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V. M. Braun,1 Yao Ji,2, 3 and A. N. Manashov4, 1

1Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany
2School of Science and Engineering, The Chinese University of Hong Kong, 518172 Shenzhen, China

3Physics Department T31, Technische Universität München, D-85748 Garsching, Germany
4II. Institut für Theoretische Physik, Universität Hamburg D-22761 Hamburg, Germany

We calculate (
√
−t/Q)k and (m/Q)k power corrections with k ≤ 4, where m is the target mass and t is the

momentum transfer, to several key observables in Deeply Virtual Compton Scattering (DVCS). We find that the

power expansion is well convergent up to |t|/Q2 . 1/4 for most of the observables, but is naturally organized in

terms of 1/(Q2 + t) rather than the nominal hard scale 1/Q2. We also argue that target mass corrections remain

under control and do not endanger QCD factorization for coherent DVCS on nuclei. These results remove an

important source of uncertainties due to the frame dependence and violation of electromagnetic Ward identities

in the QCD predictions for the DVCS amplitudes in the leading-twist approximation.
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I. INTRODUCTION

Studies of the deeply-virtual Compton scattering (DVCS)

play an important role in the quest for the three-dimensional

“tomographic” imaging of the proton and light nuclei. This

reaction gives access to the generalized parton distributions

(GPDs) [1–3] that encode the information on the transverse

position of quarks and gluons in the proton in dependence

on their longitudinal momentum. This is an active research

topic and a major science goal for the planned Electron-Ion

Collider (EIC) [4, 5]. The QCD description of the DVCS is

based on collinear factorization. At leading power, the com-

plete next-to-leading-order (NLO) results are available since

long ago [6–9]. A lot of effort is put into extending this de-

scription to NNLO [10–20].

Beyond the leading twist, power-suppressed contributions

∼ (
√
−t/Q)k and ∼ (m/Q)k, where t is the invariant momen-

tum transfer and m is the target mass, play a special role. They

can be large and have to be taken into account. Indeed, the

transverse spatial position of partons in the target is Fourier

conjugate to the momentum transfer in the scattering process.

Hence the resolving power of DVCS is directly limited by the

range of the invariant moment transfer t which can be used

in the analysis. Theoretical control over power corrections

(
√
−t/Q)k is therefore crucial for three-dimensional imaging.

One more pressing issue is to clarify whether target mass cor-

rections ∼ (m/Q)k do not endanger QCD factorization for co-

herent DVCS on nuclei [21, 22].

We refer to the ∼ (
√
−t/Q)k and ∼ (m/Q)k contributions

to Compton amplitudes as “kinematic power corrections” be-

cause they do not involve new nonperturbative inputs in ad-

dition to the leading twist GPDs. On an intuitive level, their

origin and interpretation can be explained as follows [23]. The

four-momenta of the initial and final photons and nucleons in

a DVCS process do not lie in one plane. Hence the distinc-

tion of longitudinal and transverse directions is convention-

dependent and, as a consequence, the leading-twist approxi-

mation is intrinsically ambiguous. In the Bjorken limit this is

a 1/Q effect. On a more technical level, the freedom to rede-

fine large “plus” parton momenta by adding small transverse

components has two consequences. First, the dependence of

the skewness parameter ξ on the Bjorken variable xB acquires

t-dependent power suppressed contributions. Second, such

a redefinition generally leads to excitations of the sublead-

ing photon helicity-flip amplitudes [23, 24]. This convention-

dependence proves to be rather large, see [25] for a detailed

study. It should be viewed as a theoretical uncertainty that

can and should be removed by explicit calculation of the kine-

matic power corrections and adding them to the leading-twist

expressions in the data analysis.

This problem was addressed in [26–29], where a technique

was developed that allows one to calculate kinematic correc-

tions to the twist-four accuracy, i.e. up to terms ∼ t/Q2 and

∼ m2/Q2. The results in the final form were presented in [24].

A typical size of kinematic corrections for |t|/Q2 . 1/4 was

found to be of the order of 10% for asymmetries, but they

could be as large as 100% for the DVCS cross section in cer-

tain kinematics. These corrections can significantly impact

the extraction of GPDs from data and have to be taken into

account [30–32].

The approach of [26–29] requires explicit construction of

the higher-twist operator basis and becomes unwieldy beyond

twist four. In Ref. [33] we suggested a different technique

to calculate kinematic corrections to generic two-photon pro-

cesses, based on the conformal field theory (CFT) methods.

This technique is more general and is applicable to all twists.

Using this new approach we have calculated in Ref. [34] the

kinematic power corrections to twist-six accuracy for the sim-

plest case of DVCS on a scalar target. In this work we derive

the corresponding expressions for the spin-1/2 targets (nu-

cleon). We achieve the following accuracy, schematically:

A
(±,±) ∼ 1+

1

Q2
+

1

Q4
,
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A
(±,0) ∼ 1

Q
+

1

Q3
,

A
(±,∓) ∼ 1

Q2
+

1

Q4
, (1)

where A (±,±), A (±,0) and A (±,∓) are the helicity-

conserving, helicity-flip and double-helicity-flip amplitudes,

respectively. Precise definitions are given in the text. Taking

into account these corrections removes the frame dependence

of the leading-twist approximation and restores the electro-

magnetic gauge invariance of the Compton amplitude up to

1/Q5 effects.

Besides providing general expressions, we study the nu-

merical impact of kinematic corrections on several key ex-

perimental DVCS observables. We find that the twist-five and

twist-six contributions can be decreased by changing the ex-

pansion parameter in the twist-three and twist-four corrections

from the photon virtuality Q2 to Q2 + t. In addition, we con-

firm the observation made in [24] that target mass corrections

always involve powers of the skewness parameter ∼ (ξ m/Q)k

and do not endanger QCD factorization for coherent DVCS

on nuclei.

II. BMP HELICITY AMPLITUDES

A. Definitions and conventions

In this work we consider DVCS on the nucleon target

γ∗(q)+N(p,s)−→ γ(q′)+N(p′,s′) . (2)

The DVCS amplitude Aµν is defined as:

Aµν(q,q
′, p) = (3)

= i

∫
d4xe−i(z1q−z2q′)·x〈p′,s′|T{ jµ(z1x) jν(z2x)}|p,s〉,

where jµ(z1x) and jν(z2x) are the electromagnetic currents,

z1,z2 are real numbers such that z1 − z2 = 1. Note that Aµν

does not depend on z1 + z2. This property is referred to as

translation invariance in Refs. [28, 29]. It is violated at the

leading twist and is restored by adding kinematic power cor-

rections to the required accuracy.

We follow the BMP convention [28, 29] and use the photon

momenta, q and q′, to define a longitudinal plane spanned by

the two light-like vectors

n = q′ , ñ =−q+(1− τ)q′ , (4)

where τ = t/(Q2 + t) with Q2 = −q2. For this choice the

momentum transfer to the target

∆ = p′− p = q−q′ , t = ∆2

is purely longitudinal and both — initial and final state —

proton momenta have a nonzero transverse component

Pµ =
1

2

(
p+ p′

)
=

1

2ξ

(
n̄µ − τnµ

)
+P⊥,µ . (5)

The skewness parameter ξ is defined as

ξ ≡ ξ BMP =− ∆ ·q′
2P ·q′ =

xB(1+ t/Q2)

2− xB(1− t/Q2)
(6)

and |P⊥|2 can be written in terms of kinematic invariants as

|P⊥|2 =
1−ξ 2

4ξ 2
(tmin − t) , tmin =−4m2ξ 2

1−ξ 2
. (7)

The BMP choice is advantageous mainly because it leads to

simple expressions for the photon polarization vectors that can

be chosen as follows:

ε0
µ =−

(
qµ −q′µ q2/(q ·q′)

)
/
√

−q2 ,

ε±µ = (P⊥
µ ± iP̄⊥

µ )/(
√

2|P⊥|) , (8)

where P⊥
µ = g⊥µν Pν , P̄⊥

µ = ε⊥µν Pν and

g⊥µν = gµν − (qµ q′ν +q′µ qν)/(q ·q′)+q′µ q′ν q2/(q ·q′)2 ,

ε⊥µν = εµναβ qα q′β/(q ·q′) , εBMP
0123 = 1 . (9)

Normalization is such that ε+µ ε−µ = −1 , ε0
µ ε0µ = +1. The

pair ε±µ form a basis in the transverse plane whereas ε0
µ is

a unit vector in longitudinal plane orthogonal to the photon

momentum q′.
The DVCS amplitude Aµν can be decomposed in terms of

scalar (helicity) amplitudes using this basis:

Aµν = ε+µ ε−ν A
+++ ε−µ ε+ν A

−−+ ε0
µ ε−ν A

0+

+ ε0
µ ε+ν A

0−+ε+µ ε+ν A
+−+ε−µ ε−ν A

−+. (10)

We neglected a term proportional to q′ν since it does not con-

tribute to any observable. Each helicity amplitude involves

the sum over quark flavors, A = ∑e2
qAq, and is written in

terms of the leading-twist GPDs Hq,Eq, H̃q, Ẽq. For the GPD

definitions (see below), we follow Ref. [35].

B. Light-ray OPE

The amplitude Aµν can be written in terms of matrix ele-

ments of C =+1 twist-2 quark-antiquark light-ray operators

OV (z1y,z2y) =
1

2
〈p′|[q̄(z1y)/yq(z2y)]ℓt− (z1↔z2)|p〉,

OA(z1y,z2y) =
1

2
〈p′|[q̄(z1y)/yγ5q(z2y)]ℓt+(z1↔z2)|p〉, (11)

where on the l.h.s. only the dependence on the quark positions

is shown in order not to overload notation. In these expres-

sions the Wilson line connecting the quarks is implied, and

the notation [. . .]ℓt stands for the leading twist projection as

defined in Ref. [36]. The matrix elements (11) can be written

in terms of the GPDs as follows:

OV (z1y,z2y) =
∫ 1

−1
dx
[
yρ e−i(Py)[z1(ξ−x)+z2(x+ξ )]

]
ℓ.t.
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×
{

hρ H(x,ξ , t)+ eρ E(x,ξ , t)
}
,

OA(z1y,z2y) =
∫ 1

−1
dx

[
yρ e−i(Py)[z1(ξ−x)+z2(x+ξ )]

]
ℓ.t.

×
{

h̃ρ H̃(x,ξ , t)+ ẽρ Ẽ(x,ξ , t)
}
. (12)

In these expressions we use short-hand notations [37] for the

Dirac spinor bilinears

hρ = ū(p′)γρ u(p) , h̃ρ = ū(p′)γρ γ5u(p) ,

eρ = ū(p′)
iσρα ∆α

2m
u(p) , ẽρ =

∆ρ

2m
ū(p′)γ5u(p) . (13)

The leading twist projection of the exponential function is

given by [38]

[e−iℓy]lt = e−iℓxy +
1

4
y2ℓ2

∫ 1

0
dt t e−itℓy

+
1

32
y4ℓ4

∫ 1

0
dt t̄ t2e−itℓy +O(y6) ,

[yρ e−iℓy]lt = i
∂

∂ℓρ
[e−iℓy]lt , t̄ = 1− t . (14)

The calculation of the DVCS amplitude in terms of the ma-

trix elements of light-ray operators uses conformal symme-

try techniques and is explained in Refs. [33, 34]. Separat-

ing the contributions of the vector and axial-vector operators,

A µν = A
µν

V +A
µν

A , we obtain

A
µν

V =
∫

d4x

π2

e−iqx

(−x2 + i0)

∫ 1

0
dα

∫ ᾱ

0
dβ

{
1

(−x2 + i0)

(
gµν δ (α)δ (β )− xµ ∂ ν δ (β )− xν ∇µ δ (α)

)
OV − i

2

(
∆ν ∂ µ −∆µ ∂ ν

)
OV

+
1

4
gµν

(
O

(1)
V −δ (α)O

(2)
V

)
+

1

4

(
xν ∂ µ+xµ ∇ν

)(
ln τ̄ O

(1)
V +

β

β̄
O

(2)
V

)
+

1

2

(
xν ∂ µ − xµ ∇ν

)τ

τ̄

(
−O

(1)
V +

ᾱ

α
O

(2)
V

)

− 1

4
xν ∇µ β

β̄

[
4
(1

2
+

τ

τ̄

)
O

(1)
V −

(
δ (α)+

β

β̄

)
O

(2)
V

]
− xµ xν

(−x2 + i0)

[(
ln τ̄ + ln ᾱ +1

)
O

(1)
V +

β

β̄
O

(2)
V

]

+
1

2
xµ ∂ ν

[
ln ᾱ O

(1)
V +

(1

2
− 2τ

τ̄

)
O

(2)
V

]
+

xµ xν

4

[(
i(∆∂ )+

∆2

2

)β

β̄

(2

τ̄
−1

)
−2

(
i(∆∂ )+

∆2

4

)(
ln τ̄ +

2τ

τ̄

)]
O

(1)
V

}
,

(15)

and

A
µν

A =
1

2

∫
d4x

π2

e−iqx

(−x2 + i0)

∫ 1

0
dα

∫ ᾱ

0
dβ

{
iεµνβγ xβ

[
1

(−x2 + i0)

(
−∇γ δ (α)−∂ γ δ (β )

)
OA

+
1

4
∇γ

((
ln τ̄ − 2β

β̄

)
O

(1)
A +

β

β̄

(
1+δ (α)− β

β̄

)
O

(2)
A

)
+

1

4
∂ γ

((
ln τ̄ +2ln ᾱ

)
O

(1)
A +

1

β̄
O

(2)
A

)]

+
(
xν εµαβγ + xµ εναβγ

)
xα ∆γ ∂ β

[
1

(−x2 + i0)
OA −

1

4

(
ln τ̄ O

(1)
A +

β

β̄
O

(2)
A

)]}
, (16)

where

O
(1)
X (z1x,z2x) = i(∆∂ )OX (z1x,z2x) ,

O
(2)
X (z1x,z2x) =

(
i(∆∂ )+

∆2

2

)
OX (z1x,z2x) , (17)

with X = A,V and

τ =
αβ

ᾱβ̄
, ∂ γ =

∂

∂xγ
, ∇γ = ∂ γ − i∆γ . (18)

For brevity, we do not show the arguments of the operator

matrix elements, which are the same for all cases, OX stands

for OX (ᾱx,βx). The expression in (15) is equivalent to that

given in Ref. [34]; the contribution of axial-vector operators

in (16) is a new result.

C. Results

In this section we denote vector and axial-vector Dirac

bispinors as

vµ = ū(p′)γµ u(p) ,

aµ = ū(p′)γµ γ5u(p) , (19)

and use shorthand notations [39] for the scalar products with

the BMP polarization vectors defined in (8):

v±⊥ = (v · ε±) , a±⊥ = (a · ε±) ,
P±
⊥ = (P · ε±) =−|P⊥|/

√
2 . (20)

At the intermediate stages of the calculation the “double

distribution” (DD) [3] parametrization of the nucleon matrix
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elements of light-ray vector- and axial-vector operators proves

to be the most convenient. The results in the DD representa-

tion are collected in appendix A.

In the following expressions we use rescaled variables

t̂ =
t

(qq′)
, m̂2 =

m2

(qq′)
, |P̂⊥|2 =

|P⊥|2
(qq′)

, (21)

where (qq′) =−1/2(Q2 + t). We use the notation

M(x,ξ , t) = H(x,ξ , t)+E(x,ξ , t) , (22)

and

Dξ = (−2ξ 2∂ξ ) . (23)

It is convenient to use different normalization for the convolu-

tion integrals of the coefficient functions with different GPDs:

(M⊗T ) =
∫

dxM(x,ξ , t)T
(x+ξ

2ξ

)
,

(H̃ ⊗T ) =
∫

dxH̃(x,ξ , t)T
(x+ξ

2ξ

)
,

(E ⊙T ) =
1

2ξ

∫
dxE(x,ξ , t)T

(x+ξ

2ξ

)
,

(Ẽ ⊛T ) =
1

2

∫
dxẼ(x,ξ , t)T

(x+ξ

2ξ

)
. (24)

The coefficient functions appearing in the equations below are

defined as

T0(z) =
1

z̄
, T1(z) = ln z̄ ,

T00(z) =
z̄

z
ln z̄ , T10(z) =

1

z
ln z̄ ,

T11(z) =
(

2− 1

z

)
ln z̄ ,

TV (z) =
1

z̄

(
Li 2(z)−ζ2

)
− ln z̄ ,

TA(z) =−1

z̄

(
Li 2(z)−ζ2

)
+

1

z
ln z̄ ,

T2(z) =
1

z̄

(
Li 2(z)−ζ2

)
− 1

2z
ln z̄ ,

T3(z) =
2z+1

z̄

(
Li 2(z)−ζ2

)
− 1

2

(
7− 1

z

)
ln z̄ . (25)

They are analytic functions of z with a cut from 1 to ∞, apart

from T0 which has a pole singularity. Functions of higher

transcendentality appear at intermediate steps of the calcu-

lation but cancel in the final expressions. The convolution

integrals (24) involve the CFs on the upper side of the cut:

T (z) 7→ T (z+ iε) for x > ξ > 0.

1. Helicity-conserving (±,±) amplitude

We obtain

A
±,±

V =
(vq′)
(qq′)

V
(1)
0 +

(vP)

m2
V
(2)
0 ,

A
±,±

A =± (aq′)
(qq′)

A
(1)
0 ± (a∆)

2m2
A
(2)
0 , (26)

where

V
(1)
0 =−

(
1+

t̂

4

)(
M⊗T0

)
− t̂

2

(
M⊗T10

)
+

1

4
t̂2
(

M⊗T11

)
− 1

2
D2

ξ |P̂⊥|2
(

M⊗
(
T2 +2t̂ TV

))
+

1

8
D3

ξ |P̂⊥|4Dξ

(
M⊗T3

)
,

V
(2)
0 =−

(
1+

t̂

4

)(
E ⊙T0

)
− t̂

2

(
E ⊙T10

)
+

t̂2

4

(
E ⊙T11

)
− 1

2
Dξ |P̂⊥|2Dξ

(
E ⊙

(
T2 +2t̂ TV

))
+

1

8
D2

ξ |P̂⊥|4D2
ξ

(
E ⊙T3

)

− m̂2

{
Dξ

(
M⊗

(
T2 +2t̂TV

))
− 1

2
D2

ξ |P̂⊥|2
(

M⊗T3

)}
,

A
(1)
0 =

(
1+

t̂

4

)(
H̃ ⊗T0

)
+

t̂

2

(
1+

t̂

2

)(
H̃ ⊗T10

)
+

1

2
D2

ξ |P̂⊥|2
(

H̃ ⊗
(
T2 −2t̂ TA

))
− 3

16
D3

ξ |P̂⊥|4Dξ

(
H̃ ⊗

(
T00 −2TA

))
,

A
(2)
0 =

(
1+

t̂

4

)(
Ẽ ⊛T0

)
+

t̂

2

(
Ẽ ⊛T10

)
+

t̂2

4

(
Ẽ ⊛

(
T10 +

3

2

))
+

1

2
Dξ |P̂⊥|2Dξ

(
Ẽ ⊛

(
T2 −2t̂ TA

))

− 3

16
D2

ξ |P̂⊥|4D2
ξ

(
Ẽ ⊛

(
T00 −2TA

))
+ m̂2Dξ

{
1

ξ

(
H̃ ⊗

(
T2 −2t̂TA

))
− 3

4
Dξ

1

ξ
|P̂⊥|2Dξ

(
H̃ ⊗

(
T00 −2TA

))}
. (27)

We have verified that the invariant amplitudes (V
(1)
0 , V

(2)
0 ) and

(A
(1)
0 , A

(2)
0 ) coincide with (V2/2, V1) and (A2/2, A1) as de-

fined in Ref. [24, Eq.(A15)], up to twist-six terms t̂2, t̂ m̂2, . . .,
respectively.
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2. Helicity-flip (0,±) amplitude

This is a subleading-power amplitude that starts at the twist-

3 level. We obtain

A
0,±

V =
Q

(qq′)

(
v±V

(1)
1 +

(vq′)P±
(qq′)

V
(2)
1 +

(vP)P±
m2

V
(3)
1

)
,

A
0,±

A =± Q

(qq′)

(
a± A

(1)
1 +

(aq′)P±
(qq′)

A
(2)
1 +

(a∆)P±
2m2

A
(3)
1

)

(28)

with

V
(1)
1 =−

(
1+

t̂

2

)
(M⊗T10)+ t̂ (M⊗T1)

− 1

2
D2

ξ |P̂⊥|2 (M⊗TV ) ,

V
(2)
1 =−DξV

(1)
1 ,

V
(3)
1 =

(
1+

t̂

2

)
Dξ (E ⊙T10)− t̂ Dξ (E ⊙T1)

+
1

2
D2

ξ |P̂⊥|2Dξ

(
E ⊙TV

)
+ m̂2D2

ξ

(
M⊗TV

)
,

A
(1)
1 =

(
1+

t̂

2

)(
H̃ ⊗T10

)
− 1

2
D2

ξ |P̂⊥|2
(

H̃ ⊗TA

)
,

A
(2)
1 =−Dξ A

(1)
1 ,

A
(3)
1 =−

(
1+

t̂

2

)
Dξ

(
Ẽ ⊛T10

)
+

1

2
D2

ξ |P̂⊥|2Dξ

(
Ẽ ⊛TA

)

+ m̂2D2
ξ

1

ξ

(
H̃ ⊗TA

)
. (29)

To twist-three accuracy (leading terms), these expressions

agree with Ref. [24, Eq.(A16)].

3. Double-helicity-flip (∓,±) amplitude

A
∓±

V =
v±P±
(qq′)

V
(1)
2 +

(vq′)
(qq′)

V
(2)
2 +

(vP)

m2
V
(3)
2 ,

A
∓±

A =±a±P±
(qq′)

A
(1)
2 ± (aq′)

(qq′)
A
(2)
2 ± (a∆)

2m2
A
(3)
2 . (30)

We get

V
(1)
2 = 2

(
1+

t̂

4

)
Dξ

(
M⊗T11

)
− 1

2
D3

ξ |P̂⊥|2
(

M⊗TV

)
,

V
(2)
2 =−1

4
|P̂⊥|2DξV

(1)
2 ,

V
(3)
2 =−1

2
|P̂⊥|2D2

ξ

{(
1+

t̂

4

) (
E ⊙T11

)

− 1

4
Dξ |P̂⊥|2Dξ

(
E ⊙TV

)
− 1

2
m̂2 Dξ

(
M⊗TV

)}
,

A
(1)
2 = 2

(
1+

t̂

4

)
Dξ

(
H̃ ⊗T10

)
− 1

2
D3

ξ |P̂⊥|2
(

H̃ ⊗TA

)
,

A
(2)
2 =−1

4
|P̂⊥|2Dξ A

(1)
2 ,

A
(3)
2 =−1

2
|P̂⊥|2D2

ξ

{(
1+

t̂

4

) (
Ẽ ⊛T10

)

− 1

4
Dξ |P̂⊥|2Dξ

(
Ẽ ⊛TA

)
− 1

2
m̂2Dξ

1

ξ

(
H̃ ⊗TA

)}
.

(31)

At leading order (twist four), these expressions agree with the

corresponding results in [24, Eq.(A17)], except for the sign of

the A
(3)
2 contribution. In the DD representation [24, Eq.(B11)]

all results agree.

One of the motivations for our study was to clarify whether

target mass corrections ∼ (m/Q)k do not endanger QCD fac-

torization for coherent DVCS on nuclei [21, 22]. By inspec-

tion of the above equations, one can check that target mass de-

pendent contributions always involve additional factors of the

skewness parameter, so that the expansion goes in powers of

ξ 2m2/Q2 rather than m2/Q2. For nuclear targets, effectively,

m → Am and ξ → ξ/A, so that the target mass corrections

remain essentially the same as for the nucleon and are small,

apart from the large xB region.

III. COMPTON FORM FACTORS AND THE FRAME

DEPENDENCE

Compton form factors (CFFs) are defined [40] through the

decomposition of the helicity amplitudes in terms of the set of

bilinear spinors in Eq. (13)

A
a,±

BMP = H
a,±

BMP h+E
a,±

BMP e∓H̃
a,±

BMP h̃∓ Ẽ
a,±

BMP ẽ , (32)

where a = (+,0,−) and we have reintroduced the notation

“BMP” to remind that the the helicity amplitudes and hence

also the CFFs are defined using BMP conventions, see sec-

tion II A. Making use of the Dirac equation for the nucleon

states, one finds [24]

(vP)

2m2
= h− e ,

(vq′)
qq′

=− 1

ξ
h ,

(a∆)

4m2
=− 1

ξ

(
1+

t

Q2

)
ẽ ,

(aq′)
(qq′)

=− 1

ξ
h̃− 1

ξ

4m2

Q2
ẽ , (33)

and

v±⊥√
2
=−|P⊥|h−

m2

|P⊥|

[
e− t

4m2
h

]
∓ m2

ξ |P⊥|

[
ẽ− t

4m2
h̃

]
,

a±⊥√
2
=− m2

ξ 2|P⊥|

[
ẽ− t

4m2
h̃

]
∓ m2

ξ |P⊥|

[
e− t

4m2
h

]
, (34)

where ξ ≡ ξBMP is defined in Eq. (6). Making use of these

relations it is straightforward to obtain the expressions for the
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CFFs as linear combinations of the invariant functions V
(1,2,3)
0,1,2 ,

A
(1,2,3)
0,1,2 from the previous section.

In the DVCS phenomenology a different decomposition

of the Compton amplitude is traditionally used, being a cer-

tain generalization of the standard DIS reference frame where

the initial photon and proton momenta form the longitudinal

plane. Several conventions based on this identification ex-

ist and are in practice very similar to each other. The KM

convention used by Kumericki and Müller in global DVCS

leading-twist fits is one such example. Belitsky, Müller and

Ji (BMJ) [37] used the KM decomposition to derive explicit

expressions for key DVCS observables including subleading-

power CFFs.

The main difference to BMP conventions is that KM (and

BMJ) define helicity amplitudes in the target rest frame and

to this end, introduce different sets of polarization vectors for

the initial and final state photons. Also the definition of the

skewness variable is different, ξKM = xB/(2− xB). The rela-

tion between the BMP and KM (BMJ) CFFs is just a Lorentz

transformation and can easily be worked out, see [24]:

F
±+
KM = F

±+
BMP +

κ

2

[
F

++
BMP +F

−+
BMP

]
−κ0 F

0+
BMP, (35)

F
0+
KM =−(1+κ)F 0+

BMP +κ0

[
F

++
BMP +F

−+
BMP

]
,

etc. Here all entries F ∈ {H ,E ,H̃ , Ẽ } are functions of

xB, t,Q
2. Also

κ0 =

√
2QK̃√

1+ γ2(Q2 + t)
= O(1/Q) ,

κ =
Q2 − t +2xBt√
1+ γ2(Q2 + t)

−1 = O(1/Q2) , (36)

where

γ = 2mxB/Q , K̃ = xB(1+ t/Q2)|P⊥| . (37)

These relations are exact, there is no approximation.

Note that the power counting F++ = O(1/Q0), F 0+ =
O(1/Q), and F−+ = O(1/Q2), remains the same for both,

BMP and BMJ, versions. In particular the difference between

the leading, helicity conserving amplitudes, is a higher-twist

effect. Numerically, however, the difference can be signifi-

cant since the kinematic factors κ,κ0 are rather large in the

experimentally relevant kinematics, notwithstanding that they

are formally power-suppressed. The numerical results pre-

sented below are obtained by using the set of BMP CFFs

including kinematic power corrections to twist-six accuracy,

section II C, transforming them to the BMJ CFF basis (35),

and calculating DVCS observables using the expressions pro-

vided in Ref. [37].

IV. DVCS OBSERVABLES

To evaluate observables, we need to express the electropro-

duction cross sections in terms of the BMP CFFs FBMP. In-

stead of a direct calculation, we follow the procedure used in

Ref. [24], transforming BMP CFFs to the KM (BMJ) basis,

FBMP → FKM, and making use of the results from Ref. [37].

This transformation is straightforward and can be thought of

as, loosely speaking, a Lorentz transformation to a different

reference frame.

The results of a numerical calculation presented below are

obtained using the GPD model GK12 Goloskokov and Kroll

[41]. It is based on the Radyushkin’s double distribution

ansatz [3] and also involves a certain model for an approxi-

mate Q2 dependence. It is convenient for our purposes as all

needed ξ derivatives can be evaluated analytically.

As an example, we consider the helicity-conserving CFF

H ++(xB, t,Q
2) which gives the dominant contribution to

the DVCS cross section for the unpolarized target. The re-

sults for the absolute value and phase of H
++

BMP (xB, t,Q
2)

and H
++

KM (xB, t,Q
2) are shown in Fig. 1 and Fig. 2, respec-

tively. We choose Q2 = 3GeV2 and present, in both cases,

the results of the calculation with and without power correc-

tions as functions of t for fixed value xB = 0.15 (left panels),

xB = 0.30 (middle), and, alternatively, as functions of xB for

fixed t = −0.75GeV2 (right panels). As already mentioned,

in this work we define the twist expansion as power counting

in (qq′) =−1/2(Q2+ t) which implies that a part of the 1/Q4

corrections is included already in the twist-4 term. The re-

maining twist-6 contributions remain small up to |t|/Q2 ∼ 1/4

but increase rapidly for larger momentum transfers.

As another example, we consider the higher-twist helicity-

flip CFF H 0+(xB, t,Q
2) with a longitudinal virtual photon in

the initial state. This CFF starts at twist-3 level, H 0+ ∼ 1/Q.

The corresponding (kinematic) contribution is traditionally re-

ferred to as the Wandzura-Wilczek (WW) approximation. The

new contribution of this work is the calculation of the sub-

leading power twist-5 correction ∼ 1/Q3. The results in the

BMP reference frame are shown in Fig. 3. The twist-5 con-

tributions are significant and become of the same order as the

WW twist-3 term already at |t|/Q2 ∼ 0.3. The correspond-

ing KM CFFs H
0+

KM obtained from H
0+

BMP using the relation in

Eq. (35) are shown in Fig. 4. By this transformation, contri-

butions of different twists get mixed. For example, the WW

twist-3 contribution in the KM frame is obtained as a sum

of the twist-3 contribution in the BMP frame and the BMP

twist-2 CFF decorated by a kinematic factor κ0 ∼
√
−t/Q,

H
0+

KM =−H
0+

BMP +κ0H
++

BMP + . . . where the ellipses stand for

the terms ∼ 1/Q3 and higher powers. These two contribu-

tions tend to have an opposite sign so that a larger H
0+

BMP gen-

erally leads to a smaller H
0+

KM , see Fig. 4. In these plots we

do not perform a systematic power expansion, but show in-

stead the results for H
0+

BMP calculated using Eq. (35) literally,

with a certain approximation for the BMP CFFs H
++

BMP , H 0+
BMP,

H
−+

BMP as inputs. The dashed curves are obtained by using the

leading-twist approximation for H
++

BMP and putting the other

two BMP CFFs to zero; the dash-dotted curves are obtained



7

-1 -0.8 -0.6 -0.4 -0.20.0

0.2

0.4

0.6

0.8

t/GeV2

x B
| BM

P++
(x B,t,

Q
2
)|

Twist-6
Twist-4
Twist-2

GK12 Model

Q2=3 GeV2 , xB= 0.15

-1 -0.8 -0.6 -0.4 -0.20.0

0.2

0.4

0.6

0.8

t/GeV2

x B
| BM

P++
(x B,t,

Q
2
)|

GK12 Model

Q2=3 GeV2 , xB= 0.30

0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

xB

x B
| BM

P++
(x B,t,

Q
2
)|

GK12 Model

Q2=3 GeV2 , t=-0.75 GeV2

-1 -0.8 -0.6 -0.4 -0.20.5

1.0

1.5

2.0

2.5

t/GeV2

x B
A
rg

[ B
M
P++
(x B,t,

Q
2
)]

GK12 Model

Q2=3 GeV2 , xB= 0.15

-1 -0.8 -0.6 -0.4 -0.21.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

t/GeV2
x B
A
rg

[ B
M
P++
(x B,t,

Q
2
)]

GK12 Model

Q2=3 GeV2 , xB= 0.30

0.2 0.3 0.4 0.5
1.4

1.6

1.8

2.0

2.2

xB

x B
A
rg

[ B
M
P++
(x B,t,

Q
2
)]

GK12 Model

Q2=3 GeV2 , t=-0.75 GeV2

Figure 1. Kinematic power corrections to the absolute value and phase of the BMP Compton Form Factor H ++
BMP (xB, t,Q

2).
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Figure 2. Kinematic power corrections to the absolute value and phase of the KM Compton Form Factor H ++
KM (xB, t,Q

2).

using all three BMP CFFs to twist-4 accuracy, and the solid

curves show the final results including the twist-5 and twist-6

terms. The higher-twist corrections are large in all cases and

have a nontrivial pattern. However, the helicity flip CFF is

small in comparison to the helicity-conserving one, cf. Fig. 2,

so that the results for the cross sections and spin asymmetries

are not affected strongly.

In the last years new experimental data on DVCS from Jef-

ferson Lab have appeared, with extended Q2 and xB phase

space reached including considerably smaller statistical un-

certainty as compared to previous results. In Fig. 5 we com-

pare our results on the kinematic power corrections to the

spin-averaged DVCS cross section with the Hall A results

[32]. As above, we use the GK12 GPD model as an exam-

ple, and take into account Bethe-Heitler contributions as in

Ref. [24]. The dotted and dashed curves are calculated in

the leading-twist approximation defined in the KM and BMP

reference frames, the dash-dotted curve shows the calculation

with twist-4 corrections included, and the solid curve presents

the full result to twist-6 accuracy. We have chosen for this

figure the Hall A data sets with larger |t|/Q2 values where the

power corrections are more important, but avoid the ones with

the largest xB values as the GK12 model was not fitted to this

range. The target mass corrections prove to be negligible for

all considered cases.

In Ref. [42] the first measurement of the DVCS beam-spin

asymmetry was reported using the CLAS12 spectrometer with

a 10.2 and 10.6 GeV electron beam scattering off unpolarized

protons. Our results in several different approximations are

compared with their selected data sets in Fig. 6. Note that

there are several data sets with large values of the momentum
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Figure 3. Real (upper panels) and imaginary (lower panels) parts of the helicity-flip BMP Compton Form Factor H 0+
BMP (xB, t,Q

2).
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Figure 4. Real (upper panels) and imaginary (lower panels) parts of the helicity-flip KM Compton Form Factor H 0+
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transfer |t|/Q2 ∼ 0.5 in which case the power corrections be-

come very large, but, in general, their size is moderate and

the overall agreement with the data appears to be quite satis-

factory. In the future, it would be very interesting to see the

spin-averaged cross section measurements from CLAS12 in a

similar broad t-range.

V. CONCLUSIONS

We have studied kinematic power corrections to the DVCS

observables including, for the first time, the contributions of

twist-5 and twist-6 to the Compton form factors. The moti-

vation for this work is provided by the three-dimensional “to-

mographic” imaging program of the proton and light nuclei,

with the generalized parton distributions encoding the infor-

mation on the transverse position of quarks and gluons in the

proton in dependence on their longitudinal momentum. The

resolving power on the transverse distance is directly limited

by the range of the invariant moment transfer t which can be

used in the analysis. Thus the theoretical control over power

corrections (
√
−t/Q)k is crucial.

The main thrust of the present calculation has been to find

out the range of momentum transfers for which the hierar-

chy of contributions with different power suppression holds,

i.e. the twist-5,6 contributions are still smaller than twist-3,4

ones. Our results suggest that for |t|/Q2 . 1/4 the twist ex-

pansion is converging for most observables, confirming the

previous estimate from Ref. [23] that was based on the hier-

archy of the leading twist-2 and twist-3,4 terms. However,

1/(qq′) = 2/(Q2 + t) appears to be a better expansion param-

eter as compared to the nominal hard scale 1/Q2.

Apart from that, we present additional evidence that tar-
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Figure 5. Spin-averaged cross sections from Jefferson Lab HallA [32] (selected data sets).

get mass corrections ∼ (m/Q)k do not spoil QCD factoriza-

tion for coherent DVCS on nuclei. The reason is that such

contributions to Compton form factors always involve addi-

tional factors of the skewness parameter, so that the expansion

goes in powers of ξ 2m2/Q2 rather than m2/Q2. This feature

was already observed in Ref. [23] to twist-4 accuracy, and is

now confirmed up to twist-6. For nuclear targets, effectively,

m → Am and ξ → ξ/A, so that the target mass corrections

remain essentially the same as for the nucleon and are small,

apart from the large xB region.
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Appendix A: Helicity amplitudes in the Double Distribution

representation

At the intermediate stages of the calculation the following

“double distribution” (DD) [3] parametrization of the nucleon

matrix elements of light-ray vector- and axial-vector operators

proves to be the most convenient:

OV (z1n,z2n) =
∫∫

dydzeiyP+z12+i 1
2 ∆+(z1+z2−z12z)

×
{

v+h−(y,z, t)+
i(vP)

z12m2
Φ+(y,z, t)

}
,

OA(z1n,z2n) =
∫∫

dydzeiyP+z12+i 1
2 ∆+(z1+z2−z12z)

×
{

a+h̃+(y,z, t)+
i(a∆)

2z12m2
Φ̃−(y,z, t)

}
.

(A1)

The variables x,y are related to the original Radyushkin’s no-

tation as y ≡ β and z ≡ α , and the integration goes over the re-

gion |y|+ |z| ≤ 1. The subscripts ± of the DDs (boldface) indi-

cate parity under the (y,z) 7→ (−y,−z) transformation, namely

h−(y,z, t) =−h−(−y,−z, t) ,

h̃+(y,z, t) = h̃+(−y,−z, t) , (A2)

etc. The DD Φ̃− is an odd function of z whereas all other DDs

are even functions of z. The DDs Φ+ and Φ̃− can alternatively
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Figure 6. Beam spin asymmetries from Jefferson Lab CLAS12 10.6 GeV data set [42] (selected data sets).

be written as [43]

Φ+(y,z) = ∂y f (y,z)+∂zg(y,z) ,

Φ̃−(y,z) = ∂y f̃ (y,z)+∂zg̃(y,z) . (A3)

The “standard” GPDs H, E, H̃, Ẽ (12) can be expressed in

terms of the DDs defined above as follows [23],

(H+E)(x,ξ , t) =
∫∫

dydzδ (x− y−ξ z)h−(y,z, t) ,

−E(x,ξ , t) =
∫∫

dydzδ (x− y−ξ z)

×
(

f (y,z, t)+ξ g(y,z, t)
)
,

H̃(x,ξ , t) =
∫∫

dydzδ (x− y−ξ z) h̃+(y,z, t) ,

−Ẽ(x,ξ , t) =
1

ξ

∫∫
dydzδ (x− y−ξ z)

×
(

f̃ (y,z, t)+ξ g̃(y,z, t)
)
. (A4)

The calculation follows the same routine as for a scalar

target [34], but is more cumbersome due to a proliferation

of Lorentz structures. In the expressions given below h− ≡
h−(y,z), h̃+ ≡ h̃+(y,z), etc. We use rescaled variables t̂, m̂2,

|P̂⊥|2 defined in Eq. (21) and the notation

Dw ≡ y∂w , (A5)

where

w ≡ w(y,z) =
1

2

(
y

ξ
+ z+1

)
,

w(−y,−z) = 1−w(y,z) . (A6)

The coefficient functions are defined in Eq. (25).

We write the result for the helicity-conserving amplitude

A
±±

A,V as a sum of four terms following the notation in Eq. (26).

We obtain

V
(1)
0 =

∫∫
dydzh−

{
−
(

1+
t̂

4

)
T0(w)−

t̂

2
T10(w)+

[
t̂
(

1+
1

ξ
Dw

)
− 1

2
|P̂⊥|2D2

w

][
T2(w)+2t̂ TV (w)

]
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+
t̂2

4
T11(w)+

[
3

2
t̂
(

1+
1

2ξ
Dw

)( t̂

ξ
−|P̂⊥|2Dw

)
Dw +

1

8
|P̂⊥|4D4

w

]
T3(w)

}
, (A7a)

V
(2)
0 =

∫∫
dydzΦ+

{(
1+

t̂

4

)
T1(w)+

t̂

2
Li 2(w)+

1

2
y
( t̂

ξ
−|P̂⊥|2Dw

)
T2(w)+

t̂2

4

(
Li 2(w)−2w̄ ln w̄

)

+ ŷt
( t̂

ξ
−|P̂⊥|2Dw

)
TV (w)−

1

2
y

[
− t̂2

2ξ 2
+ t̂|P̂⊥|2

(
1+

1

ξ
Dw

)
− 1

4
|P̂⊥|4D2

w

]
DwT3(w)

}

− m̂2
∫∫

dydzh−

{
Dw

(
T2(w)+2 t̂ TV (w)

)
−
[

t̂
(

1+
1

ξ
Dw

)
− 1

2
|P̂⊥|2D2

w

]
T3(w)

}
(A7b)

A
(1)
0 =

∫∫
dydz h̃+

{(
1+

t̂

4

)
T0(w)+

t̂

2
T10(w)−

[
t̂
(

1+
1

ξ
Dw

)
− 1

2
|P̂⊥|2D2

w

][
T2(w)−2t̂ TA(w)

]

+
t̂2

4
T10(w)+

9

2

[
t̂
(

1+
1

2ξ
Dw

)( t̂

ξ
−|P̂⊥|2Dw

)
+

1

12
|P̂⊥|4D3

w

]
Dw

[
TA(w)−

1

2
T00(w)

]}
, (A8a)

A
(2)
0 =

∫∫
dydzΦ̃−

{
−
(

1+
t̂

4

)
T1(w)−

t̂

2
Li 2(w)−

1

2
y
( t̂

ξ
−|P̂⊥|2Dw

)[
T2(w)−2t̂ TA(w)

]

− t̂2

4

(
Li 2(w)−

3

2
w
)
+

3

4
y

[
t̂2

ξ 2
−2t̂|P̂⊥|2

(
1+

1

ξ
Dw

)
+

1

2
|P̂⊥|4D2

w

]
Dw

[
TA(w)−

1

2
T00(w)

]}

+2m̂2
∫∫

dydz h̃+

{(
1+

1

2ξ
Dw

)[
T2(w)−2t̂ TA(w)

]

− 3

2

[
t̂

ξ
+

|P̂⊥|2
2ξ

D
2
w +2

( t̂

ξ
−|P̂⊥|2Dw

)(
1+

1

2ξ
Dw

)]
Dw

[
TA(w)−

1

2
T00(w)

]}
. (A8b)

Helicity-flip amplitudes A
0±

A,V can be written as sum of six invariant functions defined in Eq. (28):

V
(1)
1 =

∫∫
dydzh−

{
−T10(w)+

t̂

2
T11(w)+

[
t̂
(

1+
1

ξ
Dw

)
− 1

2
|P̂⊥|2D2

w

]
TV (w)

}
, (A9a)

V
(2)
1 =

∫∫
dydzh−

{
DwT10(w)−

t̂

2
DwT11(w)−3

[
t̂
(

1+
1

2ξ
Dw

)
− 1

6
|P̂⊥|2D2

w

]
DwTV (w)

}
, (A9b)

V
(3)
1 =

∫∫
dydzyΦ+

{
T10(w)−

t̂

2
T11(w)−

[
t̂
(

1+
1

ξ
Dw

)
− 1

2
|P̂⊥|2D2

w

]
TV (w)

}

+ m̂2
∫∫

dydzh−D
2
wTV (w), (A9c)

A
(1)
1 =

∫∫
dydz h̃+

{(
1+

t̂

2

)
T10(w)+

[
t̂
(

1+
1

ξ
Dw

)
− 1

2
|P̂⊥|2D2

w

]
TA(w)

}
, (A10a)

A
(2)
1 =

∫∫
dydz h̃+

{
−
(

1+
t̂

2

)
Dw T10(w)−3

[
t̂
(

1+
1

2ξ
Dw

)
− 1

6
|P̂⊥|2D2

w

]
DwTA(w)

}
, (A10b)

A
(3)
1 =

∫∫
dydzyΦ̃−

{
−
(

1+
t̂

2

)
T10(w)−

[
t̂
(

1+
1

ξ
Dw

)
− 1

2
|P̂⊥|2D2

w

]
TA(w)

}

+4m̂2
∫∫

dydz h̃+

(
1+

1

4ξ
Dw

)
DwTA(w). (A10c)

Finally, the amplitudes A
∓±

A,V with helicity flip by two units, can be written as a sum of 6 terms as in Eq. (30). We get

V
(1)
2 =

∫∫
dydzh−

{
2
(

1+
t̂

4

)
Dw T11(w)+3

[
t̂
(

1+
1

2ξ
Dw

)
− 1

6
|P̂⊥|2D2

w

]
DwTV (w)

}
, (A11a)

V
(2)
2 = |P̂⊥|2

∫∫
dydzh−

{
−1

2

(
1+

t̂

4

)
D

2
w T11(w)−

3

2

[
t̂
(

1+
1

3ξ
Dw

)
− 1

12
|P̂⊥|2D2

w

]
D

2
wTV (w)

}
, (A11b)

V
(3)
2 = |P̂⊥|2

∫∫
dydzyΦ+

{
−1

2

(
1+

t̂

4

)
Dw T11(w)−

3

4

[
t̂
(

1+
1

2ξ
Dw

)
− 1

6
|P̂⊥|2D2

w

]
DwTV (w)

}
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+
1

4
|P̂⊥|2m̂2

∫∫
dydzh−D

3
wTV (w), (A11c)

A
(1)
2 =

∫∫
dydz h̃+

{
2
(

1+
t̂

4

)
Dw T10(w)+3

[
t̂
(

1+
1

2ξ
Dw

)
− 1

6
|P̂⊥|2D2

w

]
DwTA(w)

}
, (A12a)

A
(2)
2 = |P̂⊥|2

∫∫
dydz h̃+

{
−1

2

(
1+

t̂

4

)
D

2
w T10(w)−

3

2

[
t̂
(

1+
1

3ξ
Dw

)
− 1

12
|P̂⊥|2D2

w

]
D

2
wTA(w)

}
, (A12b)

A
(3)
2 = |P̂⊥|2

∫∫
dydzyΦ̃−

{
−1

2

(
1+

t̂

4

)
Dw T10(w)−

3

4

[
t̂
(

1+
1

2ξ
Dw

)
− 1

6
|P̂⊥|2D2

w

]
DwTA(w)

}

+
3

2
|P̂⊥|2m̂2

∫∫
dydz h̃+

(
1+

1

6ξ
Dw

)
D

2
wTA(w) . (A12c)

Starting from these expressions, it is straightforward to rewrite the results in terms of GPDs using the following identities:

∫∫
dydzΦ+(y,z)Y (w) =

1

2ξ

∫
dxY ′

(
x+ξ

2ξ

)
E(x,ξ , t) ,

∫∫
dydzΦ̃−(y,z)Y (w) =

1

2

∫
dxY ′

(
x+ξ

2ξ

)
Ẽ(x,ξ , t) ,

∫∫
dydzyΦ+(y,z)D

k
w Y (w) =

(
−2ξ 2∂ξ

)k+1 1

2ξ

∫
dxY

(
x+ξ

2ξ

)
E(x,ξ , t) ,

∫∫
dydzyΦ̃−(y,z)D

k
w Y (w) =

(
−2ξ 2∂ξ

)k+1 1

2

∫
dxY

(
x+ξ

2ξ

)
Ẽ(x,ξ , t) ,

∫∫
dydzh−(y,z)D

k
w Y (w) =

(
−2ξ 2∂ξ

)k
∫

dxY

(
x+ξ

2ξ

)(
H(x,ξ , t)+E(x,ξ , t)

)
,

∫∫
dydz h̃+(y,z)D

k
w Y (w) =

(
−2ξ 2∂ξ

)k
∫

dxY

(
x+ξ

2ξ

)
H̃(x,ξ , t) , (A13)

where Y (w) is an arbitrary function. The final results in the GPD representation are given in section II C .
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