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Abstract: We present our first set of results for charm physics, using the mixed-action setup
introduced in a companion paper [1]. Maximally twisted Wilson valence fermions are used on a
sea of non-perturbatively O(a)-improved Wilson fermions, made up by CLS Nf = 2+1 ensem-
bles. Our charm-sector observables are free from O(amc) discretisation effects, without need
of tuning any improvement coefficient, and show continuum-limit scaling properties consistent
with leading cutoff effects of O(a2). We consider a subset of CLS ensembles – including four
values of the lattice spacing and pion masses down to 200MeV – allowing to take the continuum
limit and extrapolate to the physical pion mass. A number of techniques are incorporated in
the analysis in order to estimate the systematic uncertainties of our results for the charm quark
mass and the D(s)-meson decay constants. This first study of observables in the charm sector,
where the emphasis has been on the control of the methodology, demonstrates the potential of
our setup to achieve high-precision results.
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1 Introduction

Heavy flavour physics is a key frontline in the endeavour to test the limits of the Standard
Model, and look for new fundamental physics. Ever-increasing precision for fundamental pa-
rameters such as quark masses and Cabibbo-Kobayashi-Maskawa matrix elements, as well as
for weak matrix elements that control the low-energy hadronic contribution to weak decay
amplitudes, is necessary to keep pace with experimental developments.

First-principles, systematically improvable computations performed in Lattice QCD —
possibly, beyond a certain precision threshold, with QED corrections — are of course the basic
source of input. When dealing with heavy quark physics, however, lattice computations face
a non-trivial multiscale problem. Since computations involve both an ultraviolet cutoff — the
inverse lattice spacing a−1 — and an infrared cutoff — the inverse size L−1 of the finite box
computations are performed in — all physical scales should best fit comfortably between the
cutoffs, lest control on their removal is compromised. A standard criterion for finite-volume
effects to be sufficiently suppressed in typical hadronic quantities involves a constraint on the
box size mπL & 4; for the typical range of pion masses explored, which nowadays routinely
reaches the physical point, this implies box sizes in the 3 to 7 fm ballpark. Having mc ≪ a−1,
and especially, mb ≪ a−1, then requires values of the lattice size L/a that are close to or
simply beyond current computational capabilities. This problem is much worsened by the
extra difficulty to approach the very fine lattice spacings needed to accommodate heavy quark
masses: the computational cost of typical simulations scales as ∼ a−7 [2], and for a . 0.05 fm
the algorithmic problem of topology freezing sets in, which in practice impedes simulations
long enough to control statistical uncertainties reliably [3].

Facing these problems requires a specific toolset for heavy quark physics on the lattice,
that, in particular, relies on input from effective theories to try and control the ultraviolet cutoff
dependence: Symanzik effective theory [4–7] to understand and suppress the leading cutoff
effects, heavy quark effective theory input to guide the construction of lattice actions or the
extraction of physics,1 etc. The resulting sophisticated frameworks often rely on assumptions
about the systematic impact of the use of effective theory, and/or require the determination of
ancillary quantities such as O(a) improvement coefficients. A full overview of lattice techniques
and results for heavy quark physics can be obtained from the latest FLAG review [9]. A main
theme underpinning all studies in the charm and, especially, the B sector is that having results
from a variety of approaches is essential to gain confidence on the systematic uncertainties
affecting hadronic observables relevant for flavour physics.

The main motivation of the mixed-action setup used in this work, and fully discussed in [1],
is to devise an optimal framework for heavy quark physics that bypasses many of the difficulties
mentioned above. The first ingredient is the use of CLS Nf = 2 + 1 ensembles obtained with
non-perturbatively O(a) improved Wilson fermions [10] and open boundary conditions for
the gauge field [11, 12], which allows to enter the realm of very fine lattice spacings while
keeping control on statistical uncertainties. The second ingredient is to compute heavy quark
observables by means of a valence twisted-mass Wilson setup [13,14], which leads to automatic
O(a) improvement [15]. Working with a mixed action of course leads to new requirements, such
a precise matching between the valence and sea sectors, and a careful analysis of the relative
cutoff effects. This is discussed in the companion paper [1]. Here we will focus on illustrating
how the technique is able to obtain precise, reliable results for basic observables in the hadronic

1See, e.g., App. A.1.3 of [8] for a summary of existing approaches.
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sector. Progress report of this long-term project have been given in [16–23].
In particular, we will focus on determining the value of the charm quark mass, and of

the leptonic decay constants of the D and Ds mesons. Our results are based on a subset
of the available CLS ensembles which allow us to illustrate the properties of the setup. We
also emphasise our development of a variant of the existing techniques to assess systematic
uncertainties in lattice observables based on information criteria [24,25] applied to appropriate
goodness-of-fit estimators [26]. Still, despite the fact that our current results use a subset
of the CLS ensembles, they are already at a point where they have competing precision in
the context of the state-of-the-art determination of these quantities that enter current FLAG
averages [27–45]. Results with a larger set of CLS ensembles, including finer lattice spacings
and physical pion mass ensembles, will be the object of upcoming publications.

Let us conclude this introduction by describing the organisation of the paper. Sec. 2
summarises the main aspects of our mixed-action approach, discussed at length in [1]. Sec. 3
deals with our approach to matching the scale of our partially-quenched charm quark, and
numerical aspects of computations in the charm sector. Secs. 4 and 5 discuss our determination
of the charm mass and decay constants, respectively. Finally, Sec. 6 contains our conclusions
and outlook.

2 Mixed-action setup

In this section we review the basic features of our setup, with an emphasis on their implications
for heavy quark physics. We refer the reader to [1] for a fully detailed discussion of our approach.

2.1 Generalities

All our results stem from a mixed-action setup. In the sea sector we employ a tree-level im-
proved gauge action [6,46], and a non-perturbatively O(a)-improved Wilson fermion action [47].
This has indeed been used in the generation of the CLS Nf = 2 + 1 ensembles [10,48–50] that
we employ. In the valence sector, on the other hand, we use a fully-twisted tmQCD [13] fermion
action. Both actions include the same massless Wilson-Dirac operator [47, 51]

D =
1

2
γµ(∇∗

µ +∇µ)−
a

2
∇∗

µ∇µ +
i

4
acswσµνF̂µν , (2.1)

where ∇µ and ∇∗
µ are, respectively, the forward and backward covariant derivatives, σµν =

i
2
[γµ, γν ], and F̂µν is the clover-leaf definition of the field strength tensor as spelled out in [7].

The mass term in the sea has the form

ψ̄m(s)ψ , (2.2)

while the tmQCD action is obtained by adding a mass term of the form [13,14]2

iψ̄µγ5ψ +mcrψ̄ψ ; µ = diag(µu,−µd,−µs, µc) , (2.3)

2While, other, versions of the valence sector à la Osterwalder-Seiler [52] can be used without substantial
changes to the discussion below, in this work the form in Eq. (2.3) will suffice to extract all the relevant physics,
and we will therefore stick to it for definiteness.
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where mcr is the standard Wilson critical mass, and the signs have been set so that the values
of the twisted masses µf are implied to be positive. We will always work in the isospin limit,
where the up and down quark masses take the same values both in the sea and in the valence

(i.e., m
(s)
u = m

(s)
d and µu = µd ≡ µl).

The procedure to fully define the mixed action involves the matching between Wilson
and tmQCD valence actions, and a specific prescription to define the critical mass used in
our setup. To that purpose, for any given ensemble we first tune µl, µs and mcr such that
the quantities φ2 and φ4 – depending on pion and kaon masses, as defined in Eq. (2.6) –
coincide for sea and valence actions, while imposing that the (u,d) standard PCAC quark mass
– including all known O(a)-improvement counterterms – vanishes in the valence sector. This
ensures equivalent physics and sets the twist angle to π/2, ensemble by ensemble.

2.2 Properties of the twisted valence sector

The most interesting property of this setup for the purpose of the results presented in this
paper is that it results in automatic O(a) improvement of observables extracted from valence
correlation functions [15], up to terms proportional to the trace of the subtracted sea quark

mass matrix, atr{m(s)
q } [1]. Since the latter only involves up, down, and strange quarks, the

value of the trace in lattice units is of O(10−2) on our ensembles. Furthermore, these terms
arise from loop effects, and their coefficient is thus formally of perturbative order α2

s . Given our

typical statistical uncertainties, the natural size of these atr{m(s)
q } lattice artefacts therefore

amounts to a subdominant contribution. This property can be furthermore verified a posteriori
by inspecting the scaling of observables towards the continuum limit. This is very important
for heavy quark observables, since we are then assured that the leading cutoff effects associated
to a quark of mass µh are of order (aµh)

2, without need of fine-tuning improvement coefficients
to ensure the elimination of linear effects, as would be the case in the standard O(a) improved
setup.

Note that automatic O(a) improvement holds even in the absence of the clover term in
the valence fermion action; we have however kept it for a number of reasons. First, it simplifies
the matching between sea and valence, since the regularisations coincide in the chiral limit.
Secondly, for the same reason, it allows to use non-perturbative renormalisation constants
determined with standard methods — e.g., to obtain renormalised quark masses [53]. Finally,
it has been observed that keeping the clover term leads to a better control over the O(a2)
flavour-breaking effects induced by the twisted mass term, thus improving the overall scaling
of the setup [54,55].

A second, more generic benefit is that the use of a twisted mass regularisation implies
multiplicative renormalisation of (twisted) quark masses, and the possibility to determine decay
constants without need of finite normalisation factors such as ZA. This is a result of the explicit
chiral symmetry breaking pattern at full twist, which leaves exactly conserved axial currents.
In the twisted quark field basis implicitly assumed when writing our valence mass terms, the
relevant on-shell (x 6= 0) Ward-Takahashi identity reads

〈∂∗µṼ qr
µ (x)O(0)〉 = i(µq + µr)〈P qr(x)O(0)〉, (2.4)

where ∂∗µ is the backward lattice derivative; O is any gauge-invariant local operator; µq,r are
the Lagrangian twisted masses for the corresponding flavours q, r, that are here assumed to
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carry different signs in the twisted mass matrix µ of Eq. (2.3);3 P qr = ψ̄qγ5ψr is a non-singlet
pseudoscalar density; and Ṽ qr

µ is the point-split vector current4

Ṽ qr
µ (x) =

1

2

[

ψ
q
(x)(γµ − 1)Uµ(x)ψ

r(x+ aµ̂) + ψ
q
(x+ aµ̂)(γµ + 1)U †

µ(x)ψ
r(x)

]

. (2.5)

Since the current is exactly conserved, there are two important consequences. First, current
and Lagrangian quark masses coincide, and renormalise with Zµ = Z−1

P .5 Second, meson
decay constants can be extracted from a two-point function of the pseudoscalar density, by
setting O = P rq in Eq. (2.4) and using the fact that the l.h.s. of the Ward identity is exactly
normalised. These will be the basis of our determinations of the charm quark mass in Sec. 3
and of fD(s)

in Sec. 5.

2.3 Ensembles and line of constant physics

CLS ensembles have been generated along three different lines of constant physics. Our results

are based on a subset of the ensembles generated at (approximately) constant value of tr{m(s)
q },

which we list in Table 1. In order to define a precise line of constant physics, we use the
quantities

φ2 ≡ 8t0m
2
π , φ4 ≡ 8t0

(

1

2
m2

π +m2
K

)

, (2.6)

where t0 is the gradient flow scale introduced in [57], and whose value in physical units has
already been determined using CLS ensembles in [1,48,58,59]. A renormalised line of constant
physics can thus be fixed by setting φ4 constant and equal to its physical value; extraction of
the physics will then proceed by a combined continuum-chiral limit fit that hits the physical
value of φ2. The condition that φ4 is constant is well approximated by keeping tr{m(s)}
fixed, since it is proportional to φ4 at leading order in the effective chiral description of QCD
dynamics. Small deviations from the correct value of φ4 in each ensemble can be corrected by
means of the mass shifting prescription introduced in [48], and incorporated into the fitting
procedure — see [1] for technical details. Our renormalised chiral trajectory is ultimately set

at φphys4 = φisoQCD
4 = 1.101(7)(5), where the second error quoted is the systematic uncertainty

coming from our Bayesian model averaging (see below), and the first error comprises the
statistical uncertainty, the one associated to chiral-continuum extrapolations, and those related
to input parameters — improvement coefficients, renormalisation constants, and the input pion
and kaon masses. The values of the latter employed to fix φ4 are those in the QCD isospin
symmetric limit (isoQCD) given by [9]

misoQCD
π = 134.9768(5) MeV, (2.7)

misoQCD
K = 497.611(13) MeV. (2.8)

In the remainder of this paper we will use the superscript “phys” for quantities defined in the
isoQCD prescription for the continuum theory, as fixed above.

3With our conventions, this applies to any of the pairs (u, d), (u, s), (d, c) and (s, c).
4This is indeed the physical axial current, chirally rotated by the relation between physical and twisted quark

variables — see, e.g., [13, 56].
5It can be separately proven that renormalisation is indeed multiplicative.
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Id β L/a T/a κl κs mπ [MeV] mK [MeV] mπL

H101 3.40 32 96 0.13675962 0.13675962 416 416 5.8

H102 32 96 0.136865 0.136549339 352 437 4.9

H105 32 96 0.136970 0.13634079 277 462 3.9

H400 3.46 32 96 0.13688848 0.13688848 415 415 5.1

N202 3.55 48 128 0.137000 0.137000 412 412 6.4

N203 48 128 0.137080 0.136840284 346 442 5.4

N200 48 128 0.137140 0.13672086 284 463 4.4

D200 64 128 0.137200 0.136601748 200 480 4.2

N300 3.70 48 128 0.137000 0.136601748 419 419 5.1

J303 64 196 0.137123 0.1367546608 257 474 4.1

Table 1: List of CLS Nf = 2 + 1 ensembles used in the present study. L/a and T/a refer
to the spatial and temporal extent respectively of the lattice. The values κl and κs refer to
the hopping parameters of the light and strange quark masses in the sea sector. Approximate
values of the pion mass mπ, the kaon mass mK , and of the product mπL are provided in the
last three columns.

In this work we employ our determination of the physical scale from the gradient flow scale
t0. To set the scale, we use the following combination of pion and kaon decay constants

√
8t0fπK =

√
8t0

(

2

3
fK +

1

3
fπ

)

. (2.9)

At NLO in SU(3) χPT, this quantity remains constant up to logarithmic terms. From the
chiral-continuum extrapolated value of

√
8t0fπK we eventually extract the flow scale t0 in

physical units by using as physical inputs the isoQCD values for fπ and fK . Specifically, we
use [9]

f isoQCD
π = 130.56(13) MeV, (2.10)

f isoQCD
K = 157.2(5) MeV. (2.11)

The full details of our scale setting procedure through a combination of the O(a)-improved
Wilson results with the ones from the valence Wilson Twisted Mass regularisation can be
found in [1]. The resulting value of t0 we will use to convert our results to physical units is

√

tphys0 = 0.1445(5)(3) fm , (2.12)

where the uncertainty is split in the same way as described above for φphys4 .

3 Charm correlators and scale setting

In this section we discuss the technical details behind the computation of physical observables
in the charm region from our mixed action setup. We introduce the GEVP setup used to
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extract meson masses and matrix elements throughout this work and explain our strategy to
match the charm quark mass to its physical value.

3.1 Computation of correlation functions

To extract physical observables we have measured two-point correlation functions at zero mo-
mentum on CLS gauge configurations listed in Table 1. Fermionic two-point correlators have
the form

f q,r(x0, y0) =
a6

L3

∑

~x,~y

〈Oq,r
Γ (x0, ~x)O

r,q
Γ′ (y0, ~y)〉, (3.1)

where y0 and x0 are, respectively, the source and sink time coordinates; q and r are flavour
indices; and a trace over spin and colour is implicit. Oq,r

Γ are quark bilinear operators defined
as

Oq,r
Γ (x) = ψ

q
(x)Γψr(x), (3.2)

where Γ is a spin matrix. The operator content will be denoted by subscripts in straightforward
notation — we will refer to fPP when Γ = Γ′ = γ5, fAP when Γ = γ0γ5 and Γ′ = γ5, and so on.

In all computations in this work we have fixed the time position of the source at y0 = T/2,
to maximise the distance from the boundaries: when dealing with heavy-light and heavy-heavy
flavour content in the operators Oq,r

Γ in Eq. (3.2), we observe that the region in which the
signal for the considered two-point function is accessible lies entirely within the lattice bulk,
and that the boundary effects are strongly suppressed. Ten time-diluted U(1) stochastic sources
are employed in the computation of the quark propagators in each gauge field configuration.
Moreover, the numerical inversion of the quark propagator in the charm region is performed
using distance preconditioning techniques [60, 61], in order to reduce signal deterioration and
enhance accuracy at large Euclidean times. Error analysis and propagation are based on
the Gamma method of [62] and automatic differentiation, as implemented in the ADerrors

package [63].
Light and strange propagators are computed at the values of mcr, µl and µs determined to

ensure maximal twist and pion and kaon masses matched to the sea (see Section 2). We note
that this is a independent set of computations of the propagators with respect to those employed
in the matching procedure [1], where a grid of values for the mass parameters is employed to
accurately interpolate to the matching point. Moreover, this grid was also employed to compute
the mass corrections to the renormalised chiral trajectory [1]. Heavy propagators are computed

at three different values of the twisted mass µ
(i)
c around the physical charm region (save for one

ensemble where only two masses have been used), so that observables are interpolated at the
physical value of the charm quark mass. In Table 2 we specify the twisted mass values and the
critical hopping parameter κ̃cr used to impose the maximal twist condition for each ensemble
used in the analysis.

3.2 Extraction of meson masses

In our analysis meson masses are employed to fix the renormalised line of constant physics and
match the quark masses to some target physical value. Light and strange quark masses are
matched between the sea and valence sectors using φ2 and φ4 in Eq. (2.6), whereas for the
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Id β κ̃cr aµl aµs aµ
(1)
c aµ

(2)
c aµ

(3)
c

H101 3.40 0.137277 0.006592 0.006592 0.237975 0.250500 0.263025

H102 0.137291 0.004711 0.010090 0.228285 0.240300 0.252315

H105 0.137319 0.002958 0.013690 0.230108 0.242219 0.254330

H400 3.46 0.137292 0.006006 0.006006 0.204155 0.214900 0.225645

N202 3.55 0.137298 0.005160 0.005160 0.167105 0.175900 0.184695

N203 0.137307 0.003609 0.010770 0.172805 0.181900 0.190995

N200 0.137310 0.002403 0.008432 0.173375 0.182500 0.191625

D200 0.137316 0.001227 0.013170 0.172900 0.191100 –

N300 3.70 0.137207 0.004060 0.004060 0.130910 0.137800 0.144690

J303 0.137212 0.001610 0.009570 0.133000 0.140000 0.147000

Table 2: List of run parameters for each ensemble in Table 1. The critical value of the hopping
parameter required to set the valence sector to maximal twist [1] is denoted by κ̃cr. The values
of aµl and aµs are the light and strange bare twisted quark masses, in lattice units, that match
the corresponding sea quark masses [1]. Finally, the last three columns contain the three values
of heavy bare twisted quark masses in the charm region. In the case of the D200 ensemble two
values that straddle the charm point were considered.

partially quenched charm quark we use different combinations of mesons masses matched to
their physical values, as explained in Section 3.3.

The ground state meson masses are extracted from a generalised eigenvalue problem
(GEVP) variational method defined as

C(t)vn(t, tref) = λn(t, tref)C(tref)vn(t, tref) n = 0, . . . , N − 1, t > tref , (3.3)

where C(t) is a matrix of Euclidean correlation functions of the form in Eq. (3.1), such that
the indices i, j in Cij(t) correspond to different choices of Γ,Γ′ and source/sink location, and
t = x0 − y0. This leads to the spectral expansion

Cij(t) =
∞
∑

n=0

e−Entϕniϕ
∗
nj , i, j = 0, . . . , N − 1 ;

ϕni ≡ 〈0|Oi|n〉.
(3.4)

Here N denotes the matrix dimension, and we have assumed non-degenerate energy levels. The
GEVP is solved in the regime tref ≥ t/2, where a better control over excited state contributions
is achieved [64]. The matrix C(t) in our setup is built from pseudoscalar two-point functions
fPP shifted in time as

CP(t) =

[

fPP(t) fPP(t+ τ)
fPP(t+ τ) fPP(t+ 2τ)

]

, (3.5)

where τ is the value of the time shift. Several values of the time shift have been tested,
and we observe a mild dependence on small values of τ for the extraction of eigenvalues and
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eigenvectors. We refer to Appendix A for a detailed discussion of our setup, together with
sanity checks on the GEVP. In what follows we set τ = 3a.

The ground state meson mass is extracted from the eigenvalues of the GEVP using
Eq. (A.1). In order to assess the systematic effects and correctly identify the plateau region,
we perform several uncorrelated χ2 fits to a constant, by varying the time ranges of the fitting
interval. Correlated fits are impractical due to the fact that sample covariance matrices display
very small modes and thus have ill-behaved inverses. However, as the data is correlated, the
uncorrelated χ2 is not a suitable quantity to assess the goodness-of-fit; we therefore quantify
the latter with the expectation value of χ2, denoted χ2

exp, and the corresponding p-value, as
introduced in [26]. Through this procedure we assign a weight to each fit based on the χ2

minimisation, and we eventually extract our ground state masses by means of the model aver-
aging procedure described in Appendix B. An example of a GEVP plateau for the heavy-light
pseudoscalar mass together with a summary of the model average procedure for an ensemble
used in the analysis is shown in Figure 1.

3.3 Matching of the charm quark mass

In Section 2 we recalled the matching of the light sector worked out in [1], which ensures
that physical observables involving only light and strange quarks computed in the valence
and sea sectors coincide up to cutoff effects, so that unitarity is recovered in the continuum
limit. A similar procedure is needed for the charm quark, designed to ensure that its physical
value is obtained upon taking the continuum limit and performing chiral fits. Since the charm
is partially quenched this matching procedure involves observables with only valence charm
quark propagators.

In order to establish a connection with the physical point, we require that some charm-like
observable Oc matches its physical value. In this paper we studied three different charm scale
settings based on three choices of Oc, all in terms of meson masses; we will denote the latter

as m
(i)
H , i = 1, 2, 3, and often express them in units of

√
8t0 as φ

(i)
H =

√
8t0m

(i)
H .

The first possibility, corresponding to φ
(1)
H , consists in using the flavour average meson

mass combination

m
(1)
H = mH ≡ 2

3
mH +

1

3
mHs , (3.6)

built from heavy-light H and heavy-strange Hs pseudoscalar meson masses with heavy-quark
masses in neighbourhood of the charm. Since we require the considered CLS ensembles to hold
a constant value of the flavour average combination of pion and kaon masses – denoted as φ4
in Eq. (2.6) – we also expect the flavour average combination φ

(1)
H to remain fairly constant

along the chiral trajectory. The physical value of m
(1),phys
H is obtained by setting mH(s)

to the
following prescription for the isoQCD values of D(s) meson masses,

misoQCD
D = 1867.1± 2.6 MeV, misoQCD

Ds
= 1967.1± 1.3 MeV. (3.7)

The uncertainties in these isoQCD values are chosen to cover the deviation with respect to
the experimental values [65] of the D± and D±

s meson masses, mexp
D± = 1869.66(5) MeV and

mexp

D±
s
= 1968.35(7) MeV, respectively. We observe that the larger uncertainty in the isoQCD

inputs of the D and Ds meson masses in Eq. (3.7) — as compared to the corresponding
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experimental values — does not induce a significant increase in the uncertainties of our target
results. The input values in Eq.( 3.7) lead to the following flavour averaged meson mass,

m
(1),phys
H = mD = 1900.4(1.8) MeV . (3.8)

Our second strategy, corresponding to φ
(2)
H , is to consider the mass-degenerate pseudoscalar

meson mass mconn
ηh

extracted from the quark-connected two-point correlation function made of
heavy quark propagators with a mass in the neighbourhood of the charm mass,

m
(2)
H = mconn

ηh
. (3.9)

The physical value for this mass, m
(2),phys
H , is set from the experimental value of the ηc meson

mass [65], mexp
ηc = 2983.9(4)MeV, from which a correction of about 6MeV, with 100% error,

is subtracted to account for the absence of quark-disconnected diagrams and QED effects [43,
66–69]. Specifically, we employ,

m
(2),phys
H = mconn

ηc = 2978(6) MeV . (3.10)

One potential advantage of this choice of matching observable is that the overall precision of
the ηconnc meson mass is substantially better than the one for heavy-light meson masses, as it
does not suffer from the increase in noise-to-signal ratio with Euclidean time; this is illustrated
in Figure 2, where we show the D, Ds and ηconnc pseudoscalar correlators for a one specific
ensemble. Finally, as a third matching quantity we also tested the spin-flavour averaged mass
combination

m
(3)
H = mH

∗ =
1

12

(

2mH +mHs + 6mH∗ + 3mH∗
s

)

, (3.11)

which involves a combination of heavy-light pseudoscalar mH(s)
and vector mH∗

(s)
meson masses

in the charm region, and is motivated by heavy-quark symmetry. However, we observe that
chiral-continuum fits coming from the spin flavour-averaged matching condition lead to worse
χ2 values, and as a result their weights are highly suppressed by our model average prescrip-
tion. We interpret this finding as a reflection of relatively poor control of heavy-light vector
states, whose masses are extracted with significantly larger errors than those of heavy-light
pseudoscalar states. In the rest of the discussion we will therefore focus on the results coming
from the other two matching conditions.

Any of these matching conditions can in principle be imposed ensemble by ensemble, even
away from the physical point. However, by doing so we would as a result build in the charm
quark mass a dependence on the value of the reference scale tphys0 , as well as O(a2) effects
coming from the specific choice of Oc. To avoid this, we have opted instead for setting the
physical charm quark mass jointly with the chiral-continuum extrapolation, in a similar way as
the one we employ to hit the physical point in the light and strange sector. What this means in
practice is that the charm quark mass dependence of any given observable O is parameterised

as O(a, φ2, φ
(i)
H ), and we perform a global fit to obtain its physical value O(0, φphys2 , φ

(i),phys
H ).

This will be the procedure applied below in the determination of the physical value of the
charm quark mass and of the decay constants fD and fDs .

Note that, as a consequence of our matching procedure and of working on a line of constant
physics where φ4 is kept constant, it is non-trivial that by adopting any of our matching
procedures the mass of any particular meson reaches its physical value in the chiral-continuum

10







perturbative value of m(µ)
M at any convenient scale µ.

4.2 Charm quark mass chiral-continuum fits

Having determined the renormalised charm quark masses in the Schrödinger Functional scheme
at the hadronic renormalisation scale µhad

mc(µhad) ≡ µR
c , (4.3)

for all the ensembles listed in Table 1, we now describe our strategy to obtain results in
the continuum limit and at the physical point, following the approach outlined in Sec. 3. The
matching procedure of the light and strange sectors is already devised so that the physical value
of the kaon mass is recovered at φ2 = φphys2 , where the physical value of φ2 is computed with the

isospin-symmetric values of the pion mass quoted in [9], and the physical scale tphys0 is the one
determined in [1]. The charm scale is matched through the two different prescriptions described
in Sec. 3. All quantities entering the fit are made dimensionless through the appropriate power
of the factor

√
8t0, and physical units for the final result are restored by using our value for

tphys0 .
We parameterise the continuum dependence of the renormalised charm quark mass on φ2

and any of the φ
(i)
H with the functional form

√
8t0 µ

R
c (a = 0, φ2, φH) = p0 + p1φ2 + p2φH . (4.4)

Based on the heavy quark effective theory expansion [70] at lowest order, we expect a linear
dependence of the charmed meson masses as a function of the the charm quark mass, hence the
latter term in the ansatz. This assumption is supported by our data that show indeed a linear
behaviour in the charmed meson masses, as illustrated in Figure 4. Note that this form is used
only to describe the dependence within a short interval in mass values, and interpolate the
charm scale from points close by. When considering the pion dependence of the charm quark
mass, we assume that the leading order contributions exhibit a linear behaviour in φ2. With
the current set of ensembles employed in this work we do not observe any deviations from the
leading order term in the pion mass dependence.

Regarding the lattice spacing dependence of the charm quark mass, we assume the leading
cutoff effects to be O(a2), as discussed above. Corrections of odd order in a are generically
expected to be highly suppressed at maximal twist, by way of the extension of the argument
for automatic O(a) improvement; we thus include a4 terms to account for deviations from
linear behaviour in a2. Finally, we allow for terms proportional to m2

π and to various powers
of the charm mass. The generic ansatz to parameterise lattice spacing dependence thus take
the following form

cµc(a, φ2, φH) =
a2

8t0

(

c1 + c2φ2 + c3φ
2
H

)

+
a4

(8t0)2
(

c4 + c5φ
2
H + c6φ

4
H

)

. (4.5)

In order to estimate the systematic effects arising from the model variation, we consider
all the possible combinations where some of the ci coefficients vanish, save for c1 which is
always kept. Furthermore, following [45], we allow for cutoff effects to enter either linearly or
non-linearly, viz.,

√
8t0µ

R,linear
c (a, φ2, φH) =

√
8t0µ

R,cont
c (0, φ2, φH) + cµc(a, φ2, φH), (4.6)√

8t0µ
R,non-lin
c (a, φ2, φH) =

√
8t0µ

R,cont
c (0, φ2, φH)

(

1 + cµc(a, φ2, φH)
)

.
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φ
(1)
H φ

(2)
H combined

√
8t0µ

R
c 3.354(28)(6) 3.363(27)(6) 3.361(26)(7)

Table 3: Results of the model average for the renormalised charm quark mass in units of
√
8t0

based on the two charm quark mass matching conditions — φ
(1)
H denotes the flavour-averaged

matching condition in Eq. (3.6) and φ
(2)
H the ηconnh matching prescription in Eq. (3.9). The

last column reports the combined result from these two matching procedures according to our
model average prescription. The first error is statistical, while the second is the systematic
uncertainty arising from the model variation.

from the measurement of the χ2
exp and the associated p-value. The TIC result for each model

is then fed into the model averaging procedure summarised in App. B, which finally allows to
quote a systematic uncertainty that reflects the fluctuations engendered by the variety of fit
ansaetze.

In Table 3 we report the results for µR
c in units of

√
8t0 obtained with each of the two

matching conditions independently, as well as for the combined model average.
In Figure 5 we summarise the model average procedure, showing some of the best fit

results coming from the functional forms defined in Eq. (4.6) for the two matching conditions
studied in this work. Each circle corresponds to a result coming from a particular model, and
the opacity is associated to its weight determined from our Takeuchi’s Information Criterion
(TIC) as explained in App. B. We observe that for both matching conditions the majority of
the models with relevant weights nicely agree, and as a result the systematic error is subleading
with respect to the statistical uncertainty. Figure 6 shows a weighted histogram of our results
coming from different fits. We observe that models cluster mainly around two values, which
are adequately covered by our quoted systematic uncertainty.

Figure 7 illustrates typical fits for each of the matching conditions, chosen among those
with higher weights according to the TIC prescription. The plot shows the continuum limit
behaviour of the charm quark mass in units of

√
8t0. Results coming from the two matching

strategies perfectly agree in the continuum, in spite of displaying a qualitatively different struc-
ture in cutoff effects. We observe a scaling of the charm quark mass in reasonable agreement
with the O(a2) leading order, confirming the automatic O(a)-improvement of our setup; nev-
ertheless, we notice that given the current statistical accuracy, fits with O(a4) terms are the
preferred ones from the model average, since they allow to properly describe the curvature in
our data. Note also the overall small size of scaling violations, which are at the few percent
level. Finally, Figure 8 shows the pion mass dependence of the charm quark mass. As expected,
we observe a mild dependence of the charm mass on the light quark masses.

4.3 Results for the charm quark mass

The renormalised charm quark mass µR
c can be obtained once we combine the results collected

in Table 3 with our determination of

√

tphys0 in Eq. (2.12). As discussed at the beginning of
this section, the knowledge of the renormalisation group running factors allows to quote results
for the RGI and MS values of the charm quark mass.
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The continuum heavy-quark mass dependence, Φχ, admits an expression in HQET of the
form

Φχ = CHQET(mh) Φ0

[

1 + p
(1)
h

1

φH
+ p

(2)
h

(

1

φH

)2

+ . . .

]

, (5.5)

where φH =
√
8t0mH monitors the heavy quark mass dependence with mH being the flavour-

average mH̄ or the ηconnh pseudoscalar meson masses. In general, this expression is not expected
to have high accuracy in the charm mass region, due to it being at the limit of applicability of
HQET. Furthermore, perturbative values for the matching factor CHQET(mh) have notoriously
poor convergence behaviour.6 However, we are not interested in modelling the heavy quark
mass dependence in a wide region of masses — we rather want to interpolate to the charm point
from the nearby values of the heavy masses we compute at. Therefore, we will simply take an
expression with the same functional form for the mh power corrections, and a constant overall
coefficient, as a convenient ansatz for the interpolation part of our fits. In HQET terms, this
amounts to neglecting the small logarithmic dependence on mh in a short interval of values.

The light quark mass dependence term, following Heavy Meson χPT (HMχPT) consider-
ations, reads [38, 85]

δΦD
χPT =− 1 + 3g2

64π2φ2f

[

3Lπ + 2LK +
1

3
Lη

]

+
4φ2
φ2f

(

p(0)χ + p(2)χ

φ2
φ2f

+
p
(4)
χ

φH

)

,

δΦDs
χPT =− 1 + 3g2

64π2φ2f

[

4LK +
4

3
Lη

]

+
8 (φ4 − φ2)

φ2f

(

p(0)χ + p(2)χ

φ2
φ2f

+
p
(4)
χ

φH

)

,

(5.7)

where p
(0,1 ... )
χ are fit parameters and g2 is the H∗Hπ coupling in the static and chiral limits,

here treated as a free fit parameter alongside p
(i)
χ . In Eq. (5.7) we introduced the notation for

the chiral logarithm corrections

Lπ = φ2 log(φ2), (5.8)

LK =

(

φ4 −
1

2
φ2

)

log(φ4 −
1

2
φ2), (5.9)

Lη =

(

4

3
φ4 − φ2

)

log(
4

3
φ4 − φ2). (5.10)

Here φ2 and φ4 are the usual hadronic combinations introduced in Eq. (2.6), which control
the light and strange quark mass dependence. When working at NLO in the chiral expansion,
the term φf appearing in Eq. (5.7), which introduces the χPT scale, is here replaced by the
continuum physical value of

√
8t0fπK , as determined from our setup [1] at full twist, with fπK

given by7

fπK =
2

3

(

fK +
1

2
fπ

)

. (5.11)

6This is readily observed in the expression for the coefficient in the MS scheme [86,87],

CHQET(mh) = [αs(mh)]
γ0/2β0

[

1 +
αs(mh)

4π

(

−

8

3
+

γ1
2β0

−

γ0β1

2β2
0

)

+O(α2
s)

]

, (5.6)

where, for QCD, γ0 = −4, γ1 = −254/9−56π2/27+20Nf/9, while the perturbative coefficients of the β function
have their usual values β0 = (11− 2Nf/3) and β1 = (102− 28Nf/3).

7We remind the reader that fπK is the quantity used to extract the physical scale tphys0 in our setup.
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Finally, with similar arguments to the one discussed in the case of the charm quark mass, the

lattice spacing dependence δΦ
D(s)
a for the observables ΦD(s)

can be parameterised as

δΦD
a =

a2

8t0

[

p(0)a + φ2

(

p(1)a + p(3)a φ2H

)

+ p(2)a φ2H

]

+O(a4),

δΦDs
a =

a2

8t0

[

p(0)a + 2 (φ4 − φ2)
(

p(1)a + p(3)a φ2H

)

+ p(2)a φ2H

]

+O(a4),

(5.12)

where p
(0,1,2,... )
a are fit parameters.

To summarise, for the continuum quark mass dependence of ΦD and ΦDs we adopt the
expressions

ΦD(0, φ2, φH) = p0 +
4p1
φ2f

φ2 +
p2
φH

− 1 + 3g2

64πφ2f

(

3Lπ + 2LK +
1

3
Lη

)

+
4φ2
φ2f

(

p(0)χ + p(2)χ

φ2
φ2f

+
p
(4)
χ

φH

)

,

ΦDs
(0, φ2, φH) = p0 +

8p1(φ4 − φ2)

φ2f
+

p2
φH

− 1 + 3g2

64πφ2f

(

4LK +
4

3
Lη

)

+
8 (φ4 − φ2)

φ2f

(

p(0)χ + p(2)χ

φ2
φ2f

+
p
(4)
χ

φH

)

,

(5.13)

obtained by combining the light and heavy quark dependencies δΦχPT and Φχ, respectively.
Following Eq. (5.4), this then leads to the final ansatz for ΦD(s)

of the form

ΦD(s)
(a, φ2, φH) = ΦD(s)

(0, φ2, φH)
[

1 + δΦ
D(s)
a

]

. (5.14)

Since many fit parameters are shared between ΦD and ΦDs , we opt for a global fit for deter-
mining the two quantities. Moreover, at the symmetric point, i.e., for those ensembles with
degenerate light and strange quark masses µl = µs, the two decay constant coincide, and
ΦD = ΦDs . Therefore, a global fit also helps to constrain the parameters at the symmetric
point.

Similarly to the case of the charm quark mass, we consider several specific forms of the fit
ansatz, by setting some combination of fit parameters to zero. We furthermore again match
the charm scale using the two different procedures described in Sec. 3. The result is a total
of 57 different models for each matching condition, and we use our TIC criterion to extract
a systematic uncertainty associated to the variation within the full set of fits. In this work,
our current approach deliberately excludes fits involving cuts in β or pion masses, as with the
current subset of ensembles they are significantly penalised by the TIC. As we look ahead to
future updates with the complete set of ensembles we will incorporate cuts in the data within
our analysis.

In Figure 12 we show the chiral extrapolations for fD and fDs with larger weights in the
model average. From our chiral-continuum extrapolations of ΦD and ΦDs , we observe a mild
dependence on the choice of the φH used to match the charm scale. Therefore, in the Figures
we illustrate the flavour-averaged matching condition only. We also notice that ΦD shows
some curvature in φ2 arising from the chiral logs, while ΦDs presents a more linear behaviour
while approaching the physical point. Figure 13 shows an illustration of the scaling towards
the continuum limit of ΦD and ΦDs . We observe that the continuum approach is very well
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φ
(1)
H φ

(2)
H combined

ΦD 0.8624(78)(7) 0.8583(75)(8) 0.8606(76)(21)

ΦDs 1.0352(61)(9) 1.0295(60)(11) 1.0328(60)(30)

Table 4: Model average results for the observables ΦD and ΦDs — defined in Eq. (5.3) —
which are related to the fD and fDs decay constants, respectively, for the two different match-

ing quantities φ
(i)
H . The last column reports the result of the combination of these two matching

conditions. The first error is statistical while the second is the estimate of systematic uncer-
tainty arising from the model averaging procedure.

described by leading cutoff effects of O(a2), as expected for our valence action when it is tuned
to maximal twist.

In Table 4 we show our determinations of ΦD and ΦDs for each of the two procedures to
match the charm scale, as well as the result from their combination. Using this combination
we arrive at the following results for the the D(s) meson decay constants,

fD = 211.3(1.9)(0.6) MeV, (5.15)

fDs = 247.0(1.9)(0.7) MeV, (5.16)

where the first error is statistical and the second the systematic uncertainty from the model
average. The error budget for the D(s) decay constants is dominated by the statistical uncer-
tainty of correlators and the error on chiral-continuum extrapolations. Therefore, we expect
that a future addition of other ensembles with finer lattice spacing and physical pion masses
will contribute to significantly reduce the uncertainty of our current determination. The dif-
ferent contributions to the variance of D(s) meson decay constants are shown in Figure 14.
Finally, in Figure 15 we show a comparison between our results and other Nf = 2 + 1 lattice
QCD determinations.

5.3 Direct determination of fDs/fD

In addition to the determination of fD and fDs , we investigate the direct determination of
the ratio fDs/fD from a dedicated fit. This allows for a consistency check, since the ratio is
dimensionless and thus does not require normalisation with a reference scale such as

√
8t0. One

particular consequence is thus that this approach is only indirectly subject to the uncertainty
of the lattice scale setting. Another advantage is that the ratio is exactly 1 by construction
when ms = ml, i.e., the symmetric point of our φ4 = constant trajectory, which is part of our
line of constant physics. We can thus perform a fit that is highly constrained in the unphysical
masses region, although at the price of reducing the total number of ensembles entering in the
study of the approach to the physical point.

A first set of fit ansaetze is derived from the HMχPT expressions considered above for
ΦD(s)

. The generic form is

ΦDs

ΦD
=
[

1 +
(

δΦDs
χPT − δΦD

χPT

)]

[

1 +
(

δΦDs
a − δΦDs

a

)]

. (5.17)
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φ
(1)
H φ

(2)
H combined

fDs/fD 1.177(15)(6) 1.178(15)(6) 1.177(15)(5)

Table 5: Results of the model average for fDs/fD for the two charm-quark matching conditions.
The last column reports the combined result. The first error is statistical while the second is
the systematic uncertainty arising from the model variation procedure.

simultaneously. In Table 5 we report our results for the ratio of decay constants from the model
average separately for each charm matching condition, as well as their combination. Also for

the ratio we observe good agreement for the two different φ
(i)
H tested in this work. Finally, for

the result combining the two matching conditions, we quote

fDs

fD
= 1.177(15)(5), (5.22)

where the first error is statistical and the second is the systematic uncertainty based on the
model average procedure.

In Figure 16 we show the HMχPT chiral-continuum fit of the ΦDs/ΦD ratio with highest
weight in the model averaging procedure. In particular the plot on the left shows the chi-
ral approach to the physical point, while the plot on the right represents the lattice spacing
dependence. The observed dependence on φ2 shows only a mild curvature arising from the
chiral logs, while cutoff effects appear to be highly suppressed at the current level of statistical
precision of our data.

Figure 17 shows a summary of the model average procedure for the ratio ΦDs/ΦD, dis-
playing the fit results for the two matching conditions together with the associated weights,
for the HMχPT and Taylor functional forms.

In Figure 18 we show the major error sources contributing to our final determination of
the ratio, where we notice that the major contribution is given by the statistical and chiral-
continuum error. Finally, in Figure 19 we show a comparison between our result for fDs/fD,
the FLAG21 average and results from other collaborations.

6 Conclusions and outlook

In this work we have described our first computations of physical observables in the charm sector
using the Wilson fermion mixed-action setup described in greater detail in [1]. Emphasis is put
in setting up our methodology and exhibiting the characteristics of the framework. Our results
for the charm quark mass and the D(s) meson decay constants are based on a subset of CLS
ensembles, yet they already sport a level of precision similar to that of several state-of-the-art
results. We quote the values

MRGI
c (Nf = 3) = 1.485(8)(3)(14)[17] GeV,

fD = 211.3(1.9)(0.6)[2.0] MeV,

fDs = 247.0(1.9)(0.7)[2.1] MeV,

fDs/fD = 1.177(15)(5)[16],

(6.1)
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a comparison of low-lying heavy-heavy pseudoscalar states as extracted from the GEVP with
different values of tref . In general, we observe a similar behaviour when comparing different
values of tref , with a slightly better convergence when the condition tref ≥ t/2 is fulfilled. In
this work we therefore stick to this choice for plateau extraction by setting tref = t/2. As
explained in the main text, in order to assess the systematic uncertainty associated with the
extraction of the ground state signal from a plateau behaviour in the effective energies, we
perform numerous fits by varying the time ranges of the fitting interval, and apply the model
averaging procedure described in Appendix B — cf. the illustration in Fig. 1.

As additional cross-checks and stability tests we also computed the first excited state from
the GEVP. A comparison of the ground state and first excited state as is given in Fig. 21
together with the plateaus of choice. As we are only interested in ground state, we choose to
stick to the 2× 2 matrix formulation of the GEVP.

In addition to the meson spectrum, in this work we also extract the matrix element
〈0|P qr|P qr(p = 0)〉 from the GEVP analysis by considering the normalised eigenvector vn(t, tref)
in Eq. (3.3), where we remind that |P qr(p = 0)〉 stands for a ground state. Namely, we define
for each state n the number [64]

Rn = (vn(t, tref), CP)(t)vn(t, tref))
−1/2 eEnt/2, (A.2)

where (·, ·) is the usual scalar product and CP is the GEVP matrix from Eq. (3.5). Then, the
ground state matrix element is given by

peff0 (t, tref) = (v0(t, tref), CP,0))R0, (CP,0)k = (CP)k0 (A.3)

The large distance behaviour of the effective matrix element is governed by

peff0 (t, tref) = p0 +O(e−(EN+1−E0)tref ), p0 = 〈0|P qr|P qr(p = 0)〉, (A.4)

in the regime where the condition tref ≥ t/2 is satisfied. We perform constant fits in a number of
time intervals and use the model averaging procedure in Appendix B to estimate the systematic
uncertainty due to excited-state contamination. In Figure 11 we show a representative plateau
for a heavy-light decay constant, together with a summary of the model average with different
fit intervals.

Appendix B Model averaging procedure

In this work, the systematic uncertainties are estimated from a model averaging procedure
discussed in detail in [1]. Here we collect the main ideas and point to the relevant background
references.

As is often the case in lattice QCD calculations, in this study we deal with fits to highly
correlated data. The dichotomy thus arises between trying correlated χ2 fits, which typically
leads to numerical instabilities and potential biases in statistical estimators, or keeping an
uncorrelated χ2, which is however not a suitable quantity to assess the goodness-of-fit. To
overcome this situation, we follow an approach introduced in [26] based on the expectation
value of the χ2, denoted χ2

exp, and its corresponding p-value, which does allow to quantify the
goodness-of-fit in a controlled manner. Furthermore, we make use of the Takeuchi Information
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