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In pump–probe experiments on solid materials performed within ultrafast X-ray

science, the energy deposited by an X-ray pump pulse in the sample has a non-

uniform spatial distribution. The following X-ray probe pulse then measures a

volume-integrated average of contributions from the differently irradiated

regions of the sample. Here we propose a scheme to calculate an effective

fluence of the pump pulse such that the observable of interest calculated with

the effective fluence is very close to the volume-integrated observable. This

approach simplifies computational simulations of X-ray irradiated solids, which

typically use periodic boundary conditions and assume a uniformly irradiated

simulation box. Obtaining a prediction on a volume-integrated observable

requires a significant computational effort, as it is necessary to run multiple

simulations for the different exposure conditions and then perform their volume

integration. The proposed scheme reduces this effort to a single calculation with

the effective fluence.

1. Introduction

X-ray-pump/X-ray-probe experiments enable time-resolved

studies of electronic and structural changes in materials

following X-ray irradiation (Inoue et al., 2021; Inoue et al.,

2022; Inoue et al., 2023; Opara et al., 2018; Pardini et al., 2014;

Inoue et al., 2016; Ferguson et al., 2016; Nass et al., 2020;

Hartley et al., 2021; Inoue et al., 2024). One of the bottlenecks

in the interpretation of such measurements is the spatial non-

uniformity of the pulses, usually assumed to have a Gaussian

shape. This results in different regions of the investigated

material being exposed to different pulse fluences. The

following X-ray probe pulse then measures a volume-inte-

grated average of the contributions originating from the

differently irradiated regions of the sample (Tkachenko et al.,

2021; Heimann et al., 2023).

Computational simulations of the X-ray irradiated samples

are frequently performed in order to interpret experimental

results. Such schemes typically use periodic boundary condi-

tions. This implies that the simulation box – representing a

small fraction of the irradiated material volume – is assumed

to be uniformly irradiated (Medvedev et al., 2013). A correct

interpretation of the measurement results would require

obtaining a prediction on a volume-integrated observable.

This usually entails a significant computational effort, as it is
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necessary to run multiple simulations for the different expo-

sure conditions and then perform their volume integration.

Here we propose an analytical scheme to calculate an

effective fluence such that the observable of interest calcu-

lated for the effective fluence is very close to the volume-

integrated observable. This approach requires pre-knowledge

of how the observable in question depends on X-ray fluence.

We demonstrate the effectiveness of the scheme on a study

case: simulations performed with the code XTANT

(Medvedev et al., 2013) for a silicon face-centred-cubic crystal

pumped with 50 eV photons. We obtain volume-integrated

predictions for average atomic displacement and intensities of

various Bragg diffraction reflections at different times. After

applying a dedicated analytical scheme, a comparison of

volume-integrated results with the effective fluence results is

made, with very satisfactory results.

Application prospects and limitations of the scheme are

discussed in the last section. The latter are illustrated with an

example of a concrete experimental case (diamond pumped

and probed with hard X-rays) reported by Heimann et al.

(2023).

2. Definition and calculation of effective fluence

In a pump–probe experiment, a sample is irradiated first by a

pump pulse, which initiates the desired electronic or structural

transition in the material. The probe pulse arrives at different

time instants, testing the actual state of the pump-irradiated

sample. We will assume henceforth that the probing is non-

invasive for the irradiated crystal (Chapman et al., 2014; Yoon

et al., 2014; Inoue et al., 2022). For simplicity, we assume that

the pump and probe pulses have a similar Gaussian profile,

with the same spatial spread but different peak energies. The

respective fluences can be written as follows,

FppðrÞ ¼ E0

exp � r2=ð2�2Þ
� �

2��2
and

FpbðrÞ ¼ sE0

exp � r2=ð2�2Þ
� �

2��2
;

ð1Þ

where E0 is the pump pulse energy energy and sE0 is the probe

pulse energy, expressed as a fraction of the pump energy.

The spatial spread is defined by �, for both the pump and the

probe pulses.

Let us now consider the observable of interest, O, at a given

time, t. We assume that it depends on the pump fluence Fpp as

OðFpp; tÞ ¼
XM

m¼ 0

amðtÞF
m

pp: ð2Þ

This way, we performed a standard polynomial fit to estimate

the observable dependence on Fpp. The polynomial order M,

at which the series is cut, is determined by the fitting proce-

dure described in the Methods section.

For argument’s sake, we will now fix the time to be the final

time recorded in the experiment, tfinal, i.e. O(Fpp) � O(Fpp,

tfinal) and am� am(tfinal). The observable is probed by a radially

symmetric Gaussian beam Fpb(r). The resulting volume-inte-

grated observable hOivol then reads

hOivol ¼
1

R 1
0

FpbðrÞ 2�r dr

Z1

0

FpbðrÞO½FppðrÞ� 2�r dr: ð3Þ

In our analysis, we assumed a uniform in-depth distribution of

the absorbed beam energy in the material which, in fact,

reduces the volume integration to the area integration. This

uniformity assumption is only correct if the irradiated sample

is thin or its thickness is comparable with the X-ray photon

attenuation length (or penetration depth). The extension of

our formalism, taking into account the in-depth absorption

of energy (according to the Beer–Lambert law) is possible;

however, it is beyond the scope of this introductory work.

Performing the integration yields

hOivol ¼
XM

m¼ 0

amE m
0

1

mþ 1

1

ð2��2Þ
m : ð4Þ

In order to determine an effective fluence value, Feff, we then

equate

hOivol ¼ OðFeffÞ: ð5Þ

Inserting equation (4) into equation (5) yields

XM

m¼ 0

am F m
eff � F m

peak

1

mþ 1

� �

¼ 0; ð6Þ

where Fpeak = E0 /(2��2). This equation can be solved analy-

tically or numerically depending on the specific fluence

dependence. From the multiple roots of the equation we will

choose the one that is real and lies within the dose interval,

[0, Fpeak]. For the observables we studied here, this criterion

proved sufficient to identify a unique value of Feff.

We will now present how the scheme works by performing

dedicated simulations of soft X-ray irradiated crystals with the

XTANT code (Medvedev et al., 2018). Beforehand, we will

make a useful conversion from fluence to absorbed dose.

While in experiments fluence is a natural parameter describing

the integrated strength of the irradiation, theoretical simula-

tions in general, and XTANT specifically, use an average

absorbed dose per atom, D, expressed in eV atom� 1. As

discussed previously (Medvedev et al., 2013; Medvedev et al.,

2018; Tkachenko et al., 2016a), the absorbed dose is a more

universal parameter in ultrafast X-ray science, as X-ray

induced transitions directly depend on the absorbed dose per

atom. If the sample thickness is comparable with the

attenuation length of the X-ray radiation (what we for argu-

ment’s sake assume here), the angle of X-ray incidence is

normal, electron escape and surface reflectivity are negligible

(cf. Follath et al., 2019), the conversion can be readily made as

D ¼ 1 �
1

e

� �
F

�att na

; ð7Þ

where e is Euler’s number, F is the fluence in eV cm� 2, na is

the number density of the irradiated sample in atoms cm� 3

and �att (in cm) is the photon attenuation length estimated for
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the photon energy of the pump. We can now convert fluence to

dose in equation (6),

XM

m¼ 0

am D m
eff � D m

peak

1

mþ 1

� �

¼ 0; ð8Þ

where Deff refers to the effective dose, and Dpeak refers to the

peak dose, converted from Fpeak, using equation (7).

3. Calculation of effective fluence for X-ray irradiated

silicon crystal

Below we will present the study case for the effective fluence

method. Namely, we will simulate irradiation of a silicon

crystal with a pump pulse of 6 fs FWHM duration and 50 eV

photon energy with our code XTANT (Medvedev et al., 2013;

Medvedev et al., 2015; Medvedev et al., 2017; Medvedev et

al., 2018). Similar simulations were performed to describe

experimental data by Tkachenko et al. (2016b) and Medvedev

et al. (2018), therefore, we can safely assume that the predic-

tions are realistic enough. We will analyze structural transition

in silicon initiated by a pulse of Gaussian spatial profile with

� = 63.7 nm. The peak dose deposited by the pulse is 8 eV

atom� 1 (see Fig. 1). The number of atoms in the simulation

box (with periodic boundary conditions assumed) is 64. This

number of atoms was chosen for expediency of the numerical

simulations and should not affect conclusions regarding the

correctness of the method in this purely numerical study. Since

both the volume-integration and the effective-dose simula-

tions are run for the same box size, the eventual finite size

effects would act as a systematic error, affecting both simu-

lations equally. However, if the method should be applied to

describe realistic phase transitions, a convergence study with

respect to the size of the simulation box should be performed.

The simulation was run at times ranging from � 200 fs to

100 fs, where time zero corresponds to the temporal maximum

of the X-ray pump pulse.

The choice of this timescale was arbitrary as the goal of this

study was to demonstrate that the effective-fluence method

works, and not to study the details of phase transition in Si.

The timescale chosen does not impact the conclusion that the

method is sound, since both the effective-dose and volume-

integrated simulations were performed for the same run time.

Furthermore, as an intense pump pulse was used, 100 fs is

sufficient to observe dislocations of the atoms from their

equilibrium positions on the order of 10% of the interatomic

distance in silicon. Concerning the divergence between the

effective-dose and volume-integrated calculations at later

times (close to 100 fs), the reason for it is the decreasing

quality of the polynomial fit in the regime of quickly changing

observables. This could be improved by extending the simu-

lation time and fitting the coefficients once at the new final

time point of the simulation (not considered here).

3.1. Analysis of atomic displacements

At first, we have analyzed atomic displacements. In the

periodic boundary condition framework applied here, the

displacement of a single atom in a simulation box at time t can

be defined as

�dðtÞ ¼
X3

i¼ 1

min �xiðtÞ;Lbox � �xiðtÞ
� �2

 !1=2

ð9Þ

with �xiðtÞ ¼ xiðtinitÞ � xiðtÞ;

with x1, x2, x3 being the three Cartesian coordinates of an

atom in the simulation box at time t and Lbox being the cubic

box size. The time instant tinit corresponds to the initial time at

which the simulation was started, i.e. when silicon was in the

ambient state (T = 300 K) with all of its atoms in their crystal

lattice points. From the output of the XTANT code (for a fixed

dose), we obtain the displacement as a function of time for

each atom in the simulation box. Summing up the displace-

ments of all atoms in the simulation box and dividing the sum

by the number of atoms, we obtain the average atomic

displacement as a function of time. Fig. 2 shows an example of

average displacement obtained for a fixed dose of 3.7 eV

atom� 1.

Our in-house code VOLINT [similar to XSINC (Abdullah

et al., 2016; Abdullah et al., 2018)] was used to predict the

volume-integrated displacement, calculated for the simulation

results obtained with the code XTANT. The simulations were

research papers

1108 Sebastião Antunes et al. � Pump dose in pump–probe experiments J. Synchrotron Rad. (2025). 32, 1106–1115

Figure 1
Radial distribution of the dose deposited by pump pulse (red line). Points
used to run the XTANT simulation are marked in blue.

Figure 2
Example of average atomic displacement h�d(t)i for an XTANT simu-
lation performed for silicon with 64 atoms in the simulation box. The
other parameters were: D = 3.7 eV atom� 1, pulse duration of 6 fs FWHM,
and photon energy of 50 eV. The atomic displacement shows thermal
oscillation before irradiation. After irradiation it starts to increase
quickly.



performed for different dose values spanning between 0 and

the peak dose of 8 eV atom� 1. In the present case (� =

63.7 nm), we resolved the observable spatially up to a cut-off

value of Rmax = 200 nm. We divided the range [0, 200] nm into

11 rings and considered the central dose in each ring as the

input for the XTANT run. This is illustrated in Fig. 1.

VOLINT then integrates the different spatial zone results

for each time step and obtains h�d(t)ivol, according to equa-

tion (3).

Since XTANT includes stochastic molecular dynamics

simulations, it is necessary to average the simulation results

over a few realizations. Previous calculations with XTANT

(Tkachenko et al., 2021; Medvedev et al., 2013) showed that

several realizations are enough, as averaging over electron

kinetics is intrinsically performed in the code (Medvedev et al.,

2013; Medvedev et al., 2018). Here, we performed ten reali-

zations and averaged over them. The final output of the

volume integration is presented in Fig. 3. The XTANT simu-

lation starts with atoms placed in their equilibrium positions

in the crystal (at zero temperature), with random velocities

chosen such that the atomic temperature after thermalization

should be equal to 300 K. This evolution stage can be clearly

identified in Fig. 3, where, after initialization, the average

atomic displacement increases up to 0.1 Å (reflecting the

movement of atoms from their equilibrium positions at 0 K).

Afterwards, the displacement reduces to a standard thermal

atomic displacement at 300 K. After X-ray pumping, the

heated crystal continuously loses its structure due to the

progressing non-thermal melting process. This is reflected by

an increase of atomic displacement (and the corresponding

decrease of average Bragg reflection intensities).

For the calculation of the effective dose, Deff, from equation

(8), it is necessary to obtain the expansion coefficients am. As

stated previously, we perform the estimation only for a fixed

time, t = 100 fs, which is the final time for these simulations,

in order to gain an idea about the time-dependence of the

coefficients am. A respective fitting procedure is required, with

details provided in the Methods section. The optimal order for

the fitting polynomial was estimated to be 5. With the poly-

nomial coefficients calculated, we numerically solve equation

(7). The solution found within our dose domain, [0, 8] eV

atom� 1, is Deff = 4.20 eV atom� 1.

In Fig. 4 we present the average atomic displacement within

the simulation box, averaged over ten different XTANT

realizations performed for the effective dose of Deff =

4.20 V atom� 1. It is compared with the respective volume-

integrated atomic displacement from Fig. 3. The agreement

between the two curves is good, which proves the correctness

of the effective dose scheme. It is to be emphasized that,

although the estimation of Deff was performed at t = tfinal, there

is good agreement between the average atomic displacement

calculated for the effective dose and the volume-integrated

one for all times. This indicates that the time-dependence of

the coefficients am(t) is practically negligible, i.e. the depen-

dence of our observable on dose (fluence) is the same for all

time steps.

3.2. Analysis of Bragg reflection intensities

We will now apply the effective dose (fluence) scheme for

the intensities of various Bragg diffraction reflections. Bragg

reflection intensities are directly observed in experiments and

can be used, in particular, to estimate atomic displacements.

The Bragg diffraction condition is: �k = q, where �k is the

difference between the incoming and outgoing momentum

and q is a reciprocal lattice vector described by Miller indices

(Kittel, 2004). When this condition is fulfilled, the resulting

structure factor associated with a given reciprocal lattice

vector can be expressed as (Kittel, 2004)

Fq ¼
X

j

fjðt; qÞ exp i q � rjðtÞ
� �

; ð10Þ

where fj is the so-called atomic form factor, and rj is the

position of the jth atom in the unit cell of the crystal. The

scattered (Bragg) intensity (Iq) is then proportional to |Fq|2.
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Figure 3
Volume-integrated and realization averaged atomic displacement
h�d(t)ivol, real. The integration was performed using the XTANT simu-
lations performed for the doses marked in blue in Fig. 1. The calculation
was performed for a silicon sample with 64 atoms in the simulation box,
assuming a pulse duration of 6 fs FWHM and photon energy of 50 eV.

Figure 4
Comparison between the volume-integrated and realization averaged
atomic displacement h�d(t)ivol, real (blue line) and the atomic displace-
ment calculated for the effective dose and averaged over ten XTANT
realizations (red line). The volume integration was performed for a
silicon sample with 64 atoms in the simulation box, using the XTANT
results for the doses marked in blue in Fig. 1 and assuming a pulse
duration of 6 fs FWHM and photon energy of 50 eV. The same para-
meters were used for the effective dose simulation, except for the dose
itself, set to Deff = 4.20 eV atom� 1.



VOLINT was used to predict the scattering intensity for a

given Bragg reflection. VOLINT proceeds in the following

steps: (1) performs several XTANT simulations; (2) from each

XTANT simulation it obtains the actual position of each atom

in the simulation box at each time step as well as the average

electronic population for each atomic subshell; (3) it then

distributes the number of holes randomly over the atoms in

the box to obtain the average electronic population in each

subshell as determined by XTANT; (4) afterwards, it uses the

XATOM code (Inhester et al., 2023; Jurek et al., 2016; Son et

al., 2011) to calculate atomic form factors for all atomic species

and electronic configurations; (5) it calculates Fq(t) with

equation (10); (6) finally, it performs realization averaging and

then volume integration of Iq(t) to obtain the respective

(relative) Bragg signal, according to equation (3). An example

of volume-integrated Bragg reflection intensity obtained with

VOLINT is presented in Fig. 5.

The same procedure as above was applied to calculate the

respective Deff for the intensity of the 111 reflection (for

details see the Methods section). A comparison between the

111 reflection obtained for the effective dose and the volume-

integrated 111 reflection is presented in Fig. 6. Again, we can

see that the two curves resemble one another closely,

validating our approach. An increase of the realization

number to 50 realizations was carried out in order to improve

the statistics. Both curves reflect thermal oscillations within

silicon crystal before time zero and rapid atomic dislocation

after time zero. The latter results in the Bragg intensity

dropping.

Again, we note that, although the fitting of Deff was

performed at t = tfinal, there is good agreement between the

effective dose and the volume-integrated curves at all times.

This indicates that the time-dependence of the polynomial

coefficients is practically negligible, i.e. the dependence of our

observable on dose (fluence) is the same for all time steps.

The same search procedure for an effective dose was

repeated for other diffraction reflections, namely for the 311,

220, 400 and 331 reflections (see Fig. 7). The procedure needs

to be repeated since different Bragg reflections have different

sensitivity to atomic displacements. They will all decay as the

atoms move away from their equilibrium positions, however,

not in the same way, because they probe different directions of

local order. As the crystal melts, it is expected that some bonds

will break faster than others, creating anisotropies which make

different Bragg reflections respond differently. Table 1

summarizes the predicted effective doses, both for all the

Bragg reflections analyzed as well as for the average atomic

displacement.

All effective doses are found within a narrow range of 4 to

4.5 eV atom� 1, with a maximum variation of approximately

12%. This consistency indicates that the range of effective

doses accurately captures the dynamics occurring in the

sample during the structural transition. Conversely, if we were

to calculate the dose from the so called ‘average’ fluence

obtained by dividing the total beam energy over the focal area

(up to the FWHM), we would obtain a value of 11.5 eV

atom� 1 for the same pump profile (see Fig. 1). Following the

above-described procedure, since the full beam energy is

assumed to be deposited in the FWHM focus, the relation

hFi = 1.442Fpeak will hold for any Gaussian pulse. If this

average value were used in constant dose simulations, the

results would differ significantly from the experimental

observations.

4. Discussion

4.1. Non-Gaussian beams

The current analysis does not explore a general case of any

(non-Gaussian) beam profile, as the scope of the paper is to

introduce the idea of an effective fluence and to illustrate it on

a typical example of a beam profile. The assumption that an

X-ray beam has a spatial Gaussian profile is a frequent

approximation applied during the analysis of various X-ray

free-electron laser pump–probe experiments (e.g. Abdullah et

al., 2016). One-dimensional analysis can then be sufficient to
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Figure 5
Volume-integrated 111 Bragg reflection intensity hI111ivol; real. The inte-
gration was performed using the XTANT results for the doses marked in
blue in Fig. 1. The calculation was performed for a silicon sample with 64
atoms in the simulation box, assuming a pulse duration of 6 fs FWHM and
photon energy of 50 eV. The decay in the intensity observed after time
zero reflects the progressing displacement of atoms.

Figure 6
Comparison between the volume-integrated Bragg reflection intensity
hI111(t)ivol, real (blue line), and the Bragg reflection intensity obtained for
the effective dose hI111(t)irel averaged over 50 XTANT realizations (red
line). The volume integration was performed for a silicon sample with 64
atoms in the simulation box, using the XTANT results for the doses
marked in blue in Fig. 1, and assuming a pulse duration of 6 fs FWHM
and photon energy of 50 eV. The same parameters were used for the
effective dose simulation, except for the dose itself, set to Deff =
4.51 eV atom� 1.



obtain effective fluence. However, the effective-fluence

methodology itself is not limited to the Gaussian case. If we

can perform the fluence scan as proposed by, for example,

Chalupský et al. (2013), the effective fluence can still be

evaluated numerically by solving equation (5). This analysis

will then be much more complex (multi-dimensional).

However, strong shot-to-shot variations of the beam profile

cannot be treated accurately. Predictions for the shot-aver-

aged (Gaussian) pulse profile can then only be obtained.

4.2. Scaling properties

An interesting property of equation (8) is that it only

depends on the peak dose, Fpeak, and the fitting coefficients,

am. If both E0 and � would be rescaled to keep Fpeak

unchanged (and, as a consequence, Dpeak as well), the effec-

tive dose value Deff should remain the same.

Following this line of reasoning, we performed a simple

check of the rescaling property. Namely, we reduced the total

energy, E0, by half and changed � to �! �=
ffiffiffi
2
p

. The peak

fluence is then the same as before. In Fig. 8 the new radial

profile of the pump pulse is shown, along with the discrete

points used to perform volume integration.

In Fig. 9 a comparison between the volume-integrated

average atomic displacement calculated at the new irradiation

conditions and the results for Deff = 4.20 eV atom� 1 averaged

over ten XTANT realizations are shown. The agreement

between both predictions is quite good, of a quality similar to

that obtained in Fig. 4, i.e. for the same Dpeak but at different

irradiation conditions. We also analyzed the time-dependent

intensity of the 111 Bragg reflection presented in Fig. 10 with

the same conclusion. These findings confirm the scaling

feature of equation (8).
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Table 1
Deff estimated for all the studied observables.

Observable Deff (eV atom� 1)

h�d(t)ivol, real 4.20
hI111(t)ivol, real 4.51
hI311(t)ivol, real 4.28

hI220(t)ivol, real 4.26
hI400(t)ivol, real 4.04
hI331(t)ivol, real 4.02

Figure 7
Comparison between volume-integrated Bragg reflection intensities (blue) and the Bragg reflection intensity for the appropriate effective dose, averaged
over ten XTANT realizations (red line) for (a) hI220i, (b) hI311i, (c) hI400i and (d) hI331i. Volume integration was performed for a silicon sample with 64
atoms in the simulation box, using the XTANT results for the doses marked in blue in Fig. 1, and assuming a pulse duration of 6 fs FWHM and photon
energy of 50 eV. The same parameters were used for the effective dose simulation, except for the dose itself, that can be found in Table 1.

Figure 8
Radial distribution of the ‘rescaled’ pump pulse (red line). The points
used for XTANT simulations are marked with blue dots.



4.3. Effect of ballistic electrons

There are some limitations of the method; for example, it is

assumed that the energy deposited by the X-ray pulse stays

within the beam focus. This is true if the range of ballistic

electrons released by the X-ray pump pulse is much smaller

than the beam focus. Unfortunately, this is not the case when

tightly focused hard X-rays are used for pumping, as the

example presented below shows. Therein, experimental data

are used to demonstrate the failure of the effective fluence

method in this particular case. Still, a possible extension of the

method by taking ballistic transport into account when esti-

mating the effective fluence can be considered.

Heimann et al. (2023) reported results from a hard X-ray

pump/hard X-ray probe experiment. The target was solid-

density diamond that underwent partial graphitization on an

ultrafast time scale. To track the transition, time-resolved

intensities of several Bragg reflections were measured. The

experiment was performed under different irradiation condi-

tions. To illustrate the limitations of our method we will use

one specific irradiation case for which the parameters are

summarized in Table 2. Therein, E0 is the total pump pulse

energy, wx/y the 1/e width of the pulse, and �e the range of

electrons released by 7 keV pump pulse photons. Note that in

the paper by Heimann et al. (2023) a mistake was made and

the range of electrons was quoted for an electronic cascade

triggered by 8 keV and not by 7 keV photons.

To calculate the average absorbed dose, the following

formula was proposed, correcting for fast electronic escape

from the focal region,

D ¼
E0

w2
x þ �

2
eð Þ

1=2
w2

y þ �
2
e

� �1=2

1

�x�A

; ð11Þ

where �A is the atomic density, and �x is the X-ray penetration

depth for the pump’s specific photon energy. In our calcula-

tions, we assume that the pump profile is a radially symmetric

Gaussian. Therefore, we apply here the approximation �2 �

½ðwx=2Þ2 þ �2
e�

1=2 ½ðwy=2Þ2 þ �2
e�

1=2, and with it calculate Dpeak

/ E0 /(2��2) for the radial Gaussian profile.

Knowing Dpeak and � we can perform a set of simulations

needed for volume integration, similarly to what we did in the

previous sections. The results of these efforts are shown in

Fig. 11 for the tightly focused case and the diffraction reflec-

tions 111, 220 and 311. The results with the peak dose

(calculated with the method described above) are in green. As

can be seen, they underestimate the Bragg reflection decay in

all cases. As an improvement, the peak dose was recalculated

without correcting for electronic escape (�e = 0; blue line). In

this case, the Bragg reflection decay was overestimated.

Finally, a peak dose was found such that the experimental and

theoretical predictions would fall in the same range (orange

line).

The volume integration fails to properly describe the

observable and an ad hoc fitting procedure is required (still

volume-integrated but with a peak dose not directly related to

the experimental parameters). This discrepancy is probably

related to the electron cascade size being comparable with the

focal spot size, which also introduces a time dependence into

the problem. As energy is deposited according to the pump

profile, it also starts to spread out due to high-energy ‘ballistic’

electrons. Both effects happen simultaneously during the

pump pulse. The electronic transport continues for a few

femtoseconds afterwards.

This hypothesis is supported by the fact that the peak dose

calculated with �e (representing an immediate escape of the

hot electrons) gives us the upper limit for the Bragg reflection

decay while the peak dose calculated without �e (the other

extreme, representing the case when electrons never escape

from the focus) gives us the lower limit. Since none of the

limiting cases, based on actual experimental parameters,
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Figure 9
Comparison between the volume-integrated atomic displacement
h�d(t)ivol, real (blue line) and the atomic displacement calculated for the
effective fluence averaged over 50 XTANT realizations (red line). The
volume integration was performed for a silicon sample with 64 atoms in
the simulation box, using the XTANT results for the doses marked in blue
in Fig. 8, and assuming a pulse duration of 6 fs FWHM and photon energy
of 50 eV. The same parameters were used for the effective dose simula-
tion, except for the dose itself, set to Deff = 4.20 eV atom� 1.

Figure 10
Comparison between the volume-integrated Bragg reflection intensity
hI111(t)ivol, real (blue line) and the Bragg reflection intensity calculated for
an effective dose averaged over 50 XTANT realizations (red line). The
volume integration was performed for a silicon sample with 64 atoms in
the simulation box, using the XTANT results for the doses marked in blue
in Fig. 8, and assuming a pulse duration of 6 fs FWHM and photon energy
of 50 eV. The same parameters were used for the effective dose simula-
tion, except for the dose itself, set to Deff = 4.51 eV atom� 1.

Table 2
Selected data set from experiment (Heimann et al., 2023).

Case E0 (mJ) wx � wy (mm � mm) �e (mm)

Tight focus 15 0.173 � 0.196 0.312



provide a good fit to the data, no effective dose calculation

was attempted.

4.4. Summary

Our results indicate that the effective dose method can be

used for simulations of pump–probe experiments, replacing

the costly volume-integration scheme. Here, we tested this

method on atomic displacements and Bragg reflection inten-

sities. However, the method can also be applied to other

volume-integrated observables, provided their fluence (dose)

dependence can be approximated with a polynomial fit. We

believe that this study offers a computationally efficient and

rigorous method to estimate the effective fluence (dose) for

volume-integrated experimental observables. Importantly, we

find that the effective dose better represents the sample

dynamics than the average dose – total beam energy divided

by the focal area (up to the FWHM) – commonly used in

experiments. Using the average dose in simulations can lead to

significant discrepancies from experimental results, under-

scoring the relevance of the effective dose approach intro-

duced here. Nonetheless, a full exploration of the prospective

applications of this method goes beyond the scope of this

introductory work.

5. Methods

5.1. Atomic displacement as a function of dose

As explained before, in what follows we fix time to tfinal =

100 fs. The fitting procedure is applied to the pairs�PN
i¼ 1 Di=N;

PN
i¼ 1 OðDi; t ¼ tfinalÞ=N

�
, where N is the

number of different XTANT realizations being averaged over

(here, N = 10). In what follows we will study the average

atomic displacement h�d(tfinal)ireal.

Since we do not know a priori the order of the polynomial

dependence of h�d(tfinal)ireal, the fits are performed for

polynomials of increasing order. To avoid overfitting, we also

calculate �2
�, i.e. the reduced �2, and prob½�2 � �2

obsj pðDÞ�,

i.e. the probability of obtaining a �2 value at least as high as

the observed.

Following Taylor (1997), we define

�2
obs ¼

XN

i¼ 1

yi � f ðxiÞ
� �2

�2
i

and �2
obs;� ¼

�2
obs

�
; ð12Þ

where yi are data points used for the fit with the uncertainty

�i =
�PN0

i¼ 1ðyi � �Þ
2=N

�1=2
, where � is the average data value

obtained from all XTANT realizations for a given dose. f(xi) is

the value predicted by the fit, and � is the number of degrees

of freedom. For linear models, �= N � (n + 1), with n being the

degree of the fitted polynomial. If our data points are inde-

pendent and normally distributed then �2
obs ’ �

2ðkÞ. With the

well known probability density function for k degrees of

freedom, we can then write

prob �2ðkÞ � �2
obsj pðDÞ

� �
¼

Z 1

�2
obs

xk=2� 1 expð� x=2Þ

2k=2 � k=2ð Þ
dx; ð13Þ

where � is the gamma function and prob½�2 � �2
obsj pðDÞ�, as

stated above, is the probability of obtaining a test statistic at

least as high as the observed one. This implies that, the higher

the probability, the better the fit, and vice-versa.

We performed six fits with increasing polynomial order.

They are shown in Fig. 12. We used the gradient descent

method for minimizing equation (12). �2
� and

prob½�2ðkÞ � �2
obsj pðDÞ� were also calculated for all of the fits,

according to equations (12) and (13), respectively, and plotted

in Figs. 13 and 14. They consistently indicate that the quality of

the fit significantly increases with the increasing polynomial

order until we reach fifth order. Afterwards, the fitting quality

stabilizes. It does not change when we continue to increase the
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Figure 11
Volume-integrated Bragg reflection intensity for the irradiation condi-
tions from Table 2 compared with the respective experimental data for
(a) hI111(t)ivol, real , (b) hI220(t)ivol, real and (c) hI311(t)ivol, real . The volume
integration was performed for a diamond sample, using XTANT code,
and assuming 7 keV photons, pulse duration of 6 fs FWHM, and three
different doses: 22.8 eV atom� 1 (blue), 7.6 eV atom� 1 (red) and 3.6 eV
atom� 1 (green). The magenta dots represent the experimental data points
from Heimann et al. (2023).



number of degrees of freedom. This is a signature of over-

fitting (Bishop, 2006).

Note that the fitting in Fig. 12 was performed for all fluence

points, since volume integration was performed for compar-

ison, and we had all these points available anyway. In order to

test the robustness of the method in respect of the number of

fluence points, we redid the fit in Fig. 12, using only six out of

the 11 original fluence points, i.e. omitting every second point.

This is the minimal number of data points needed to perform a

fifth-order polynomial fit. After solving equation (8) for the

new set of am coefficients, we obtained the effective dose of

4.18 eV atom� 1 for the average atomic displacement, whereas

the dose obtained from the full set of fluence points was

4.2 eV atom� 1, i.e. the minimal set of six fluence points

(needed to perform a fifth-order polynomial fit) was sufficient

to estimate the effective dose with good accuracy. Also, in the

cases discussed in this study, coefficient fitting at each time

step was not necessary, as all coefficients turned out to be

time-independent. However, this may not always be the case.

5.2. Bragg reflection intensity as a function of dose

The same method as above was used to study the dose

dependence of the 111 Bragg reflection intensity. We

performed polynomial fits of increasing order to the respective

data set. In Fig. 15 the data set and their fits are shown. Note
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Figure 12
Polynomial fits of various orders applied to the data set
½
P10

i¼ 1 Di=10;
P10

i¼ 1h�dðDi; t ¼ tfinalÞirel=10], obtained from the simula-
tions used to volume integrate the result in Fig. 3. The fits predict the dose
dependence of our observable, needed for Deff calculation.

Figure 13
�2

obs;� calculated for the fits displayed in Fig. 12.

Figure 14
prob½�2 � �2

obsj pðDÞ� from equation (13) calculated for the �2 = ��2
�

values present in Fig. 13.

Figure 15
Polynomial fits of different orders performed for the data set
[
P10

i¼ 1 Di=10;
P10

i¼ 1 hF111ðDi; t ¼ tfinalÞirel=10], obtained from the simu-
lations used to volume integrate the result in Fig. 5.

Figure 16
�2

obs;� calculated for the fits displayed in Fig. 15.

Figure 17
Parameter prob½�2 � �2

obsj pðDÞ� from equation (13) calculated for the
�2 = ��2

� values as in Fig. 16.



that the error bars for the Bragg signal are significantly larger

than for the atomic displacement case (cf. Fig. 12).

�2
� and prob½�2 � �2

obsj pðDÞ� for all the fits are depicted in

Figs. 16 and 17, respectively, as a function of polynomial order.

They indicate that the optimal fit to represent the dose

dependence of our observable is of sixth order.

As before, we use the estimated polynomial coefficients to

solve equation (8). In the desired dose range of the

[0, 8] eV atom� 1 range, we obtain the solution Deff =

4.51 eV atom� 1. The same analysis was performed for other

Bragg reflection intensities discussed in this study.
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