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In this article, we examine the validity range of the Effective Field Theory (EFT) description
of high-energy Drell-Yan processes at the LHC. To this purpose, we consider explicit mediators
that contribute to these processes in the s- and t-channels, comparing their effects in Drell-Yan
distributions with the ones obtained by matching onto the corresponding EFT. We determine the
conditions for the EFT results to accurately describe these scenarios. In particular, we explore the
impact of including dimension-eight (d = 8) operators in the faster convergence of the EFT series,
at the analytical and numerical level, considering contributions to the cross section up to the square
of d = 8 EFT operator insertions. Moreover, we discuss the possible implications of clipping LHC
data and illustrate results for a specific New-Physics scenario motivated by low-energy flavor data.

I. INTRODUCTION

The absence of signals in direct searches for new par-
ticles at the Large Hadron Collider (LHC) indicates that
there may be a separation between the electroweak scale
and the unknown scale of New Physics. With this as-
sumption, the most convenient approach to describe LHC
data becomes Effective Field Theories (EFTs), and the
main target of LHC searches are deviations from the
Standard Model (SM) expectations in the high-energy
tails of the kinematical distributions. Such non-resonant
analyses have been performed for many channels, in-
cluding the Drell-Yan processes pp → ℓℓ and pp → ℓν
(ℓ = e, µ, τ), which are efficient probes of semileptonic
four-fermion operators.

The importance of the high-pT tails of the Drell-Yan
distributions can be understood considering the naive
EFT predictions from contact interactions to high-energy
amplitudes, which can scale as (E/Λ)n for E ≪ Λ, with
n > 0, where Λ denotes the EFT cutoff and E is the
typical energy scale of these processes. Therefore, if the
EFT description is valid, the energy enhancement of the
Drell-Yan cross section allows us to derive stringent con-
straints on the corresponding Wilson coefficients, which
can be competitive, e.g., to electroweak observables [1–
4], as well as to low-energy flavor bounds, if we exploit
the flavor content of the proton [5–27].

The main caveat of EFT analyses at colliders is that
the experimental sensitivity on C/Λ2 is not always suf-
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ficient to consistently probe EFTs, i.e., with E ≪ Λ,
while having Wilson coefficients C within the perturba-
tive regime [28]. The applicability range of an EFT and
the impact of d = 8 operators can be estimated in various
manners [28–31]. For instance, by defining the so-called
maximal cutoff scale (Λmax) that can be consistently
probed for a perturbative scenario. The value of Λmax

is defined by the requirement that the 2 → 2 scattering
amplitude does not exceed the 16π2 limit arising from
perturbativity [1], giving a first indication of the limits
of the EFT description. Another approach often used is
to provide constraints as a function of a mass scale Mcut

in some kinematical variable relevant to the process con-
sidered, above which all data are discarded [1, 29]. In
this way, it is possible to extract weaker, but potentially
more robust, EFT limits, even though the phase-space
migration of events in the detector simulation can be a
potential problem [28, 32].

The approaches described above are helpful for naively
assessing the limits of applicability of the constraints
derived by the EFT. However, the definite answer to
whether EFT results can be applied to a given scenario
will depend on its ultraviolet (UV) properties, in par-
ticular, if there is a small separation between E and Λ,
as it is often the case in collider studies. For instance,
tree-level contributions in the s- or t-channels will de-
form the EFT bounds differently when E approaches the
EFT cutoff. While non-resonant t-channel contributions
to Drell-Yan processes by leptoquark states [33, 34] can
reproduce the EFT results even for values of E in the
vicinity of Λ, it is well-known that the EFT description
fails for resonant colorless s-channel mediators already
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for E much below Λ [1]. 1 The comparison of the direct
limits on these concrete scenarios with the ones derived
through the EFT approach allows us to precisely deter-
mine which mediator masses are well-described by the
EFT. This will depend on several factors: (i) the topol-
ogy of the diagram, (ii) the flavor of the initial quarks and
the corresponding Parton-Distribution-Function (PDF)
suppression, and (iii) the sensitivity of the experimental
search, which depends on the flavor of all the particles
considered.

The purpose of this paper is to assess the range of va-
lidity of Drell-Yan constraints on EFTs by directly com-

paring limits on selected concrete UV scenarios with the
results derived through EFT analyses. We will consider
two tree-level benchmark scenarios, classified in terms of
their (SU(3)c, SU(2)L, U(1)Y ) quantum numbers: (i) a
vector leptoquark U1 ∼ (3,1, 2/3) and (ii) a colorless
Z ′ ∼ (1,1, 0) boson; which contribute to these processes
in the t- and s-channel, respectively. We will consider
the neutral-current dilepton searches made available by
CMS [36] and ATLAS [37], which have been recast in
Ref. [5, 6], and we will perform this comparison for dif-
ferent flavors of the initial and final states. Our main goal
is to establish a clear prescription for the situations where
the EFT results can be applied to concrete UV scenarios
by simply matching the models to the EFT Lagrangian,
thus avoiding costly and model-dependent numerical sim-
ulations of the mediator’s propagation. The impact of
dimension-eight operators in our analysis will also be ex-
plored at the amplitude and cross-section level (see also
Ref. [5, 38–40]).

The remainder of this article is organized as follows.
In Sec. II, we introduce our framework and describe the
Drell-Yan probes of flavor at high-pT . In Sec. III, we
consider a few concrete UV scenarios that are matched
onto the SMEFT at tree level. We then study in Sec. IV
the convergence of the EFT expansion and in Sec. V
the impact of clipping data. In Sec. VI, we illustrate
our results for a specific realization of the U1 leptoquark
model, which has been proposed to accommodate anoma-
lies in B-physics data. We summarize our main findings
in Sec. VII.

II. EFT APPROACH

We start by defining our framework. We consider the
SMEFT Lagrangian [41, 42], which is invariant under the
SU(3)c×SU(2)L×U(1)Y gauge symmetry, and we keep
operators up to dimension d = 8,

LSMEFT ⊃
∑

a

C(6)
a

Λ2
O(6)
a +

∑

a

C(8)
a

Λ4
O(8)
a + . . . , (1)

1 The situation is even less intuitive for loop-level contributions,
as shown, e.g., in Ref. [35] for probes of effective dipole operators
in a high-energy lepton collider.

where Λ denotes the EFT cutoff. The effective coeffi-
cients are generically denoted by C(d)

a and the effective
operators O(d)

a can be of several types and with differ-
ent flavor content, which are labeled by the index a.
We will consider the Warsaw basis for the d = 6 op-
erators [42] and its extension to d = 8 from Ref. [43]
(see also Ref. [44]), which are both implemented in the
HighPT package [6]. For convenience, the operators ap-
pearing in the benchmark scenarios that will be discussed
in the following are collected in Table I.

Amplitude decomposition The most general decom-
position of the four-point scattering amplitude for the
q̄iqj → ℓ−α ℓ

+
β process (with q = u, d), which is Lorentz

invariant and consistent with the SU(3)c×U(1)em gauge
symmetry, reads

A(q̄iqj → ℓ−α ℓ
+
β ) =

1

v2

∑

Γ⊗Γ′

Fαβij
Γ,Γ′

(
ℓ̄αΓℓβ

)(
q̄iΓ

′qj
)
, (2)

which is weighted by the Higgs vacuum expectation value
v = (

√
2GF )−1/2, and quark and lepton flavor indices

are denoted by Latin letters (i, j = 1, 2, 3) and Greek
letters (α, β = 1, 2, 3), respectively. The form factors
Fαβij

Γ,Γ′ ≡ Fαβij
Γ,Γ′ (ŝ, t̂) are functions of the partonic Man-

delstam variables ŝ = (pqj + pq̄i)
2 and t̂ = (pqj − pℓα)2,

which describe the effects of EFT operators and/or con-
crete mediators, in addition to the SM contributions [5].
The viable Lorentz structures are given by

Γ⊗Γ′ ∈ {PX⊗PY , γµPX⊗γµPY , σµνPX⊗σµνPX} , (3)

where PX/Y are the chirality projectors with X,Y ∈
{L,R}, in addition to dipoles that induce a milder
energy-enhancement, cf. Ref. [5]. In the SM, the only
non-vanishing form factors are

Fαβij
VX ,VY

≡ δαβδij FSM
XY (4)

where we use the subscript VX for the vector current
(γµPX), and 2

FSM
XY =

v2

ŝ
e2QℓQq +

v2

ŝ−m2
Z + imZΓZ

gXℓ g
Y
q , (5)

where mZ and ΓZ are the Z-boson mass and width,
gXψ = (g2/cW ) (t3ψX

− s2W Qψ) denotes the Z couplings

to fermions ψ ∈ {u, d, ℓ}, Qψ stands for their electric
charge, t3ψX

is the third component of the weak isospin,
and cW ≡ cos θW and sW ≡ sin θW , where θW denotes
the weak mixing angle. In the high-energy limit ŝ≫ mZ ,
the SM form factor behaves as FSM

XY ∝ v2/ŝ. The match-
ing between the form factors defined in Eq. (2) and the
d ≤ 8 operators in the SMEFT as well as concrete medi-
ators is given in Ref. [5]. Notice, in particular, that the
new mediators will induce poles in ŝ, t̂ or û = −ŝ − t̂,
depending on the topology of the diagrams.

2 Similarly, we will denote the scalar (PX) and tensor (σµνPX)
currents by SX and TX , respectively.
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Drell-Yan processes The general amplitude defined
in Eq. (2) can be used to compute the partonic cross
section for q̄iqj → ℓ−α ℓ

+
β [5],

σ̂(q̄iqj → ℓ−α ℓ
+
β ) =

1

48πv4

∑

Γ⊗Γ′

∫ 0

−ŝ

dt̂MΓ,Γ′

∣
∣
∣Fαβij

Γ,Γ′

∣
∣
∣

2

,

(6)
where Γ ⊗ Γ′ can be the allowed Lorentz structures in
Eq. (3) and the weights MΓ,Γ′ ≡ MΓ,Γ′(ω) are functions

of ω = t̂/ŝ,

MVX ,VY
(ω) ≡ (1 + 2ω) δXY + ω2 ,

MSX ,SY
(ω) ≡ 1/4 , (7)

MTX ,TX
(ω) ≡ 4(1 + 2ω)2 ,

where fermion masses are neglected. 3 The contributions
of d = 6 operators in the SMEFT are such that the
corresponding form factors F (d=6) are independent of t̂.
Therefore, the integral over t̂ ∈ (−ŝ, 0) can be explicitly
performed in this case,

σ̂(q̄iqj → ℓ−α ℓ
+
β )EFT

(d=6)
=

ŝ

48πv4

∑

Γ⊗Γ′

MΓ,Γ′

∣
∣
∣Fαβij

Γ,Γ′

∣
∣
∣

2

,

(8)
where the integrated weight-factors now read

MVX ,VY
= 1/3 , MSX ,SY

= 1/4 ,

MTX ,TX
= 4/3 . (9)

The energy enhancement of the cross section is now ex-
plicit in the overall ŝ/v4 pre-factors, since the F (d=6)

form-factors converge to a constant value at large ŝ for
contact interactions [5].

The LHC cross section can be generally written as a
sum over all possible combinations of incoming quark fla-
vors,

σ(pp→ ℓ−α ℓ
+
β ) =

∑

i,j

∫
dŝ

s
Lq̄iqj σ̂(q̄iqj → ℓ−α ℓ

+
β ) , (10)

with

Lq̄iqj (ŝ) ≡
∫ 1

ŝ/s

dx

x

[

fq̄i(x, µF )fqj

( ŝ

sx
, µF

)

+ (q̄i ↔ qj)
]

,

(11)
where

√
s = 13 TeV, fqj and fq̄i denote the PDFs of qj

and q̄i quarks, and µF stands for the factorization scale.
In our calculations, we set µF =

√
ŝ to the scale of the

hard scattering process.

3 Notice that there are, in principle, off-diagonal terms between
scalar and tensor form factors, but these vanish upon the inte-
gration over t̂ ∈ (−ŝ, 0), if the form-factor dependence on t̂ is
neglected. See Ref. [5] for the full expressions.

LHC limits We consider the neutral-current Drell-Yan
constraints on the SMEFT provided by the HighPT pack-
age � [5, 6]. These results have been obtained through
an appropriate recast of the relevant CMS [36] and AT-
LAS [37] searches. More specifically, the event sam-
ples were generated with MadGraph5 [45], showered and
hadronized by Pythia8 [46], and the final-state object
reconstruction and detector simulations were performed
using Delphes3 [47], tuned to match the experimental
searches. The PDF4LHC15 nnlo mc PDF set [48] has been
used in these reinterpretations. The final results are
combined in a χ2-distribution, with the background esti-
mates taken from the experimental papers (which include
higher-order QCD corrections) and the New-Physics con-
tributions calculated at tree level following the pipeline
described above, see Ref. [5, 6] for more details.

III. BENCHMARK SCENARIOS

In this Section, we introduce the two benchmark sce-
narios that will be used for the comparison between
the EFT and concrete models. These scenarios will
be classified in terms of their SM quantum numbers
(SU(3)c, SU(2)L, U(1)Y ):

Z′
∼ (1, 1, 0) : The first scenario that we consider is a

gauge-singlet vector field that couples to the SM particles
via the following Lagrangian

LZ′ = −1

4
Z ′
µνZ

′µν +
m2
Z′

2
Z ′
µZ

′µ + JµZ ′
µ , (12)

where Z ′
µν = DµZ

′
ν −DνZ

′
µ. For the Z ′ model consid-

ered here, we have DµZ
′ = ∂µZ

′. 4 For simplicity, we
assume that the Z ′ only couples to left-handed fermions,

Jµ = g
(q)
ij q̄iγµqj + g

(l)
αβ l̄αγµlβ , (14)

where q and l are SM quark and lepton doublets, with
flavor indices denoted again by Latin and Greek symbols,
respectively. 5 Notice, in particular, that Z ′ couplings
to fermions satisfy g

(q)
ij = g

(q) ∗
ji and g

(l)
αβ = g

(l) ∗
βα due to

Hermiticy.
By integrating out the heavy Z ′ from Eq. (12) at tree

level, we obtain the following effective Lagrangian with

4 The covariant derivative of the SM gauge group acting on a
generic field η reads

Dµη =
(

∂µ − ig3G
A
µ T

A
− ig2W

I
µ t
I
− ig1Bµy

)

η , (13)

where g3,2,1 are the gauge couplings of SU(3)c, SU(2)L, and
U(1)Y , the corresponding generators are labeled TA, tI , and y,
and the associated gauge fields are denoted GAµ , W

I
µ , and Bµ.

5 We adopt the convention with diagonal down-quark Yukawas,
so that the CKM matrix appears in the upper component of
qi = [(V † uL)i , dLi].
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Dim. ψ4 Operator

d = 6
O(1)
lq

(

l̄αγ
µlβ

)(

q̄iγµqj
)

O(3)
lq

(

l̄αγ
µτ I lβ

)(

q̄iγµτ
Iqj

)

d = 8

O(1)

l2q2D2 Dν(l̄αγ
µlβ)Dν(q̄iγµqj)

O(2)

l2q2D2 (l̄αγ
µ←→D ν lβ)(q̄iγµ

←→
D νqj)

O(3)

l2q2D2 Dν(l̄αγ
µτ I lβ)Dν(q̄iγµτ

Iqj)

O(4)

l2q2D2 (l̄αγ
µ←→D Iν lβ)(q̄iγµ

←→
D I
νqj)

TABLE I. Dimension d = 6 and d = 8 operators appear-
ing in the matching to the concrete models in Sec. III and
which induce energy-enhanced contributions to the Drell-Yan
cross section. Quark and lepton doublets are denoted by q
and l, with flavor indices represented by Latin and Greek
letters, respectively. The Pauli matrices are denoted by τ I

with I ∈ {1, 2, 3}. We follow the conventions and notations of
Ref. [5].

operators up to dimension d = 8,

LZ′

eff ⊃ −JµJ
µ

2m2
Z′

− 1

2m4
Z′

(DµJν) (DµJν) , (15)

where we have neglected the fermion masses. From this
Lagrangian, we find the d = 6 coefficient,

[
C(1)
lq

]

αβij

Λ2
= −

g
(l)
αβ g

(q)
ij

m2
Z′

, (16)

in addition to the d = 8 ones,

[
C(1)
l2q2D2

]

2211

Λ4
= −

g
(l)
αβ g

(q)
ij

m4
Z′

. (17)

The corresponding operators are collected in Table I. The
d = 8 contributions given above correspond simply to the
higher-order terms in the expansion of the Z ′ propagator
in the s-channel.

U1 ∼ (3, 1, 2/3) : The second scenario that we con-
sider is a U1 leptoquark with Lagrangian, 6

LU1
⊃ −1

2
U†
1µνU

µν
1 +m2

U U
µ †
1 U1µ + (J†

µU
µ
1 + H.c.) ,

(18)

6 Similarly to the Z′ scenario, this model is non-renormalizable due
to the presence of a massive vector boson. It is possible to extend
this model to generate the U1 mass following, e.g., Ref. [49, 50].

where U1µν = DµU1ν − DνU1µ and, for simplicity, we
consider only couplings to left-handed fermions

J†
µ = xiαL q̄iγµlα . (19)

By integrating out the U1 leptoquark at tree level, we
find that the d ≤ 8 Lagrangian is given by

LU1

eff ⊃ −
J†
µJ

µ

m2
U1

− 1

m4
U1

(DµJν)
†

(DµJν)

+
1

m4
U1

(DµJν)
†

(DνJµ) .

(20)

We apply SU(2)L and Dirac Fierz relations to reduce the
above Lagrangian to the Warsaw basis of d = 6 operators,
where the only non-vanishing coefficients are

[
C(1)
lq

]

αβij

Λ2
=

[
C(3)
lq

]

αβij

Λ2
= −x

iβ
L x

jα ∗
L

2m2
U1

. (21)

Moreover, we find that several operators appear at d = 8,
including those that are not energy enhanced and thus
neglected here. The only operators that induce the maxi-
mal energy scaling of the amplitudes (i.e., ∝ E4/Λ4) con-
tain two additional derivatives with respect to the d = 6
terms. Their coefficients read

[
C(n)
l2q2D2

]

αβij

Λ4
= (−1)n+1 x

iβ
L x

jα ∗
L

4m4
U1

, (22)

for n ∈ {1, 2, 3, 4}, with flavor indices denoted as above,
cf. Table I. Note, in particular, that the same combina-
tions of leptoquark couplings appear in the numerators
of the d = 6 and d = 8 coefficients.

IV. EFT VS. CONCRETE MODELS

In this Section, we compare the full predictions from
the concrete models introduced in Sec. III with the ones
obtained employing the EFT Lagrangian, which has been
matched to these models at a given order in the 1/Λ ex-
pansion. This comparison will first be made at the parton
level using the analytical expressions in Sec. IV A, which
will then be convoluted with the PDFs for a numerical
comparison in Sec. IV B.

A. Partonic description

Z′
∼ (1, 1, 0) Firstly, we consider the Z ′ model in-

troduced in Eq. (12) and we compute the partonic cross
section for qiq̄j → ℓ−α ℓ

+
α by using the expressions of Sec. II

for both the EFT, which is matched to the Z ′ model, as
well as the full-model calculation. For definiteness, we
consider down-quark transitions (i.e., q = d), but our ex-
pressions can be extended mutatis mutandis to q = u.
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The full cross section normalized by the SM one reads 7

σ̂Z
′

σ̂SM
= 1 + 2aL δij Re

[

g
(q)
ij g

(l)
αα

1 − x−1
V

]

+ bL

∣
∣
∣
∣
∣

g
(q)
ij g

(l)
αα

1 − x−1
V

∣
∣
∣
∣
∣

2

,

(23)

where xV ≡ ŝ/ΩZ′ , ΩZ′ = m2
Z′ − imZ′ΓZ′ , and ΓZ′ is

the Z ′ width, and we have factored out the following
pre-factors

aL ≡ FSM
LL v

2/ŝ
∑

X,Y |FSM
XY |2

, bL ≡ v4/ŝ2
∑

X,Y |FSM
XY |2

, (24)

as they become constant in the limit v2/ŝ → 0
[cf. Eq. (5)]. Assuming the couplings to be real and ne-
glecting the Z ′ width, the fractions in Eq. (23) are a
geometric series in ŝ/m2

Z′ and its square, which can be
expanded for xV < 1 (i.e., ŝ < m2

Z′)

1

1 − x−1
V

= −
∞∑

n=1

xnV ,
1

(
1 − x−1

V

)2 =

∞∑

n=1

nxn+1
V , (25)

leading to

σ̂Z
′

σ̂SM
= 1 − 2 aL δij g

(q)
ij g

(ℓ)
αβ

ŝ

m2
Z′

(26)

+
[

bL |g(q)ij g
(ℓ)
αβ |2 − 2aL δij g

(q)
ij g

(ℓ)
αβ

] ŝ2

m4
Z′

+ O(m−6
Z′ ) ,

from which the energy enhancement of the cross section
becomes clear. Most importantly, the expansion of the
Z ′ propagator in Eq. (23) is slowly convergent as ŝ ap-
proaches m2

Z′ , since all the terms in the geometric series
contribute with the same sign. This is expected from the
resonant nature of this process.

U1 ∼ (3, 1, 2/3) We turn now our attention to the
U1 leptoquark model defined in Eq. (18). The ratio of
the full did̄j → ℓ−α ℓ

+
α cross section with respect to the

SM one can be written in a similar way after integration
over t̂ ∈ (−ŝ, 0). Neglecting the leptoquark width, we
can write [18, 51–53])

σ̂U1

σ̂SM
= 1 + 2aL δij ϕ1(xV ) Re

[
xiαL x

jα ∗
L

]

+ bL ϕ2(xV )
∣
∣xiαL x

jα ∗
L

∣
∣
2
, (27)

where xV ≡ ŝ/m2
U1

, and the same pre-factors defined in
Eq. (24) are factored out. The phase-space functions ϕk
(k = 1, 2) now involve the integral over the t-channel
leptoquark propagator,

ϕk(xV ) ≡
∫ 0

−1

dω
3(1 + ω)2

(ω − x−1
V )k

, (28)

7 This expression can be easily extended to the lepton flavor vio-
lating case by removing the interference term.

where ω ≡ t̂/ŝ. The full expressions for these integrals
are given in Appendix A, while here we express them as
power series for xV < 1,

ϕ1(xV ) = 6

∞∑

n=1

(−1)n xnV
n(n+ 1)(n+ 2)

, (29)

ϕ2(xV ) = 6

∞∑

n=2

(−1)n xnV
n(n+ 1)

.

Notice, in particular, that this series converges faster
than the Z ′-model one in Eq. (25), due to the alternating
signs of the sub-leading corrections, which are attributed
to higher-dimensional operators in the EFT formalism.
Similarly to the above calculation, we assume the cou-
plings to be real and we keep the first terms of the xV ex-
pansion,

σ̂U1

σ̂SM
= 1 − 2 aL δij Re

[
xiαL x

jα ∗
L

] ŝ

m2
U1

(30)

+
[

bL
∣
∣xiαL x

jα ∗
L

∣
∣
2
+
aL
2
δij x

iα
L x

jα ∗
L

] ŝ2

m4
U1

+ O(m−6
U1

) ,

Although we focused on a specific leptoquark scenario,
we stress that the above conclusions are valid for any
tree-level mediator in u- or t-channels.

B. Cross sections and quark flavor dependence

Next, we consider the effects on the previous conclu-
sions from convoluting the partonic cross sections with
the different quark PDFs. The main expected impact is
a difference between scenarios with mediators coupled to
light or heavy fermions, for which the EFT convergence
can be studied numerically.

In Fig. 1, we compare the EFT cross sections to the
predictions of the full Z ′ model, as a function of the ratio
m2
ℓℓ/m

2
Z′ , for a fixed mass mZ′ = 2 TeV and fixed lepton

flavor ℓ, where mℓℓ =
√
ŝ is the dilepton invariant mass.

Specifically, the ratio of the differential EFT cross sec-
tion, computed up to different truncation orders, to that
obtained in the full model is plotted. The dashed green
line is determined only taking into account the interfer-
ence of d = 6 EFT operators with the SM amplitude,
while the solid green, dashed purple, and solid purple
lines sequentially add contributions from the square of
d = 6 terms, the interference of d = 8 operators with
the SM, and the square of the d = 8 terms, respectively.
Notice that the dashed lines correspond to truncating
the EFT series on cross-section level at Oσ(Λ−2) and
Oσ(Λ−4) for the green and purple lines, respectively. The
solid lines, on the other hand, represent a truncation on
amplitude level at OA(Λ−2) and OA(Λ−4) again for the
green and purple lines, respectively. Here, we have in-
troduced the notation Oσ(Λ−n) and OA(Λ−n) to indi-
cate a truncation of the EFT series on the cross-section
and amplitude level, respectively. A further discussion of
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FIG. 1. The ratio of the differential cross section in the EFT approach (dσ̂EFT/dm
2
ℓℓ) and the Z′ ∼ (1,1, 0) model (dσ̂Z′/dm2

ℓℓ)

are plotted as a function of m2
ℓℓ/m

2
Z′ , where mℓℓ =

√
ŝ is the invariant mass of the dilepton system. The mediator mass is

fixed to mZ′ = 2 TeV and the couplings to g
(l)
ℓℓ g

(q)
ii = 1 (upper row) and g

(l)
ℓℓ g

(q)
ii = (0.3)2 (lower row), for fixed lepton flavors,

d and different quark flavors in the columns of this plot. The EFT cross section is computed at different orders in the EFT
expansion, with contributions up to interference of d = 6 terms with the SM (dashed green), squared d = 6 terms (solid green),
interference of d = 8 terms with the SM (dashed purple), and squared d = 8 terms (solid purple).

the two truncation approaches is presented in Sec. IV D.
To obtain the EFT cross section, the matching condi-
tions in Eqs. (16) and (17) are employed. The light gray
dashed line indicates the cross section of the full model.
The couplings are fixed to g(ℓ)g(q) = 1 (upper row) and
g(ℓ)g(q) = (0.3)2 (lower row), with flavor-diagonal cou-
plings to quarks and leptons. The flavor of the quarks
to which the Z ′ is coupled is varied from the first (left
column) to the second (center column) and third (right
column) generation. A similar comparison is made in
Fig. 2 for the U1 leptoquark model, again considering

two fixed values of the couplings xqℓL and different quark
flavors.

C. Discussion

Several comments can be made by comparing the EFT
and the full model predictions in Fig. 1 and 2:

i) In all cases, we retrieve the EFT regime for
m2
ℓℓ/m

2
V → 0, that is, at low center-of-mass en-

ergies relative to the mediator mass mV , the cross
section of the full model is well approximated by
the interference of d = 6 EFT amplitude with the
SM (dashed green line).

ii) As soon as m2
ℓℓ/m

2
V increases, it is necessary to in-

clude contributions beyond the d = 6 interference
with the SM to correctly describe the full model
cross sections. The square of d = 6 operators (solid
green), which we denote by (d = 6)2, are neces-
sary in most cases to obtain accurate predictions,
whereas d = 8 terms can improve the accuracy
of the predictions. However, notice that including
only the linear d = 8 terms interfering with the SM
(dashed purple) offers only marginally better limits,
whereas a significant improvement can be observed
when including the (d = 8)2 contributions (solid
purple).

iii) In all considered cases, the EFT description ap-
pears to converge better toward the full model
when truncating the EFT series on amplitude
level OA(Λ−n) (solid lines), rather than on cross-
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FIG. 2. Comparison between EFT and full-model cross section for the U1 ∼ (3,1, 2/3) leptoquark with fixed massmU1 = 2 TeV
and couplings xiαL = 1 (upper row) and xiαL = 0.3 (lower row). See caption of Fig. 1 for details.

section level Oσ(Λ−n) (dashed lines), i.e., when in-
cluding New-Physics squared contributions at both
d = 6 and d = 8 rather than just the corresponding
interference terms with the SM. For a more detailed
discussion, see Sec. IV D.

iv) The EFT description provides a more accurate de-
scription of these processes for much larger val-
ues of m2

ℓℓ/m
2
V for the leptoquark model than for

the Z ′ one, as expected from the resonant na-
ture of the latter scenario. This can be under-
stood in terms of the power series for the cross sec-
tions, which has terms with alternating and same
signs, respectively [cf. Eqs. (29) and (25)]. Notably,
when including (d = 8)2 contributions (solid pur-
ple) for the leptoquark model, the discrepancy of
the EFT approximation and the full model is be-
low the . 10 % level even for m2

ℓℓ/m
2
V ∼ 1 and

O(1) couplings. In contrast, we find that the EFT
series is converging at a significantly slower rate for
the Z ′ scenario, when including higher-order terms,
which only gradually improve the accuracy of the

EFT approximation.

v) Finally, the EFT convergence depends on the size
of the New-Physics couplings convoluted with the
quark PDFs. The EFT terms converge better for
small couplings and/or small PDFs (i.e., heavy fla-
vors) since the New-Physics contributions to the
hadronic cross section are smaller in this case.

D. EFT series truncation: amplitude

vs. cross-section level

In this Section, we briefly elaborate on the different
approaches for truncating the EFT series that have been
used in Figs. 1 and 2. In particular, we will contrast the
truncation on cross-section level, i.e., for physical observ-
ables, denoted by Oσ(Λ−n) in our notation, against the
truncation on amplitude level represented by OA(Λ−n).
Schematically, we can express the amplitude A and par-
tonic cross section σ̂ in terms of the individual EFT-order
contributions as
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σ̂ ∝
∣
∣
∣
∣
ASM +

A6

Λ2
+

A6×6 + A8

Λ4
+ OA(Λ−6)

∣
∣
∣
∣

2

(31)

= |ASM|2 +
2Re (A∗

SMA6)

Λ2
+

|A6|2
Λ4

︸ ︷︷ ︸

OA(Λ−2)

+
2Re (A∗

SMA6×6 + A∗
SMA8)

Λ4
+

2Re (A∗
6A6×6 + A∗

6A8)

Λ6
+

|A6×6|2 + |A8|2
Λ8

︸ ︷︷ ︸

OA(Λ−4)

+ . . . ,

where ASM, A6, A6×6, and A8 represent the amplitudes
of the SM, the EFT with a single d = 6 operator inser-
tion, with a double d = 6 operator insertion, and a single
d = 8 operator insertion, respectively. The EFT power
counting is made explicit here by factoring out the ap-
propriate powers of the EFT cutoff scale Λ. The ellipses
indicate terms of order OA(Λ−6) in the EFT expansion
of the amplitude. For low-energy measurements (e.g., in
the flavor sector) considering only the linear d = 6 inter-
ference terms of Oσ(Λ−2) suffices and the (d = 6)2 con-
tributions of OA(Λ−2) can be neglected due to the large
scale suppression. Investigating the EFT truncation for
high-energy observables, such as the Drell-Yan tails, is
more subtle. The shapes of distributions for high-pT ob-
servables are determined by the high-energy properties
of the corresponding amplitudes, which in turn are gov-
erned by their analytical structure and the principle of
unitarity [54], even though the latter is lost for the EFT
at very high energies E > Λ above the cutoff. 8 Here,
however, we consider energies where the unitarity is not
yet lost. When truncating the EFT series on amplitude
level OA(Λ−n) for a given n ∈ N, these properties are
retained below the cutoff E < Λ. However, when trun-
cating on cross-section level Oσ(Λ−n) these properties are
upset since this does not correspond to a consistent trun-
cation of the amplitude. In the latter case, even negative
values for cross sections are, in principle, possible.

Furthermore, we notice that the EFT series is unphysi-
cal. This can be understood through the LSZ formula [57]
which permits the freedom to perform field redefinitions
for a theory without changing its S matrix, that is, phys-
ical observables. However, in the case of an EFT, these
field redefinitions generally shift contributions between
different orders in the EFT expansions, rendering the ex-
pansion unphysical. Therefore, it appears that requir-
ing a consistent EFT truncation for physical observables
is unwarranted. Instead, it is useful to adopt a top-
down perspective to determine a consistent EFT trun-
cation prescription for high-energy observables. While
the EFT is useful for studying experimental data in a
model-independent framework, it should ultimately al-

8 Notice, in particular, that the Wilson coefficients of d = 8 opera-
tors of the considered class Oψ4D2 are also subject to positivity
constraints [55] (see also Ref. [56]).

ways be matched onto concrete underlying UV models
of interest. When this is done, the EFT is constructed
(or in other words, its coefficients are adjusted) in such
a way that the resulting EFT amplitudes are mimick-
ing the corresponding UV amplitude to a given accuracy
in the EFT power counting, see e.g. Ref. [58]. 9 This
naturally suggests that also in a bottom-up scenarios,
the EFT series should be truncated on amplitude rather
than cross-section level. Only the former guarantees that
the EFT properly reproduces the behavior of UV models.
We therefore suggest truncating the EFT series on ampli-
tude level OA(Λ−n) for some n ∈ N. As explicitly verified
for Drell-Yan processes in Figs. 1 and 2 with n = 2 and 4
the OA(Λ−n) truncations (solid lines) provide better con-
vergence toward the full model prediction than the cross-
section truncation Oσ(Λ−n) (dashed lines). According to
this prescription, the leading order OA(Λ−2) EFT contri-
butions contain both interference of d = 6 EFT operators
with the SM and the (d = 6)2 contributions to the cross
section, which can also be seen in Eq. (31). As discussed
in Ref. [28] this provides a well-defined, unambiguous,
and gauge-invariant setup. At the first subleading or-
der OA(Λ−4) interference of d = 8 operators with the
SM, (d = 8)2 contributions, as well as the interference
of (d = 6) with (d = 8) operators are included. In ad-
dition to dimension-eight operators contributing to the
amplitude, the corresponding contributions from double
insertion of two d = 6 operators into the same amplitude
are taken into account at this order as well, cf. Eq. (31),
although this is not relevant for the present discussion of
Drell-Yan tails at tree level.

V. CLIPPED LIMITS

Notice that the flavor of leptons is indifferent for the
predictions in Figs. 1 and 2. However, it affects the inter-
pretation of experimental measurements and, as a con-
sequence, the robustness of the EFT description, since
the data sets collected for ℓ = e, µ include events at
higher energies (i.e. with larger mℓℓ values) compared

9 This is the case for both off-shell and on-shell matching, where
the corresponding EFT amplitudes are equated with the ones of
the full UV model in order to determine the matching conditions.
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FIG. 3. Expected limits on the U1 leptoquark coupling defined in Eq. (18) from pp → ℓℓ data for ℓ = e, µ (left and center
column) [36] and ℓ = τ (right column) [37] are plotted against the clipping variableMcut, with bins aboveMcut being discarded.
For ℓ = e, µ we remove events with mrec

ℓℓ > Mcut, while we discard events with mtot
T > Mcut for ℓ = τ . The top, center, and

bottom row show the case of couplings to first-, second-, and third-generation quarks, respectively. The dotted and dashed lines
correspond to the EFT constraints matched to the leptoquark model with contributions up to (d = 6) interference and (d = 6)2

terms, i.e., Oσ(Λ−2) and OA(Λ−2) truncations, respectively. The leptoquark mass is fixed to different values to illustrate the
EFT convergence, namely mU1 = 1 TeV (red), mU1 = 2 TeV (orange) and mU1 = 3 TeV (blue).
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to the data for ℓ = τ , and since the latter is also affected
by uncertainties from the reconstruction of the hadronic
τ decays. Therefore, higher energy scales are probed for
light leptons, typically in the O(10 TeV) range, whereas
O(1 TeV) scales are accessible for τ leptons, as shown
e.g. in Ref. [5].

The comparison between our EFT and full model pre-
dictions with the LHC data is made for the U1 leptoquark
in Fig. 3. The expected upper limits on the coupling-
over-mass ratio |xiαL |/mU1 are shown as a function of the
clipping variable Mcut. More precisely, the constraints
are determined only taking into account the experimen-
tal data below the threshold scale given by Mcut. For
light leptons ℓ = e, µ, the clipping is performed for the
reconstructed invariant mass of the dilepton system mrec

ℓℓ ,
i.e., considering only data with mrec

ℓℓ < Mcut, while for
third-generation leptons ℓ = τ , we clip the total traverse
mass mtot

T of the ditau system, which is used as experi-
mental observable in this case [37].

We have also verified that clipping the New-Physics
signal prediction on the partonic center-of-mass en-
ergy

√
ŝ = mℓℓ, rather than clipping on experimental

observable level, yields comparable results. For light lep-
tons ℓ = e, µ we find good agreement, since we have
mrec
ℓℓ ≃ mℓℓ. For τ leptons, we find some differences due

to the mismatch between mtot
T and mℓℓ. We actually have

mtot
T ≤ mℓℓ and thus events with higher center-of-mass

energies can migrate down to lower values of the observed
energy variable mtot

T . It is hence not obvious how a con-
sistent signal clipping prescription can be introduced in
this case. For a discussion of the problems when clip-
ping the signal rather than the data see e.g. Ref. [28, 32].
However, the patterns of the EFT convergence observed
in the present example are similar for clipping data and
signal.

For definiteness, we consider the leptoquark coupled
to first-, second-, and third-generation quarks (top, cen-
ter, and bottom row, respectively), with different lepton
flavors that are constrained by LHC data on pp → ℓℓ
with ℓ = e, µ [36] (left and center column) and ℓ = τ [37]
(right column). These searches have been reinterpreted
in the HighPT package [6], which we employ to determine
the limits presented here. 10 The dotted and dashed lines
represent the 2σ constraints obtained using the EFT ap-
proach and taking into account only the d = 6 inter-
ference with the SM, or additionally also the (d = 6)2

contribution. We also show the corresponding limits de-
termined in the full model with leptoquark masses mU1

of 1, 2, and 3 TeV in red, yellow, and blue, respectively.
First of all, we notice that the constraints obtained in

the full model converge well for all leptoquark masses

10 For the pp → ττ channel, we use an updated version of HighPT [6]
in which the selections cuts are improved to better reproduce
the experimental search, which is highly sensitive to the pT cut
for the leading τh jet. These improved constraints will soon be
publicly available in a forthcoming updated version of HighPT.

toward the EFT limits, computed considering (d = 6)2

contributions (dashed line), in the limit Mcut → 0, i.e.,
when only considering low-energy data. On the contrary,
the EFT limits, calculated taking into account only the
d = 6 interference with the SM (dotted line), do not con-
verge in this limit. This can be understood by realizing
that the larger the couplings, the more important the
(d = 6)2 terms become relative to the linear d = 6 in-
terference contribution. However, when clipping at low
values of Mcut, most of the data is discarded and we
are hence obtaining weaker constraints in the large cou-
pling regime. 11 Thus, the leading contribution in the
Mcut → 0 limit is given by the (d = 6)2 terms (at least
for sea quarks) and the linear d = 6 interference terms
cannot approximate the full model well. Also for larger
values of Mcut, we find that the models always converge
toward the (d = 6)2 EFT limits, when increasing the lep-
toquark mass. Therefore, we conclude with this concrete
example that using only the linear d = 6 interference
terms does not provide an accurate description for the
Drell-Yan tails and that (d = 6)2 contributions should
always be included.

In addition, we find in Fig. 3, as expected, that the
heavier the leptoquark mass, the better the (d = 6)2 EFT
approximation. Even for large values of Mcut, the EFT
provides accurate limits, at least for leptoquark masses
& 2 TeV. Moreover, we see that the (d = 6)2 EFT ap-
proximation tends to overestimate the constraints on the
coupling-over-mass ratio. While the New-Physics scales
probed by the data mostly depend on the considered
quark generations, and the energy range where data are
collected depends on the flavor of the leptonic final state,
we find similar overall patterns for the EFT convergence
for all flavor combinations.

VI. ILLUSTRATION: b → cτν

In this Section, we consider the discrepancies in exclu-
sive B-meson decays with an underlying b → cτν tran-
sition as a concrete example to quantitatively assess the
validity of the EFT description of pp → ττ at the LHC.
Drell-Yan processes provide helpful constraints on the
New-Physics scenarios proposed to accommodate these
discrepancies [5, 9], since these low-energy processes oc-
cur at tree level in the SM, being only sensitive to scales Λ
at most at the O(TeV) range with current precision [59].

Our goal is to directly compare the EFT results with
the constraints obtained in the full model, for differ-
ent values of the mediator mass, as in the previous sec-
tions, and to study the convergence of the two approaches

11 This is the case at least when coupling to second- and third-
generation quarks. For first-generation quarks (top row in Fig. 3)
the valence-quark PDF enhancement still allows to probe rela-
tively small values for the coupling, where the d = 6 interference
term dominates and thus converges to the full model.
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FIG. 4. Limits on coupling/mass for a U1 leptoquark. The filled red regions are 2σ regions coming from Drell-Yan at the LHC
using the explicit mediator propagation in HighPT [6], while the dotted, dashed, and dot-dashed lines indicate the 2σ contours
in the SMEFT case with d = 6 linear, d = 6 quadratic terms, and d = 8 quadratic terms, respectively. RG evolution for the
flavor and electroweak likelihood is performed taking mU1 as the high scale, i.e., it is different for the three plots.

for large Λ values, this time also comparing Drell-Yan
bounds to other complementary data sets in the flavor
and electroweak sectors. To do so, we focus again on
the U1 vector leptoquark as a benchmark model, which
is known to provide a good solution to the b → cℓν dis-
crepancies12 [60–64].

The observables determined at low energies are the
ratios RD(∗) = B(B → D(∗)τ ν̄)/B(B → D(∗)lν̄) (with
l = e, µ), which have been measured at LHCb and the
B-factories [66]

Rexp
D = 0.342 ± 0.026 , Rexp

D∗ = 0.287 ± 0.012 (32)

with a combined value that is about 3σ above the average
of SM predictions [66] 13

RSM
D = 0.298 ± 0.004 , RSM

D∗ = 0.254 ± 0.005 . (33)

The leptoquark effect in these observables can be
schematically parametrized as

RD(∗)

RSM
D(∗)

≃ 1 − v2

Λ2
Re

(
1

V ∗
cb

[C3
lq]3323 + [C3

lq]3333

)

= 1 +
v2

2m2
U1

Re

(
x23L x

33∗

L

V ∗
cb

+ |x33L |2
)

, (34)

where we have again assumed down alignment for the
left-handed quark doublet, and kept couplings to the
τ lepton, and the second- and third-generation quarks.
Other relevant constraints on this scenario are posed by

12 See Refs. [27, 65] for other viable leptoquark scenarios.
13 See also Ref. [67–69] for recent determinations of B → D∗ form-

factors of the lattice, which have been combined to predict RD∗ ,
e.g., in Ref. [70, 71].

the modifications of Z and W couplings to leptons in-
duced by the Renormalization Group (RG) evolution,
which are sizable as they are proportional to the top
Yukawa coupling yt in this case [72–76]. In our case,
the biggest effect comes from Zνν̄ vertex corrections,
parametrized by [77–79]

δgνL ∝ [C(1−3)
Hl ]33(mZ) ≃ 6|yt|2

16π2
log

mZ

Λ
[C(1+3)
lq ]3333 . (35)

For the Electroweak Precision Observables (EWPOs), we
use the inputs from Ref. [80]. The running for flavor ob-
servables, on the other hand, is negligible for operators
with vector structure. The favored regions from flavor
and EWPOs are shown in Fig. 4 as blue and gray regions,
respectively, as a function of the coupling/mass ratio, for
three benchmark masses, namely mU1

= 1.5 TeV (left
panel), 2 TeV (center panel) and 3 TeV (right panel).
For each case, the matching scale is taken to be the lep-
toquark mass mU1

, performing the RG evolution from
this value down to µew ≈ mZ (hence the slightly different
shapes of the electroweak regions for different mU1

val-
ues) [77–79].

Turning our attention back to the Drell-Yan con-
straints shown in red, we observe a good convergence
of the EFT (dashed line) toward the leptoquark model
(filled red region), with an O(10%) difference between
them for mU1

= 1.5 TeV. Notice that the d = 6 EFT
constraints do not change between the three cases, since
the only relevant quantity that can be probed is the
coupling/mass ratio. The EFT description can be fur-
ther improved by including d = 8 operators, with a
consistent truncation at OA(Λ−4) (dot-dashed red line),
which are more important for low mU1

values, to accu-
rately describe the full model. Already for low lepto-
quark masses of mU1

= 1.5 TeV, this truncation order
offers an excellent approximation of the full model. For
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masses . 1.5 TeV, we have noticed that the cross section
for the last bin of the experimental search [37] becomes
negative when truncating the EFT series at Oσ(Λ−6) on
cross-section level, i.e., considering the interference of
d = 6 with d = 8 operators. This highlights the issues
associated to cross-section level truncations and further
reinforces our statement that it is necessary to truncate
the EFT series on amplitude level. Finally, we note that
already at mU1

= 3 TeV the differences between the vari-
ous approaches are completely negligible, in line with the
findings of the previous sections.

On the other hand, it appears clear from all three
plots that keeping only the linear terms in SMEFT co-
efficients (dotted line) when computing the cross section
never yields accurate results. In fact, stopping the ex-
pansion at Oσ(Λ−2) leads to overly pessimistic bounds.
This should be compared with the middle and right plots
in the bottom of Fig. 3, where the same pattern is found.
While one could regard these as conservative bounds, it
is worth noticing that this is not always the case, and in
most cases the linear dimension-six terms seem to lead
to a too restrictive constraint (cf. again Fig. 3).

In summary, we find that EFTs can reliably de-
scribe Drell-Yan tails for t- and u-channel mediators with
masses above 1.5 TeV, including the models proposed to
address the RD(∗) anomalies. We have shown that the
EFT description at OA(Λ−2) is rather accurate for these
masses and it can be systematically improved by includ-
ing the OA(Λ−4) contributions which are already imple-
mented in HighPT [6].

VII. SUMMARY

In this article, we have explored the validity range of
the EFT description of Drell-Yan processes and the un-
certainties associated with the EFT truncation through a
direct comparison between concrete models and their re-
spective EFTs at low energies. We have considered two
representative scenarios, namely a heavy Z ′ ∼ (1,1, 0)
boson and a vector leptoquark U1 ∼ (3,1, 2/3), which
contribute to these processes via the s- and t-channels,
respectively, and which are matched onto the SMEFT
with operators up to dimension d = 8.

Firstly, we have computed the analytical expression
for the partonic cross section in each of the scenarios, ac-
counting for the propagation of the new mediators. By
performing an expansion of the cross section in the ratio
xV = m2

ℓℓ/m
2
V < 1, between the dilepton invariant-mass

squared and the squared mass of the mediators, we have
shown that the series obtained for the t-channel media-
tor has a faster convergence at low energies than the one
obtained for the s-channel. This is expected from the
resonant nature of the contributions in the former sce-
nario and can be traced back to the coefficients in the
power series of the cross section, which appear with the
same signs for the s-channel propagator, but with alter-
nating signs for the t-channel one. These subleading cor-

rections are associated with higher-dimensional operators
(i.e., beyond d = 6), which can improve the description
of the partonic cross sections as shown in Figs. 1 and 2.

We reiterate that only considering the interference be-
tween the SM and d = 6 operators [i.e., Oσ(Λ−2) trun-
cation in our notation] leads to a poor EFT description
in most cases, making the inclusion of (d = 6)2 terms
[OA(Λ−2)] necessary. Furthermore, while the interfer-
ence term of the d = 8 operators with the SM amplitude
[Oσ(Λ−4)] only marginally improves the EFT description,
we found that d = 8 squared contributions [OA(Λ−4)] can
have a sizable impact on the cross section if E/Λ is not
small. In other words, it is preferable to perform the
truncation at the amplitude level instead of the cross-
section level. This feature is potentially connected to the
well-defined properties of high-energy scattering ampli-
tudes, which are governed by analyticity and unitarity
(in our case, below the EFT cutoff E < Λ), which may
be lost with an inconsistent truncation on cross-section
level. Studying d = 8 effects this way is, of course, only
possible if a concrete UV model is considered. Assessing
the impact of d = 8 terms in a model-agnostic manner is
less obvious. An option would be to fit the d = 6 Wilson
coefficients while marginalizing over the corresponding
coefficients of the d = 8 operators as done in Ref. [5].
However, as shown in that reference, the complete decor-
relation of the d = 6 and d = 8 effects obtained through
the marginalization leads to a significant relaxation of
the constraints. Although this can be interpreted as a
conservative limit, a considerable improvement can be
achieved once a specific model is considered [5].

By comparing the different panels of Figs. 1 and 2, we
have also shown that the EFT convergence depends on
the couplings convoluted with the initial quark PDFs,
providing a better description of the full-model results
for small New-Physics couplings and/or small PDFs
(i.e., heavier quarks). In practice, the range of couplings
that are probed by real data depends on the experimen-
tal sensitivity, which is usually better for ℓ = e, µ [36]
than for ℓ = τ [37], as the experimental searches usually
cover higher energies in the former case. These features
are illustrated in Fig. 3 for the U1 leptoquark, where the
EFT description with d = 6 operators is more accurate
and provides better limits for the lighter flavors of quarks
and leptons.

Finally, we have also made this explicit comparison for
a concrete example motivated by discrepancies between
the SM predictions and the experimental determinations
of the low-energy b→ cτν transition. We have considered
the vector leptoquark model that was proposed to accom-
modate this discrepancy, and we have compared the EFT
and full-model Drell-Yan bounds on the couplings that
are fixed by flavor and electroweak data. We have shown
that the EFT bounds based on d = 6 operators lead to
bounds that are O(10 %) stronger than the correct ones
for a leptoquark of mass mU1 = 1.5 TeV, which is cur-
rently allowed by direct searches at the LHC [81, 82]. We
have demonstrated that the EFT truncated at OA(Λ−2),
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i.e., including d = 6 operators and truncating on am-
plitude level, provides a fairly good description of this
scenario for masses above 1.5 TeV, which can be further
improved by considering d = 8 operators with a consis-
tent OA(Λ−4) truncation.

While verifying the validity of the EFT approach in
general is a delicate problem as it depends on several fac-
tors: the specific UV scenario (resonant or non-resonant),
the flavors of all involved particles (particularly in light
of PDF-suppression effects and τ -reconstruction issues),
the processes considered (kind of process, tree or loop
level), etc., the central results of the present work can be
succinctly summarized by: (i) for high-energy observ-
ables one should truncate the EFT series on amplitude
level, since only this can guaranty the proper analytical
structure of amplitudes at high energies, whereas a trun-
cation on cross-section level can lead, for example, to
negative cross sections in the high-energy bins; (ii) while
the applicability of EFTs for resonant UV scenarios is
limited to cases of large scale hierarchies E ≪ Λ, EFTs
can offer good approximations for non-resonant scenarios
even if the considered energies are not far below the cut-
off scale. In many cases truncating at OA(Λ−2) already
provides good approximations in this case, wheres going
to OA(Λ−4) can offer excellent approximations even for
E ∼ Λ.

Appendix A: Phase-space functions

In this Appendix, we provide the explicit expressions
for the phase-space functions defined in Eq. (28) through
the integral on t̂ ∈ (−ŝ, 0),

ϕ1(x) =
3(2 + 3x)

2x
− 3(1 + x)2

x2
log(1 + x) , (A1)

ϕ2(x) = 6 + 3x− 6(1 + x)

x
log(1 + x) . (A2)

These expressions can be expanded for 0 < x < 1, leading
to the expressions in Eq. (29).
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[arXiv:2410.23257 [hep-ph]].

[66] S. Banerjee et al. [Heavy Flavor Averaging Group
(HFLAV)], [arXiv:2411.18639 [hep-ex]].

[67] A. Bazavov et al. [Fermilab Lattice and MILC], Eur.
Phys. J. C 82 (2022) no.12, 1141 [erratum: Eur. Phys.
J. C 83 (2023) no.1, 21] [arXiv:2105.14019 [hep-lat]].

[68] J. Harrison et al. [HPQCD and (HPQCD Collab-
oration)‡], Phys. Rev. D 109 (2024) no.9, 094515



15

[arXiv:2304.03137 [hep-lat]].
[69] Y. Aoki et al. [JLQCD], Phys. Rev. D 109 (2024) no.7,

074503 [arXiv:2306.05657 [hep-lat]].
[70] G. Martinelli, S. Simula and L. Vittorio, Eur. Phys. J. C

84 (2024) no.4, 400 [arXiv:2310.03680 [hep-ph]].
[71] M. Bordone and A. Juttner, [arXiv:2406.10074 [hep-ph]].
[72] F. Feruglio, P. Paradisi and A. Pattori, Phys. Rev. Lett.

118 (2017) no.1, 011801 [arXiv:1606.00524 [hep-ph]].
[73] F. Feruglio, P. Paradisi and A. Pattori, JHEP 09 (2017),

061 [arXiv:1705.00929 [hep-ph]].
[74] C. Cornella, F. Feruglio and P. Paradisi, JHEP 11 (2018),

012 [arXiv:1803.00945 [hep-ph]].
[75] L. Allwicher, [arXiv:2201.04995 [hep-ph]].

[76] L. Allwicher, G. Isidori, J. M. Lizana, N. Selimovic and
B. A. Stefanek, JHEP 05 (2023), 179 [arXiv:2302.11584
[hep-ph]].

[77] E. E. Jenkins, A. V. Manohar and M. Trott, JHEP 10

(2013), 087 [arXiv:1308.2627 [hep-ph]].
[78] E. E. Jenkins, A. V. Manohar and M. Trott, JHEP 01

(2014), 035 [arXiv:1310.4838 [hep-ph]].
[79] R. Alonso, E. E. Jenkins, A. V. Manohar and M. Trott,

JHEP 04 (2014), 159 [arXiv:1312.2014 [hep-ph]].
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