electric field at PDs is

given by

EPDðtÞ ¼
�
t21jEinj

�
αþ

Z
∞

−∞
dfsðfÞHðfÞe2iπft

�

þ EnoiseðtÞ
	
e−2iπfLtŝ: ð3:28Þ

The term proportional to α accounts for the intrinsic
birefringence of the cavity as the cavity mirrors themselves
will have a slight intrinsic birefringence, leading to small
additional complex terms in both the diagonal and non-
diagonal elements of P. This will lead to the accumulation
of a minor static s-polarized component of the light

circulating in the cavity such that ŝ†·E1

jE1j ¼ α, with α ≪ 1.

Reference [23] considered a similar setup for axions: they
used its birefringence, α, in reflection of the cavity, and a
half-wave plate in transmission of the cavity, that is, an
additional birefringence on top of the one associated with
axions. The second term in Eq. (3.28) is the polarization
change induced by the background of axions or GWs as
encoded in the response function of Eq. (3.19). Finally,
EnoiseðtÞ is a generic term for the noise, which can originate
from various sources and will be quantified below. We
assume that the term in Eq. (3.28) proportional to α
dominates over the rest. The virtue of this is that the signal
of the background of axions or GWs appears as an
amplitude modulation of the one induced intrinsically by
the cavity. Concretely, at the detection port the power is
determined by12

jEPDj2 ≃ α2t41jEinj2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
∼Pout

þ 2jEinj2αt41
Z

∞

−∞
dfsðfÞHðfÞe2iπft|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

∼Psignal

þ 2αt21jEinjEnoiseðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
∼Pnoise

; ð3:29Þ

where we expanded at linear order in sðfÞ and Enoise.
Therefore, the power arriving at the detector consists of

Cavity

FIEOMMain
Laser

PDp̂ PDŝ
:
:

M1 M2 Reference
Laser

FI EOM

PDc

FIG. 3. Schematic of the experimental setup. Here the main laser is injected into the cavity through mirror M1. The s- and p-
polarization states, represented by solid and dashed lines, are split in reflection of the cavity by an FI. The p-polarized light is used to
stabilize the frequency of the main laser to the cavity resonance using PDH laser frequency stabilization. This also necessitates the
electro-optic modulator (EOM) directly after the laser. The axion or GW signal is measured at PDs. On the right side of the figure, a
reference laser is injected into the cavity. This laser is also frequency stabilized to one of the resonances using the PDH technique. In
addition, the interference beat note between the main laser and reference laser measured at PDc is used as the error signal in a feedback
control loop to stabilize the absolute length of the cavity. This is necessary to hold the cavity resonances at the same frequency over the
duration of the measurement. Furthermore, rays showing the reference laser light exiting the cavity through M1 and the s-polarized light
from the main laser exiting the cavity via M2 are not shown for clarity.

11We should acknowledge that at this specific resonance the
reference laser will create a background, causing a loss in
sensitivity at that point; however, the frequency of the reference
laser can be tuned to be outside of the range we are exploring
without inhibiting the length stabilization system.

12Strictly speaking, in the case of a GW background, to
calculate jEPDj2 we should use ðηij þ hijÞEi

PDE
j�
PD. Nevertheless,

this extra contribution is negligible with respect to the one we
account for, which is multiplied by the resonant enhancement
factors in HðfÞ.
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three contributions: Pout, representing the ordinary power
of the laser beam; Psignal, corresponding to the contribution
from the background of axions or GWs; and Pnoise,
representing the noise contribution that limits the
sensitivity.
It is important to notice that the term proportional to α

allows the signal associated with axions or GWs to be linear
in sðfÞ, rather than quadratic. This is because the induced s-
polarized mode modulates the already existing s-polarized
mode induced by the cavity alone. According to Eq. (3.29),
this linear relation is given by the following transfer
function:

PsignalðfÞ ¼ T ðfÞsðfÞ; where T ðfÞ ¼ 2Pout

α
HðfÞ:

ð3:30Þ

As is commonly done, this enables us to define the noise
spectral density as

hPnoiseðtÞPnoiseðt0Þi ¼
1

2

Z
∞

−∞
dfSnoiseðfÞjT ðfÞj2e−2iπfðt−t0Þ:

ð3:31Þ

Having introduced SnoiseðfÞ, we can now discuss prospects
at ALPS II.

IV. SENSITIVITY PROSPECTS
USING ALPSII CAVITIES

With ALPSII scheduled to complete data taking in the
next few years, it may soon be possible to use the optical
system for polarimetric searches for axions and GWs.
For this reason, we consider cavity designs, reported in
Table II, that would already work with the existing ALPSII
infrastructure and could be adapted to measure these
polarization effects, following the setup proposed above.
Specifically, we investigate cavity lengths of l ¼ 245 m
and l ¼ 20 m. The corresponding first resonant peak is at
f ¼ 1=2l ≃ 612 kHz ≃ 2.5 neV. In this frequency range,
the primary source of noise is the quantum fluctuations of
the laser, i.e., shot noise. It is possible that the dynamic
birefringence noise intrinsic to the cavity also plays
a role in the sensitivity; however, this is not expected to
be the case for frequencies above 1 kHz [41]. Other sources
of noise traditionally associated with interferometric GW

observatories, such as radiation pressure and seismic noise,
are not relevant over the frequency range considered here.13

Quantum fluctuations associated with shot noise are
determined by a Poisson distribution,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hPnoiseðtÞ2i

p
=Pout ¼

1=
ffiffiffiffiffiffi
Nγ

p
, and are not correlated at different times. Hence,

1

P2
out

hPnoiseðtÞPnoiseðt0Þijshotnoise ¼
Tobs

Nγ
δðt − t0Þ: ð4:1Þ

In the absence of a signal (i.e., axion DM or GWs), the
number of photons arriving at PDs during a time Tobs is
determined by the power as Nγ ¼ PoutTobs=ωL or, accord-
ing to Eq. (3.29), Nγ ¼ α2t41P0Tobs=ωL, where P0 is the
laser power injected into the cavity. Then, Eq. (3.31) gives
the noise spectral density as

ðSnoiseðfÞÞ1=2 ¼
1

t21jHðfÞj
ffiffiffiffiffiffiffiffi
ωL

2P0

r
; ð4:2Þ

where t21jHðfÞj ∼ F=π at the resonance peaks. The quan-
tity P0 can be computed from the maximum possible
circulating power inside the cavity, Pmax, reported in
Table II. From Eq. (3.5), we have

P0 ¼ Pmax

�
1 − r1r2

t1

�
2

: ð4:3Þ

The chosen values for Pmax are consistent with what has
been achieved in ALPSII [42]. Here the primary limitation
on the power is believed to be related to absorption effects
in the cavity mirror coatings, which impose a maximum
intensity that the cavity can tolerate. For this reason, the
longer cavity with larger beam spot sizes on the mirrors
should be capable of operating with a higher circulating
power.14 We should note that, while the optimal sensitivity
at the resonances is still achieved when the cavity is

TABLE II. Properties of the cavities studied in this work, all utilizing a laser with a wavelength λ ¼ 1064 nm. See text for details.

QWP l½m� Pmax [kW] ðt21; t22;l2Þ (ppm) F mmax (eV) τstorage (ms)

No 245 150 (22, 2, 20) 1.4 × 105 4.2 × 10−8 74.2
Yes 245 10 (1100, 100, 1000) 2.9 × 103 2.1 × 10−6 1.48
No 20 50 (11, 1, 10) 2.9 × 105 2.6 × 10−7 12.1
Yes 20 10 (1100, 100, 1000) 2.9 × 103 2.6 × 10−5 0.121

13It should be noted here that the absolute length of the cavity
must be controlled such that HðfÞ is stable over the duration of
the measurement to ensure optimal sensitivity at the resonances.

14Here we assume a near confocal geometry for the cavities to
minimize the beam spot sizes on the mirrors, thus reducing
clipping losses in the beam tube and scattering losses on the
surface of the mirrors. However, this does have the effect of
potentially limiting the maximum circulating power by increasing
the relative peak intensity of the field at the mirrors.
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impedance matched [43], i.e., t21 ¼ t22 þ l2, once the cavity
has a sufficiently high finesse to achieve Pmax for a given
maximum input laser power, the gain in sensitivity from
increasing the cavity finesse will only be proportional to the
square root of the increase in finesse.
Last, an important assumption we need to make is that

the signal, whether from axion DM or GWs, must have a
coherence time, τ, longer than the storage time of the cavity,
τstorage, defined as the time in which the cavity field decays
by 1=e [44]. Therefore, we must impose the following
condition:

τ > τstorage ≃
2F
π

l
c
: ð4:4Þ

Here we define the cavity storage time as the time taken for
the cavity field to decay by 1=e when no injected field is
present.

A. Sensitivity to the axion-photon coupling

In the frequency range relevant for the cavities consid-
ered here, the axion coherence time of Eq. (2.11) is always
less than the observation time, which we take as
Tobs ¼ 30 days. For such a monochromatic signal and
coherence time, the signal-to-noise ratio is given by [33]

S
N

¼ ðTobsτÞ1=4
ðSnoiseÞ1=2 s0; with Tobs > τ: ð4:5Þ

Here s0 ¼ δc0 and, as Eq. (2.13) shows, this amplitude is
proportional to the axion-photon coupling. The value
leading to S=N ¼ 1 is

gaγγ ¼
ffiffiffi
2

p
ωLffiffiffiffiffi
ρa

p ðSnoiseðma
2πÞÞ1=2

ðTobsτÞ1=4
: ð4:6Þ

In Fig. 4 we show the corresponding projected sensitivity
for the different cavities of Table II. Here, the storage time
of the cavity, given in Eq. (3.10) and reported in Table II,
sets an upper limit on the mass range, as follows from
Eq. (4.4). For the 245 m (20 m) empty cavity, this
corresponds to a mass of 42 neV (260 neV), which is
why the sensitivity plots have been cut off at those points.
The cavities using QWPs have a much lower finesse and
are therefore able to probe higher masses, albeit at a lower
sensitivity. Concretely, the 245 and 20 m cavities using the
QWPs have a maximum mass reach of 2.1 and 26 μeV,
respectively, but these masses are not shown in the plots as
the corresponding sensitivity is well above existing exclu-
sion limits. We do not consider masses lower than 10−11 eV
either because, in that frequency range, the dynamic
birefringence noise intrinsic to the cavity mirror coatings
is expected to limit the sensitivity of the experiment [41].
As is clear from these plots, the 245 m cavity filled with

QWPs, along with the empty 245 and 20 m cavities, are

complementary and can achieve optimal sensitivities across
a wide range of masses. In Fig. 5, we present the projected
sensitivity obtained by combining the observations from
the various cavities in quadrature, assuming 30 days of
observation for each one. Moreover, we compare the
sensitivity of these cavities with existing bounds from
other experiments that utilize similar birefringent effects,
such as ADBC, BASE, DANCE, and LIDA [45–49], as
well as other laboratory experiments like CAST [50],
ABRACADABRA [51], SHAFT [52], and ADMX-SLIC
[53], and compare these bounds with those from astro-
physical observations. Thus, our approach offers competi-
tive limits, particularly for masses matching the resonance
frequencies. Furthermore, while we only discuss the
sensitivity to axions here, this analysis can be generally
applied to ultralight bosonic DM candidates; see, e.g., [54].

B. Strain sensitivity for a coherent GW signal

For GWs, we assume a deterministic signal with a
coherence time lasting longer than the storage time of
the cavity. In Figs. 6 and 7, we show the strain sensitivity

FIG. 4. Projected sensitivities to the axion-photon coupling for
the different cavity configurations of Table II, assuming an
observation time of 30 days. The lines are cut off at mmax.
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equivalent to shot noise, obtained in Eq. (4.2). Since the
sensitivity depends on the angle of incidence, rather than
fixing a particular direction, in Eq. (4.2) we consider the
expectation value of the sensitivity over the full sky by
taking the following average:

H̄ðfÞ ¼
�
1

4π

Z
d cos θhdϕhjHðf; θh;ϕhÞj2

�
1=2

: ð4:7Þ

The maximum projected sensitivity in the plots remains
constant at high frequencies15 until it reaches the limit of
applicability of geometric optics. We conservatively define
this limit as GW wavelengths shorter than 103 times the
laser wavelength, as shown in the figures. We should also
note that measurements at these frequencies, or for that
matter over the frequency band we discuss in this paper,
will require a sophisticated system to perform the data
acquisition, the processing, and analysis, due to the
extremely high data rates.
In contrast to the case of axions, odd and even reso-

nances give a large sensitivity after averaging over all of the
possible GW directions. This comes about due to the
dependence of HðfÞ on the sky position, as there are
some angles in which resonant effects still occur for the
even resonances; see Table I. Another notable feature of
Figs. 6 and 7 is the lack of dependence of the peak
sensitivity on the length of the cavity or the frequency of the
resonances. Ultimately, this is related to the frequency

dependence of HðfÞ in Table I. Expanding HðfÞ at low
frequencies within the cavity linewidth, one observes that
the sensitivity does scale with the length of the cavity.16

However, at resonances above the fundamental, the
dependence of HðfÞ on l and the frequency drops out.
This can be understood as a combined effect between the
polarization change canceling over the full period of the
GW and integrating M in Eq. (2.24) over the length of
the cavity. This is particularly interesting because it con-
trasts with GWobservatories sensing the length changes in
the arms of an interferometer. For these interferometric
detectors, their peak sensitivity is related to the arm length,
but they also show a reduced all-sky sensitivity at the higher
frequency resonances of the cavity. Analyses show that this
reduction in sensitivity roughly scales with the frequency of
the resonance being considered [55].

FIG. 5. Projected sensitivity to the axion-photon coupling using
the combined projections of the 20 and 245 m cavities with and
without QWPs, for an observation time of 30 days. This is
compared with existing experimental bounds. See text for details.

FIG. 6. Projected strain sensitivity for the empty cavity con-
figurations of Table II: 245 m cavity (top) and 20 m cavity
(bottom). We show the projected sensitivities for the þ polari-
zation in blue and for the × polarization in red.

15The experiment loses sensitivity to the axion-photon cou-
pling at high frequencies because the amplitude of the axion field
is constrained by the DM relic density as a0 ∝ 1=ma; see
Eq. (2.10). No such constraint is assumed for the GW amplitude,
which explains the different behavior at high frequencies ob-
served for axions and GWs in Figs. 4 and 6.

16Note, nevertheless, that the free-fall approximation is only
applicable for frequencies above the mechanical resonances, as
explained above.
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Finally, on the left axis of the plots in Fig. 8, we show the
projected sensitivity to the strain, considering observations
from the different configurations and combining them in
quadrature, as in the case of axion DM. Simultaneously, we
show on the right axis the sensitivity to h0 assuming a
signal with Tobs ¼ 1 year and τ ¼ 1 s as given by Eq. (4.5),
with s0 ¼ h0 and taking S=N ¼ 1. These projections are
compared with existing experimental results in this fre-
quency regime, including those utilizing bulk acoustic
wave oscillations [56,57], the Fermilab Holometer [58],
QUEST [59], ABRA [60], and precision polarimetry
measurements performed on a microwave cavity by
Cruise et al. [31]. For the Holometer and QUEST, we
plot the single interferometer linear spectral density of the
strain sensitivity rather than the strain sensitivity in terms of
the cross spectral density. The reason for this is that here we
only consider deterministic signals instead of stochastic
signals.
We note that the methods described in this paper could

be compatible with sensing techniques that use cross

spectral densities to help identify signals and reduce the
systematic uncertainty of the experiment. One of these
techniques, discussed in Ref. [61], makes use of quantum
correlation measurements to measure the power noise
spectrum of a laser a factor of 10 below the shot-noise
limit in the frequency region we are considering. It is
important to point out that using quantum correlation
measurements or other techniques that make use of cross
spectral densities will not improve the shot-noise limited
sensitivity to deterministic signals (as opposed to that of
stochastic signals). In practice, though, these techniques
may be important to help distinguish signals induced by
axions or GWs from features of the noise spectra measured
in the experiment.
Finally, despite the apparent simplicity of the low-

frequency behavior in our sensitivity curves for both axions
and GWs, we caution the reader against extrapolating
beyond the frequency range displayed, particularly for

FIG. 7. Projected strain sensitivity for the cavity configurations
with QWPs of Table II: 245 m cavity (top) and 20 m cavity
(bottom). We show the projected sensitivities for the þ polari-
zation in blue and for the × polarization in red.

FIG. 8. Overall projected strain sensitivities for the þ polari-
zation (top) and the × polarization (bottom), combining the
different cavities in quadrature. The left axis shows the shot noise
equivalent strain sensitivity, while the right axis shows the
sensitivity to h0 assuming a signal with Tobs ¼ 1 year and τ ¼
1 s as given by Eq. (4.5). We compare with bounds from bulk
acoustic wave oscillations (BAW) [56,57], the Fermilab
Holometer [58], QUEST [59], ABRA [60], and precision
polarimetry measurements performed on a microwave cavity by
Cruise et al. [31].
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other types of GWobservatories. At lower frequencies, that
requires including additional noise sources, such as seismic
noise for ground-based detectors or even mass-acceleration
noise for space observatories. Furthermore, at sufficiently
low frequencies, the free-fall approximation for GWs
ceases to be valid, as this holds only above the mechanical
resonances of the experimental setup.

V. CONCLUSIONS

In this work, we studied the evolution of light
polarization as it propagates through the background of
axion DM or that of a passing plane GW. These effects are
closely related to the ordinary Faraday effect, according to
which the polarization vector of linearly polarized light
rotates around the direction of propagation, with the
rotation angle being proportional to the strength of the
magnetic field. In the presence of an axion field, a
comparable effect arises, with the rotation angle instead
being proportional to the axion abundance and the axion-
photon coupling. Likewise, when light propagates through
the background of a passing GW, the polarization changes,
though the effect goes beyond a simple rotation about the
direction of motion. Within the framework of geometric
optics, we provided a unified treatment of these effects,
demonstrating that the polarization evolution in all cases
originates from the same underlying physics. This approach
provides a synergy between searches for axion DM and
those for GWs.
Following this framework, we demonstrated that these

effects can be exploited in the optical cavities of the
ALPSII experiment, initially designed to observe the
light-shining-through-a-wall induced by axions, but easily
adaptable to measure polarization effects from other
sources. Specifically, we showed that by measuring the
change in polarization of its laser, axion DM with masses
in the rangem ∼ 10−9–10−7 eV can be probed. This search
is competitive with other laboratory-based experiments
and with astrophysical searches, particularly near reso-
nance frequencies. Moreover, we discussed how this
method could achieve a more broadband sensitivity by
introducing a QWP into the setup, which allows the
polarization effects to be resonantly enhanced by the
cavity at frequencies where they otherwise would not be.
The combined results for axion DM are summarized
in Fig. 5.
A natural application of this method is searching for

GWs in optical cavities. In this work, we showed that the
ALPSII experiment can probe strain sensitivities of
around 10−14 Hz−1=2 in the frequency range of 20 MHz
to 100 GHz. In this way, with only minor modifications,
the ALPSII experiment may be able to explore currently
unconstrained parameter space by other strategies pro-
posed to search for high-frequency GWs. In the future,
other types of experiments, currently in the research and
development phase, could significantly enhance these

prospects, though such advancements may not occur in
the near term. We also demonstrated how to optimize this
GW search strategy. As in the axion case, introducing a
QWP significantly improves sensitivity, especially if the
GW itself is polarized. Without a QWP, the signal from the
hþ-polarization component is suppressed. This behavior
is reminiscent of similar phenomena predicted in other
experiments searching for high-frequency GWs in axion
detectors.
The combined results for GWs are summarized in Fig. 8.

The advantage of interferometric sensing schemes that
measure the relative length changes induced by GWs
acting on two orthogonally oriented arms is clear in this
plot, even for those not using arm cavities. This can be
intuitively understood as the interferometric sensing
schemes having an extra factor of l=λ in the cavity
response function due to the GW acting on the long “lever
arm” of the cavity in comparison with polarimetric sensing
schemes. Nevertheless, the simplicity of the experimental
design proposed here could enable its rapid implementation
on an existing optical cavity such as those used in ALPSII.
This makes this one of the most promising concepts to
probe the region of frequency space above 100 MHz in the
near future.
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APPENDIX A: EVOLUTION OF LIGHT
POLARIZATION IN THE GEOMETRIC-OPTICS

LIMIT

Maxwell’s equations in flat spacetime can be written as

∂νFμν ¼ Jμ; ∂
λFμν þ ∂

μFνλ þ ∂
νFλμ ¼ 0: ðA1Þ
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As is well known, both equations lead to the wave equation

∂
2Fμν ¼ −∂μJν þ ∂

νJμ: ðA2Þ

When the wavelength of electromagnetic fluctuations, λ, is
much smaller than the characteristic length scales, d,
associated with the background over which these fluctua-
tions propagate, the equations can be solved using the
geometric limit, also known as the eikonal approximation.
In practice, as shown in the following, this is equivalent to
solving for the momentum and polarization of photons as
they propagate in the background. The limit of small
wavelength can be formally obtained by writing the field
and the current as

Fμν ≡ ðfμν þ fμν1 ϵþ fμν2 ϵ2 þ…Þeiθ=ϵ;
Jμ ≡ ðjμ þ jμ1ϵþ jμ2ϵ

2 þ…Þeiθ=ϵ: ðA3Þ

We then solve for Maxwell’s equations by expanding in ϵ.
As explained in the text, ϵ is a fictitious parameter such that
a term multiplied by ϵn in the expansion is of order ðλ=dÞn.
The leading term in this expansion is the geometric-optics
limit of electromagnetism [33]. With this in mind, let us
note that

∂νFμν¼ iðfμν∂νθÞ
1

ϵ
þOðϵ0Þ; ∂

μJν¼ iðjν∂μθÞ1
ϵ
þOðϵ0Þ;

ðA4Þ

as well as

∂ρ∂
ρFμν ¼ ð−fμν∂ρθ∂ρθÞ

1

ϵ2

þ ð−fμν1 ∂ρθ∂
ρθ þ 2i∂ρfμν∂ρθ þ ifμν∂ρ∂ρθÞ

1

ϵ

þOðϵ0Þ:

Introducing kμ ≡ ∂μθ, Eq (A1) implies that

kμjμ¼0; kνfμν¼0; and kλfμνþkμfνλþkνfλμ¼0;

ðA5Þ

while the wave equation gives

kμkμ¼0; and kρ∂ρfμν¼−
1

2
fμν∂ρkρ−

1

2
kμjνþ1

2
kνjμ:

ðA6Þ

The vector kμ can thus be interpreted as the four-
momentum of photons, while Ei ≡ f0i determines their
polarization. Note in particular that the last relation in
Eq. (A5) gives the other components in terms of Ei as
fij ¼ ðkiEj − kjEiÞ=k0. Similarly, from Eq. (A6), it

follows that17 the unit vector, e ¼ E=jEj, changes accord-
ing to

kρ∂ρe ¼ −
1

2jEj k
0ðj − ðk̂ · jÞk̂Þ þ 1

2jEjReðe
� · jÞk0e:

ðA9Þ

Motivated by the cases discussed below, we assume
Reðe� · jÞ ¼ 0 from now on and therefore omit the last
term. Photon trajectories are curves, xμðlÞ, with kμ as their
tangent vector. Therefore,

kμ ¼ dxμ

dl
and

dxμ

dt
¼ kμ

k0
: ðA10Þ

Using this, Eq. (A9) gives the evolution of the polarization
vector as

de
dt

¼ −
1

2jEj ½j − ðk̂ · jÞk̂�: ðA11Þ

Let us apply this to axion birefringence. Electromagnetic
waves propagating in a slowly changing axion background
aðtÞ induce an effective current, given by

J ¼ gaγγȧðtÞB: ðA12Þ

This follows from, e.g., the Lagrangian in Eq. (2.9). Here,
B ¼ k̂ × E is the magnetic field associated with the
electromagnetic wave, and we use again the notation so
that Ei ∝ f0i. Although this is not an actual current of
charged particles, the effect of the axions is mathematically
equivalent to that of an ordinary current given by
Eq. (A12). Note that Reðe� · jÞ vanishes since E� ×E is
always purely imaginary, and that k̂ · j ¼ 0. As a result,
Eq. (A9) predicts

de
dt

¼ −
1

2
gaγγȧðtÞk̂ × e: ðA13Þ

For linear polarizations, this equation states that the
vector e rotates with “angular velocity” gaγγȧðtÞ=2 around

17In more detail, Eq. (A6) for the electric field reads

kρ∂ρE¼−
1

2
E∂ρkρ−

1

2
k0jþ1

2
kj0 and

kρ∂ρðE� ·EÞ¼−E� ·E∂ρkρ−k0ReðE� ·jÞ: ðA7Þ

Together, they lead to

kρ∂ρe ¼ −
1

2jEj k
0jþ 1

2jEjkj
0 þ 1

2jEjReðe
� · jÞk0e; ðA8Þ

which gives rise to Eq. (A9) after accounting for kμjμ ¼ 0 and
kμkμ ¼ 0.
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the direction k̂, while its absolute magnitude and the angle
that it makes with this direction remain fixed. For instance,
suppose an initial condition such that e ¼ ð1; 0; 0Þ with a
photon propagating in the z direction. After some distance,
the polarization vector rotates by an angle of

β ¼ −
1

2
gaγγ

Z
dtȧðtÞ: ðA14Þ

On the other hand, for right (left) circular polarizations,
k̂ × e ¼ −iλe, where λ is þ1 (−1). In this case, Eq. (A13)
predicts an evolution given by a phase dependent on the
circular polarization. This is the origin of the term bire-
fringence. Clearly, all of this resembles the Faraday effect, a
magneto-optical phenomenon where the polarization plane
of linearly polarized light rotates as it propagates through a
material in the presence of a magnetic field.

APPENDIX B: GEOMETRIC OPTICS IN CURVED
SPACETIMES

We now extend the previous results to curved spacetimes
and, in particular, to GWs. As in the case of axions, the
effect of a GW in the presence of an electromagnetic field
can be effectively described by an effective current in
Minkowski spacetime; see, e.g., [38]. Although the calcu-
lation using that formalism is straightforward, here we
instead take Jμ ¼ 0 and note that the derivation of
Eqs. (A5) and (A6) was done without assuming ∂

α
∂
β ¼

∂
β
∂
α and are therefore equally valid for covariant

derivatives. In an arbitrary spacetime, we then have

kμkμ¼0; kνfμν¼0; kλfμνþkμfνλþkνfλμ¼0;

kρ∇ρfμν¼−
1

2
fμν∇ρkρ: ðB1Þ

Following an approach similar to the one above, we use
these expressions to write an equation for the evolution of
ei ¼ f0i=jfj, with jfj ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

f0if�0i
p

. Concretely, for f0i,
Eq. (B1) gives

kρð∂ρf0i þ Γ0
ρλf

λi þ Γi
ρλf

0λÞ ¼ −
1

2
f0i∇ρkρ: ðB2Þ

Using k0fλi ¼ kλf0i − kif0λ, we obtain

kρ
�
f�0i∂ρf

0i þ 1

k0
Γ0
ρλk

λf�0if
0i − 0þ f�0iΓi

ρλf
0λ

�

¼ −
1

2
f�0if

0i∇ρkρ: ðB3Þ

Similarly, for the covariant components,

kρ
�
f0i∂ρf�0i −

1

k0
Γλ
ρ0kλf

0if�0i þ 0 − f0iΓλ
ρif

�
0λ

�

¼ −
1

2
f0if�0i∇ρkρ: ðB4Þ

Adding both, it is found that

kρ
�
∂ρjfj þ

1

2k0
ðΓ0

ρλk
λ þ Γλ

ρ0kλÞjfj þ
1

2jfj f
�
0iΓi

ρλf
0λ −

1

2jfj f
0iΓλ

ρif
�
0λ

�
¼ −

jfj
2
∇ρkρ: ðB5Þ

The last two terms on the left-hand side cancel each other,
while the first two are equal to each other. Hence,

kρ
�
∂ρjfj þ

1

k0
Γ0
ρλk

λjfj
�

¼ −
jfj
2
∇ρkρ: ðB6Þ

Combining this with Eq. (B2), we obtain

kρ
�
∂ρei −

1

k0
Γ0
ρλk

ieλ þ Γi
ρλe

λ

�
¼ 0: ðB7Þ

As explained in the main text, this gives rise to Eq. (2.17)
along null geodesics.
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