
P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
2
8
6

NeuLat: a toolbox for neural samplers in lattice field

theories

Kim A. Nicoli,0,1,2,3,∗ Christopher J. Anders,3,4 Lena Funcke,0,1,2 Karl Jansen, 5

Shinichi Nakajima3,4,6 and Pan Kesselℎ

0Transdisciplinary Research Area “Building Blocks of Matter and Fundamental Interactions” (TRA

Matter), University of Bonn, Germany
1Helmholtz Institute for Radiation and Nuclear Physics (HISKP), University of Bonn, Nussallee 14-16,

53115 Bonn, Germany
2Bethe Center for Theoretical Physics (BCTP), University of Bonn, Nussallee 12, 53115 Bonn, Germany
3Berlin Institute for the Foundation of Learning and Data (BIFOLD), Technische Universität Berlin,

Berlin, Germany
4Technische Universität Berlin, Machine Learning Group, Marchstrasse 23, Berlin,10587, Germany
5 Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
6RIKEN Center for AIP, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, Japan
ℎPrescient Design, gRED, Roche, Basel, Switzerland

E-mail: knicoli@uni-bonn.de, anders@tu-berlin.de, lfuncke@uni-bonn.de,

karl.jansen@desy.de, nakajima@tu-berlin.de, pan.kessel@gmail.com

The application of normalizing flows for sampling in lattice field theory has garnered considerable

attention in recent years. Despite the growing community at the intersection of machine learning

(ML) and lattice field theory, there is currently a lack of a software package that facilitates efficient

software development for new ideas in this field. In these proceedings, we present NeuLat, a

fully customizable software package that unifies recent advances in the fast-growing field of deep

generative models for lattice field theory in a single software library. NeuLat is designed to be

modular, supports a variety of lattice field theories as well as normalizing flow architectures,

and is easily extensible. We believe that NeuLat has the potential to considerably simplify the

application and benchmarking of ML methods for lattice quantum field theories and beyond.
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1. Introduction

In recent years, there has been increasing interest in utilizing normalizing flows for sampling

in lattice field theory (see e.g. Refs. [1–26] and Ref. [27] for a review). Despite the rapid progress,

there is currently no software package that streamlines efficient software development for novel

concepts in this domain.

In these proceedings, we introduce NeuLat, a fully adaptable software package consolidating

recent advances in deep generative models for lattice field theory into a unified software library.

The paper is structured as follows: first, we review the required theoretical background in Sec. 2 and

summarize the advantages of using generative models, in particular normalizing flows, for sampling

lattice field configurations. Second, in Sec. 3, we explain the idea behind NeuLat and comment

on related work, the software structure, and the key features of the package. Lastly, in Sec. 4, we

conclude the paper highlighting the aim of NeuLat to become a community-wide effort.

2. Theoretical Background

Normalizing flows are a widely used type of generative models, which were first introduced

at the beginning of the last decade [28, 29] and started to gain in popularity few years later [30,

31]. Towards the end of the last decade, Ref. [32] introduced normalizing flows for sampling

in quantum chemistry and called them Boltzmann generators for their capability of sampling

from unnormalized Boltzmann densities. Concurrently, related works using autoregressive neural

networks for sampling statistical mechanical systems also appeared [33, 34]. A few months later,

Ref. [1] used normalizing flows to sample configurations of scalar field theories and thereby paved

the way for the development of Boltzmann generators in lattice field theory. In the following

years, numerous follow-up studies have been conducted with applications in scalar [1–16], pure

gauge [17–22] and fermionic [23, 24] field theories and beyond [25]. Notably, the number of works

in the field started to substantially increase upon the release of a jupyter notebook [26], where the

code from three important papers [1, 17, 35] was partly released. This release had a great impact on

research and education, as many researchers have benefited from reusing part of the code to develop

and boost novel research ideas. This phenomenon represents the main motivation for NeuLat, the

first Python library which implements flow-based samplers for different types of lattice quantum

field theories.

2.1 Sampling Lattice Configurations Using Generative Models

In lattice field theory, one aims to estimate physical observables, e.g., the spectrum, the

topological susceptibility, the free energy, the magnetization, and so forth. This is achieved using

the path integral formalism, where the expectation value of an observable is computed with respect

to a distribution of the Gibbs-type, ?(q) = 4−( (q)// . Here, q denotes the lattice fields, such as

gluon, quark, or scalar fields, ( represents the action of the system, and / is the normalization

constant, i.e., the partition function. The expectation value for a generic observable O reads

〈O〉 =
1

/

∫

D[q]O(q)4−( (q) , (1)

2



P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
2
8
6

NeuLat: a toolbox for neural samplers in lattice field theories Kim A. Nicoli

where D[q] =
∏ |Λ |

8=0
dq8 is the measure of the high-dimensional path integral and |Λ| denotes

the number of lattice points of the lattice Λ. Exactly solving the path integral (1) is generi-

cally intractable; thus, one has to resort to numerical methods such as Hamiltonian Monte Carlo

(HMC) [36]. Despite being a powerful method, HMC faces many drawbacks, such as critical

slowing down and sequential sampling. Moreover, estimating thermodynamic observables, such as

the free energy, is challenging with HMC, because it involves the generation of Markov chains for

each point along a (disrectized) trajectory through parameter space [2].

In light of this, sampling via deep generative models, such as normalizing flows, holds the

promise to provide a new alternative route for addressing these challenges in lattice field theory. The

advantages of flow-based sampling over standard HMC sampling can be summarized as follows:

• Non-correlated sampling: Samples can be drawn independently and identically distributed

(i.i.d.) from the trained generative density, without the need of running sequential algorithms

which suffer from strongly correlated samples.

• Embarrassingly parallelizable: Once a flow model is trained, its neural network parameters

\ can be loaded onto different devices, and the sampling can be embarrassingly parallelized.

This is crucial as it allows to drastically increase the numbers of samples which can be drawn

simultaneously. The training can also be efficiently parallelized over multiple GPUs.

• Partition function estimation: Generative models such as normalizing flows, see e.g.,

the reviews [37, 38], or autoregressive neural networks [39] give access to the normalized

sampling density @\ (q) of the flow model. In Refs. [2, 34], the authors have shown that this

can be used to directly estimate thermodynamic observables, such as the entropy and the free

energy, which cannot be directly computed with standard HMC approaches.

• Inductive biases: Prior knowledge of some properties of the physical system, such as its

symmetries, can be encoded into the generative model in order to eliminate unnecessary

degrees of freedom for efficient training and sampling.

Despite their promise, we note that flow models currently struggle to scale to larger volumes,

such as those pertinent to high-precision Lattice QCD calculations. So far, successful simulations

have been limited to toy problems in limited volumes. Consequently, the research field is actively

evolving, and the development of a robust software package is crucial for advancing further.

2.2 Normalizing Flows for Lattice Field Theory

When using normalizing flows [40] for estimating lattice field theory observables, one first has

to train a flow and then use it to obtain a Monte Carlo estimate of Eq. (1). In the following, we

briefly summarize the mathematical concepts behind this flow method. For the sake of brevity, we

omit a detailed discussion of normalizing flows and refer the reader to the review papers [37, 38].

The core part of a normalizing flow is a parametric bĳective map between a base space Z and

a target space Φ. Formally, one can define

5\ : Z → Φ, (2)

3
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where Z and Φ are equipped with probability densities @/ and @\ , respectively, with @/ being the

base density, which is often a Gaussian or uniform. Leveraging the properties of normalizing flows,

one can obtain the likelihood of the transformed base density as

@\ (q) = @I ( 5
−1
\ (q))

�

�

�

�

�

d 5 −1
\

(q)

dq

�

�

�

�

�

= @I (z)

�

�

�

�

d 5\

dz

�

�

�

�

−1

. (3)

For the rest of the paper, we assume that @\ represents our variational density, which is trained to

match the target density ?(q) = exp{−([q]}// of our lattice field theory.

For training a normalizing flow, one often minimizes the Kullback-Leibler (KL) divergence [41],

which is a type of similarity measure between two densities. In our case, these are the target density

?(q) and the variational density @\ (q). The KL divergence reads

KL(@\ | |?) =

∫

D[q] @\ (q) ln
@\ (q)

?(q)
. (4)

This expression is known as the reverse-KL and can be understood as the expectation value with

respect to the variational density @\ of the log-ratio of the two densities. From its definition (4),

it follows that KL ≥ 0, and the equality holds if and only if @\ = ?. As shown in several works

(e.g., Refs. [1, 2, 32]), this objective is particularly suited for learning a target density of Boltzmann

type which is known in closed-form, up to the normalization constant / . Specifically, training can

be performed by self-training, as samples are drawn from the model @\ that is being optimized

during training. While being very effective, the reverse-KL is not the ideal objective when the

target density is multimodal [3, 15], because of its mode-seeking property. A valid alternative1 is

the forward-KL

KL(? | |@\ ) =

∫

D[q] ?(q) ln
?(q)

@\ (q)
. (5)

In this case, the similarity measure between the two densities can be expressed as the expectation

value of the inverse log-ratio with samples drawn from the target density ?. In other words, the

forward-KL requires samples from the target (Boltzmann) density q ∼ ? for training. The forward-

KL is often used for training normalizing flows in other ML applications where training samples,

e.g., images, audio, or text, are available in large amounts. However, for our application in lattice

field theory, one would need to collect such training samples by using, e.g., HMC [15].

Once the model is trained and the flow @\ becomes a good approximation of the target density

?, one can use samples drawn from the flow for computing observables via Eq. (1). However,

additional care is required. Indeed, @\ = ? never holds in practice, and one needs to take this into

account when sampling. To this end, two approaches can be taken:

• Neural Monte Carlo Markov Chain (NMCMC) (or Metropolization) uses the flow @\ as

the proposal density @\ (q|q
′) = @\ (q) for a Markov Chain. The samples are then accepted

or rejected with the Metropolis-Hastings accept-reject probability [1, 34].

• Neural Importance Sampling (NIS) provides a Monte Carlo estimator for a given observable

by sampling from @\ and using a reweighting technique. The importance weights F(q) =

1We note that the forward- and reverse-KL divergences are not symmetric, hence KL(? | |@) ≠ KL(@ | |?).
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?(q)/@\ (q) are used to reweight the Monte Carlo samples, thus making the estimator

asymptotically unbiased [2, 34, 42] under certain conditions [15].

Using Neural MCMC or NIS allows to correct for an imperfect approximation of the target ?

with @\ or, more precisely, to obtain statistically consistent estimates of expectation values. When

the variational density closely approximates the target, those approaches allow to avoid important

drawbacks of HMC, such as critical slowing down.

3. NeuLat: Neural Samplers for Lattice Field Theories

In the previous section, we provided our view on normalizing flows as a promising new

approach for sampling lattice field configurations and for ultimately estimating physical observables.

However, it is nontrivial to implement and train such models. Most of the material discussed in

Sec. 2 relied on the implementation of architectures which were inherited from prior works within

the same groups. Moreover, even if the implementation of such architectures is feasible, it can

still take weeks or months to fine-tune the hyperparameters to reproduce results of previously

published papers, which substantially slows down the research progress. As a consequence, it is

often challenging for early practitioners with little background in software development for machine

learning to enter this interdisciplinary field when lacking fundamental reference code. Indeed, the

number of publications within this domain started to increase dramatically since the partial code

release [26] from the seminal papers [1, 17]. Because of this, we decided to develop NeuLat, a

software package for neural samplers in lattice field theory. We foresee this software framework to

serve as reference code for everyone interested in the development of flow-based models for custom

physical systems, or for researchers interested in taking their first steps with ML for lattice field

theory, building on various techniques described in many recent works.

3.1 Related Work

A few first attempts have been made to develop software packages for the flow-based simulation

of lattice field theories. The closest attempt in a similar direction of NeuLat is a package called

GomalizingFlow.jl [43]. Written in Julia with GPU acceleration support, this software package

mainly focuses on scalar field theories. In contrast, NeuLat is implemented in Python. While Julia

is recently enjoying an up-rise in popularity in the field of ML, it does not feature the vast amount

of ML frameworks implemented in Python. On the other hand, the Jupyter Notebook released

with Ref. [26] is implemented in Python and provides examples for training flow-based models for

both scalar and gauge field theories. While it represents a great source of inspiration for NeuLat,

it is not structured as a software framework, and can thus not easily be built upon or extended.

Another library combining flow-based sampling and HMC has been developed in Ref. [44]. While

this implementation provides a well-designed and extendable software framework, it is optimized

for a different physical problem: using normalizing flows within the HMC Leapfrog integration.

Lastly, another software package written in JAX is called FlowMC [45]. This framework mainly

implements the techniques proposed in Refs. [46, 47] and is not specifically tailored to sampling

in lattice field theory, as opposed to NeuLat. Therefore, to the best of our knowledge, while many

standalone repositories and few partially related software packages exist, NeuLat is the first attempt

5
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 n_samples, train_steps, batch = 1000, 1000, 500

 action = Phi4Action(kappa=0.3, lamb=0.022)



 hmc_chain = HMCMarkovChain(action, lat_shape=[16, 16], burn_in=100)

 model = Flow(

 lat_shape=[16, 16],

 base_dist=NormalDistribution(),

 coupling=NiceCoupling(),

 n_couplings=6

 )



 optim = torch.optim.Adam(model.parameters(), lr=learning_rate)

 loss_fn = ReverseKLLoss()

 for _ in range(train_steps):

 configs, log_probs = model.sample_and_log_prob(batch)

 loss = loss_fn(action(configs), log_probs)

 optim.zero_grad(); loss.backward(); optim.step()



 obs = (Magnetization(), AbsMagnetization(), action)



 flow_obs = IidEst(obs).evaluate(model.sample(n_samples))

 hmc_obs = CorrelatedEst(obs).evaluate(hmc_chain.sample(n_samples))

Figure 2: Code example showing how NeuLat works in practice. Once the action object is instantiated, this

code can be used for a) sampling using HMC (line 4) or b) training a normalizing flow (lines 5-17). Samples

can be drawn from the respective models for an estimation of observables of interest (lines 19-22). Note that

this structure may be subject to change.

against the flow results. Once a flow is trained, one can draw samples and estimate observables

using Neural MCMC or NIS. Both approaches are provided in NeuLat within the Sampler class.

For estimating physical observables, NeuLat implements different estimators, e.g., IidEst() and

CorrelatedEst() . Any observables can be instantiated (see line 19) and passed individually or as

a collection of multiple observables (here tuple) into an appropriate estimator. Corresponding values

of the observables are computed by calling the evaluate method of the respective estimator on a

collection of samples, either drawn from the normalizing flow or via standard HMC sampling. One

crucial aspect of Monte Carlo simulations is the accurate assessment of statistical and systematic

errors. Specifically, the CorrelatedEst estimator accounts for correlated samples (see line 22).

This estimator is internally implemented using the unew [49] library, a Python package which

implements the Γ-method [50].

NeuLat is currently under active development and a first release will soon be available under

https://github.com/neulat/neulat. We remark that a preliminary version of NeuLat was used to

produce the results published in previous works [2, 4, 14, 15, 51].

7
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3.3 Key Features

In the following, we would like to summarize the key features of NeuLat and point out

several benefits of using this software framework instead of individual re-implementations. The

indisputable advantage of well-designed software frameworks is their considerable simplification of

implementations that require a common basis. Their common goal is to provide an intuitive solution

to swiftly implement existing methods, and easily extend and customize. For NeuLat specifically,

this means that a user can effortlessly integrate a new custom coupling layer or an entirely new type

of normalizing flow, as well as a custom action, without re-implementing already well-established

ground work. For instance, sampling from new theories which are not part of NeuLat only requires

the implementation of a custom action, which in extreme cases might be possible in only three

lines of code. Moreover, to boost the whole field of research on specific new theories or types

of normalizing flows, the custom implementations may be shared with the community through a

simple pull request3, initiating the permanent incorporation in NeuLat. In this way, the project

aims to become a central implementation hub of common actions and flows in the field, serving as

a starting point for future implementations and benchmarking.

To summarize its capabilities, NeuLat can be utilized to accomplish various tasks, including

but not limited to:

• Density estimation, e.g., learning target densities as discussed in Sec. 2.2.

• Sampling using HMC [52], Neural MCMC [1, 53] and NIS [1, 2].

• Asymptotically unbiased estimation of general physical observables [34] and estimation of

partition functions and thermodynamic observables [4].

• Assessing the severity of mode collapse [15], with which the bias can be bounded.

We note that only some of these features will be part of the first software release, and many additional

features will be added in future releases, or by the community with the help of pull requests.

Furthermore, NeuLat is planned to contain many additional recent ML tools proposed in

several different works, thus combining and simplifying access to software which is currently

split into many independent code bases. At the current state, these works include: stochastic

normalizing flows [6], conditional normalizing flows [5, 8], path gradients [14, 51], mode-dropping

estimators [15], and many more in the future. We believe that the presence of a unified framework

would be an extremely beneficial contribution to the community. Similar efforts within the context

of ML for quantum chemistry, including Refs. [54, 55], proved to be highly valuable resources for the

research community, used by many different groups. Furthermore, employing a common software

framework shared across multiple research groups can significantly streamline reproducibility for

new studies, thus simplifying the comparison of newly developed methods with baselines, thus

further accelerating the research field.

3Following the provided guidelines will ensure smooth integration of new contributions.
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4. Conclusion

These proceedings introduced NeuLat, a Python-based software package for flow-based sam-

pling of lattice field theories. The software will be designed to be accessible, modular, and easy to

extend and maintain. In this way, NeuLat aims to eliminate the overhead of re-implementing existing

code between different formats and languages. Most of the relevant tools for flow-based simulations

in lattice field theories, will be or can be implemented within this software package. The first release

of the software will soon be available at the GitHub page https://github.com/neulat/neulat.

NeuLat is aimed to be a community-wide effort. Therefore, we strongly encourage researchers

to contribute to its growth by integrating their own ideas and architectures, reporting potential bugs,

and making suggestions for improvements. We also encourage readers to reach out to us if they are

interested in contributing to the development of NeuLat. We foresee NeuLat as a highly valuable

contribution to the research field and to anyone wishing to learn about ML-enhanced sampling

techniques. We believe that a modular and resilient software package will significantly help in

successfully addressing and eventually overcoming the many challenges this field has to face.
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