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II. e+e− → µ+µ− SCATTERING

We begin by computing the leading-order e+e− →
µ+µ− scattering amplitude from the classical action. We
first introduce the classical Einstein-Hilbert and QED ac-
tion, then derive the leading-order tree-level cross-section
from it.

A. Classical action

The starting point of our computation is the classical
Einstein-Hilbert action together with the action of the
Standard Model,

S = SEH + SSM . (1)

The classical Einstein-Hilbert action reads

SEH =
1

16πGN

∫

d4x
√
g (2Λ−R) + Sgh + Sgf , (2)

with the classical Newton constant GN and the notation√
g =

√

| det gµν(x)|. The classical action is augmented by
a standard gauge-fixing and ghost action, see AppendixA 1
for more details. The latter requires the expansion about
a background metric. Here, we work with a flat Minkowski
background ηµν and define the fluctuation graviton hµν
with

gµν = ηµν +
√

GNhµν . (3)

For the matter action, we focus on the relevant parts
for the computation of the e+e− → µ+µ− cross-section.
In the SM, this is given by the QED action since the
dominant contribution at very high energies is provided
by the photon exchange which accounts for the weak and
hypercharge sectors,

SSM =

∫

d4x
√
g

[

−1

4
FµνFµν + ψ̄ℓ

(

i /∇−mℓ

)

ψℓ

]

+ . . . .

(4)

The QED action already includes the interactions between
dynamical gravitons and fermions as well as gravitons and
photons in a minimal manner. In (4), the index ℓ ∈ (e, µ)
labels the flavour of the fermions andmℓ is their respective
mass. In the Standard Model, these masses are generated
by the Higgs mechanism. Here, we include this explicit
mass term for simplicity and work in the high-energy limit
s≫ mℓ.
The /∇ in (4) indicates the contraction of the spin-

covariant derivative ∇µ with the Dirac gamma matrices
γµ. The covariant kinetic terms for the fermion fields in (4)
lead to a minimal coupling between gravity and matter.
For the formulation of spinor fields in curved spacetime the
spin-base invariance formalism has been introduced [61–
63]. It is based on the space-time dependence of the Dirac
matrices required by the general anticommutation relation
{γµ, γν} = 2gµν . This space-time dependence determines

the spin connection. The slashed spin-covariant derivative
acting on a spinor field reads

/∇ψ = gµνγ(x)
µ∇νψ = gµνγ(x)

µ (Dν + Γ(x)ν)ψ , (5)

where Γµ is the spin connection.

B. Differential cross section

The differential cross section in the centre-of-mass frame
for the process of interest depicted diagrammatically in
Figure1 reads

dσtot
dΩ

∣

∣

∣

∣

CM

=
1

64π2s

pµ
pe

〈|Mfi|2〉 θ
(√
s− 2mµ

)

, (6)

where pe and pµ are the momenta of the incoming electron
and outgoing muon, mµ the mass of the latter and

√
s the

centre-of-mass energy. In (6), the averaged matrix element
squared 〈|Mfi|2〉 accounts for all amplitudes depicted on
the right-hand side of Figure1. The abbreviation φmatter

includes all contributing matter field, namely the photon
γ, the Z-boson, and the Higgs H , i.e., φmatter = (γ, Z,H).
In this work, we are neglecting the Z and H mediated
processes.

At leading order, the contact term in Figure1 does not
contribute and we are left with the photon (Mγ) and
graviton (Mh) mediated scattering processes. The total
averaged matrix element squared is given by

〈|Mfi|2〉 = 〈|Mγ +Mh|2〉 . (7)

Beyond leading-order, quantum gravity effects modify
both matrix elements in (7) and additionally the third
diagram in Figure1 becomes relevant. Indeed all vertices
and propagators in Figure1 are modified by graviton loops,
which are negligible below the Planck scale because of
the smallness of Newton’s coupling in this regime. These
low energy quantum corrections have been extensively
studied by means of effective field theory techniques [53–
55]. At leading order, the dominant contribution above
the Planck scale stems from the matrix element of the
graviton-mediated scattering,

iMh = J(e
−e+) (S(hh))−1 J(µ

−µ+). (8)

Here we are suppressing the space-time indices of the
graviton two-point function and the currents. They are
explicitly given in AppendixB. The fermion currents in
(8) read

J(e
−e+) = v̄(pe+)S

(h e−e+) u(pe−) ,

J(µ
−µ+) = ū(pµ−)S(hµ−µ+) v(pµ+) , (9)

and contain the graviton-electron-positron S(h e−e+) and

graviton-muon-antimuon S(hµ−µ+) vertices. Note that
the graviton propagator depends on the gauge-fixing pa-
rameters but only the physical on-shell degrees of freedom
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Figure 1. Electron-positron to muon-antimuon scattering in terms of diagrams with full 1PI vertices. The scattering process is
mediated by matter propagators (first diagram) and by a graviton propagator (second diagram) as well as the contact term
(third diagram). Full black circles indicate full 1PI vertices and dashed circles indicate full 1PI propagators.

contribute to the matrix element, which is independent
of the gauge-fixing parameters.

In SectionIV, we will go beyond the leading-order result
by upgrading the classical vertices by fully momentum-
dependent 1PI vertices from the quantum effective action.
This will be achieved by employing a vertex expansion
for the effective average action, see [19, 22], and by util-
ising recent results that allow the computation of non-
perturbative propagators and vertices on backgrounds
with Lorentzian signature [12, 13].

C. Matrix Elements at Leading Order

There are two contributions to the differential cross
section (6) at leading order: the graviton and the photon
mediated diagrams, both depicted in Figure1. Here, we
compute the tree-level diagrams, which will be the basis
for the full scattering amplitude with dressed quantum
vertices later on.

Let us first consider the graviton-mediated part, where
detailed computation is given in Appendix B. We take
into account the dependence of the matrix element on the
masses of the external on-shell states and confirmed the
gauge invariance of the resulting matrix element. In the
relativistic limit, 〈|Mh|2〉 is highly simplified and can be
expressed in the centre of mass frame solely as a function
of

√
s and the scattering angle θ,

〈|Mh|2〉 = π2s2G2
N(1− 3 cos2 θ + 4 cos4 θ) . (10)

This matrix element is dominated by the transverse-
traceless (TT) mode of the graviton propagator. The
scalar mode of the graviton gives a subleading contri-
bution that vanishes identically in the high-energy limit
since the scalar mode only mixes with the fermion mass
terms when taking the trace. This feature allows us to
focus on the transverse-traceless mode when computing
the full quantum propagator.
The next contribution is the well-known photon medi-

ated scattering with the averaged matrix element squared

〈|Mγ |2〉 = 16π2α2
e(1 + cos2 θ) , (11)

where αe = e2/4π and

e = g sin θw =
g g′

√

g2 + g′2
, (12)

with g ≡ g2 and g′ ≡ gY ≡
√

3/5 g1 being the weak
isospin and the weak hypercharge couplings, respectively.

With both matrix elements at hand, we can derive the
interference term

〈|M∗
γMh +M∗

hMγ |〉 = αeGNs cos
3 θ , (13)

which renders the following total differential cross-section
at leading order

dσtot
dΩ

=
α2
e

4s
(1 + cos2 θ) +

GN αe
4

cos3 θ

+
G2

N

64
s(1− 3 cos2 θ + 4 cos4 θ). (14)

The interference terms show a cos3 θ dependence, with
θ being the scattering angle in the centre-of-mass frame.
Since odd powers vanish when integrating over the total
solid angle Ω, the interference terms to do contribute to
the total leading-order cross-section. In summary, the
total leading-order cross-section is given by,

σtot(s) = σγ(s) + σh(s) =
4πα2

e

3s
+
πG2

N s

20
, (15)

where the photon-mediated contribution scales with 1/s,
while the graviton-mediated contribution increases with
s. The latter is rooted in the negative mass dimension
of the Newton coupling in four dimensions and reflects
that the classical cross-section violates unitarity bounds
at leading order.

III. REAL-TIME CORRELATION FUNCTIONS

FROM THE QUANTUM EFFECTIVE ACTION

In this section, we access the real-time domain of cor-
relation functions via the spectral representation of the
propagator. The determination of timelike correlation
functions from their Euclidean counterparts is a tangled
and challenging task common to non-perturbative meth-
ods. In quantum gravity, this task is even more difficult,
as we lack a proper definition of the Wick rotation even
on conceptual grounds. These issues have been addressed
successfully for the first time in [12] by assuming the
existence of a Wick rotation, and then later in [13] with
a computation directly in Lorentzian signature, see also
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[60, 64–66] for examples in QCD. Here we review and
build upon these results and utilize them for the compu-
tation of the scattering amplitude.

A. Quantum Effective Action

The quantum effective action is the generating func-
tional of 1PI correlation functions including all quantum
effects. These are the correlation functions that we want
to access and employ in the cross-section computation
displayed in Figure1.

The functional renormalisation group (fRG) is a conve-
nient tool for the computation of the quantum effective
action. In this approach, an infrared (IR) regulator is
introduced in the path integral, which suppresses quan-
tum fluctuations below a given IR cutoff scale k, leading
to the respective scale-dependent effective action Γk[φ].
Then, the full effective action Γ[φ] = Γk=0[φ] is obtained
by successively integrating out momentum fluctuations
at the scale k. The respective flow equation for Γk, the
Wetterich equation [67–69], reads

∂tΓk [φ] =
1

2
Tr

[

1

Γ
(2)
k +Rk

∂tRk

]

, (16)

where

Γ
(n)
φi1

···φin

[φ](p1, ..., pn) =
δ Γ[φ]

δφi1(p1) · · · δφin(pn)
. (17)

For a recent review on the fRG we refer to [70]. In
the context of scattering amplitudes we are interested in
the computation of the graviton and photon propagator,
the fermion-graviton and fermion-photon vertices since
these directly contribute to the scattering amplitude, see
Figure1. In this work, we neglect the contribution of the
four-fermion interaction.
In summary, we are using the n-point functions

Γ(hh), Γ(γγ), Γ(hψ̄ψ), Γ(γψ̄ψ) . (18)

The flow equations for these n-point functions depend on
correlation functions of the order n+ 2, which creates an
infinite tower of coupled flow equations. The system is
then solved by truncating the expansion at a given order,
for a review of the approach see [19, 22]. The momentum-
dependent n-point functions given in (18) have been pre-
viously computed in: Γ(hh) [12, 13, 71–73], Γ(γγ) [29, 74],

Γ(hψ̄ψ) [24, 28], Γ(γψ̄ψ) [35]. Additionally, we are using the
graviton three-point function Γ(3h) computed in [9, 10].
Here we build upon these results and utilise them for the
computation of the scattering amplitude.
We define the RG-invariant n-point correlation func-

tions Γ̄(n) with

Γ
(φ1...φn)
k (p) =

(

∏

i

√

Zφi
(p2i )

)

Γ̄
(φ1...φn)
k (p) (19)

where p = (p1, . . . , pn) contains the four-momenta of all
n fields of which one can be eliminated using momen-
tum conservation. The Zφi

are the momentum-dependent
wave function renormalisations of the field φi. By con-
struction, the wave function renormalisations cancel out
in the computation of the scattering amplitude given in
Figure1. Note, that they still contribute to the running of
the n-point functions through the momentum-dependent
anomalous dimension

ηφi
(p2) = −∂t lnZφi

(p2) . (20)

The RG-invariant n-point correlation functions are
parametrised with

Γ̄
(φ1...φn)
k (p) =

∑

j

A(n)
j (p) T (φ1...φn)

j (p) . (21)

The index j labels the different tensor structures Tj of a
given n-point function and the Aj contain the couplings
that describe the running of the correlation function.

The graviton propagator is parameterised by the wave
function renormalisation and the graviton mass parameter
µ, which is related to the cosmological constant. After
rescaling with the wave function renormalisation, the
RG-invariant propagator is given by (without regulator)

Ghh,µνρσ(p) =
32π

p2 + µk2
Ttt,µνρσ(p)−

16π

p2 + µk2
T0,µνρσ(p) ,

(22)

where we have used β = 1 and the Landau limit of
the gauge fixing parameter, α → 0. The latter ensures
that the graviton propagator is fully described by the
transverse-traceless and a scalar mode. For other gauge
fixing parameters, see AppendixA 3. In our work, we are
identifying Zh0

= Zhtt
since the scalar mode is not con-

tributing to the scattering amplitude in the high-energy
limit at leading order.
For the graviton-fermion vertex, a convenient choice

for the parameterisation of the coupling is

A(httψ̄ψ)(p) =
√

GN,hψ̄ψ(p) , (23)

where for the graviton leg we take the transverse-traceless
tensor structure. In the IR, the coupling is identical to the
classical Newton coupling GN,httψ̄ψ

(p → 0) = GN. For
finite momenta, the coupling encompasses contributions
from higher-order operators. Due to these properties, this
coupling is called an avatar of the Newton coupling [26, 27].
Note that there is only one avatar for both, the electron-
graviton vertex and the muon-graviton vertex. Due to
the universality of gravity, the couplings are identical for
the relevant scales considered here.
Another important avatar of the Newton coupling is

that of the transverse-traceless three-graviton vertex

A(3htt)(p) =
√

GN,3h(p) , (24)
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(

p2
)

T (2h)(p).

Γ
(γψψ)
k =

ψ

ψ
γ =

√
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(
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(
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Figure 2. Vertex dressing of the n-point functions used in this work for the computation of the cross section. The vertex
dressing consists of the respective wave function renormalisations, couplings and tensor structures. The first line displays the
graviton-fermion interaction vertex and the graviton two-point function (inverse of the graviton propagator). The second line
shows the photon-fermion interaction vertex and the photon two-point function.

which also has the property to match the classical New-
ton coupling in the IR, GN,hψ̄ψ(p → 0) = GN. Note that
in (24) we have suppressed that there are multiple ten-
sor structures in the transverse-traceless three-graviton
vertex, and we have picked out one of them.

The two avatars of the Newton coupling match at small
momentum, but it was also found that their behaviour at
the momentum symmetric point at the UV fixed point is
approximately identical. In this regime, the couplings are
related by a Ward identity and the non-trivial approxi-
mate equality was named effective universality [26, 27].

In straight analogy to the graviton vertices, the photon-
fermion vertex is parameterised with

A(γψ̄ψ)(p) =
√

αe(p) , (25)

Similarly to the avatars of the Newton coupling, this
coupling matches its classical version for small momenta,
αe(p → 0) = αe. In the UV, this coupling includes quan-
tum gravity effects, which correspond to graviton loops
contributing to the photon propagator and to the photon-
fermion vertex. All vertex dressings are summarised in
Figure2.

Each of the computed correlation functions in (18), can
be expressed in terms of form factors of the quantum
effective action, see [20, 47, 49, 75–77] for recent works
on the form factor approach in quantum gravity. To
illustrate the correspondence between the approaches,
we provide shortly the translation from the correlation
functions to the form factors, see also [22, 73, 78]. The
graviton propagator is described by the effective action

Γhh =

∫

d4x
√
g

(

R

16πGN
+ CµνρσfC(�)Cµνρσ

)

. (26)

Here we have suppressed the second form factor RfR(�)R
since it does not contribute to the transverse-traceless
graviton propagator. This is the full set of from fac-
tors contributing to the graviton propagator around flat
Minkowski space.
The photon propagator is described by the effective

action

Γγγ =

∫

d4x
√
g

[

−1

4
FµνfF (�)Fµν

]

. (27)

The form factors fF (�) and fC(�) directly relate to
the wave function renormalisations Zγ(p

2) and Zhtt
(p2),

respectively.
The fermion-graviton vertex is described by the effective

action

Γhψ̄ψ =

∫

d4x
√
g
[

fRψ̄ψ(∇1,∇2,∇3)R
µνψ̄γµ∇νψ

]

,

(28)

where ∇1 only acts upon Rµν , ∇2 only on ψ̄, and ∇3

only on ψ. The form factor fRψ̄ψ is directly related to

A(httψ̄ψ)(p). We again suppressed other graviton-fermion
operators such as Rψ̄ /∇ψ since they do not contribute to
the vertex with a transverse-traceless graviton.
Last, the fermion-photon vertex is described by

Γγψ̄ψ =

∫

d4x
√
g
[

fψ̄ψγ(∇1,∇2,∇3)ψ̄i /∇ψ
]

, (29)

where the derivatives of the form factor fψ̄ψγ act upon

ψ̄, Aµ, and ψ respectively, and the form factor is directly

related to A(γψ̄ψ)(p).

B. Graviton spectral function

We use the spectral representation of the graviton prop-
agator to access the time-like momenta that enter the
scattering amplitude. We build upon the techniques in-
troduced in [12, 13], which we review here.
We assume that propagators have a Källen-Lehmann

(KL) spectral representation [79, 80]. This spectral rep-
resentation serves as a bridge connecting space-like (Eu-
clidean) and time-like physics. The existence of the spec-
tral function offers access to the propagator for general
complex momenta, in particular for time-like momenta
as relevant for graviton-mediated scattering processes.
In momentum space, the time-ordered propagators of

physical fields (asymptotic states) are related to their
spectral representation ρ by

G(p0, |~p|) =
∫ ∞

0

dω

π

ω ρ(ω, |~p|)
p20 − ω2 + iǫ

, (30)
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and the continuum ρconth gives subleading contributions
that become relevant only from the Planck scale onwards,
namely when the quantum effects induced by gravity
cannot be neglected anymore.

C. Approximation beyond leading order

In this section, we explain how we go beyond the leading-
order contributions to the cross-section by employing the
introduced real-time tools in Section III B to upgrade the
classical n-point functions with their fully momentum-
dependent 1PI counterparts from the quantum effective
action. This corresponds to the translation

S(n)(p) −→ Γ(n)(p) , (36)

in (8) and (9). The parameterisation of the Γ(n) is given
explicitly in Figure2. Moreover, the classical external legs
of the spinor fields in (9) are also properly upgraded with
their renormalised version by including the respective
field dressing. This renders the matrix element for the
graviton-mediated diagram

Mh ∝ sG
1
2

N,hψ̄ψ
(pe+ , pe− , ph)G

1
2

N,hψ̄ψ
(pµ+ , pµ− , ph),

(37)

where p2h = (pe+ + pe−)
2 = s, and GN,hψ̄ψ is the Newton

coupling avatar from the fermion-graviton vertex defined
in (23). For simplicity, we are only displaying the scalar
part of the matrix element and do not show the tensor
structures. In (37) the wave function renormalisations of
all fields exactly cancel out, see also (19).

In the IR with GN,hψ̄ψ(p → 0) = GN, (37) falls back to
the leading-order expression given in (10). Nonetheless,
(37) is still a general expression for the matrix element
and is able to capture the full quantum behaviour. The
fully momentum-dependent Newton coupling GN,hψ̄ψ ful-
fils a highly complicated integral-differential flow equation
that is difficult to solve for general momentum dependen-
cies. In the past, these have been computed in Euclidean
signature at the momentum-symmetric point where all
momenta have the same magnitude and the scalar prod-
ucts are given by pi · pj = p2(3/2δij − 1/2) in case of a
three-point function. This approximation significantly
simplifies the flow equation for the correlation function
since only a single momentum variable dependence is
retained. In many cases, this is often a decent approxima-
tion since the vertices display a mild dependence on the
angles between the external momenta, with the exception
of exceptional momentum configurations where one of
the momenta is vanishing. In summary, we make the
replacement

GN,hψ̄ψ(p) −→ GN,hψ̄ψ(p
2) . (38)

As discussed in Section IIIA, GN,hψ̄ψ is called an avatar
of the Newton coupling, which is in this case extracted
from the fermion-graviton vertex. The differences between

different avatars of the gravitational coupling, either for
pure graviton or graviton-matter couplings, are measured
by modified Slavnov–Taylor identities. In [26, 27], it has
been shown that these avatars show a surprisingly strong
similarity at the UV fixed point, which was called effective
universality.

The avatar of the Newton coupling from the TT three-
graviton vertex is the one that has been predominantly
studied in the literature [9, 10]. The momentum depen-
dence at vanishing RG scale has been studied and the
analytic continuation to Lorentzian signature has been
performed [12]. Furthermore, we expect that the three-
graviton vertex is best suited to capture the intricate
momentum dependencies of quantum gravity fluctuations.
In this work, we build on the results from the three-
graviton vertex and identify the Newton coupling from
the fermion-graviton vertex with that of the three-graviton
vertex,

GN,hψ̄ψ(p
2) −→ GN,3h(p

2) . (39)

For the computation of graviton-mediated scattering, we
need this coupling in Lorentzian signature for time-like
momenta. In [12], the Newton coupling GN,3htt

has been
accurately computed in Euclidean signature, and then
subsequently continued analytically to Lorentzian signa-
ture,

GN,3h(p
2
E)

analytic−−−−−−−−→
continuation

GN,3h(p
2) . (40)

In [12], this analytic continuation was achieved by utilising
the background propagator Gḡḡ with its spectral repre-
sentation ρḡ given in Figure3. The background spectral
function is directly related to the physical momentum-
dependent GN,3h(p

2) extracted from the graviton three-
point function. This relation was derived in [12] by con-
tracting the external legs with two further fluctuation
graviton propagators,

Gḡḡ(p2) ∝ Ghh(p2)[Γ(hhh)(p2)Ghh(p2) Γ(hhh)(p2)]Ghh(p2)

∝ . (41)

From here, all fluctuation wave-function renormalisations
drop out and we obtain the following relation

Gḡḡ(p) =
1

Zḡ(p2) p2
∝ GN,3h(p

2)

p2
. (42)

We remark that we are using exactly the results derived
in [12], which implies that fluctuation propagator Ghh
and the background propagator Gḡḡ were computed in
an approximation where the cosmological constant was
set to zero and the impact of matter fluctuations were
neglected. The running of the SM couplings is computed
in straight analogy with [35] but with this approximation
of the Newton coupling.
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Figure 4. Total (solid blue line) and partial contributions to the e+e− → µ+µ− cross-section taking into account the effects
from asymptotically safe quantum gravity. The dashed orange and dotted purple lines depict the photon-mediated and
graviton-mediated contributions.

In conclusion, with the given approximations, the ma-
trix element for the graviton-mediated process reads

Mh ∝ sGN,3h(s) ∝
s

Zḡ(s)
, (43)

which is sensitive to the real-time features of the graviton
propagator.
We now upgrade the photon-mediated contribution

given in (11) with quantum gravity effects by replacing
the classical correlation functions to the full quantum
analogues, see (36). The photon-mediated process is dom-
inant at low energies but becomes subdominant compared
to the graviton-mediated process at the Planck scale. This
is evident since the leading-order process scales with 1/s,
see (11). Therefore, we do implement a less accurate
approximation for the photon-mediated matrix element.
Specifically, we resort to an RG-improvement of the cou-
pling which means we identify the RG-scale dependence
with the centre-of-momentum energy. The coupling in
(25) is replaced with

αe(k,p) −→ αe(k = s) . (44)

With this approximation, we do include explicit real-time
momentum dependencies in the photon-fermion vertices
but account for the secondary source of gravitational ef-
fects entering through the graviton corrections to these
couplings. The RG dependence of the coupling is com-
puted in the asymptotically safe Standard Model [35] and
becomes asymptotically free beyond the Planck scale.

IV. e+e− → µ+µ− IN THE ASSM

In this section, we discuss the total e+e− → µ+µ− cross
section derived in Section II B and improved beyond lead-
ing order employing the real-time tools introduced in Sec-
tions III and III C in the gravity sector and RG-improving

the matter sector. We also compare our results to other
approximation schemes such as a next-to-leading compu-
tation and performing different types of RG-improvement
in the graviton-meditated cross-section.

A. Non-perturbative cross-section

Collecting the results from previous sections, we arrive
at the full non-perturbative cross-section,

σtot(s) =
4παe(s)

2

3s
+

π

20

s

Z2
ḡ (s)

, (45)

which contains the quantum effects of gravity and real-
time features of the graviton propagator. In Figure4, we
show the total cross-section and partial contributions as
a function of the centre-of-mass energy.

The graviton contribution is significantly subdominant
in the IR and only at

√
s & MPl overtakes the photon-

mediated one. A striking feature of this cross-section is
a prominent peak appearing at

√
s ∼ 2 · 1019 GeV. This

peak comes technically from a peak in the background
graviton spectral function depicted in the right panel of
Figure 3. Therefore this is a real-time feature and may
carry physical information. The peak could be related to
resonances of graviton bound states with a mass of the
order of the Planck scale, i.e., some temporary formation
of quantum black holes, see [56, 81, 82] for a discussion
of black hole formation from scattering processes. Alike
features are present in the background spectral function
of the gluon propagator in QCD [83]. Nonetheless, we
want to caution that this might also be an artefact of the
present approximation.
The photon-mediated scattering dominates in the IR.

At the Planck scale, the slope of the cross-section changes.
This is caused by the running of the electroweak and
hypercharge gauge couplings which evolve logarithmically
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Figure 6. Graviton-mediated contribution to the e+e− →
µ+µ− cross-section in different approximations. The solid blue
line depicts the full result, see Figure4. The dashed dark blue
line represents the cross-section after an RG improvement with
the Euclidean momentum-dependent Newton coupling (50).
The red dash-dotted line shows the RG improved cross-section
where the cutoff is identified with the centre-of-mass energy,
see (49), and the dotted orange line shows the RG improved
cross-sections with the parametrised Newton coupling in (52),
employing the momentum fixed-point value in (51), which we
call adapted RG improvement.

Here, γE is the Euler-Mascheroni constant and Aḡ =
−111/(380π). The coefficient Aḡ is precisely the coef-
ficient of the logarithmic term of the background prop-
agator determined in [12]. The coefficient is regulator-
independent but depends on the gauge-fixing parameters.
Note that the Euler-Mascheroni constant γE should not
appear in a measurable scattering amplitude. This is an
artefact from our approximation, e.g., from neglecting
NLO terms coming from the third diagram in Figure1.
As expected, the NLO contribution in (47) does not

respect the Froissart bound and violates unitarity. The
cross-section diverges even faster than at leading order.
This highlights that indeed a full non-perturbative result is
necessary to analyse the unitarity of a given cross-section.

2. RG improvement

RG improvement is an often-used method to obtain a
qualitative estimate of the scaling of a given quantity. It
typically works well in systems with only one physical
scale. The cross-section depends on the Mandelstam
variables s, t and u where the latter two can be expressed
in terms of s and the scattering angle θ. Therefore it is
natural to identify the RG scale with the centre-of-mass
energy, k → s. In this subsection, we check how well the
identification works in comparison with our full result. As
a second approximation, we compare our result to the case
where we use the full Euclidean momentum dependence
of the Newton coupling without the analytic continuation
given in (40).
For the purpose of this section, we write the Newton

coupling as a function of the Euclidean momentum p2

and the RG scale k,

GN(k, p
2) . (48)

There are two suggestive improvements:

(i) Using the Newton coupling at vanishing momentum
as a function of k and identifying

GN(k, 0) −→ GN(
√
s, 0) . (49)

This is the standard RG improvement and it is
depicted by the red dash-dotted line in Figure6.

(ii) Using the Euclidean momentum dependence of the
Newton coupling at vanishing RG scale and identi-
fying

GN(0, p
2) −→ GN(0, s) . (50)

This is depicted by the purple dashed line in Figure6
and we call it Euclidean improvement.

Both RG improvements provide the correct UV scaling
of the cross-section, σ ∼ 1/s, but both approximations
miss the peak of the cross-section around the Planck scale
since this feature is linked to the timelike momenta of
the process. As expected, approximation (ii) correctly
estimates the value of the cross-section for large s, while
approximation (i) underestimates the value by several
orders of magnitude. This is linked to the fact that
the fixed-point value of the Newton coupling at p2 = 0 is
significantly smaller than the value of the Newton coupling
at large momentum and vanishing RG scale,

GN(k → ∞, 0) = 2.15 ,

GN(0, p
2 → ∞) = 18.4 , (51)

see [12] for more details.

The simple shapes of the RG improved cross sections
and the difference in the RG and momentum fixed-point
values suggests a third way of using RG improvement:

(iii) Use a simple trajectory of the Newton coupling with
the momentum fixed-point value and identify the
RG scale with the centre-of-mass energy s,

GN(s) =
g∗

s+ g∗ M2
Pl

, (52)

where g∗ = GN(0, p
2 → ∞). We call this the

adapted RG improvement and it is depicted as the
orange dotted line in Figure6.

This approximation captures the UV asymptotics cor-
rectly and only requires the computation of the momen-
tum fixed-point value, GN(0, p

2 → ∞).
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V. CONCLUSIONS

We have studied the e+e− → µ+µ− scattering pro-
cess in asymptotically safe quantum gravity. First, we
computed the leading order photon and graviton contri-
butions to the cross-sections. As expected the leading
order violates unitarity bounds as the cross section in-
creases with the centre-of-mass energy. Subsequently, we
computed the non-perturbative cross-section by employ-
ing 1PI correlation functions from the quantum effective
action. This cross-section decays with the centre-of-mass
energy beyond the Planck scale and therefore compatible
with unitarity requirements. Our work therefore presents
significant evidence in favour of the unitarity of asymp-
totically safe quantum gravity.
Our work is the first to take into account non-

perturbative real-time effects in the graviton-mediated
cross-section. This was achieved through the spectral
representation of the graviton propagator, which bridges
Euclidean results to Minkowski space. Including such
contributions leads to the appearance of a peak struc-
ture at centre-of-mass energies close to the Planck scale.
Although this feature resembles a resonance, within the
present approximation, further work has to be invested
for confirming its physical significance.

Furthermore, we have compared the present results to
other approximations, such as RG improvement. While all
approaches show similar asymptotic scaling, the space-like
momentum couplings lack the peak feature. Additionally,
we showed that the adapted RG improvement employing
the fixed-point coupling in (51) provides a simple and
efficient approximation to the full result.
In the current computation, several approximations

were made that will be addressed in future work. Most
notably, we approximated the fermion-graviton coupling
with that of three-graviton vertex. In future studies, we
want to include the explicit real-time momentum depen-
dence of the former relevant coupling. Moreover, we
neglected the four-fermion contact terms in Figure1. We
hope to report on the respective improvements as well as
applications of the present approach to a comprehensive
set of cross sections in the near future.
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Appendix A: Theoretical framework

1. Classical action

The classical Einstein-Hilbert action is given by

SEH[gµν ] =
1

16πGN

∫

d4x
√
g
(

2Λ−R(gµν)
)

, (A1)

with the classical Newton constant GN and the abbre-
viation

√
g =

√

| det gµν(x)|. The definition of a gravi-
ton propagator requires gauge fixing. In turn, a stan-
dard linear gauge fixing requires the definition of a back-
ground metric, which also serves as the expansion point
of the effective action. Here, we implement a linear
split for the full metric gµν = ḡµν +

√
GNhµν , with the

background metric given by the flat Minkowski metric
ḡµν = ηµν = diag(+1,−1). In this way, the gauge-fixing
action reads

Sgf[h] =
1

32πα

∫

d4xFµF
ν , (A2)

where a De-Donder-type linear gauge with α → 0 has
been used

Fµ = ∇̄νhµν −
1 + β

4
∇̄µh

ν
ν , (A3)

and ∇̄ indicates the ordinary covariant derivative in the
flat Minkowski space. The ghost action corresponding to
the gauge-fixing condition is given by

Sgh[h, c̄, c] =

∫

d4x c̄µMµν c
ν , (A4)

with Mµν being the Faddeev-Popov operator which can
be stemmed from a diffeomorphism transformation of the
gauge fixing condition Fµ

Mµν = ∇̄ρ (gµν∇ρ + gρν∇µ)−
1 + β

2
∇̄µ∇ν . (A5)

The classical action for minimally-coupled fermions fields
is given by

Sint[g, ψ̄, ψ] =

∫

d4x
√
g ψ̄
(

i /∇−m
)

ψ . (A6)

For the formulation of fermions in curved spacetime, the
spin-base invariance formalism [61–63] has been imple-
mented

/∇ = gµνγ
µ(x)(Dν + Γν(x)) , (A7)

where the γ’s are the spacetime dependent Dirac matrices
and Γµ is the spin connection. Last, Dν is the ordinary
covariant derivative

Dν = ∂ν − ieAν . (A8)

2. Graviton-fermion vertex

The vertex tensor structure of the graviton-fermion-
antifermion three-point function reads



12

[

T (hψψ̄)(pψ, pψ̄)
]µν

= − i

8
δ(4)(pψ + pψ̄ + ph)

{

4mψη
µν + γν(pµψ − pµ

ψ̄
) + γµ(pνψ − pν

ψ̄
)− 2ηµν(/pψ − /pψ̄)

}

. (A9)

For the derivation of the n-point functions, we relied
on the Mathematica package VERTEXPAND [84]. The
tensor structure of the vertex is in agreement with [85–87].
In (A9), it is implied that the momenta of the external
fermions both enter or leave the vertex. We show here
a fundamental property of this vertex that every other
Standard Model vertex satisfies, namely

[

ψ̄ Γφ
]† ≡ φ̄Γψ, (A10)

with ψ and φ being two arbitrary fermionic fields and Γ
is the interaction vertex that only accounts for the tensor
structure, the quantity in curly brackets in (A9). Starting
from the last equation

[

ψ̄ Γφ
]†

=
[

ψ†γ0 Γφ
]†

= φ†Γ†γ†0ψ , (A11)

with γ0 being the time-like Dirac gamma matrix. By
inserting the identity matrix between φ† and Γ†, we obtain

φ† 1Γ†γ†0ψ = φ†γ0 γ0 Γ
†γ†0ψ = φ̄ γ0 Γ

†γ0 ψ = φ̄ Γ̄ψ.
(A12)

Here, we have used that γ0 is hermitian and are denoting

Γ̄ ≡ γ0 Γ
† γ0. (A13)

Therefore, we need to verify that

Γ̄ ≡ γ0 Γ
† γ0

?
= Γ , (A14)

for (A10) to be valid for gravitational interactions as well.
This is straightforward when one takes into account that
the tensor structures (A9) stick to the following properties

γ0 (η
µν)† γ0 = (γ0)

2 ηµν = ηµν ,

γ0
[

ηµν /p
]†
γ0 = γ0 /p

†(ηµν)†γ0 = γ0 γ0 /p γ0 η
µν γ0 = ηµν /p,

γ0 [γ
µ pν ]

†
γ0 = γ0

[

pν (γµ)†
]

γ = γ0 p
ν γ0 γ

µ γ0 γ0 = γµ pν ,

(A15)

where we have implemented the following identity (γµ)† =
γ0γ

µγ0 for the derivation of the last two equations. Once
this property has been demonstrated, one can easily com-
pute −iM∗

fi, namely the complex conjugate of the matrix
element.

3. Graviton propagator

The fluctuation field hµν can be decomposed in terms
of the transverse-traceless tensor mode hTT

µν , a vector
mode ξµ, and two scalar modes. An example of this is
the York decomposition [88] where the scalar modes are

denoted by σ and the trace mode by h = hµµ. In the
case of a Minkowskian background η, the York projection
operators are given in an arbitrary d dimension in terms of
the transversal and longitudinal operators in momentum
space

Π(TT)
µνρσ =

1

2

(

ΠT
µρΠ

T
νσ +ΠT

µσΠ
T
νρ

)

− 1

d− 1

(

ΠT
µνΠ

T
ρσ

)

,

Π(ξ)
µνρσ =

1

2

(

ΠT
µρΠ

L
νσ +ΠT

µσΠ
L
νρ +ΠT

νρΠ
L
µσ +ΠT

νσΠ
L
µρ

)

,

Π(h)
µνρσ =

1

d
ηµνηρσ,

Π(σ)
µνρσ =

1

d− 1
ΠT
µνΠ

T
ρσ +ΠL

µνΠ
L
ρσ − 1

d
ηµνηρσ. (A16)

and the mixing operators of the spin-0 modes reads

Π(hσ)
µνρσ =

1√
d− 1

ηµνΠ
L
ρσ − 1

d− 1
√
d
ηµνηρσ,

Π(σh)
µνρσ =

1√
d− 1

ΠL
µνηρσ − 1

4
√
d− 1

ηµνηρσ, (A17)

with the well-known transversal and longitudinal projec-
tors

ΠT
µν = ηµν −

pµpν
p2

, ΠL
µν =

pµpν
p2

, (A18)

respectively. The York projectors span the space of sym-
metric rank 4 tensors

Π(TT) +Π(ξ) +Π(h) +Π(σ) = 1, (A19)

which implies we can decompose the fluctuation graviton
2-point function in the following way

Γ(2h)
µνρσ(p, q) =

6
∑

l=1

Γ
(2h)
(l) (p2)Π(l)

µνρσ δ
(4)(p+ q), (A20)

and from this last object we can obtain the graviton
propagator simply by inverting the scalar coefficients

Ghh,(l) =
(

Γ
(2h)
(l)

)−1

according to

[

Ghh(p, q)
]

µνρσ
=

6
∑

l=1

Ghh,(l)(p2)Π(l)
µνρσ δ

(4)(p+ q),

(A21)

with the sum running over l ∈
{(TT), (ξ), (h), (hσ), (σh), (σ)}. We have for the
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different modes

Ghh,(TT) =
1

Zh(p2)

32π

(p2 − 2Λ)
,

Ghh,(ξ) =
1

Zh(p2)

32π α

(p2 − 2Λα)
,

Ghh,(h) =
1

Zh(p2)

64π
[

p2 (α− 3) + 4Λα
]

C(p2; Λ;α, β)
,

Ghh,(hσ) = Ghh,(σh) =
1

Zh(p2)

64
√
3 p2 π (α− β)

C(p2; Λ;α, β)
,

Ghh,(σ) =
1

Zh(p2)

64π
[

p2
(

3α− β2
)

− 4αΛ
]

C(p2; Λ;α, β)
. (A22)

with

C(p2; Λ;α, β) = p4(β − 3)2 − 4p2(3 + 2α− β2)Λ + 16αΛ2 .
(A23)

In this basis only the transverse-traceless mode does not
carry a priori gauge dependence.

Appendix B: Matrix element and cross section

Since we are interested in scattering experiments, the
relevant states are the momentum eigenstates at t = ±∞.
The latter are generated by the creation operators a†p at
asymptotically early or late times, denoted by |i〉 and
|f〉, respectively. The projection of one on the other
gives the elements of the scattering, namely the S-matrix
elements Sfi = 〈f |S|i〉. In this work, the initial and final
asymptotic states read

|i〉 = |pe−〉|pe+〉, 〈f | = 〈pµ− |〈pµ+ |, (B1)

respectively.
In a free theory, where there are no interactions, the

S-matrix is simply the identity matrix 1. When interac-
tions occur, the non-trivial part of the S-matrix is given
according to

〈f |S − 1|i〉 = i(2π)4δ4 (
∑

p)Mfi. (B2)

Here, δ4 (
∑

p) is shorthand for δ4
(

∑

pµi −∑ pµf

)

where

pµi are the initial particles’ momenta and pµf are the final

particles’ momenta. In (B2), Mfi = 〈f |M|i〉 can be
immediately computed by using the Feynman’s rules in
momentum-space. The rules used to derive the matrix
element Mfi are given in AppendixA 2 and AppendixA 3.

Therefore, the matrix element for the graviton-mediated
process can be written down as

iMfi = (B3)

v̄(pe+) Γ
(heē)
µ1µ2

u(pe−)Gµ1µ2ν1ν2
hh ū(pµ−) Γ(hµµ̄)

ν1ν2
v(pµ+),

where Γ(heē), Γ(hµµ̄) and Ghh are the vertices for the
graviton-electron-positron, the graviton-muon-antimuon
interaction and the graviton propagator, respectively.
The procedure to stem Ghh from Γ(2h) is outlined in Ap-
pendix A3 as well. At this point, we are interested in
the computation of the matrix element squared, Mfi =
|〈f |M|i〉|2, entering into the final result of this work, i.e.,
the cross-section σh. To this end, it is necessary to find
the complex conjugate of (B3). The graviton-fermion
vertex fulfils an important property, see (A10), which
is also satisfied by every other interaction vertex in the
Standard Model and can be written down in the following
way

[

ψ̄Γφ
]† ≡ φ̄Γψ, (B4)

where ψ and φ are two arbitrary fermionic fields and Γ
is the interaction vertex containing the tensor structure.
By using (B4), it is straightforward to derive the complex
conjugate of the matrix element from (B3).
After that, we are left with averaging the spin states

of the incoming particles and summing over all possible
spin states for the outgoing particles

〈|Mfi|2〉 =
1

4

∑

spin

|Mfi|2 . (B5)

It is essential to note that so far we have not yet im-
posed that asymptotic states are on-shell. This means
that the gauge dependence embedded in the propagator
is still present. To conclude this section, we will only de-
scribe schematically what was done to obtain the physical
scattering amplitude.
First of all, given the large number of tensor contrac-

tions, we made use of Form [89, 90] and Mathematica.
Precisely, the FORMTRACER package [91] was used to
trace the diagrams shown in Figure1. Every scalar prod-
uct in 〈|Mfi|2〉 obtained after the tracing can be replaced
with other Lorentz-invariant quantities, namely the Man-
delstam variables s, t and u.

In this way, we can impose on-shell conditions through
the use of these variables. In our specific case, they read

s+ t+ u = 2m2
e + 2m2

µ, (B6)

which always holds for asymptotic states and

Λ = 4R̄ , (B7)

where R̄ is the curvature of the background metric. In
our computation, we have used the flat Minkowski metric
and therefore Λ = 0. This last condition was dictated by
the fact that all computations have been performed in
an expansion around a flat Minkowski metric. The same
approximation for the on-shell conditions has been used in
[49] as well. Once gauge independence has been verified,
we can fix the kinematics by neglecting the fermion masses
given that

√
s≫ me,mµ. At this stage, we are left with
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e− e+

µ−

µ+

θp1 = (E1, ~p1)

p2 = (E2, ~p2)

p 3
=
(E

3
, ~p

3
)

p 4
=
(E

4
, ~p

4
)

CM frame

Figure 7. Kinematics of e−e+ → µ−µ+ in the centre-of-mass
frame. Since the particles are all on-shell, pi =

√
E2 −m2

e and
pf =

√

E2 −m2
µ.

the following matrix element squared in terms of the
Mandelstam variables

〈|Mfi|2〉 = (B8)

π2G2
N

s2
[

s4 − 4s2(t− u)2 + (t− u)2
(

5t2 − 6tu+ 5u2
)]

.

In the relativistic case, t and u can be expressed in terms
of the centre-of-mass energy squared s and the scattering
angle θ as shown in Figure7. This allows us to write the
scattering amplitude according to

〈|Mfi|2〉 = π2s2G2
N

(

1− 3 cos2 θ + 4 cos4 θ
)

. (B9)

By using the well-known formula for the differential cross
section in the centre-of-mass frame

dσ

dΩ

∣

∣

∣

∣

CM

=
1

64π2s

pf
pi

〈|Mfi|2〉 θ
(√
s−m3 −m4

)

, (B10)

and integrating over the solid angle Ω, we obtain the
following formula for the leading-order graviton-mediated
cross-section

σh =
π

20
sG2

N . (B11)

Appendix C: Reconstruction of the graviton spectral

function

Here, we only focus on the spectral function of the
traceless-transverse part Ghh of the graviton propagator
in a flat background. The leading asymptotics of Ghh(p)
are proportional to 1/p2 in the infrared and pηh−2 in
the ultraviolet, with ηh ≈ 1.03 [12]. The asymptotic of
1/p2 captures the classical IR regime, namely we obtain
the classical gravity described by the Einstein-Hilbert
action. This term contributes a Dirac delta for vanishing
frequencies in the spectral density. Since we know the
dominant contribution in the infrared analytically, we

exclude it from the reconstruction. In this regard, we

focus on reconstructing the difference propagator ∆G(1)
hh

defined by

∆G(1)
hh (p) = Ghh(p)−

1

p2
. (C1)

The latter quantity presents, like the 1/p2 pole, a di-
vergence in the infrared but a subleading log-like one.
The method we are going to use, also known as the Sch-
lessinger Point Method (SPM) [92], fails in reproducing
logarithmic divergences just as it fails in reproducing di-
vergences of the 1/p2 type. An ideal reconstruction is
based on the use of analytic fits. These in the IR (UV)
must not interfere with the UV (IR) behaviour and must
not introduce further structures. For example, in the case
of (C1), the subtraction with 1/p2 satisfies this property.
This structure is dominant in the IR but is suppressed for
high values of the momentum due to pηh−2. Following the
same modus operandi, we should use an analytic function
that behaves like a logarithm for small momenta to repro-
duce the log-like divergence. At the same time, it must
decrease more rapidly in the UV than a usual logarithm
in order not to affect the asymptotic behaviour. After
several attempts with various analytical structures, we
have concluded that the best one for this purpose is the
same used in [12], i.e., the confluent hypergeometric func-
tion Ua,b(p2), whose leading large-momentum asymptotic
is 1/p2a. For b = 1 and for small momenta, it reads

lim
p→0

Ua,1(p2) = − 1

Γ(a)

(

2γE +
Γ′(a)

Γ(a)
+ ln(p2)

)

, (C2)

where γE is the Euler-Mascheroni constant and Γ(z) is
the gamma function. Note that we are implementing
dimensionless momenta p2 → p2/M2

Pl and dimensionless
propagator and spectral function

Ghh →M2
Pl Ghh, ρh →M2

Pl ρh . (C3)

The confluent hypergeometric function does not introduce
any poles in the positive real half-plane and it is UV
subleading for a > 1− ηh/2 ≈ 0.49. These features make
it the perfect candidate for the reconstruction of

∆G(2)
hh (p) = ∆G(1)

hh (p)−Ah U1,1(p
2) , (C4)

where

U1,1(p
2) = ep

2

Γ(0, p2) , (C5)

with the upper incomplete gamma function

Γ(a, z) =

∫ ∞

z

dt ta−1 e−t . (C6)

In conclusion, (C1) and (C4) subtractions in the infrared
leave us with a constant contribution that remains for
small momenta

lim
p→0

∆G(2)
hh (p) ≈ 0.29 . (C7)
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