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Strong-field ionization can induce electron motion in both the continuum and valence shell of the parent

ion. Here we report on a joint theoretical and experimental investigation of laser-induced electron diffraction

in xenon. We explore the interplay of electron recollision with spin-orbit dynamics in the valence shell of

the xenon cation. On the theory side, the electron-hole potentials for two different states are constructed, and

the quantitative rescattering model is used to calculate the photoelectron momentum distributions (PMDs) for

high-order above-threshold ionization of xenon. Measurements were carried out using 40-fs laser pulses with a

central wavelength of 3100 nm and a peak laser intensity of 6 × 1013 W/cm2. The simulated PMDs describe well

the features of the measured angular distributions of photoelectrons. Our study reveals a theoretical distinction

between the electron signals resulting from rescattering off the m = 0 and |m| = 1 hole states, particularly noting

a distinct change along the backward scattering angles. However, to fully identify the contributions of the hole

states, a more accurate agreement between theory and experiment will be needed.

DOI: 10.1103/PhysRevA.110.013118

I. INTRODUCTION

Laser-induced electron diffraction (LIED) has been es-

tablished as a powerful alternative to conventional electron

diffraction; see Refs. [1,2] for recent reviews. The technique

relies on the laser-driven elastic rescattering [3] of a photo-

electron emitted by strong-field ionization, which gives rise

to high-order above threshold ionization (HATI), the basic

strong-field phenomenon underlying LIED. The rescatter-

ing process provides LIED with two interesting properties:

first, an ultrahigh current density, allowing imaging on the

single-molecule level [4] and, second, perfect synchronization

between ionization and scattering events, allowing (attosec-

ond) time-resolved experiments [5–7].

The LIED signal can be described by the atomic scatter-

ing cross sections and a molecular interference term [4,8,9].

Numerous LIED experiments have focused on the measure-

ment of the molecular interference term, and the accurate,

and time-dependent, retrieval of molecular bond lengths has

been demonstrated [6,7,10]. Notably, these measurements re-

quire the recolliding electron to possess a sufficiently short

de Broglie wavelength and correspondingly large momen-

tum. For this reason, long driving wavelengths (λ � 2 m) are
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favorable to drive LIED experiments for molecular struc-

ture retrieval. In the case of atoms or lower recollision

momentum, the scattering signal is governed by the differen-

tial elastic electron scattering cross sections (DCSs), which

depend on the valence electron distribution [11]. Good agree-

ment between measured LIED patterns and DCSs known

from conventional electron diffraction experiments has been

obtained [12,14].

Specifically, strong-field driven tunnel ionization is not

only the primary step in HATI and LIED but can also initiate

electronic and nuclear dynamics inside the parent ion, thus

acting as a “pump.” This has enabled ultrastable pump-probe-

type experiments: attosecond time resolution is obtained by

exploiting the perfect synchronization between the laser field

and the recolliding electron [3]. As the returning electron

wave packet is chirped, an energy-resolved measurement of

the returning electron, acting as a probe, provides access

to different pump-probe delays. This principle has been ex-

ploited for time-resolved measurements of nuclear dynamics

in high-harmonic spectroscopy [15,16] and LIED experiments

[6,7]. While the prospect of employing high-harmonic gen-

eration (HHG) for probing [15,17] is inherently appealing, a

significant challenge arises from the strong impact of phase

matching on HHG [18–20]. In contrast, LIED is insensi-

tive to phase matching, representing a promising alternative.

However, to the best of our knowledge, LIED experiments

revealing electron-hole dynamics have not yet been reported.
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Here we study the interplay of continuum and bound elec-

tron dynamics in the HATI process. Our approach is best

illustrated by viewing laser-induced recollision as a pump-

probe experiment [21,22]: tunnel ionization takes the role of

a pump pulse which essentially starts two clocks: a laser-

dependent one that corresponds to the field-driven motion of

free electrons undergoing elastic rescattering, and a target-

dependent one that relates to the bound electron dynamics.

Both clocks are read at the time of recollision when the rec-

olliding electron probes the hole density of the ion by elastic

scattering.

In this work we consider the xenon (Xe) atom. The ground

state of the Xe cation has two fine-structure components:

the 2P3/2 and 2P1/2 that are separated by �ESO = 1.3 eV

due to spin-orbit interaction. Both ion states are coherently

populated by tunnel ionization, thus creating a wave packet

[13]. As the spin-orbit wave packet evolves, the 5p5 electron-

hole (vacancy) in the valence shell oscillates between the

m = 0 state and the |m| = 1 (m is the magnetic quantum

number) states of the valence shell of the Xe+ ion with the

period TSO = h/�ESO (3.2 fs) [23]. The spatial hole density

in the valence shell is described by the orbitals for m = 0

(“peanut shape”) and |m| = 1 (“donut shape”). At integer

n and half-integer (n + 1
2

) multiples of the spin-orbit pe-

riod (where n = 0, 1, 2, 3, . . .), the hole alternately populates

the m = 0 and |m| = 1 orbitals, respectively. The oscillating

hole density has been tracked in Kr using attosecond tran-

sient spectroscopy [24]. For the Ne and Ar ion momentum

spectroscopy [25] or momentum imaging of direct electrons

[26,27] has been applied. Recently, the spin-orbit wave packet

in Xe has been probed using sequential double ionization in

an elliptically polarized near-infrared laser field [28]. Here

we employ elastic rescattering in a midinfrared field (λ =
3100 nm) with an optical period of T = 10.5 fs. Owing to

the relatively long optical period, the returning electron wave

packet spans several femtoseconds, allowing us, in princi-

ple, to probe the evolution of the spin-orbit wave packet

in xenon.

The article is structured as follows. In Sec. II the theoretical

model is introduced, including the strong-field approximation.

We describe the method to construct the electron-hole po-

tential and outline the quantitative rescattering theory (QRS)

model used to calculate the photoelectron momentum dis-

tributions (PMDs) for HATI. Based on the QRS model, the

simulated results are shown and discussed in Sec. III. Finally,

Sec. IV contains conclusions and outlook.

Unless indicated otherwise, atomic units (me = e = h̄ =
4πε0 = 1) are used throughout the paper.

II. THEORETICAL MODEL

A. The strong-field approximation

In the strong-field approximation (SFA) [29,30], the first

two terms of the perturbation series, called direct (SFA1)

and rescattering (SFA2) amplitudes, respectively, express the

momentum-dependent ionization amplitude as

f SFA(p) = f SFA1(p) + f SFA2(p), (1)

where p is the momentum of the detected photoelectron. The

direct ionization amplitude in Eq. (1) is given by

f SFA1(p) = −i

∫ ∞

−∞
dt〈χp(t )|r · F(t )|�i(t )〉, (2)

where F(t ) = −∂A(t )/∂t is the laser electric field, and �i(t )

is the initial ground state wave function. The Volkov state

χp(t ) in Eq. (2) is given by

〈r|χp(t )〉 =
1

(2π )3/2
ei[p+A(t )]·re−iS(p,t ), (3)

where the action S reads as

S(p, t ) =
1

2

∫ t

−∞
dt ′[p + A(t ′)]2. (4)

The second term in Eq. (1), the so-called rescattering am-

plitude, accounts for laser-induced elastic scattering of the

returning electron from the parent ion. This rescattering am-

plitude can be expressed as

f SFA2(p) = −
∫ ∞

−∞
dt

∫ ∞

t

dt ′
∫

dk〈χp(t ′)|V |χk(t ′)〉

× 〈χk(t )|r · F(t )|�i(t )〉, (5)

where V is the scattering potential. It takes the form

V (r) = Ṽ (r)e−αr, (6)

where α is a screening factor introduced to avoid the singu-

larity in the integrand in Eq. (5) and Ṽ (r) is the atomic model

potential that can be written in the form

Ṽ (r) = −
1 + a1e−a2r + a3re−a4r + a5e−a6r

r
. (7)

The parameters ai(i = 1, 3, 5) can be found in Ref. [31]. As

can be seen from Eq. (5), the rescattering amplitude involves

three steps by the electron under laser field: the initial tunnel

ionization, propagation in the laser field, as well as elastic

scattering with the parent ion.

B. Elastic differential cross sections

In this section we briefly summarize the standard poten-

tial scattering theory, which has been well documented in

the textbook [32]. The scattered wavefunction of an electron

by a spherical potential V (r) satisfies the time-independent

Schrödinger equation

[∇2 + k2 − U (r)]ψ (r) = 0, (8)

where U (r) = 2V (r) is the reduced potential and k is the

electron momentum, related to the electron energy by k =√
2E . For a short-range potential which falls faster than r−2

as r → ∞, the wave function of the scattered electron in the

asymptotic region is given by

ψ+(r)r→∞ =
1

(2π )3/2

[
eik·r + f (θ )

eikr

r

]
, (9)

where f (θ ) is the scattering amplitude and θ is the polar angle

measured from the incident direction.
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To obtain the scattering amplitude, we solve Eq. (8) by

expanding the scattered wave function in partial waves,

ψ+(r) =
√

2

π

1

kr

∑

lm

ilul (k, r)Ylm(r̂)Y ∗
lm(k̂), (10)

where Ylm is a spherical harmonic. The continuum waves are

normalized to δ(k − k′). The radial equation ul (k, r) satisfies
[

d2

dr2
+ k2 −

l (l + 1)

r2
− U (r)

]
ul (k, r) = 0. (11)

For a plane wave when V (r) = 0, the radial component

ul (k, r)/kr in Eq. (10) is a standard spherical Bessel function

jl (kr).

When r → ∞, the boundary condition satisfied by ul (k, r)

for V (r) = 0 is

ul (k, r) = sin
(
kr − 1

2
lπ

)
, (12)

while for a short-range potential V (r),

ul (k, r) = e(iδl ) sin
(
kr − 1

2
lπ + δl

)
, (13)

where δl is a phase shift that displays the influence of the

interaction.

By matching the coefficients of the outgoing spherical

waves in Eqs. (9) and (10), and using Eqs. (12) and (13), the

scattering amplitude is given by

f (θ ) =
∞∑

l=0

2l + 1

k
eiδl sin(δl )Pl (cos θ ), (14)

where Pl (cos θ ) are the Legendre polynomials.

The scattering by a Coulomb potential,

Vc(r) =
Z1Z2

r
, (15)

where Z1 and Z2 are the charges of the projectile and the target,

can be treated in parabolic coordinates and the scattering

amplitude can be obtained analytically,

fc(θ ) = −ηe2iσ0
e−iηln[sin2(θ/2)]

2k sin2(θ/2)
, (16)

where

σ0 = −arg[Ŵ(1 + iη)], η =
Z1Z2

k
. (17)

In order to mimic the partial screening of the nuclear

charge by the electrons, a short-range potential V (r) is added

to a Coulomb potential Vc(r), using partial-wave expansion.

The scattering amplitude for V (r) can be expressed by

f̂ (θ ) =
∞∑

l=0

2l + 1

k
e2iσl eiδl sin(δl )Pl (cos θ ). (18)

Thus, the scattering amplitude for the general case is

given by

f (θ ) = fc(θ ) + f̂ (θ ), (19)

and the elastic scattering DCS for a given energy reads

dσel (k, θ )

d�r

= | f (θ )|2. (20)

C. The electron-hole potential

Here the scattering potentials used in the numerical cal-

culations are given. We consider the elastic scattering of

electrons with the Xe+ ion. The DCSs for the m = 0 and

|m| = 1 vacancy states are calculated using standard potential

scattering theory, as detailed above.

The static potential V (r) of the Xe+ ion is structured as

V (r) = −
Z

r
+ V DFS(r) − V1m0,1

(r), (21)

where Z is the nuclear charge of the target, V DFS(r) is the

Dirac-Fock-Slater potential where the summation runs over

all orbitals (electrons) [33]. The term V1m0,1
(r) is a hole poten-

tial that describes the Coulomb interaction between projectile

electron and the orbital (l, m) = (1m0,1) in the ion. It is

given by

V1m0,1
(r) =

∫
|ψ5,1(r′)|2

1

|r − r′|
dr′, (22)

where r and r′ are the position vectors of the projectile and

the bound state electrons with respect to the nucleus. ψ5,1(r′)

is the wave function of the hole state, represented as the anti-

symmetrized Hartree-Fock wave function expressed in terms

of Slater-type orbitals

�5,1(r) = R5,1(r)Y1m0,1
(r̂), (23)

where Yℓm(r̂) are the spherical harmonics and Rn,ℓ is the radial

wave function given by

Rn,ℓ(r) =
Mn,ℓ∑

i=1

ci

1
√

(2ni )!
(2ξi )

ni+1/2rni−1e−ξir . (24)

The parameters ci, ni, ξi, and Mn,ℓ for each of the orbitals are

given by Clementi and Roetti [34].

As a result, the hole potential for the m = 0 and |m| = 1

vacancy states in the Xe+ is expressed as

V1,0(r) =
∫ |P5,1(r′)|2

r>

dr′ +
2

5

∫
|P5,1(r′)|2

(r<)2

(r>)3
dr′

V1,1(r) =
∫ |P5,1(r′)|2

r>

dr′ −
1

5

∫
|P5,1(r′)|2

(r<)2

(r>)3
dr′,

(25)

where Pn,ℓ(r′) = rRn,ℓ(r′) is the radial wave function, for

Xe+ with n, ℓ = 5, 1. Furthermore, r< = min(r, r′) [r> =
max(r, r′)], which represents the smaller (larger) value of r

or r′.
It is worth noting that in this work, we ignore the polariza-

tion of the hole states by the laser field in the simulations. It

was found in previous work [12,35,36] that these effects are

negligible for the relatively large electron energies used in the

present work. We have verified this by including polarization

potential in our simulations and find only small differences

compared to the results without polarization potential pre-

sented below.

D. The QRS model for HATI

According to the QRS theory [37–39], the detected pho-

toelectron momentum distributions can be factorized as a
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product of the momentum distribution of the recolliding wave

packet (RWP) and the differential cross section (DCS) for

elastic scattering of the returning electron from the parent ion.

By defining the HATI photoelectron momentum distribution

obtained from the SFA as

D HATI
SFA2 (p) = | f SFA2(p)|2, (26)

the QRS model for HATI reads [11]

D HATI
QRS (p, θ ) = WSFA2(pr )

dσ el(pr, θr )

d�r

, (27)

where dσ el(pr, θr )/d�r is the DCS for elastic scattering

of the returning electron with the parent ion obtained from

Eq. (20). WSFA2(pr ) is the RWP describing the momen-

tum distribution of the returning electron, which can be

obtained by

WSFA2(pr ) = D HATI
SFA2 (p, θ )

/
dσ el

PWBA(pr, θr )

d�r

(28)

and is independent of the rescattering angle θr . We make the

common choice of a large scattering angle θr = 178◦ [37].

Here dσ el
PWBA(pr, θr )/d�r is evaluated using the plane-wave

first-order Born approximation, and p, pr , θ , and θr are the

detected momentum, rescattering momentum, detected angle,

and rescattering angle, respectively.

The detected momentum p and rescattering momentum pr

are related by

p = pr − Ar, (29)

where the additional momentum Ar is the vector poten-

tial of the laser field at the recollision time. We use the

approximation

Ar = pr/1.26, (30)

and this relation is determined approximately by solving

Newton’s equation of motion for an electron in a monochro-

matic laser field [37]. As a result, the momentum distribution

DHATI(p, θ ) can be understood as a superposition of circles

with radii pr and centers Ar . Tracing the angular distribution

on these circles gives access to the DCSs.

E. Experimental method

Experiments have been carried out using the mid-infrared

(MIR) laser [40] at the ELI-ALPS laser facility in Szeged,

Hungary. The laser provides 40 fs pulses centered around

λ = 3100 nm at a repetition rate of 100 kHz. A pair of wire

grid polarizers are used to obtain linearly polarized light

with adjustable power. The polarization direction is sub-

sequently adjusted using a motorized broadband half-wave

plate (B. Halle). The laser pulses are sent into a stereo-

graphic photoelectron time-of-flight spectrometer [41]. The

laser is back-focused ( f = 10 cm) in front of an effusive

nozzle injecting Xe gas into the vacuum chamber. Photo-

electrons created in the laser focus are detected within a

narrow solid angle (≈0.3◦) using microchannel plate detec-

tors mounted at a distance of 50 cm, on either side of the

spectrometer. Measurements of the photoelectron momentum

distribution in the polarization plane are sampled by rotating

 0

 0.6

 1.2

 0  1  2  3  4  5  6  7  8  9  10
r 

• 
V

h
o
le

(r
) 

(a
.u

.)
r (a.u.)

(b)

DFS
m = 0
|m| = 1

-10

-5

 0

 1  2  3  4  5  6

r 
• 

V
io

n
(r

) 
(a

.u
.)

r (a.u.)

m = 0
|m| = 1

-0.042

-0.022

-0.002

 0.018

 0.038

 0.058

 0  0.5  1

 0

 0.5

 1

 0  0.5  1  1.5  2  2.5  3

E
(t

) 
(a

.u
.)

H
o

le
 D

en
si

ty
 (

a.
u

.)

Time (optical cycle)

Time (TSO)

(a)  m  = 0
|m| = 1

ts

t1

t2

FIG. 1. (a) Schematic of the continuum and bound electron dy-

namics induced by tunnel ionization. The oscillation of the laser

electric field (solid black curve) is compared to the hole population

for the m = 0 (dotted red curve) and |m| = 1 (dotted blue curve)

vacancy states. The times t1 = 2.5 TSO and t2 = 3.0 TSO mark times at

which the hole populates dominantly the |m| = 1 and m = 0 states,

respectively. (b) Electron-hole potentials (V10 and V11 for the m = 0

and |m| = 1 vacancy states of Xe+, and the Dirac-Fock-Slater poten-

tial [33] representing the mean field of all electrons. The inset shows

the full scattering potential of the ion, i.e., including the Coulomb

term of Eq. (21).

the polarization axis of the laser and collecting time-of-flight

spectra at each angle. The experimental results presented be-

low are symmetrized with respect to reflection at the p⊥ = 0

axis. Small asymmetries observed in the raw data indicate a

slight ellipticity introduced by the half-wave plate used in the

experiment.

III. RESULTS AND DISCUSSION

Figure 1(a) illustrates the time evolution of the electric

field E (t ) and the hole-state density in the Xe+ ion in our

experiment. Near the peak of the laser field, around ts, an

electron tunnels from the atom and is subsequently acceler-

ated in the laser field. According to the classical recollision

model, the electron returns to the parent ion at a time t1,2,

roughly 3/4 ± 1/4 of an optical cycle after emission, and

carries a momentum pr (tr ) = −[A(ts) − A(tr )], where A(t ) is

the vector potential of the laser field. The travel time �t =
(tr − ts) of the returning electron corresponds to the delay

between electron emission (pump) and recollision (probe).

The second clock, corresponding to the spin-orbit wave-

packet motion, is also started at ts. Given the period TSO =
3.2 fs in Xe+, it is desirable to probe the wave packet at

times spanning over 1.6 fs apart. With the wavelength of
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FIG. 2. Momentum distribution of the recolliding wave packet

WSFA2(pr ) for the first returning electron computed from SFA2 for

single ionization of Xe by 3100 nm, 40 fs laser pulses at a peak

intensity of 6 × 1013 W/cm2.

3100 nm (optical period T = 10.5 fs), we identify the rec-

ollision times t1 and t2, corresponding to delays of �t1 =
2.5TSO = 8.0 fs and �t2 = 3.0TSO = 9.6 fs at which the hole

is expected to populate primarily the |m| = 1 or m = 0 states,

respectively.

Figure 1(b) presents the electron-hole potentials weighted

by the radial distance for Xe+ as well for comparison. It can be

seen from Fig. 1(b) that the potentials for m = 0 and |m| = 1

hole states, as well as the Dirac-Fock-Slater potential have the

same asymptotic behavior at r = ∞. However, as in Eq. (25),

it is noticed that the potentials of the m = 0 and |m| = 1

orbitals differ significantly at around r = 2. A similar trend

can also be observed for the constructed ion potential in the

inset of Fig. 1(b), where the ion potential with the |m| = 1

orbital is slightly larger than the ion potential for the m = 0

hole state around r = 2.

In Fig. 2 we present the momentum distributions of the

RWP that account for the weight of contributions from recol-

lisions concerning all energies. The RWPs are extracted from

the 2D momentum distributions for HATI of Xe, which were

calculated using SFA2. The RWP decreases dramatically at

low energies with increasing energy, followed by a plateau

in the high-energy region with oscillations until a cutoff is

reached.

In Fig. 3 we compare the photoelectron momentum distri-

butions for laser-induced ionization and scattering from Xe

obtained experimentally as shown in Fig. 3(a) with the results

of our modeling presented in Figs. 3(b) and 3(c). The exper-

imental data exhibit pronounced modulations in the angular

distribution of the photoelectrons. These are well reproduced

by the QRS results. Despite some discrepancies regarding

the electron yield, the good qualitative agreement between

experimental and theoretical data along the polarization axis

indicates that the DCSs used here are suitable for describing

laser-induced rescattering from Xe. However, the simulated

momentum distributions for the m = 0 and |m| = 1 vacancy

states are very similar to each other. These small differences

cannot be discerned in the experimental data.

Since the computational results for the two hole states are

nearly indistinguishable when viewed on the log scale, it is

instructive to represent in Fig. 4 the normalized difference of
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FIG. 3. Left: Measured photoelectron momentum distribution

for HATI of xenon using 40-fs laser pulses with a central wavelength

of 3100 nm and a peak laser intensity of 6 × 1013 W/cm2. Right:

Results of the QRS calculations for the m = 0 (up row) and |m| = 1

(below row). The red and blue circles correspond to trajectories with

travel times corresponding to 2.5 TSO (pr = 3.4 a.u.) and 3.0 TSO

(pr = 1.8 a.u.). The central region of the momentum distribution,

which is dominated by direct electrons, is removed in order to

improve the visibility of the momentum distribution of rescattered

electrons.

these spectra, which is defined as

A =
Dm=0 − D|m|=1

Dm=0 + D|m|=1

, (31)

where Dm=0 (D|m|=1) are the momentum distributions cal-

culated for m = 0 (|m| = 1). In this way we isolate the

 3  4  5  6

p|| (a.u.)

 0

 1

 2

 3

p
⊥

 (
a.

u
.)

-0.1  0  0.1

2.5 TSO3.0 TSO

FIG. 4. The normalized difference between the calculated PMD

for the recollision of m = 0 and |m| = 1 states in the Xe+ ions.

The red and blue circular segments correspond to trajectories with

travel times corresponding to 2.5 TSO (pr = 3.4 a.u.) and 3.0 TSO

(pr = 1.8 a.u.).
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FIG. 5. DCSs for elastic electron scattering from Xe+ in the m = 0 (solid red curve) and |m| = 1 (dashed blue curve) hole states for

recollision momenta of (a) 1.8 a.u., (b) 2.2 a.u., (c) 2.8 a.u., (d) 3.2 a.u., (e) 3.4 a.u., respectively. The theoretical DCS values are compared to

experimental values extracted from the measured photoelectron angular distributions.

differences in the momentum distributions arising from elec-

tron scattering from the m = 0 and |m| = 1 vacancy states.

The maxima and minima in this normalized difference plot

provide information on where the photoelectron momentum

distributions provide contrast between the two vacancy states.

Specifically, for small values of p⊥, the maximum positive

contrast (more signal for m = 0) is obtained around the fi-

nal momenta of p|| = 3.5 a.u., while the maximum negative

contrast (more signal for |m| = 1) is observed at the final

momenta of p|| = 6.0 a.u.. These values coincide with the

scattering rings which correspond to the maximum contrast

in the population density, indicated as red and blue rings in

Figs. 3 and 4, respectively. The numerical results demon-

strate that the electron signals due to rescattering from the

m = 0 and |m| = 1 hole states are, in principle, distinguish-

able. However, the direct measurement of the normalized

difference, as presented in Fig. 4, is not at all straightforward.

It would require usage of a combination of different laser

wavelengths and accurately chosen intensities. Additionally,

one could exploit the fact that the spin-orbit period for Kr

(6.2 fs) is twice as long as for Xe.

For a quantitative analysis, we present the calculated DCS

values for the two hole states in Fig. 5 and compare them to

the values extracted from the experimental results at various

recollision momenta. The differences observed in Fig. 4 are

reflected in the DCS. For example, at low momenta pr ∼
2 a.u., the DCS at 180◦ is larger for m = 0 (cf. red signal in

Fig. 4). At higher momenta, pr ∼ 3 a.u., however, the DCS at

180◦ is larger for |m| = 1. Moreover, in the intermediate angle

range, a marked transition is observed in both experimental

and theoretical data: the maximum around 120◦ observed at

pr = 2.2 a.u. is gradually replaced by a maximum around 80◦

at momenta pr � 3.2 a.u.. The mismatch observed at pr =
2.8 a.u. is attributed to an uncertainty in the retrieval of the

experimental recollision momentum, which is based on the

classical recollision model.

While the comparison of the momentum distributions in

Fig. 3 indicates a good qualitative agreement between the

angular distributions observed in the experimental and numer-

ical results, it is evident that the agreement does not reach

the quantitative level necessary to distinguish between the

subtle differences observed in the theoretical results for the

two hole states. The reasons for the discrepancies between

the measured and calculated angular distribution may include

several experimental factors, such as the slightly elliptical

polarization mentioned above. Moreover, the experimental

results are subject to averaging over the spatial intensity

distribution in the focus, and the temporal variations of the in-

stantaneous intensity throughout the laser pulse. These effects

are not taken into account in the numerical simulations, which

are based on the SFA and QRS models. The QRS model used

here approximates the temporal variations of the rescattering

momentum and vector potential by Eq. (30), which affects the

resulting momentum distribution.

IV. CONCLUSIONS AND OUTLOOK

In this work we present a study on the interplay be-

tween bound and continuum electron dynamics initiated by

strong-field ionization of xenon. Specifically, we investigate

whether the ensuing spin-orbit electron dynamics in Xe+

can be probed through laser-induced electron diffraction. The

two-dimensional photoelectron momentum distributions for

HATI of Xe are calculated for rescattering from the m = 0 and

|m| = 1 hole states, using the QRS theory. The DCSs of free

electrons scattering off the target ion of Xe+ were calculated

with the standard potential scattering theory, and the momen-

tum distributions of returning electrons were evaluated by

SFA2. This work represents an initial attempt to experimen-

tally explore valence electron dynamics Xe through LIED.

While the numerical results agree with the experimental ones

on a qualitative level, they do not reach the quantitative

level necessary to distinguish between the rescattering signal

from the two hole states. Addressing this challenge likely

requires advanced theoretical approaches and more accu-

rate experimental data. If such data become available in the

future, an artificial intelligence approach may aid the inter-

pretation of the data and enable the observation of valence

electron dynamics by LIED. This intriguing problem under-

scores the need for future research to address spin-orbit effects

during LIED.
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