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Abstract: Effective field theories (EFTs) provide an excellent framework for the search

of heavy physics beyond the Standard Model, using the so-called bottom-up and top-down

approaches. However, the vastness of possible UV scenarios makes the complete connection

between the two approaches a difficult challenge at the loop-level. UV/IR dictionaries fill

precisely this gap, efficiently connecting the EFT with the UV. In this work we present the

complete one-loop dictionary for the Standard Model EFT at dimension six for completions

with an arbitrary number of heavy fermions and scalars. Our results (as well as several

new functionalities) are added to the previously partial package SOLD, introduced in [1].

In this new form, SOLD is prepared to serve as an important guiding tool for systematic

and complete phenomenological studies. To illustrate this, we use the package to explore

possible explanations for the tension on the measurement of B(B → Kνν).

ar
X

iv
:2

4
1
2
.1

4
2
5
3
v
1
  
[h

ep
-p

h
] 

 1
8
 D

ec
 2

0
2
4



Contents

1 From the EFT to the UV (and back) 1

2 Computing the one-loop dictionary 3

2.1 Matching procedure 3

2.2 Model classification 5

2.3 Some general results 6

2.4 Installing SOLD 6

2.5 List of new functions 7

3 The low-energy picture of the UV with SOLD 9

4 Carving out the UV with SOLD: one-loop solutions to B(B → Kνν) 11

4.1 One-field extensions 14

4.2 Two-field extensions 16

4.3 Three-field extensions 18

5 Conclusions and outlook 22

1 From the EFT to the UV (and back)

The tremendous effort in the particle physics experimental programme of the past few

years, in particular at the Large Hadron Collider (LHC), and the lack of an observation of

a significant deviation from the Standard Model (SM) predictions, has given strength to the

argument that new physics should be hiding behind a mass gap in regards to the electroweak

scale. In the scenario of heavy physics beyond the SM (BSM), the use of Effective Field

Theories (EFT), in particular of the Standard Model EFT (SMEFT) [2–5], proves to be an

ideal framework.

Calculations in the SMEFT can in general be split into two independent steps. With

the bottom-up approach, deviations from the SM are parameterized in terms of the Wil-

son Coefficients (WCs) of an EFT, with limited theoretical bias. This provides a model-

independent interpretation of experimental data via global fits. Subsequently, the top-down

approach translates these coefficients into the parameters of some specific candidate model,

through the procedure known as matching. Thus, these two complementary perspectives

allow us to connect our UV theories to experimental data.

These approaches have experienced an outstanding development in the past few years.

In particular, the automation of many steps of the calculation [1, 6–11] has made it possible

to almost streamline the process of comparing the predictions of a model with experimen-

tal data. However, the large number of possible models not only makes this comparison
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cumbersome, losing in practice the efficiency of EFTs, but also blurs the interpretation of

experimental data in terms of concrete models. Without any guidance, there is an effective

gap between the two approaches.

Fortunately, EFTs also provide us a rationale to order, using power counting and per-

turbation theory, the relevance of different WCs, allowing the classification of all the new

physics models (and only those) which are observable up to some order in the EFT ex-

pansion. This information constitutes a UV/IR dictionary, that comprises the translation

between the models that contribute at some order to a specific operator and their ex-

plicit contribution. That is, dictionaries ultimately connect the bottom-up and top-down

approaches as they answer the questions: What are all models that can generate a spe-

cific operator (or a set of operators)? What are the low-energy consequences, through the

matching conditions onto the SMEFT, of a specific UV model?

The leading, complete tree-level dictionary for SMEFT at dimension six has been com-

puted in Ref. [12], building on the work from Refs. [13–16]. However, given the increasing

precision arising in experimental physics, it is important to also consider loop-level effects.

This is mainly prompted by the fact that several observables receive their leading contri-

butions at loop-level (for instance the anomalous magnetic moment of the muon [17–20]),

but also from a theoretical perspective, as the mixing between tree- and loop-generated

operators through renormalization has been extensively studied in the literature [21–25].

Furthermore, models with only quadratic couplings – which we define as couplings involving

at least two BSM fields – can only contribute to the SMEFT at loop-level. These couplings

are harder to probe and arise in models with a Z2 symmetry, under which the BSM fields

are odd, which can be found in models with a Dark Matter candidate [26].

The construction of a complete one-loop SMEFT dictionary has been an ongoing effort

in the literature – see Refs. [26–28] for partial results. One of the main challenges is the

fact that the number of relevant UV models at loop-level is in principle unbounded. For

this reason, our first iteration in the construction of the one-loop dictionary resulted in the

Mathematica package SOLD [1], which included only operators of the SMEFT with field-

strength tensors (those whose leading contribution from renormalizable weakly-coupled UV

theories is necessarily at the loop-level). In this work, we extend this work to now include

all operators of the SMEFT at dimension six. A user of this dictionary can now therefore

obtain complete answers to the questions stated above: for a particular UV model, what is

the value of all SMEFT WCs? For a particular operator, what are all scalar and fermion

multi-field extensions which can generate a non-zero WC?

While the first question can already be addressed by current matching softwares [7–9],

SOLD provides an easier to use framework, as the user only needs to provide the SM gauge

representation of the fields in the UV model (as opposed to having to implement a full

Lagrangian). The second question is a completely new challenge that only SOLD addresses,

allowing for much more systematic and complete phenomenological works. In regards to the

previous version we have also included several more functions which allow for a schematic

(and therefore much faster) construction of the low-energy picture of a specific UV model.

The general procedure and the new functions and challenges in this upgrade of SOLD

are presented in section 2. In section 3, we show how SOLD can be used to easily draw the
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low-energy picture of a specific UV scenario; while other matching tools are better equipped

to fully match a specific model to the SMEFT, SOLD is useful when one is only interested

in a restricted set of operators, when one needs to probe several models and does not

want to produce different input models or when a schematic view is enough (details on this

schematic view are given in this section). To promote the use of SOLD in a phenomenological

study, in section 4, starting from an apparent tension in the experimental measurement

of B(B → Kνν) [29], we map extensions of the SM that could explain it, up to three-

field extensions. While the literature has rightfully focused on tree-level solutions [30–33]

(since the necessary WC is relatively large), we systematically evaluate whether a loop-level

solution is also possible. This is important not only from the perspective of being complete

but also because future experimental updates of this tension might lower the central value

of the relevant WCs. This section should not be understood as a full study of a particularly

motivated model, but rather as exemplifying how to use dictionaries as guiding principles

in phenomenological studies. Finally we provide our conclusions and outlook in section 5.

2 Computing the one-loop dictionary

In Ref. [1] we introduced the first iteration of the SMEFT one-loop dictionary, which only

included the SMEFT operators which cannot receive tree-level contributions under the

assumption of a weakly-coupled renormalizable UV theory; in the Warsaw basis [3] this

amounts to all operators that include a field-strength tensor [12]. Here we complete the

effort to include all SMEFT operators, i.e. including the operators which can in principle

also receive tree-level contributions.

A significant part of the details regarding the matching strategy employed in the devel-

opment of the one-loop dictionary has already been introduced in Ref. [1]. For complete-

ness, we briefly review it here, focusing on the new challenges posed by considering the full

SMEFT Warsaw basis.

2.1 Matching procedure

We perform the matching to the SMEFT at dimension six following the diagrammatic off-

shell approach; this amounts to computing one-light-particle-irreducible (1lPI) diagrams

which are matched onto a SMEFT Green basis, which can then be reduced to a minimal

physical basis (the Warsaw basis in our case) through field redefinitions. The relevant oper-

ators in the Warsaw basis and the redundant and evanescent operators which complete the

Green’s basis follow the same notation as introduced in Appendix D of the MatchmakerEFT

manuscript [8].

As our goal is to create a complete dictionary which considers scalar and fermionic

multi-field UV extensions of the SM1, our starting point is a general theory, where particles

are arranged in multiplets according to their spin, Ψa for fermions and Φb for scalars;

the indices a, b runs over light and heavy particles in the multiplet. Since the remaining

1We do not include heavy vectors at this point, as their one-loop matching needs a complete model with

the spontaneous symmetry breaking details which generate its mass. See also Ref. [34] for more details on

one-loop matching of heavy vectors.
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quantum numbers of the heavy fields are not specified, the gauge contraction between the

fields is left undefined, characterized by a general Clebsch-Gordan (CG) tensor which will

be calculated later in the computation. This generic renormalizable theory is described by

the Lagrangian:

LUV =δΨa
Ψ̄a

[
i /D −MΨa

]
Ψa + δΦa

[
|DµΦa|2 −M2

Φa

|Φa|2
]

+
∑

χ=L,R

[
Y χ
abcΨaPχΨbΦc + Ỹ χ

abcΨaPχΨbΦ
†
c

+Xχ
abcΨ

c
aPχΨbΦc + X̃χ

abcΨ
c
aPχΨbΦ

†
c + h.c.

]

+
[
κabcΦaΦbΦc + κ′abcΦaΦbΦ

†
c + λabcdΦaΦbΦcΦd

+ λ′abcdΦaΦbΦcΦ
†
d + λ′′abcdΦaΦbΦ

†
cΦ

†
d + h.c.

]
, (2.1)

where PL,R = (1∓γ5)/2, Ψc ≡ CΨT
with C the charge conjugation matrix, δΨa

is 1 (1/2×1)

for complex fermions (Majorana fermions, such that Ψc
a = Ψa) and δΦa

is 1 (1/2 × 1) for

complex scalars (real scalars, with Φ†
a = Φa) scalars. As mentioned before, all couplings

should be understood as including a CG tensor enconding the information of how the fields

will be contracted. Only when the QNs of the heavy fields are specified will these CGs be

computed. The underlying assumptions considered are that heavy fermions are vector-like,

with both chiralities transforming in the same way and that there is no tree-level mixing

between particles. Further information on the conventions used can be found in Ref. [1].

With this theory, we perform the matching onto the Green’s basis of the SMEFT

diagrammatically. The matching of this generic theory to the SMEFT is stored in SOLD

and does not need to be calculated again by the user. When projecting these results to a

specific UV theory, the quantum numbers (QNs) of the heavy fields (an arbitrary number of

them) have to finally be specified. Since Eq. (2.1) includes all possible renormalizable UV

interactions, it is not necessary to create any sort of model file. With the QNs, SOLD makes

use of the group theory package GroupMath [35] to calculate the CGs for the specified UV

theory.

The matching results are given both in the redundant Green’s basis and in the minimal

Warsaw basis. The rules to perform the projection from the redundant to the minimal basis

are included in SOLD.

The main difference in regards to the matching procedure laid out in the first version

of SOLD [1] is that, given that we are considering all operators of the SMEFT, those that do

not contain field-strength tensors can in principle receive tree-level contributions. As such,

one-loop contributions to the kinetic terms of SM fields must be taken into account since

upon canonical normalization, these loop contributions will change the tree-level generated

WCs. We also include in this version of the package the option to perform the matching at

tree-level – see section 2.5. To increase the performance, and because the set of UV models

that can give rise to tree-level WCs is finite [12], we compute the tree-level results in SOLD

(finding full agreement with [12]) and store them in an accompanying file.
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Finally, we also take into account the reduction of evanescent operators. Since we per-

form our loop calculations in d dimensions, projecting the results to a physical basis can

generate tree-level evanescent structures, that vanish in four dimensions but that are differ-

ent from zero in d dimensions, such that they produce finite contributions when inserted in

EFT (divergent) loop amplitudes. The contribution from such structures is incorporated,

as computed in [36], in the aforementioned rules for this projection.

2.2 Model classification

Addressing our second question – what are the SM extensions which can generate a non-zero

WC – is much more challenging than in the tree-level case. The reason is that, at loop level,

couplings that are quadratic in the heavy fields can contribute in the matching, generating

topologies that do not fix the representations of the particles running in the loop, but only

their product. The number of particular extensions is therefore technically unbounded. As

a consequence, we report an answer to this question at two different levels: the first level

collects all the different restrictions that a model can fulfill to contribute to a certain WC,

and the second level lists the specific group representations that satisfy these restrictions.

In order to gather all this information, we make use of the intermediate result of the

matching of the generic theory in section 2.1 onto the SMEFT. In this result, as explained

in the previous section, all the gauge information is unspecified, in such a way that we

can iterate over each diagram that can kinematically contribute to the WC of interest and

extract the restrictions that the representations of the heavy particles in the loop need to

fulfill for said diagram to be allowed by gauge symmetry. This extensive list is reduced

to contain the minimum number of physically non-equivalent fields (that is, not related by

conjugation) required to satisfy each restriction. This constitutes the first level result and

defines all different “classes of models” that can generate a WC.

Regarding the second level, given a particular restriction, we check which specific rep-

resentations can satisfy it using GroupMath. Notice that, by construction, it could happen

that two different classes of models in the first level result contain the same specific model,

that is, different restrictions can be respected by the same representations. Likewise, it

could happen that for an N -field class of models, there exist some (N − 1)-field solutions2

(in terms of specific quantum numbers) as two fields having the same representations can

satisfy the restriction.

This new version of the dictionary is more complete (as compared to [1]) not only

because we answer the question for all operators of SMEFT, but also because we include

several new functionalities. Among them, there is the option of listing all completions that

can generate operators without small SM couplings (we do not exclude terms proportional

to SU(3) gauge coupling, g3, and the top Yukawa, yt), such that the result is proportional

only to new physics interactions (and g3 or yt). All these results are given in electronic

form via the latest version of the SOLD package. See section 2.5 for the details on the usage.

2In more generality, it could happen that in a class of N -fields, M fields having the same QNs respects

the restriction, meaning that we actually have a (N −M + 1)-field extension.
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2.3 Some general results

Operators which are composed only of field-strength tensors are generated by fields charged

under the corresponding gauge symmetry. Since in the SMEFT the gauge group is con-

sidered unbroken, this results in the fact that only a single particle can run in the loop,

making it possible to obtain general results for the WC of these operators, depending only

on the spin and representation of the heavy particle. In Ref. [1], SOLD was used to rederive

diagrammatically the general matching conditions of operators of the form OX = Xµ
νXν

ρX
ρ
µ

and OX̃ = Xµ
νXν

ρ X̃
ρ
µ, where Xµ

ν corresponds the field-strength tensor associated to SU(2)

and SU(3) gauge groups – in Ref. [37] these results had been obtained using functional

methods. Similarly, results for the redundant operators R2X = −1/2(DµX
µν)(DρXρν),

where now X includes also the field-strength tensors associated with U(1) gauge group,

had also been derived in Ref. [37]. Once again we use SOLD to obtain these results diagram-

matically, resulting in

α2X =
1

(4π)2

∑

R

4cR g
2

15M2
R

µ(R), cR =





1, Dirac fermions
1
2 , Majorana fermions
1
8 , complex scalars
1
16 , real scalars

, (2.2)

with Tr(TAR T
B
R ) = µ(R)δAB, where TR are the generators of the group in R’s representation

and R iterates over the heavy fields in the model; g is the gauge coupling constant associated

to X. Ref. [37] further shows results for heavy vectors.

These are redundant operators with respect to the Warsaw basis. As such, their effect

will be projected into this minimal basis [38] and will propagate to almost all operators

without field-strength tensors (with the exceptions being CHud, C
(1,8)
quqd , C

(1,3)
ℓequ and C

(1,3)
ℓedq )

depending on the charges of the fields contained in the operators.

Besides the general relevance of performing this cross-check following an independent

method, the fact that the matching of the operators R2X propagates to several operators

in the Warsaw basis, means that when using a one-loop dictionary to construct the UV

theories potentially behind one of these operators, the result would always include any heavy

particle charged under the SM gauge groups. This led us to also consider the possibility of

constructing the UV theories that can generate a WC in the limit of vanishing SM couplings

(in this case the gauge couplings are the relevant SM interactions). We explore in more

detail these new functionalities in section 2.5.

2.4 Installing SOLD

The Mathematica package SOLD is publicly available in the Gitlab repository: https:

//gitlab.com/jsantiago_ugr/sold. In order to install SOLD, the user needs to install

GroupMath [35] as well3. To install SOLD the following command is enough:

In[1]:= Import["https://gitlab.com/

jsantiago_ugr/sold/-/raw/main/install.m"]

3To use the function in SOLD which performs the full one-loop matching using MatchmakerEFT, one would

also need MatchmakerEFT to be installed.
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argument noSMcouplings is set to True, it only considers results without SM couplings

(with the exception of the top yukawa and the strong gauge coupling). The same

considerations apply to ListModelsGreenTree.

• OpGeneratedQ[operator,model,<noSMcouplings>]. Returns True if model is in-

cluded in ListModelsWarsaw[operator,noSMcouplings], i.e., it can possibly gener-

ate a contribution to operator in the Warsaw basis. noSMcouplings is an optional

argument which, if set to True, considers results without SM couplings (with the

exception of the top yukawa and the strong gauge coupling).

• ListOperators[model,<noSMcouplings>]. Given a model, prints the list of Warsaw

coefficients that can be generated at tree-level and one-loop. noSMcouplings is an

optional argument which, if set to True, considers results without SM couplings (with

the exception of the top yukawa and the strong gauge coupling).

In addition, the following remarks should be taken into account with respect to the pre-

existing functions:

• Match2Warsaw[coefficient, extension]. Since version 2.0.0, coefficient can be

any dimension six SMEFT operator. As such, the results include (possibly) tree-

level contributions. The tag onelooporder is used to separate the one-loop order

contribution. The same considerations apply to Match2Green.

• ListModelsWarsaw[coefficient,<noSMcouplings>]. In version 2.0.0, coefficient

can be any operator in the Warsaw basis. If the optional argument noSMcouplings

is set to True, it returns the list of models that can give one-loop contributions

to coefficient without Standard Model couplings (with the exception of the top

yukawa and the strong gauge coupling). It is set to False by default. The same

considerations apply to ListModelsGreen.

• ListValidQNs[listrestrictions,<MaxDimSU3>,<MaxDimSU2>]. When given any of

the optional arguments MaxDimSU3, MaxDimSU2 between curly brackets, returns re-

sults including representations only of the dimensions in brackets.

Finally, we have added a parallelized version for the following functions, which greatly

reduces their execution time:

• Match2WarsawPar[coefficient, extension].

• Match2GreenPar[coefficient, extension].

• MatchSchematicPar[coefficient, extension, <listcouplings>].

• MatchSchematicGreenPar[coefficient, extension, <listcouplings>].
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3 The low-energy picture of the UV with SOLD

The purpose of this section is to give a practical example of how the new functions in SOLD

were envisaged to give the user a quick picture of the phenomenology of a model, allowing

to readily connect between top-down and bottom-up perspectives.

Let us consider a scenario in which some anomalous observation can be explained by a

sizable new physics contribution to the operator O(1)
ℓq (as we will actually explore in detail

in the next section). Using the ListModelsWarsawTree function, we can check the list of

models that generate it a tree level:

In[3]:= ListModelsWarsawTree[alphaOlq1[i,j,k,l]]



FieldContent SU(3)⊗ SU(2) U(1)

{φ1} {φ1 → 3⊗ 1} {Yφ1 → −1
3}

{φ1} {φ1 → 3⊗ 3} {Yφ1 → −1
3}


 (3.1)

As it is well known [12], we can see that the S1 ∼ (3, 1,−1/3) leptoquark can contribute

to this operator at tree level. We can obtain the explicit result using the following function:

In[4]:= Match2WarsawTree[alphaOlq1[i,j,k,l], {Sa->3,1,-1/3}]

Out[4]=
L1[Sabar, lL, qL][j, l] L1bar[Sabar, lL, qL][i, k]

4 MSa2

The coupling notation is the same as introduced in Ref. [1]. Couplings are defined by the

letter L followed by a number (this numbers distinguishes between different gauge contrac-

tions between the same fields). The first argument corresponds to the particles comprising

the operator to which the coupling corresponds to and the second argument corresponds

to the flavor indices of the operator. To explicitly see the definition of the couplings, the

function CreateLag[{Sa->{3,1,-1/3}}] outputs the Lagrangian of the model.

Using SOLD, one can also check the list of all possible models that can generate this

operator at one loop:

In[5]:= ListModelsWarsaw[alphaOlq1[i,j,k,l]]




FieldContent SU(3)⊗ SU(2) U(1)

{φ1} {φ1 → 3⊗ 1} {Yφ1 → 1
3}

{φ1} {φ1 → 3⊗ 3} {Yφ1 → 1
3}

{φ1} {φ1 → 1⊗ 1} {Yφ1 → 1}
{φ1} {φ1 → 1⊗ 2} {Yφ1 → −1

2}
...

{φ1, ψ1} {ψ1⊗ ψ1 ⊃ 1⊗ 1 , ψ1⊗ φ1 ⊃ 3⊗ 2} {Yψ1 → −1
6 + Yφ1, Yψ1 6= 0}

...




(3.2)

The first column gives information about the field content of the particular “class” of models,

indicating how many scalars (φi) and fermions (ψi) are present. The second column gives
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the list of the SU(3)⊗ SU(2) restrictions that the fields have to satisfy to generate the

particular operator (in our case, O(1)
ℓq ). In some cases the representations are fixed (as in

the first rows), whereas in others we have restrictions in the product of representations. The

last column gives the same information for the hypercharge. The function ListValidQNs

gives a list of specific quantum numbers that satisfy the restrictions given by ListModels,

and SOLDInputForm can be used to transform its output into the appropriate input form

for the matching functions. See section 2.5 and [1] for more details.

Using the new optional argument, we can actually see how this leptoquark generates

O(1)
ℓq even without SM couplings:

In[6]:= ListModelsWarsaw[alphaOlq1[i,j,k,l],True]




FieldContent SU(3)⊗ SU(2) U(1)

{φ1} {φ1 → 3⊗ 1} {Yφ1 → 1
3}

{φ1} {φ1 → 3⊗ 3} {Yφ1 → 1
3}

{φ1} {φ1 → 1⊗ 2} {Yφ1 → −1
2}

...




(3.3)

In order to assess the impact of such a completion in other observables, one needs to

check which other operators are generated. We could quickly check, for instance, whether

this model generates a contribution to the anomalous magnetic moment of the muon by

means of the following command:

In[7]:= OpGeneratedQ[alphaOeW[i,j], {Sa->{3,1,-1/3}}]

Out[7]= True

This operator is never generated, however, in the limit of no SM couplings, since it is always

proportional to the weak gauge coupling:

In[8]:= OpGeneratedQ[alphaOeW[i,j], {Sa->{3,1,-1/3}},True]

Out[8]= False

Using the function MatchSchematic, one can have a schematic idea of how the result for

this coefficient could look like:

In[9]:= MatchSchematic[alphaOeW[i,j], {Sa->{3,1,-1/3}}]

Out[9]=
gw onelooporder L[eR, φφφ, lL]L[lL,qL, Sa]L[Sa, lL, qL]

16 M2 π2

+
gw onelooporder L[eR, uR, Sa]L[qL,φφφ, uR]L[Sa, lL, qL]

16 M2 π2

+
gw onelooporder xRP L[eR, uR, Sa]L[qL,φφφ, uR]L[Sa, lL, qL]

16 M2 π2
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The numerical factors in this result are purely schematic (they are not actually computed);

the 1
16π2 factors serve to state whether the (would-be) contribution corresponds to a tree-

level or loop-level diagram. The couplings are given in a “schematic” form, indicating the

fields comprising the associated operator. The parameter xRP is related to the reading

point prescription used in the reduction of evanescent operators (see [1, 36] for details).

This function admits an optional argument specifying the couplings (beyond the SM) that

the user wants included in the result:

In[10]:= MatchSchematic[alphaOeW[i,j], {Sa->{3,1,-1/3}},{L[eR, φφφ, lL],L[lL,qL, Sa],

L[Sa, lL, qL]}]

Out[10]=
gw onelooporder L[eR, φφφ, lL]L[lL,qL, Sa]L[Sa, lL, qL]

16 M2 π2

These couplings can be given schematically; the order of the fields inside the coupling and

the writing of a coupling or its conjugate version is irrelevant.

Note that the actual result is given by the following function:

In[11]:= Match2WarsawPar[alphaOeW[i,j], {Sa->{3,1,-1/3}}]/.Log[__]->0

/.onelooporder->1//NiceOutput

9g2 (yu)
†[fl2,fl1]λ̄Sa,lL,qL

[a, fl1]λSa,eR,uR
[b, fl2]

256π2M2
Sa

+
g2ye

[flc,b]λ̄Sa,lL,qL
[a, fl1]λSa,lL,qL

[flc, fl1]

128π2M2
Sa

+
3g2ξrp (yu)

†[p,t]λ̄Sa,lL,qL
[a, t]λSa,eR,uR

[b, p]

128π2M2
Sa

−
3g2 (yu)

†[p,t]λ̄Sa,lL,qL
[a, t]λSa,eR,uR

[b, p]

128π2M2
Sa

Nevertheless, up to numerical factors and flavor structure, we can see how both results

agree with each other.

Finally, one can access the complete list of operators generated by this model, both at

tree and one-loop level, using the ListOperators function, that also includes an optional

argument to consider results without SM couplings (again, including g3 and yu, the former

being the strong gauge coupling and the latter being the up-quark Yukawa which includes

the large top Yukawa). The output of this function for the S1 leptoquark is given in Fig. 2.

4 Carving out the UV with SOLD: one-loop solutions to B(B → Kνν)

The measurement of a tension between experiment and SM prediction is always followed

by an incredible effort to map the BSM scenarios that can be behind such an experimental

anomaly. In the same vein, a measurement which leads to a very stringent bound on a

set of WCs, leads to an effort to understand which models are subject to such constraints.

This systematic and complete description of all relevant UV scenarios is made possible by

the use of dictionaries, Ref. [12] at tree-level and SOLD at loop-level.

Considering a specific observable – leading to a set of WCs – one wants to explain,

SOLD can easily provide all the (single- and multi-field) scalar and fermionic extensions

which generate those non-zero WCs, with the function ListModelsWarsaw[c], where c is
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To realize these procedure, let us consider the recent measurement of B(B → Kνν) by

Belle II [29] which found a result 2.9σ above the SM prediction,

RKνν =
B(B → Kνν)

B(B → Kνν)|SM
= 5.4± 1.5 . (4.1)

There has been an effort in the literature to understand whether this possible anomaly

could arise from heavy physics. In Refs. [30–33], the contributions from SMEFT operators

were considered; given that the deviation appears to be relatively large, efforts to connect

these non-zero WCs with UV scenarios have focused on tree-level completions. However,

as will be explored henceforth, it is not clear that a loop-suppressed explanation is not

possible.

In Ref. [39], a partial χ2-analysis was performed considering some B decays (including

RKνν and RD(∗)) and the best fit point was found to be:
[
C

(1)
ℓq

]

2232
= 6.5× 10−4

[
C

(1)
ℓq

]

3332
= 5.57× 10−2

[
C

(3)
ℓq

]

3332
= 4.75× 10−2

[
C

(1)
ℓd

]

3332
= 1.87× 10−2 , (4.2)

where we include only the central values and the high-energy scale was taken to be Λ =

1TeV. The fit favors a sizable
[
C

(3)
ℓq

]

3332
to explain RD(∗) and

[
C

(1)
ℓd

]

3332
with the approx-

imate pattern C
(1)
ℓq ∼ C

(3)
ℓq to accommodate RKνν . See also Ref. [31] for a discussion of these

patterns.

Neglecting heavy vector extensions, explaining these WCs at tree-level involves 3-fields.

To generate Cℓd the only option is Π1 ∼ (3, 2, 1/6); adding also S3 ∼ (3, 3, 1/3) would

generate C
(1)
ℓq = 3C

(3)
ℓq . Therefore, one would need a 3-field extension, adding also S1 ∼

(3, 1, 1/3) to arrive at C
(1)
ℓq ∼ C

(3)
ℓq .

While the large values of these WCs may point to this tree-level UV, a coefficient of

order of magnitude ∼ O(10−2) could in principle also arise from loop-level matching. In

spite of the unavoidable loop suppression, the UV couplings of these models are usually

much more weakly constrained than the tree-level models as the former can couple non-

linearly to the SM, i.e., UV couplings can be composed of two heavy particles and only

one SM field (BSM models which only couple non-linearly cannot contribute at tree-level to

the SMEFT). While it would still be difficult to explain the central values in this manner,

being within 1- or 2-σ regions of the fit could in principle be achievable given this bigger

freedom on the UV couplings.

As such, let us proceed with an exploratory scan over the UV possibilities that can

generate the pattern of Eq. (4.2), be it purely through loop solutions or with a mix of tree-

and loop-level contributions. The procedure will follow the schematic illustration of Fig. 3:

i) we use SOLD to construct the possible multi-field extensions behind one or more relevant

operators; ii) still within SOLD, we compute the explicit matching contribution for some

operators and also use MatchmakerEFT to compute the full one-loop matching conditions

of promising models; iii) we connect the output of MatchmakerEFT with smelli [40–42] to

assess whether the model is in agreement with other experimental constraints. Other fitting

tools could be considered in this last step [10, 43–45].
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Data points to IR pattern

Dictionary maps possible UV origin

Complete one-loop matching

Complete one-loop phenomenology

ListModelsWarsaw[]

Match2Warsaw[]

CompleteOneLoopMatching[]

Using smelli [42]

Figure 3: How SOLD can be used for phenomenological studies. For the last step, we use

an in-house code to parse the one-loop matching results into a numerical input to smelli;

because this feature is not implemented in SOLD we keep this arrow as dashed to represent

that it is not yet automatized.

Let us start by considering the simplest solutions, models which consider only one

heavy particle contributing at one-loop to these operators.

4.1 One-field extensions

Given that we aim to explain a relatively large numerical value for the WC, it is reasonable

to make the simplifying assumption that the matching condition should not include any SM

coupling apart from yt and g3, the top Yukawa and the gauge coupling of SU(3) respectively.

It is not enough to look at the generation of C
(1)
ℓq in the Green’s basis since it can also receive

contribution from evanescent redundant operators.

Let us then make use of the dictionary to obtain the possible one-field solutions, in the

limit of vanishing small SM couplings, with the function

In[12]:= ListModelsWarsaw[alphaOlq1[i, j, k, l], True]

with the partial output (including only the one-field extensions) of Fig. 4. The first column

defines the field content of the model (in these one-field extensions, it simply identifies if

it is a scalar or fermion), the second and third columns define the representation under

SU(3)C and SU(2)L, and U(1)Y , respectively.

We can further look for possible intersection with the output from ListModelsWarsaw[

alphaOlq1[i, j, k, l],True] to find models which can also generate Cℓd. We are left

with two possible extensions: Φ ∼ (1, 2, 1/2) or S1 ∼ (3, 1,−1/3). We will not consider

the S1 ∼ (3, 1,−1/3) extension as it generates C
(1)
ℓq = −C(3)

ℓq at tree-level [12]. With

Match2Warsaw we can obtain the matching conditions for Φ ∼ (1, 2, 1/2):
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4.2 Two-field extensions

Considering extensions comprised of two heavy fields significantly increases the space of

possible UV theories. Let us start by exploring models which generate C
(1)
ℓq ≈ C

(3)
ℓq at

tree-level and Cℓd at loop-level. From the tree-level dictionary [12], there is only one model

(excluding vectors) that results in C
(1)
ℓq and C

(3)
ℓq with the same sign, S3 ∼ (3, 3,−1/3),

which results in C
(1)
ℓq = 3C

(3)
ℓq . To explore how we can complement this model to generate

Cℓd at loop-level, we can go over the output of ListModelsWarsaw and pick models that

include S3 ∼ (3, 3,−1/3). This can be done with the code:

In[15]:= listmodels=ListValidQNs[ListModelsWarsaw[alphaOld[i, j, k, l]

, True][[ ;; ]], 3, 3];

listmodelsinput=Flatten[Table[Table[(SOLDInputForm[# ] & /@ ii2)

, {ii2, ii1}], {ii1, listmodels}],1];

Select[listmodelsinput, Length[# ] === 2 &];

models=Select[%,

MatchQ[# , ({___, Sa_ -> {{1, 0}, 3, -1/3}, ___} |

{___, Sa_ -> {{0, 1}, 3, 1/3}, ___}) /;

StringContainsQ[ToString[Sa ], "S"]] &];

where we are extracting the list of two-field extensions in SOLD input form (up to triplet

representations) and selecting those that do not include S3 ∼ (3, 3,−1/3) (or the conjugate).

We now have to verify what are the actual matching conditions for these models; to this

end, we run

In[16]:= Match2Warsaw[alphaOld[3, 3, 3, 2], # ]&/@ models

which will output the WC for the relevant models. This command runs for approximately

6 minutes4; without specifying any model or creating any model file, the user can obtain

the matching results for all two-field extensions which include S3. This exercise exemplifies

the main benefits of SOLD: it allows the calculation of specific WCs and it requires minimal

user input.

We obtain nine possible models, including models comprised of two scalars or of one

scalar and one fermion. Among them, the models with two scalars are not promising –

the resulting WC includes only linear couplings to the SM (therefore more constrained

couplings) and small numerical factors. Moving on to the scalar and fermion extensions,

let us focus on the following two, S3 +Q5 ∼ (3, 2,−5/6) and S3 + T2 ∼ (3, 3, 2/3):

In[17]:= Limit[Match2Warsaw[

alphaOld[3, 3, 3, 2], {Sa -> {3, 3, -1/3},

Fa -> {3, 2, -5/6}}], MFa -> MSa]/.onelooporder->1 // NiceOutput

[Cℓd]3332 = −
3λφ̄,dR,Fa

[2]λ̄φ̄,dR,Fa
[3]λSa,Fa,lL

[3]λ̄Sa,Fa,lL
[3]

256π2M2
Sa

+ · · · , (4.5)

4This benchmark was obtained with a 11th Gen Intel(R) Core(TM) i7-11850H @ 2.50GHz processor.
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In[18]:= Limit[Match2Warsaw[

alphaOld[3, 3, 3, 2], {Sa -> {3, 3, -1/3},

Fa -> {3, 3, 2/3}}], MFa -> MSa]/.onelooporder->1 // NiceOutput

[Cℓd]3332 =
3λdR,Fa,Sa

[2]λ̄dR,Fa,Sa
[3]λSa,lL,qL

[3, fl1]λ̄Sa,lL,qL
[3, fl1]

256π2M2
Sa

+ · · · , (4.6)

where · · · corresponds to terms proportional to SM couplings. Both of these models seem

interesting; we can take larger values for the quadratic couplings and obtain results that

fit the χ2 in (4.2) better than the SM. However, this χ2 should be seen as only pointing us

to a pattern; to accurately explore the low-energy phenomenology we will use the packages

flavio [40] and smelli [40–42] which include a wide range of observables.

Extending the analysis to more observables, we quickly find an issue with the ob-

tained patterns. For the Q5 extension, we would need λφ̄,dR,Fa
[2]λ̄φ̄,dR,Fa

[3] ∼ 1 to obtain

a large enough Cℓd; this is problematic because the same couplings generate [Cφd]23 at

tree-level, which would be excluded from measurements of B(Bs → µµ). On the other

hand, for the T2 extension, a large value for the quadratic couplings would be needed,

λdR,Fa,Sa
[2]λ̄dR,Fa,Sa

[3] ∼ 5 (allowed by perturbative unitarity). In turn, these couplings

generate, at one-loop, [Cdd]2323:

In[19]:= Limit[Match2Warsaw[

alphaOdd[2, 3, 2, 3], {Sa -> {3, 3, -1/3},

Fa -> {3, 3, 2/3}}], MFa -> MSa]/.onelooporder->1 // NiceOutput

[Cdd]2323 = −

(
λFa,dR,Sa

[3]
)

2
(
λ̄Fa,dR,Sa

[2]
)

2

64π2M2
Sa

, (4.7)

which would be excluded from Bs −Bs mixing. The remaining models including S3 suffer

from the same phenomenological constraints.

Let us now consider possible two-field extensions including, Π1 ∼ (3, 2, 1/6) to generate

Cℓd at tree-level (once again it is the only non-vector extension to do so [12]) and explore the

possibility of generating C
(1,3)
ℓq at loop-level. Following the same strategy as before, that

is, finding the models in the output of ListModelsWarsaw[alphaOlq1,True] which also

contain Π1 ∼ (3, 2, 1/6) , we find several promising models at first. Once again however,

they are clearly excluded due to the large couplings necessary that affect b− s transitions.

Finally, to exhaust all two-field possibilities, we explore models which contribute only

at loop-level to both Cℓd and C
(1,3)
ℓq with

In[20]:= listmodelsOld=ListValidQNs[Select[ListModelsWarsaw[alphaOld[i, j, k, l]

, True][[1, ;; ]],Length[#[[1]]]===2&], 8, 3];

listmodelsOldinput=Flatten[Table[Table[(SOLDInputForm[# ] & /@ ii2)

, {ii2, ii1}], {ii1, listmodelsOld}],1];

listmodelsOlq=ListValidQNs[Select[ListModelsWarsaw[alphaOlq3[i, j, k, l]

, True][[ ;; ]],Length[#[[1]]]===2&], 8, 3];

listmodelsOlqinput=Flatten[Table[Table[(SOLDInputForm[# ] & /@ ii2)
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, {ii2, ii1}], {ii1, listmodelsOlq}],1];

modelintersection =

Intersection[ listmodelsOldinput /.

List[List[a_, b_], c_, d_] /; b > a :> List[List[b, a], c, -d]

/. Sb -> Sa, listmodelsOlqinput /.

List[List[a_, b_], c_, d_] /; b > a :> List[List[b, a], c, -d] /.

Sb -> Sa]

where in the last line we are taking the representations to a “standard” form in order to

find the intersection between the models generating C
(3)
ℓq and Cℓd.

Among these models, the most promising (i.e. with the lowest numerical suppression)

is Φ ∼ (8, 2, 1/2) + Ψ ∼ (8, 1, 0) with matching conditions for C
(1,3)
ℓq given by:

In[21]:= Limit[Match2Warsaw[

alphaOlq1[3, 3, 3, 2], {Sa -> {8, 2, 1/2},

Fa -> {8,1,0}}], MFa -> MSa]/.onelooporder->1 // NiceOutput

[
C

(1)
ℓq

]

3332
=
λSa,Fa,lL

[3]λ̄Sa,Fa,lL
[3]λdR,qL,Sa

[fl1, 2]λ̄dR,qL,Sa
[fl1, 3]

192π2M2
Sa

−
λ̄qL,Sa,uR

[2, fl1]λSa,Fa,lL
[3]λ̄Sa,Fa,lL

[3]λqL,Sa,uR
[3, fl1]

192π2M2
Sa

(4.8)

and

In[22]:= Limit[Match2Warsaw[

alphaOlq3[3, 3, 3, 2], {Sa -> {8, 2, 1/2},

Fa -> {8,1,0}}], MFa -> MSa]/.onelooporder->1 // NiceOutput

[
C

(3)
ℓq

]

3332
= −

λSa,Fa,lL
[3]λ̄Sa,Fa,lL

[3]λdR,qL,Sa
[fl1, 2]λ̄dR,qL,Sa

[fl1, 3]

192π2M2
Sa

−
λ̄qL,Sa,uR

[2, fl1]λSa,Fa,lL
[3]λ̄Sa,Fa,lL

[3]λqL,Sa,uR
[3, fl1]

192π2M2
Sa

. (4.9)

Only the term proportional to λdR,qL,Sa
[fl1, 2] is responsible for the generation of Cℓd and so

it results in C
(1)
ℓq = −C(3)

ℓq .

4.3 Three-field extensions

Having exhausted all the two-field extensions and not finding a promising candidate to

alleviate the tension while avoiding the exclusion from other observables, we will now explore

models with three different heavy fields. Motivated by the same logic, we will focus on

extensions containing either the S3 or the Π1 leptoquarks to have a mixed tree- and loop-

level solution.

The list of models including S3 but not Π1 that can generate a loop-level Cℓd can be

extracted in the following way:
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In[23]:= listmodels=ListValidQNs[ListModelsWarsaw[alphaOld[i, j, k, l]

, True][[ ;; ]], 3, 3];

listmodelsinput=Flatten[Table[Table[(SOLDInputForm[# ] & /@ ii2)

, {ii2, ii1}], {ii1, listmodels}],1];

Select[listmodelsinput, Length[# ] === 3 &];

Select[%,

MatchQ[# , {___, Sa_ -> {{1, 0}, 3, hyp_ }, ___} /;

(StringContainsQ[ToString[Sa ], "S"] && (hyp === -1/3

|| ! NumericQ[hyp ]))]

|| MatchQ[# , {___, Sa_ -> {{0, 1}, 3, hyp }, ___} /;

(StringContainsQ[ToString[Sa ], "S"] && (hyp === 1/3

|| ! NumericQ[hyp ]))];

Select[%,

!MatchQ[# ,( {___, Sa_ -> {{1, 0}, 2, 1/6}, ___} |

{___, Sa_ -> {{0, 1}, 2, -1/6}, ___} )/;

StringContainsQ[ToString[Sa ], "S"]] &]

The three first instructions select the models with three fields (up to triplet representations),

in SOLD input form, that can generate Cℓd without SM couplings. The next instruction

extracts those models which contain S3 (or its conjugate) either explicitly or with a generic

hypercharge that could include S3. Finally, we eliminate from the list those that contain

Π1.

Conversely, the list of models including Π1 but not S1 or S3 that can generate a loop-

level C
(1,3)
ℓq can be obtained via:

In[24]:= listmodels=ListValidQNs[ListModelsWarsaw[alphaOlq3[i, j, k, l]

, True][[ ;; ]], 3, 3];

listmodelsinput=Flatten[Table[Table[(SOLDInputForm[# ] & /@ ii2)

, {ii2, ii1}], {ii1, listmodels}],1];

Select[listmodelsinput, Length[# ] === 3 &];

Select[%,

MatchQ[# , {___, Sa_ -> {{1, 0}, 2, hyp_ }, ___} /;

(StringContainsQ[ToString[Sa ], "S"] && (hyp === 1/6

|| ! NumericQ[hyp ]))]

|| MatchQ[# , {___, Sa_ -> {{0, 1}, 2, hyp }, ___} /;

(StringContainsQ[ToString[Sa ], "S"] && (hyp === -1/6

|| ! NumericQ[hyp ]))];

modelswithPi1 = Select[%,

!MatchQ[# , ({___, Sa_ -> {{1, 0}, 3, -1/3}, ___} |

{___, Sa_ -> {{0, 1}, 3, 1/3}, ___} |

{___, Sa_ -> {{0, 1}, 1, 1/3}, ___} |

{___, Sa_ -> {{1, 0}, 1, -1/3}, ___}) /;

StringContainsQ[ToString[Sa ], "S"]] &]
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Once again, generating a sizable loop effect in Cℓd (or alternatively C
(1)
ℓq , C

(3)
ℓq ) requires

λdR,F,S
[2]λdR,F,S

[3] ∼ O(1) (or λqL,F,S
[2]λqL,F,S

[3] ∼ O(1)), which in turn can generate siz-

able contributions to the Odd, O
(1,8)
qd four-quark operators (alternatively to O

(1,3)
qq , O

(1,8)
qd ).

A successful completion has therefore to rely on a cancellation of the experimentally con-

strained contributions from the flavour off-diagonal entries in these operators. These tight

experimental constraints arise mostly from the mass difference in the Bs − Bs system, or

from the CP-violating part in the mixing of the D0 −D0 system. The latter contribution

is proportional to the SM CP-violation phase as we are not introducing new phases.

After examining the list of models obtained in modelswithPi1, we find that a cancel-

lation of the [2, 3, 2, 3] flavour entry in the O
(1,3)
qq operators arises in the Π7 +N extension,

where N ∼ (1, 1, 0). The cancellation of
[
C

(1,3)
qq

]

2323
arises only when going to the Warsaw

basis and it can be easily observed with:

In[25]:= Limit[Match2Warsaw[

alphaOqq1[2, 3, 2, 3], {Sa -> {3, 2, 1/6},

Fa -> {1,1,0}}], MFa -> MSa]/.onelooporder->1 // NiceOutput

In[26]:= Limit[Match2Warsaw[

alphaOqq3[2, 3, 2, 3], {Sa -> {3, 2, 1/6},

Fa -> {1,1,0}}], MFa -> MSa]/.onelooporder->1 // NiceOutput ,

which both output zero. At the Green’s basis level this is not the case:

In[27]:= Limit[Match2Green[

alphaOqq1[2, 3, 2, 3], {Sa -> {3, 2, 1/6},

Fa -> {1,1,0}}], MFa -> MSa]/.onelooporder->1 // NiceOutput

[
C(1)
qq

]

2323
= −

(
λ̄Sa,Fa,qL

[2]
)

2
(
λSa,Fa,qL

[3]
)

2

2304π2M2
Sa

(4.10)

This cancellation is reminiscent of the magic zero encountered for the dipole operator in

Ref. [46] and further studied in [47, 48]. Let us note that the heavy field N ∼ (1, 1, 0)

was also part of this cancellation. Complete dictionaries can be extremely useful in finding

these apparently accidental cancellations more systematically, which can have important

phenomenological consequences, allowing certain models to avoid tight experimental con-

straints.

To actually generate C
(1,3)
ℓq we add the fermion D ∼ (3, 1, 2/3), resulting in:

In[28]:= Limit[Match2Warsaw[

alphaOlq1[3,3,3,2], {Sa -> {3, 2, 1/6},

Fa -> {1,1,0}, Fb->{3,1,2/3}}], {MFa -> MSa,MFb->MFa}]

/.onelooporder->1 // NiceOutput

[
C

(1)
lq

]

3332
= −

λSa,Fa,qL
[2]λ̄Sa,Fa,qL

[3]λSa,Fb,lL
[3]λ̄Sa,Fb,lL

[3]

384π2M2
Sa

+ · · · , (4.11)
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In[29]:= Limit[Match2Warsaw[

alphaOlq3[3,3,3,2], {Sa -> {3, 2, 1/6},

Fa -> {1,1,0}, Fb->{3,1,2/3}}], {MFa -> MSa,MFb->MFa}]

/.onelooporder->1 // NiceOutput

[
C

(3)
lq

]

3332
= −

λSa,Fa,qL
[2]λ̄Sa,Fa,qL

[3]λSa,Fb,lL
[3]λ̄Sa,Fb,lL

[3]

384π2M2
Sa

+ · · · , (4.12)

where we have only included the contributions including the 3 heavy fields and non-linear

couplings among them. Once again, the Lagrangian associated with this model can be

obtained with CreateLag[ {Sa -> {3, 2, 1/6}, Fa -> {1,1,0}, Fb->{3,1,2/3}}].

The next step as performed in section 4.2 is to verify whether this model accommodates

the pattern in (4.2) while still being in agreement with tight experimental constraints. We

match this complete model and output it to smelli. We find that, despite the important

cancellation for
[
C

(1,8)
qq

]

2323
, the model still generates important contributions to Bs −Bs,

be it through other flavor entries of C
(1,8)
qq or through C

(1,8)
qd .

Due to this, we find that this model cannot saturate the large values of WCs implied

by (4.2), but can accommodate the pattern. Furthermore, it avoids introducing any signif-

icant tension with regards to the SM prediction within the observables included in smelli.

Indeed, after a brief scan over the parameter space, we find that the point

λSa,Fa,qL
[2] = 1 , λ̄Sa,Fa,qL

[3] = −2.2 , λSa,Fb,lL
[3] = 4.1 ,

λdR,lL,Sa
[2, 3] = −0.05 , λdR,lL,Sa

[2, 3] = 0.22 . (4.13)

is in agreement with experimental constraints (with pull from the SM prediction always

smaller than ∼ 2σ) and results in a ∆χ = χSM − χUV ≈ 8 with two degrees of freedom5.

Note that the large value for the coupling λSa,Fb,lL
[3] was chosen to saturate the perturbative

unitarity bound, λSa,Fb,lL
[3] .

√
16π/3 [49–51]. There are also bounds from direct searches

to be taken into account. For the Π1 leptoquark in our setup, a 1 TeV particle is on the

limit of what Ref. [52, 53] bounds; small modifications to the model could help avoid these

constraints without affecting our general results.

Let us finally stress that we have taken several simplifying assumptions, in particular

that all particles had the same mass, and that there was no flavor in the heavy sector.

Although these assumptions do not alter our discussion and the usefulness of SOLD in phe-

nomenological studies, it could in principle open more regions in the UV space of theories.

At the same time, a more detailed study would require a fit to the parameters of the UV

theory minimizing a global likelihood including the addressed tension along with the rest

of observables considered, and correlations between them.

5Despite using five different couplings, the χ2 from Ref. [39] only depends on two different combinations

of them.
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5 Conclusions and outlook

Effective Field Theories present an efficient setup to tackle the challenging search for new

physics, following from the complementary use of the bottom-up and top-down approaches.

However, an inefficient connection between them compromises the whole rationale. This can

be avoided through the development of UV/IR dictionaries, that comprise the information

of all models that can generate a set of operators and the matching conditions of those UV

models.

In this work we presented the complete one-loop UV/IR dictionary for the SMEFT at

dimension six for extensions with heavy fermions and scalars. The results are encoded in

the latest version of the SOLD package. We have not only extended the previous dictionary

to include all SMEFT operators, but we have also isolated the subset of the dictionary

generated only by new physics couplings as an independent dictionary – this is particularly

relevant when small SM couplings can be neglected. The package SOLD has also been

upgraded to improve its performance and provide several new functions to facilitate its

application to phenomenological studies. Furthermore, the tree-level dictionary is now also

included in the package for convenience.

We show how SOLD is envisaged to readily go from the EFT to the UV and back, and

allow the user to quickly obtain an idea of the phenomenology of a new physics model. We

applied it to perform a systematic study of the possibilities to alleviate an observed tension

in B(B → Kνν) decays through one-loop UV solutions. Our results show that explaining

the large deviation while being consistent with other experimental measurements in b − s

transitions is challenging. Through a systematic exploration, we found it impossible to

explain this IR pattern at one-loop with two fields. Allowing for three-field extensions, a

mixture of tree- and loop-level solutions was possible given an unexpected cancellation; this

is reminiscent of the magic zero obtained by Ref. [46, 47] for the dipole operators. With

this cancellation, it was possible to explain the IR pattern qualitatively, but difficult to

obtain the large central values for the WCs that the current tension seems to imply, while

avoiding other constraints. If the central value is updated to result in smaller WCs, loop-

level solutions then provide compelling UV avenues to pursue in regards to this tension.

The connection with a larger set of observables was possible by connecting the output of

MatchmakerEFT with smelli.

While other tools like MatchmakerEFT or Matchete are more powerful to do a complete

matching of a specific model (and therefore the most convenient choice for a detailed study

of its complete phenomenology) SOLD partially trades efficiency with flexibility, allowing the

quick extraction of information about the structure and size of contributions and patterns

between coefficients in many different models. Nevertheless, it also facilitates the use of

Matchmakereft for a posterior analysis. Moreover, it is the only tool that translates the

SMEFT to the UV (as opposed to matching the UV onto the SMEFT), enabling an efficient

connection between bottom-up and top-down approaches.

There are several directions to pursue in expanding this work and SOLD. The package

itself will be under continuous improvement, both from a perspective of optimization, as

well as to include further functions that the community suggests. Furthermore, including
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heavy vectors would also be extremely useful, given their relevance both from a model-

building and phenomenological perspectives. In terms of SOLD usage, the goal is for it

to become a pocket guide for model builders in the connection of the SMEFT with the

UV. This can take two forms: to explain possible future tensions in data or explore the

constraining power of future experiments.
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