


algorithms is to achieve optics parameters that closely

resemble the design optics. This helps to recover the DA,

momentum acceptance, and lifetime, while minimizing

emittance and the beta function at the interaction point,

thereby enhancing machine performance.

SVD orbit correction

Orbit correction involves generating Orbit Response

Matrix (ORM) for the closed orbit as a function of the

orbit corrector kicks, the matrix is of dimension < × =,

where = is the number of used orbit correctors and < is

the number of BPMs.

For the 8th BPM and the 9 th corrector the ORM ele-

ment is:
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where V is the beta functions at an element position,

& denotes the tune, k is the phase advance, [ is the

dispersion function, U2 is the momentum compaction

factor and !> is the circumference of the accelerator.

The Singular value decomposition (SVD) orbit cor-

rection aims to invert the response matrix to find the

proper orbit correctors kicks \ that best minimize the

distortion on the closed orbit ΔG, by following the rela-

tion ΔG + "Δ\ = 0, the SVD technique [8] is used to

solve the least square problem. A proper selection for

the orbit corrector kick used to generate the ORM has

been discussed in Ref. [9].

LOCO for optics correction

The Linear Optics from Closed Orbit (LOCO) tech-

nique [10] exploit the extensive information encoded in

the ORM illustrated in Eq. 1 by fitting measured ORM

" to a lattice model "<>34; . The minimization pro-

cess involves adjusting vector of parameters ? in iter-

ations till the convergence of the correction of the op-

tics parameters distortion such as the beta beating and

relative dispersion, these parameters could be for exam-

ple, the quadrupole gradients, quadrupole rolls (skew

quadrupole gradients) in addition to BPMs and orbit

correctors horizontal and vertical calibrations. Equa-

tion 2 illustrates the parameters update formula for the

Gauss-Newton (GN) method adopted by the original

LOCO [6]:

XℎGN =
[
�⊤,�

]−1
�⊤, (" − "<>34;), (2)

where, is the diagonal weights matrix given by, =
1

f2
, f is the measured noise level on the BPMs (vari-

ance of input error) and � =
(
m"
m?

)
is the Jacobian matrix,

which gives an indication of how the function is sensitive

to the change of its fitting parameters. The SVD is intro-

duced here to solve the matrix inversion [[�⊤,�]]−1.

Phase advance + [G correction

Unlike optics correction methods based on the or-

bit response technique like LOCO, the Turn-By-Turn

(TBT) and Multi-Turn techniques excite the beam and

record beam position data over one or multiple turns

to determine optics parameters like the betatron phase

advance [11]. Research has demonstrated that tuning

the phase advance is equally effective as beta function

correction [12], providing a powerful numerical method

for linear optics correction by minimizing the difference

between measured and model phase advances between

adjacent BPMs. From the lattice model, one can obtain

the response matrix �, that relates the relative phase

advance XΔk and relative horizontal dispersion X[G to

the relative strengths X of all quadrupole, as following:
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and then the SVD method is used to solve this system

(similar to orbit correction as described previously). The

weights U2 = 1 − U1 are introduced in order to deter-

mine the best compromise between correction of phase

advance and dispersion.

Coupling RDTs + [H correction

Using Hamiltonian and normal form theory [13], [14]

Resonance Driving Terms (RDTs) have been defined

and it proved to be a powerful tool to describe betatron

coupling close to the sum and difference resonance, and

it is defined as following:
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where  B; (B) is the ; th integrated skew quadrupole

strength, V;G,H (B) are the beta functions at the location

of the ; th skew quadrupole, ΔkB;
G,H (B) are the phase ad-

vances between the observation point s and the ; th skew

quadrupole.

A relation detailed in Ref. [15], shows that, in order to

minimize the vertical emittance, the driving terms 51001
1010

,

should be minimized. In order to correct coupling, skew

quadrupoles must be installed, primarily at each sex-

tupole magnet. Similar to betatron phase, the coupling

matrix # can be inferred from BPMs data. Minimization

is applied to determine the appropriate skew quadrupole

strength.

The system to invert via SVD reads:
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