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Abstract: We present our first set of results for charm physics, using the mixed-action setup
introduced in a companion paper [1]. Maximally twisted Wilson valence fermions are used on a
sea of non-perturbatively O(a)-improved Wilson fermions, made up by CLS Ny = 2+ 1 ensem-
bles. Our charm-sector observables are free from O(am.) discretisation effects, without need
of tuning any improvement coefficient, and show continuum-limit scaling properties consistent
with leading cutoff effects of O(a?). We consider a subset of CLS ensembles — including four
values of the lattice spacing and pion masses down to 200 MeV — allowing to take the continuum
limit and extrapolate to the physical pion mass. A number of techniques are incorporated in
the analysis in order to estimate the systematic uncertainties of our results for the charm quark
mass and the D(,)-meson decay constants. This first study of observables in the charm sector,
where the emphasis has been on the control of the methodology, demonstrates the potential of
our setup to achieve high-precision results.



1 Introduction

Heavy flavour physics is a key frontline in the endeavour to test the limits of the Standard
Model, and look for new fundamental physics. Ever-increasing precision for fundamental pa-
rameters such as quark masses and Cabibbo-Kobayashi-Maskawa matrix elements, as well as
for weak matrix elements that control the low-energy hadronic contribution to weak decay
amplitudes, is necessary to keep pace with experimental developments.

First-principles, systematically improvable computations performed in Lattice QCD —
possibly, beyond a certain precision threshold, with QED corrections — are of course the basic
source of input. When dealing with heavy quark physics, however, lattice computations face
a non-trivial multiscale problem. Since computations involve both an ultraviolet cutoff — the
inverse lattice spacing a~' — and an infrared cutoff — the inverse size L™! of the finite box
computations are performed in — all physical scales should best fit comfortably between the
cutoffs, lest control on their removal is compromised. A standard criterion for finite-volume
effects to be sufficiently suppressed in typical hadronic quantities involves a constraint on the
box size m,L 2 4; for the typical range of pion masses explored, which nowadays routinely
reaches the physical point, this implies box sizes in the 3 to 7 fm ballpark. Having m, < a™*,
and especially, m; < a~!, then requires values of the lattice size L/a that are close to or
simply beyond current computational capabilities. This problem is much worsened by the
extra difficulty to approach the very fine lattice spacings needed to accommodate heavy quark
masses: the computational cost of typical simulations scales as ~ a7 [2], and for a < 0.05 fm
the algorithmic problem of topology freezing sets in, which in practice impedes simulations
long enough to control statistical uncertainties reliably [3].

Facing these problems requires a specific toolset for heavy quark physics on the lattice,
that, in particular, relies on input from effective theories to try and control the ultraviolet cutoff
dependence: Symanzik effective theory [4-7] to understand and suppress the leading cutoff
effects, heavy quark effective theory input to guide the construction of lattice actions or the
extraction of physics,! etc. The resulting sophisticated frameworks often rely on assumptions
about the systematic impact of the use of effective theory, and/or require the determination of
ancillary quantities such as O(a) improvement coefficients. A full overview of lattice techniques
and results for heavy quark physics can be obtained from the latest FLAG review [9]. A main
theme underpinning all studies in the charm and, especially, the B sector is that having results
from a variety of approaches is essential to gain confidence on the systematic uncertainties
affecting hadronic observables relevant for flavour physics.

The main motivation of the mixed-action setup used in this work, and fully discussed in [1],
is to devise an optimal framework for heavy quark physics that bypasses many of the difficulties
mentioned above. The first ingredient is the use of CLS Ny = 2 + 1 ensembles obtained with
non-perturbatively O(a) improved Wilson fermions [10] and open boundary conditions for
the gauge field [11,12], which allows to enter the realm of very fine lattice spacings while
keeping control on statistical uncertainties. The second ingredient is to compute heavy quark
observables by means of a valence twisted-mass Wilson setup [13,14], which leads to automatic
O(a) improvement [15]. Working with a mixed action of course leads to new requirements, such
a precise matching between the valence and sea sectors, and a careful analysis of the relative
cutoff effects. This is discussed in the companion paper [1]. Here we will focus on illustrating
how the technique is able to obtain precise, reliable results for basic observables in the hadronic

See, e.g., App. A.1.3 of [8] for a summary of existing approaches.



sector. Progress report of this long-term project have been given in [16-23].

In particular, we will focus on determining the value of the charm quark mass, and of
the leptonic decay constants of the D and D; mesons. Our results are based on a subset
of the available CLS ensembles which allow us to illustrate the properties of the setup. We
also emphasise our development of a variant of the existing techniques to assess systematic
uncertainties in lattice observables based on information criteria [24,25] applied to appropriate
goodness-of-fit estimators [26]. Still, despite the fact that our current results use a subset
of the CLS ensembles, they are already at a point where they have competing precision in
the context of the state-of-the-art determination of these quantities that enter current FLAG
averages [27—45]. Results with a larger set of CLS ensembles, including finer lattice spacings
and physical pion mass ensembles, will be the object of upcoming publications.

Let us conclude this introduction by describing the organisation of the paper. Sec. 2
summarises the main aspects of our mixed-action approach, discussed at length in [1]. Sec. 3
deals with our approach to matching the scale of our partially-quenched charm quark, and
numerical aspects of computations in the charm sector. Secs. 4 and 5 discuss our determination
of the charm mass and decay constants, respectively. Finally, Sec. 6 contains our conclusions
and outlook.

2 Mixed-action setup

In this section we review the basic features of our setup, with an emphasis on their implications
for heavy quark physics. We refer the reader to [1] for a fully detailed discussion of our approach.

2.1 Generalities

All our results stem from a mixed-action setup. In the sea sector we employ a tree-level im-
proved gauge action [6,46], and a non-perturbatively O(a)-improved Wilson fermion action [47].
This has indeed been used in the generation of the CLS Nf = 2 4 1 ensembles [10,48-50] that
we employ. In the valence sector, on the other hand, we use a fully-twisted tmQCD [13] fermion
action. Both actions include the same massless Wilson-Dirac operator [47, 51]

1, @ : ;
D= §7u(vu + V) — §vuv“ - 4 ACswO v Fyuw (2.1)

where V,, and V}, are, respectively, the forward and backward covariant derivatives, o, =

{Yus ), and F v is the clover-leaf definition of the field strength tensor as spelled out in [7].
The mass term in the sea has the form

Ppmep, (2:2)
while the tmQCD action is obtained by adding a mass term of the form [13,14]?

M/;/»L'Yf)w + mcrqzﬂ/]; M= diag(ﬂu: —Hd, — s, ,uc) ) (23)

2While, other, versions of the valence sector & la Osterwalder-Seiler [52] can be used without substantial
changes to the discussion below, in this work the form in Eq. (2.3) will suffice to extract all the relevant physics,
and we will therefore stick to it for definiteness.



where my, is the standard Wilson critical mass, and the signs have been set so that the values
of the twisted masses p¢ are implied to be positive. We will always work in the isospin limit,
where the up and down quark masses take the same values both in the sea and in the valence
(i.e., mgf) = mgs) and p, = pg = u)-

The procedure to fully define the mixed action involves the matching between Wilson
and tmQCD valence actions, and a specific prescription to define the critical mass used in
our setup. To that purpose, for any given ensemble we first tune u;, us and me, such that
the quantities ¢ and ¢4 — depending on pion and kaon masses, as defined in Eq. (2.6) —
coincide for sea and valence actions, while imposing that the (u,d) standard PCAC quark mass
— including all known O(a)-improvement counterterms — vanishes in the valence sector. This
ensures equivalent physics and sets the twist angle to 7/2, ensemble by ensemble.

2.2 Properties of the twisted valence sector

The most interesting property of this setup for the purpose of the results presented in this
paper is that it results in automatic O(a) improvement of observables extracted from valence
correlation functions [15], up to terms proportional to the trace of the subtracted sea quark
mass matrix, atr{m((f)} [1]. Since the latter only involves up, down, and strange quarks, the
value of the trace in lattice units is of O(1072) on our ensembles. Furthermore, these terms

arise from loop effects, and their coefficient is thus formally of perturbative order a.?. Given our

typical statistical uncertainties, the natural size of these atr{mgs)} lattice artefacts therefore
amounts to a subdominant contribution. This property can be furthermore verified a posteriori
by inspecting the scaling of observables towards the continuum limit. This is very important
for heavy quark observables, since we are then assured that the leading cutoff effects associated
to a quark of mass uy are of order (auy)?, without need of fine-tuning improvement coefficients
to ensure the elimination of linear effects, as would be the case in the standard O(a) improved
setup.

Note that automatic O(a) improvement holds even in the absence of the clover term in
the valence fermion action; we have however kept it for a number of reasons. First, it simplifies
the matching between sea and valence, since the regularisations coincide in the chiral limit.
Secondly, for the same reason, it allows to use non-perturbative renormalisation constants
determined with standard methods — e.g., to obtain renormalised quark masses [53]. Finally,
it has been observed that keeping the clover term leads to a better control over the O(a?)
flavour-breaking effects induced by the twisted mass term, thus improving the overall scaling
of the setup [54, 55].

A second, more generic benefit is that the use of a twisted mass regularisation implies
multiplicative renormalisation of (twisted) quark masses, and the possibility to determine decay
constants without need of finite normalisation factors such as Z,. This is a result of the explicit
chiral symmetry breaking pattern at full twist, which leaves exactly conserved axial currents.
In the twisted quark field basis implicitly assumed when writing our valence mass terms, the
relevant on-shell (z # 0) Ward-Takahashi identity reads

(GVIr (2) O(0)) = i(pg + pr) (P () O(0)), (2.4)

where 0}, is the backward lattice derivative; O is any gauge-invariant local operator; pgq, are
the Lagrangian twisted masses for the corresponding flavours ¢, r, that are here assumed to



carry different signs in the twisted mass matrix p of Eq. (2.3);3 PT" = 4p,v51, is a non-singlet
pseudoscalar density; and V,{" is the point-split vector current*

Vi(z) = % (@) (v = DU (2 + aft) + 97 (2 + afp) (v, + VUL (2)0" () |- (2.5)
Since the current is exactly conserved, there are two important consequences. First, current
and Lagrangian quark masses coincide, and renormalise with Z, = Zg 15 Second, meson
decay constants can be extracted from a two-point function of the pseudoscalar density, by
setting O = P in Eq. (2.4) and using the fact that the L.h.s. of the Ward identity is exactly
normalised. These will be the basis of our determinations of the charm quark mass in Sec. 3
and of fD(S) in Sec. 5.

2.3 Ensembles and line of constant physics

CLS ensembles have been generated along three different lines of constant physics. Our results
are based on a subset of the ensembles generated at (approximately) constant value of tr{més)},
which we list in Table 1. In order to define a precise line of constant physics, we use the
quantities

1
¢ = StomZ, ¢4 =8t (2mi + mf,() : (2.6)

where tg is the gradient flow scale introduced in [57], and whose value in physical units has
already been determined using CLS ensembles in [1,48,58,59]. A renormalised line of constant
physics can thus be fixed by setting ¢4 constant and equal to its physical value; extraction of
the physics will then proceed by a combined continuum-chiral limit fit that hits the physical
value of ¢o. The condition that ¢4 is constant is well approximated by keeping tr{m(s)}
fixed, since it is proportional to ¢4 at leading order in the effective chiral description of QCD
dynamics. Small deviations from the correct value of ¢4 in each ensemble can be corrected by
means of the mass shifting prescription introduced in [48], and incorporated into the fitting
procedure — see [1] for technical details. Our renormalised chiral trajectory is ultimately set
at qﬁihys = g[)ifoQCD = 1.101(7)(5), where the second error quoted is the systematic uncertainty
coming from our Bayesian model averaging (see below), and the first error comprises the
statistical uncertainty, the one associated to chiral-continuum extrapolations, and those related
to input parameters — improvement coefficients, renormalisation constants, and the input pion
and kaon masses. The values of the latter employed to fix ¢4 are those in the QCD isospin
symmetric limit (isoQCD) given by [9]

miseQCD  — 134.9768(5) MeV, (2.7)
mPP = 497.611(13) MeV.

In the remainder of this paper we will use the superscript “phys” for quantities defined in the
isoQCD prescription for the continuum theory, as fixed above.

3With our conventions, this applies to any of the pairs (u,d), (u, s), (d,c) and (s, c).

4This is indeed the physical axial current, chirally rotated by the relation between physical and twisted quark
variables — see, e.g., [13,56].

5Tt can be separately proven that renormalisation is indeed multiplicative.



Id B  L/ja T/a & Ks my [MeV] mg [MeV] m,L

H101 3.40 32 96 0.13675962 0.13675962 416 416 5.8
H102 32 96 0.136865 0.136549339 352 437 4.9
H105 32 96 0.136970 0.13634079 277 462 3.9
H400 3.46 32 96 0.13688848 0.13688848 415 415 5.1
N202 3.55 48 128 0.137000 0.137000 412 412 6.4
N203 48 128 0.137080 0.136840284 346 442 5.4
N200 48 128 0.137140 0.13672086 284 463 4.4
D200 64 128 0.137200 0.136601748 200 480 4.2
N300 3.70 48 128 0.137000 0.136601748 419 419 5.1
J303 64 196 0.137123 0.1367546608 257 474 4.1

Table 1: List of CLS Ny = 2 + 1 ensembles used in the present study. L/a and T'/a refer
to the spatial and temporal extent respectively of the lattice. The values k; and kg refer to
the hopping parameters of the light and strange quark masses in the sea sector. Approximate
values of the pion mass m,, the kaon mass mg, and of the product m,L are provided in the
last three columns.

In this work we employ our determination of the physical scale from the gradient flow scale
to. To set the scale, we use the following combination of pion and kaon decay constants

VStafese = V8o 35+ 31 ). 2.9)

At NLO in SU(3) xPT, this quantity remains constant up to logarithmic terms. From the
chiral-continuum extrapolated value of /8ty frx we eventually extract the flow scale ty in
physical units by using as physical inputs the isoQCD values for f; and fx. Specifically, we
use [9]

fisoQCD  — 130.56(13) MeV, (2.10)
0QCED — 157.2(5) MeV. (2.11)

The full details of our scale setting procedure through a combination of the O(a)-improved
Wilson results with the ones from the valence Wilson Twisted Mass regularisation can be
found in [1]. The resulting value of ¢y we will use to convert our results to physical units is

RS — 0.1445(5)(3) fm, (2.12)
where the uncertainty is split in the same way as described above for gbzhys.

3 Charm correlators and scale setting

In this section we discuss the technical details behind the computation of physical observables
in the charm region from our mixed action setup. We introduce the GEVP setup used to



extract meson masses and matrix elements throughout this work and explain our strategy to
match the charm quark mass to its physical value.

3.1 Computation of correlation functions

To extract physical observables we have measured two-point correlation functions at zero mo-
mentum on CLS gauge configurations listed in Table 1. Fermionic two-point correlators have

the form

a8

F¥"(xo,90) = 15 > (08" (w0, B)OF (y0, ), (3.1)
g

where yg and g are, respectively, the source and sink time coordinates; ¢ and r are flavour

indices; and a trace over spin and colour is implicit. Ol‘i’r are quark bilinear operators defined

as

OF" (z) = 9" (@)Iy" (), (3-2)

where I' is a spin matrix. The operator content will be denoted by subscripts in straightforward
notation — we will refer to fpp when I' = TV = ~5, fap when I' = 4py5 and IV = v5, and so on.

In all computations in this work we have fixed the time position of the source at yy = 7'/2,
to maximise the distance from the boundaries: when dealing with heavy-light and heavy-heavy
flavour content in the operators OIqJT in Eq. (3.2), we observe that the region in which the
signal for the considered two-point function is accessible lies entirely within the lattice bulk,
and that the boundary effects are strongly suppressed. Ten time-diluted U(1) stochastic sources
are employed in the computation of the quark propagators in each gauge field configuration.
Moreover, the numerical inversion of the quark propagator in the charm region is performed
using distance preconditioning techniques [60,61], in order to reduce signal deterioration and
enhance accuracy at large Euclidean times. FError analysis and propagation are based on
the Gamma method of [62] and automatic differentiation, as implemented in the ADerrors
package [63].

Light and strange propagators are computed at the values of mc;, p; and s determined to
ensure maximal twist and pion and kaon masses matched to the sea (see Section 2). We note
that this is a independent set of computations of the propagators with respect to those employed
in the matching procedure [1], where a grid of values for the mass parameters is employed to
accurately interpolate to the matching point. Moreover, this grid was also employed to compute
the mass corrections to the renormalised chiral trajectory [1]. Heavy propagators are computed
at three different values of the twisted mass ug) around the physical charm region (save for one
ensemble where only two masses have been used), so that observables are interpolated at the
physical value of the charm quark mass. In Table 2 we specify the twisted mass values and the
critical hopping parameter k. used to impose the maximal twist condition for each ensemble
used in the analysis.

3.2 Extraction of meson masses

In our analysis meson masses are employed to fix the renormalised line of constant physics and
match the quark masses to some target physical value. Light and strange quark masses are
matched between the sea and valence sectors using ¢o and ¢4 in Eq. (2.6), whereas for the



d B For o afi apM s apl’

H101 3.40 0.137277 0.006592 0.006592 0.237975 0.250500 0.263025
H102 0.137291 0.004711 0.010090 0.228285 0.240300 0.252315
H105 0.137319 0.002958 0.013690 0.230108 0.242219 0.254330
H400 3.46 0.137292 0.006006 0.006006 0.204155 0.214900 0.225645

N202 3.55 0.137298 0.005160 0.005160 0.167105 0.175900 0.184695

N203 0.137307 0.003609 0.010770 0.172805 0.181900 0.190995
N200 0.137310 0.002403 0.008432 0.173375 0.182500 0.191625
D200 0.137316 0.001227 0.013170 0.172900 0.191100 -

N300 3.70 0.137207 0.004060 0.004060 0.130910 0.137800 0.144690
J303 0.137212  0.001610 0.009570 0.133000 0.140000 0.147000

Table 2: List of run parameters for each ensemble in Table 1. The critical value of the hopping
parameter required to set the valence sector to maximal twist [1] is denoted by &c;. The values
of ap; and apus are the light and strange bare twisted quark masses, in lattice units, that match
the corresponding sea quark masses [1]. Finally, the last three columns contain the three values
of heavy bare twisted quark masses in the charm region. In the case of the D200 ensemble two
values that straddle the charm point were considered.

partially quenched charm quark we use different combinations of mesons masses matched to
their physical values, as explained in Section 3.3.

The ground state meson masses are extracted from a generalised eigenvalue problem
(GEVP) variational method defined as

O(t)vn(t, tref) = )\n(t, tref)C(tref)’Un(t, tref) n = 0, - ,N — 1, t > Tref, (33)

where C(t) is a matrix of Euclidean correlation functions of the form in Eq. (3.1), such that
the indices 4, j in Cj;(t) correspond to different choices of I',I" and source/sink location, and
t = 29 — yo. This leads to the spectral expansion

[ee]
Cij(t) =Y e Prlonph,, i,j=0,...,N—1;
n=0 (3.4)
©ni = (0]O;|n).

Here N denotes the matrix dimension, and we have assumed non-degenerate energy levels. The

GEVP is solved in the regime t,of > t/2, where a better control over excited state contributions

is achieved [64]. The matrix C(¢) in our setup is built from pseudoscalar two-point functions
fep shifted in time as

fer(t) fee(t+7)

Cp(t) = 3.5

P( ) fPP(t+T) fPP(t+27') ' ( )

where 7 is the value of the time shift. Several values of the time shift have been tested,

and we observe a mild dependence on small values of 7 for the extraction of eigenvalues and



eigenvectors. We refer to Appendix A for a detailed discussion of our setup, together with
sanity checks on the GEVP. In what follows we set 7 = 3a.

The ground state meson mass is extracted from the eigenvalues of the GEVP using
Eq. (A.1). In order to assess the systematic effects and correctly identify the plateau region,
we perform several uncorrelated x? fits to a constant, by varying the time ranges of the fitting
interval. Correlated fits are impractical due to the fact that sample covariance matrices display
very small modes and thus have ill-behaved inverses. However, as the data is correlated, the
uncorrelated y? is not a suitable quantity to assess the goodness-of-fit; we therefore quantify
the latter with the expectation value of x?, denoted ngp, and the corresponding p-value, as
introduced in [26]. Through this procedure we assign a weight to each fit based on the >
minimisation, and we eventually extract our ground state masses by means of the model aver-
aging procedure described in Appendix B. An example of a GEVP plateau for the heavy-light
pseudoscalar mass together with a summary of the model average procedure for an ensemble
used in the analysis is shown in Figure 1.

3.3 Matching of the charm quark mass

In Section 2 we recalled the matching of the light sector worked out in [1], which ensures
that physical observables involving only light and strange quarks computed in the valence
and sea sectors coincide up to cutoff effects, so that unitarity is recovered in the continuum
limit. A similar procedure is needed for the charm quark, designed to ensure that its physical
value is obtained upon taking the continuum limit and performing chiral fits. Since the charm
is partially quenched this matching procedure involves observables with only valence charm
quark propagators.

In order to establish a connection with the physical point, we require that some charm-like
observable O, matches its physical value. In this paper we studied three different charm scale
settings based on three choices of O, all in terms of meson masses; we will denote the latter
as m%), i =1,2,3, and often express them in units of 1/8tg as qﬁ%) = 8tom§fl).

The first possibility, corresponding to qb%), consists in using the flavour average meson
mass combination

(1 _

my, =myg = gmH—i—gmHs, (3.6)

built from heavy-light H and heavy-strange H pseudoscalar meson masses with heavy-quark
masses in neighbourhood of the charm. Since we require the considered CLS ensembles to hold
a constant value of the flavour average combination of pion and kaon masses — denoted as ¢4
in Eq. (2.6) — we also expect the flavour average combination gbg) to remain fairly constant
along the chiral trajectory. The physical value of mg)’p S is obtained by setting m H to the
following prescription for the isoQCD values of D) meson masses,

miy P = 1867.1£2.6 MeV,  miy®P =1967.1 £ 1.3 MeV. (3.7)

The uncertainties in these isoQCD values are chosen to cover the deviation with respect to
the experimental values [65] of the D* and DF meson masses, m3Y = 1869.66(5) MeV and
mCDXE = 1968.35(7) MeV, respectively. We observe that the larger uncertainty in the isoQCD

inplslts of the D and Dg meson masses in Eq. (3.7) — as compared to the corresponding
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Figure 1: Ilustration of the extraction of the ground-state mass after applying a GEVP anal-
ysis, illustrated for the ensemble J303. Top: Heavy-light pseudoscalar meson mass plateau
showing the two fit intervals with higher weights W contributing to the model average. We
also indicate the range of variations allowed for the interval in Euclidean time where the plateau
is taken. Bottom: Summary of determinations of amy when considering variations over the
fit intervals [tmin/a, tmax/a] together with the corresponding normalised weights W based on
Takeuchi’s Information Criterion (TIC), p-values and x?/d.o.f.. In the upper panel, the shaded
blue band corresponds to the model average result.



experimental values — does not induce a significant increase in the uncertainties of our target
results. The input values in Eq.( 3.7) lead to the following flavour averaged meson mass,

PP — = 1900.4(1.8) MeV . (3.8)

Our second strategy, corresponding to gbg), is to consider the mass-degenerate pseudoscalar
meson mass my " extracted from the quark-connected two-point correlation function made of
heavy quark propagators with a mass in the neighbourhood of the charm mass,

2 _
my = mp. (3.9)
The physical value for this mass, mg)’phys, is set from the experimental value of the 7, meson

mass [65], my.’ = 2983.9(4) MeV, from which a correction of about 6 MeV, with 100% error,
is subtracted to account for the absence of quark-disconnected diagrams and QED effects [43,
66-69]. Specifically, we employ,

m{P PR — meomn — 2978(6) MeV . (3.10)

One potential advantage of this choice of matching observable is that the overall precision of
the nS°"" meson mass is substantially better than the one for heavy-light meson masses, as it
does not suffer from the increase in noise-to-signal ratio with Euclidean time; this is illustrated
in Figure 2, where we show the D, Dg and 1 °™ pseudoscalar correlators for a one specific
ensemble. Finally, as a third matching quantity we also tested the spin-flavour averaged mass
combination

(3)

my =My = 2myg + mpy, + 6mpg- + 3mH;) , (3.11)

o (
12
which involves a combination of heavy-light pseudoscalar m Hi
in the charm region, and is motivated by heavy-quark symmetry. However, we observe that
chiral-continuum fits coming from the spin flavour-averaged matching condition lead to worse
x? values, and as a result their weights are highly suppressed by our model average prescrip-
tion. We interpret this finding as a reflection of relatively poor control of heavy-light vector
states, whose masses are extracted with significantly larger errors than those of heavy-light
pseudoscalar states. In the rest of the discussion we will therefore focus on the results coming
from the other two matching conditions.

Any of these matching conditions can in principle be imposed ensemble by ensemble, even
away from the physical point. However, by doing so we would as a result build in the charm
quark mass a dependence on the value of the reference scale tghys, as well as O(a?) effects
coming from the specific choice of O.. To avoid this, we have opted instead for setting the
physical charm quark mass jointly with the chiral-continuum extrapolation, in a similar way as
the one we employ to hit the physical point in the light and strange sector. What this means in
practice is that the charm quark mass dependence of any given observable O is parameterised
as O(a, ¢2, gbg-)), and we perform a global fit to obtain its physical value O(0, qﬁghys, gb%)’phys).
This will be the procedure applied below in the determination of the physical value of the
charm quark mass and of the decay constants fp and fp,.

Note that, as a consequence of our matching procedure and of working on a line of constant
physics where ¢4 is kept constant, it is non-trivial that by adopting any of our matching
procedures the mass of any particular meson reaches its physical value in the chiral-continuum

N and vector m Hp,, Teson masses
s

10
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Figure 2: Illustration of the effective meson masses involved in the matching procedure to the
physical charm scale for the ensemble J303. We show three cases where the effective mass of
the pseudoscalar meson H is that of the D (left), Dy (center) and ne®™™ (right), normalised
by the central value of the corresponding plateau averaged mass. The horizontal red bands
show the results of the highest weight fit contributing to the model average procedure and the
corresponding plateau interval. We observe the expected increase of the statistical uncertainties
at large time separations when increasing the mass-difference among the quarks propagators

of the pseudoscalar two-point correlators.

limit; checking that it does is therefore a test of the robustness of our procedure. As an
illustration, we show in Fig. 3 how the physical values of the IJ and Ds; meson masses arise
when the charm scale is matched through either mz or mgy,
for the specific model of the lattice spacing, charm mass and pion mass dependence of the form

1 - Tn either case we show results

2
VBtomp,,, (a, 2, ¢§r?) = po + P12 + p2¢§f1) + 61570, (3.12)
where ¢ = 1,2 according to the notation introduced above and where ¢; and p;, j = 1,2,3,
stand for the fit parameters. Note that the agreement is excellent, in spite of the different
implications of the two setups for the specific case of MDD for instance, when mz is used
for the matching cutoff effects are very small by construction, while the use of m,>"*" leads to
sizeable cutoff effects which are however very well described by an O(a?) term.

4 Determination of the charm quark mass

4.1 Renormalised charm quark masses

In Sec. 2 we have summed up the argument why renormalised quark masses can be easily
retrieved from bare Lagrangian twisted masses. In our mixed-action setup, as discussed in
detail in [1], the resulting O(a)-improved expression for the renormalised charm mass m.()
reads

(i) = Zy (g8, ap)[1 + aby(g3)tr{m®} pic , (4.1)

where Zp (gg, aft) is a suitably defined renormalisation constant for the non-singlet pseudoscalar
density at renormalisation scale p. As we have already discussed, the improvement term

11
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Figure 3: Consistency checks of our charm matching strategy. We show the chiral extrapolation
to the physical point of the D,y meson mass in units of /8% using all the ensembles listed in
1 _

Table 1. The left panels use the flavour-averaged mass combination, my’ = m, while those on
the right use the mass-degenerate pseudoscalar meson mass, mg) = mp". The empty symbols
correspond to the D,y meson masses determined on a given ensemble, while the red square
symbols show the extrapolated values at the physical point. Dashed lines show the fit forms
projected to each individual lattice spacing, and the blue shaded bands are a projection to the
continuum limit on the chiral plane. Data points are projected to the physical point QS%)’phys.
Finally, the green horizontal band shows the isoQCD input values for the corresponding masses

in Eq. (3.7), in units of /8.

o tr{m®} can be neglected in practice, so O(a)-improved renormalised quark masses can
be obtained by just applying the renormalisation constants to the exactly known Lagrangian
masses.

In this work we will use the non-perturbative values of Zp computed in [53] in the
Schrodinger Functional scheme, at a fixed renormalisation scale j1,,4 = 233(8) MeV and for the
range of values of gg covered by CLS. It will be used to obtain renormalised quark masses for
each of our ensembles, that can then be used to determine the value of the charm quark mass
in the continuum and at physical kinematics. Contact with other renormalisation schemes
can then be made by computing the renormalisation group invariant (RGI) quark mass MRGT,
using the continuum (flavour-independent) ratio also computed in [53]

M
] 0.9148(88).. (4.2)

Values of renormalised masses in, say, the MS scheme can then be obtained by using the

12



m(n)

perturbative value of 7“ at any convenient scale p.

4.2 Charm quark mass chiral-continuum fits

Having determined the renormalised charm quark masses in the Schréodinger Functional scheme
at the hadronic renormalisation scale pipaq

Me(fnaa) = He (4.3)

for all the ensembles listed in Table 1, we now describe our strategy to obtain results in
the continuum limit and at the physical point, following the approach outlined in Sec. 3. The
matching procedure of the light and strange sectors is already devised so that the physical value
of the kaon mass is recovered at ¢o = ghys, where the physical value of ¢9 is computed with the
isospin-symmetric values of the pion mass quoted in [9], and the physical scale tghys is the one
determined in [1]. The charm scale is matched through the two different prescriptions described
in Sec. 3. All quantities entering the fit are made dimensionless through the appropriate power
ofhthe factor /8%y, and physical units for the final result are restored by using our value for
{2

We parameterise the continuum dependence of the renormalised charm quark mass on ¢9
and any of the qﬁg) with the functional form

V8o pt(a = 0,2, ¢u) = po+ p1d2 + P2du . (4.4)

Based on the heavy quark effective theory expansion [70] at lowest order, we expect a linear
dependence of the charmed meson masses as a function of the the charm quark mass, hence the
latter term in the ansatz. This assumption is supported by our data that show indeed a linear
behaviour in the charmed meson masses, as illustrated in Figure 4. Note that this form is used
only to describe the dependence within a short interval in mass values, and interpolate the
charm scale from points close by. When considering the pion dependence of the charm quark
mass, we assume that the leading order contributions exhibit a linear behaviour in ¢3. With
the current set of ensembles employed in this work we do not observe any deviations from the
leading order term in the pion mass dependence.

Regarding the lattice spacing dependence of the charm quark mass, we assume the leading
cutoff effects to be O(a?), as discussed above. Corrections of odd order in a are generically
expected to be highly suppressed at maximal twist, by way of the extension of the argument
for automatic O(a) improvement; we thus include a* terms to account for deviations from
linear behaviour in a?. Finally, we allow for terms proportional to m2 and to various powers
of the charm mass. The generic ansatz to parameterise lattice spacing dependence thus take
the following form

2 o

Cuc(a, ¢2, 1) = 570(61 + cacba + c30%) + CHE (ca + e5¢%y + codly)- (4.5)

In order to estimate the systematic effects arising from the model variation, we consider
all the possible combinations where some of the ¢; coefficients vanish, save for ¢; which is
always kept. Furthermore, following [45], we allow for cutoff effects to enter either linearly or
non-linearly, viz.,

\/%Mf,linear(a’ ¢21 ¢H> = \/%lui%,cont (07 ¢27 ¢H) + Cuc (a7 ¢27 ¢H)7 (46)
\/%Mg,non—lin(a’ ¢2a ¢H) = \/%Mg’cont (07 ¢27 ¢H) (1 + Cpc (CL, ¢27 ng)) .
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Figure 4: Heavy mass dependence of the renormalised charm quark mass g in units of /8ty
for the fits with larger weights according to the TIC criteria. Top: Results shown for the

flavour-averaged matching condition QSS) = /8tgmy. Bottom: Results shown for the np°™®
matching condition ng) = /8tgmy,"". Dependencies other than QSE,? in the chiral-continuum

extrapolation have been projected to the physical point. The red square symbols indicate the
continuum results at the physical value qSII)}yS. We observe a linear dependence of the charm
quark mass on the different matching conditions used in this work.

We thus end up with a total of 64 functional forms for each of the two charm matching
conditions, i.e., a total of 128 models. Fit parameters are estimated minimising an uncorrelated
x? where, however, the covariance between the independent variables and the data is taken
into account. As previously discussed, the goodness-of-fit of fit can still be obtained in this case
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qﬁg) gbg) combined

VBtouk || 3.354(28)(6) 3.363(27)(6) 3.361(26)(7)

Table 3: Results of the model average for the renormalised charm quark mass in units of /8t
based on the two charm quark mass matching conditions — qbg) denotes the flavour-averaged

matching condition in Eq. (3.6) and ¢g) the n;°™™ matching prescription in Eq. (3.9). The
last column reports the combined result from these two matching procedures according to our
model average prescription. The first error is statistical, while the second is the systematic
uncertainty arising from the model variation.

from the measurement of the ngp and the associated p-value. The TIC result for each model
is then fed into the model averaging procedure summarised in App. B, which finally allows to
quote a systematic uncertainty that reflects the fluctuations engendered by the variety of fit
ansaetze.

In Table 3 we report the results for pf in units of /8ty obtained with each of the two
matching conditions independently, as well as for the combined model average.

In Figure 5 we summarise the model average procedure, showing some of the best fit
results coming from the functional forms defined in Eq. (4.6) for the two matching conditions
studied in this work. Each circle corresponds to a result coming from a particular model, and
the opacity is associated to its weight determined from our Takeuchi’s Information Criterion
(TIC) as explained in App. B. We observe that for both matching conditions the majority of
the models with relevant weights nicely agree, and as a result the systematic error is subleading
with respect to the statistical uncertainty. Figure 6 shows a weighted histogram of our results
coming from different fits. We observe that models cluster mainly around two values, which
are adequately covered by our quoted systematic uncertainty.

Figure 7 illustrates typical fits for each of the matching conditions, chosen among those
with higher weights according to the TIC prescription. The plot shows the continuum limit
behaviour of the charm quark mass in units of \/8ty. Results coming from the two matching
strategies perfectly agree in the continuum, in spite of displaying a qualitatively different struc-
ture in cutoff effects. We observe a scaling of the charm quark mass in reasonable agreement
with the O(a?) leading order, confirming the automatic O(a)-improvement of our setup; nev-
ertheless, we notice that given the current statistical accuracy, fits with O(a?) terms are the
preferred ones from the model average, since they allow to properly describe the curvature in
our data. Note also the overall small size of scaling violations, which are at the few percent
level. Finally, Figure 8 shows the pion mass dependence of the charm quark mass. As expected,
we observe a mild dependence of the charm mass on the light quark masses.

4.3 Results for the charm quark mass

The renormalised charm quark mass Y can be obtained once we combine the results collected
in Table 3 with our determination of tghys in Eq. (2.12). As discussed at the beginning of
this section, the knowledge of the renormalisation group running factors allows to quote results

for the RGI and MS values of the charm quark mass.
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Figure 5: Model average procedure for the renormalised charm quark mass p% in units of 1/8t.
We collect a subset of the best results according to the TIC procedure, coming from different
models, for the flavour-averaged matching condition (bg) The opacity of each circle data
point reflects the associated normalised weights W as given from the TIC. The yellow shaded
band represents the systematic error computed with Eq. (B.4), while the left-most red square
symbol corresponds to the result extracted from the model average procedure. The labels of
the 32 models specified in the horizontal axis are related to the terms appearing in Eq. (4.5) —
characterising the lattice spacing dependence — in the following way: ‘a2’ corresponds to the
term depending on the fit parameter ¢;. Similarly, ‘a21’, ‘a2h2’, ‘a4’, ‘adh2’, ‘adhd’
refer to co,...,cg, respectively. Given that the parameter ¢ is included in all the models, the

associated label is not explicitly specified for all cases appearing in the horizontal axis.

After combining the results from our 128 fitting models through the model average proce-
dure, and using the running factor in Eq. (4.2), we quote for the three-flavour theory the value
for the RGI quark mass

MRCUN; =3) = 1.485(8)(3)(14)[17] CeV, (4.7)

where the first error is statistical, including the uncertainty on tghys, the second accounts for
the systematic uncertainty, derived from the model average, the third is the error contribution
from the RGI running factor in Eq. (4.2), and the last error in brackets is the total uncertainty.

Figure 9 illustrates the relative contribution of various sources of error to the uncertainty
of our determination of MRS, The dominant source of error comes from the renormalisation
group running of Eq. (4.2), while the second most relevant contribution arises from the statis-
tical error of the correlation functions computed in each ensembles. The error coming from the
uncertainty on tghys based on our scale setting procedure [1], as well as the systematic error
from the model average are subleading contributions. We therefore expect that the inclusion in
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Figure 6: Weighted histogram illustrating the model average procedure for /8¢ pf. The result

from each of the 128 models — including both matching conditions (;5%) and ng) — parameterising
the lattice spacing dependence is weighted by its normalised weight W based on the TIC. The
vertical line represents the central value from the model average, while the vertical band shows
the corresponding estimate of the systematic error.

this charm quark mass analysis of further ensembles — with finer lattice spacings and at physical
pion masses — will only have a significant impact if combined with improved determinations of
the RGI running factor and the scale setting procedure.

In order to quote results in the MS scheme, we use five-loop perturbation theory for the
quark mass anomalous dimension [71-73] and the beta function [74-76]. The matching between
the Ny = 3 and Ny = 4 theories uses the four-loop decoupling effects [77] incorporated into
the RunDec package [78-80]. Renormalisation group equations are solved using as input the

value A% = 341(12) MeV from [81]. The correlation arising from the fact that a common

M
subset of gauge field configuration ensembles were employed in the computation of A% and

the non-perturbative running factor in Eq. (4.2) is taken into account. We thus arrive to the
following results for the RGI and MS-scheme charm quark masses in the 4-flavour theory,

MU (N =4) = 1.546(8)(3)(14)(4)a (3)erunc.[17] GeV, (4.8)
Me(p =3 GeV, Ny =4) = 1.006(5)(2)(9)(6)A(3)erunc.[13] GeV, (4.9)
mc(:u = My, Nt = 4) = 1296(5)(2)(8)(11)A(5)t1unc[16] GeV, (410)

where the first and second errors arise from the statistical and systematic errors, respectively,
in the value of MECI(N; = 3) in Eq. (4.7), the third error is due to the non-perturbative
running factor in Eq. (4.2), the fourth error is related to the uncertainty in A%, the fifth
error is an estimate of the truncation uncertainty from the deviation between the 5-loop and
4-loop results, and the last error in brackets is the total error. We observe that at the lower
renormalisation scale, u = 7., the scale invariant MS charm mass, m.(u = M., Ny = 4),
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Figure 7: Comparison of the continuum limit approach for the two charm matching prescrip-
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spacing dimension. In yellow we show results for the n;°*" matching condition, while the blue
points illustrate the flavour-averaged matching. Each data-point in this plot is projected to
the physical pion mass and the physical charm quark mass, in order to properly visualise the

lattice spacing dependence.

receives a large contribution to its error from the uncertainty of A% and from the truncation

error. These specific sources of uncertainty are less prominent in the RGI mass, MICT( Ny = 4).

In Figure 10 we compare our determinations of the charm quark mass in the MS scheme
with the results from other lattice QCD calculations also based on Ny = 2 + 1 dynamical
simulations and with the corresponding FLAG average [9]. We observe in particular a good
agreement with the results from [45] which are also based on CLS ensembles but employ Wilson
fermions in the valence sector.

5 Determination of decay constants of charmed mesons

5.1 Computation of decay constants

Along with the charm quark mass, in this paper we present a first computation of the Dy
meson decay constants within our setup. In the absence of electromagnetic interactions, the
decay constant fully determines the leptonic decay amplitude of flavoured pseudoscalar mesons,
and is given by the matrix element of the axial current as

fqrmPS

g Tes 5.1
vV 2mpg L3 (5-1)

|{0IAF' 1P (p = 0))| =
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Figure 8: Pion mass dependence of the charm quark mass for one of the best fits according to
the TIC criteria. Results are shown for the flavour-averaged matching condition. Each point
corresponds to the value for a given ensemble, projected to the physical charm quark mass.
The dashed lines represent the chiral trajectories at finite lattice spacing, while the blue shaded
band is a projection to the continuum limit. The red point shows our final result extrapolated
at the physical point in the continuum.
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Figure 9: Relative contributions to the total variance of our final result for MRS!, The dominant
piece comes from the error in the non-perturbative determination of the renormalisation group
running factor to the RGI mass quoted in Eq. (4.2). The label statistical plus y-continuum limit
stands for the error arising from the statistical accuracy of our data and the chiral-continuum
extrapolation, while the scale setting piece comes from the physical value of the gradient flow
scale tghys. Finally, the model average piece illustrates the systematic error arising from the
set of models considered in this work.

where the state |P?") is the ground state for a pseudoscalar meson with flavour content gr,
and mpg its mass. The factor 1/v/2mpsL? comes from the usual relativistic normalisation of
one-particle states in finite volume.

With Wilson fermions, the computation of the above matrix elements requires the finite
current normalisation factor Z, and, if O(a) effects are to be subtracted, a number of improve-
ment coeflicients. With our fully twisted valence sector this is completely bypassed: when gr
belong in a twisted quark doublet — i.e., have different signs in the twisted mass matrix in
Eq. (2.3) — the physical axial current, expressed in twisted quark variables, becomes a vector
current, and the Ward identity in Eq. (2.4) allows to obtain it from the pseudoscalar two-point
function. The resulting expression of the correctly normalised pseudoscalar decay constant
reads

3
fps = %(Mq + ) (O P[P (p = 0))]. (5.2)

Mpg
We will extract the matrix element (0| P?"| P9 (p = 0)) from the normalised eigenvector v, (t, o)
of the GEVP according to Eq. (A.3). In order to extract the large time plateau where excited
state contributions are suppressed we perform several fits to constant behaviour by varying the
fit ranges, and we assign a weight to each fit by means of the TIC prescription as described in
App. B. The results for the ground state matrix element are then extracted through the model
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Figure 10: Comparison of our charm quark mass determinations in the MS scheme with the
FLAG average [9] and the results from other lattice QCD calculations based on Ny = 2 + 1
dynamical simulations. In our results, shown in blue, we indicate both the total uncertainty

®3)

and the error when excluding the uncertainty arising from ANTS. Left: comparison for the
me(r = 3 GeV,Nf = 4). Right: comparison for m.(u = M., Ny = 4). Starting from the
bottom, results are taken from: PDG [65], HPQCD 08B [82], HPQCD 10 [27], xQCD [35],

JLQCD 16 [37], Maezawa 16 [83], Petreczky 19 [42], ALPHA 21 [45].

average given by Eq. (B.3). In Figure 11 we show a representative plateau for a heavy-light
decay constant, together with a summary of the model average with different fit intervals.

5.2 Chiral-continuum fits and results for fD(S)

The chiral-continuum fits for the D) meson decay constants are performed similarly to the ones
for the charm quark mass. By exploiting Chiral Perturbation Theory with heavy quarks [84,85]
to construct appropriate fit functions, we extract the physical point observables trough a global
fit of the fp and fp, decays, and estimate the systematic effects by applying the model average
procedure based on the TIC.

The quantities we fit to are combinations of meson masses and decay constants of the form

(I)D(S) = (8t0)3/4fD(5) A/ mD(S)a

for which a Heavy Quark Effective Theory (HQET) scaling law in powers of the inverse heavy
quark mass exists. The general continuum heavy and light quark mass dependence can be
expressed as the product of the individual contributions to arrive at the generic expression

(5.3)

Ds)

D
Dy, = Dy 1+ 00| 140697 (5.4)

D
Here ®, governs the heavy-quark mass dependence while 5<I>X1§S% controls the light quark be-
haviour as approaching the physical point. Finally the lattice spacing dependence describing

D
cut-off effects is regulated by §®, . In the following, we analyse these terms independently
to arrive at a final expression for the ® Dy approach to the physical point.
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Figure 11: Illustration of the extraction of the heavy-light pseudoscalar decay constants, after
applying a GEVP analysis, for ensemble J303. Top: plateau for the heavy-light pseudoscalar
decay constant for the two fit intervals with higher weights in the model average. Bottom:
summary of results from different fit ranges together with weights W, p-values and x?/d.o.f..
The shaded blue band represents the model average result.



The continuum heavy-quark mass dependence, ®,, admits an expression in HQET of the
form

(I)X = CHQET(mh) (I)o s (5.5)

w1l @1\
1—|—ph ¢7H+ph <¢H> + ...

where ¢ = \/8tgmpy monitors the heavy quark mass dependence with my being the flavour-
average m g or the ny°"" pseudoscalar meson masses. In general, this expression is not expected
to have high accuracy in the charm mass region, due to it being at the limit of applicability of
HQET. Furthermore, perturbative values for the matching factor Cuqrr(mys) have notoriously
poor convergence behaviour.® However, we are not interested in modelling the heavy quark
mass dependence in a wide region of masses — we rather want to interpolate to the charm point
from the nearby values of the heavy masses we compute at. Therefore, we will simply take an
expression with the same functional form for the mj power corrections, and a constant overall
coefficient, as a convenient ansatz for the interpolation part of our fits. In HQET terms, this
amounts to neglecting the small logarithmic dependence on my, in a short interval of values.

The light quark mass dependence term, following Heavy Meson xPT (HMyPT) consider-
ations, reads [38,85]

1+ 3g? 1 4 (4)

o 242
647 ¢f d)f d)f OH (5 7)
1+ 3¢ 4,71, 8(¢1— ) o Py
§dPs  — =129 yp iy 2A\Va T ¥2) [ )(0) (%2 , x
xPT 647T2¢?c |: K+ 3 77:| + ¢? px + X (ZS?» + (bH )
where p&o’l =) are fit parameters and ¢? is the H* Hn coupling in the static and chiral limits,

here treated as a free fit parameter alongside pgf ) In Eq. (5.7) we introduced the notation for

the chiral logarithm corrections

Lr = ¢2log(dz), (5.8)
Lk = <<Z>4 = ;@) log (¢4 — %(/52), (5.9)
Ly = (;l@ - ¢2> 10g(§¢4 — ¢2). (5.10)

Here ¢ and ¢4 are the usual hadronic combinations introduced in Eq. (2.6), which control
the light and strange quark mass dependence. When working at NLO in the chiral expansion,
the term ¢ appearing in Eq. (5.7), which introduces the xPT scale, is here replaced by the
continuum physical value of /8% frx, as determined from our setup [1] at full twist, with f,x
given by’

2 1
frk =5 (fxk+ 5/ - (5.11)
3 2
5This is readily observed in the expression for the coefficient in the MS scheme [86,87],
_ v0/2680 |1 s (mn) 8. Yo 2
Cher (ms) = o (ma)]7*/2% |14 2] (24 2 - 208) 4 oo 5.6

where, for QCD, vo = —4, 71 = —254/9 — 5672 /27 420Nt /9, while the perturbative coefficients of the 8 function
have their usual values 5o = (11 — 2N¢/3) and 1 = (102 — 28N¢/3).
"We remind the reader that fr is the quantity used to extract the physical scale t2™* in our setup.
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Finally, with similar arguments to the one discussed in the case of the charm quark mass, the
D
lattice spacing dependence 6@, for the observables ® Dy, Can be parameterised as

2

a
60 = < [P0 + o2 (P + 6% ) + PP 0| + O(a),
) (5.12)
a
s = o [p PO+ 2(01 = 60) (D + 0P %) + 9D 0% | + O(a?),

where p(o’ 2-) are fit parameters.
To summarise, for the continuum quark mass dependence of ®p and ®p, we adopt the
expressions

4 1+ 3¢> 1 4 ()
®p(0, ¢2, 1) = po + (f;@—&-pi _it9 (3£ﬂ+2£K+3£n) ¢2 ( O 4 p>22 2 L P ; )
H

¢H 647T(;5? ¢2 ¢
8 - 1+ 39> 4
¢Dg(0,¢2,¢H):P0+W+£— 64n ¢g3£ <4£K+3£n>
M ©0) 4 p 22 ¢2 pgc)
+ 7 ( +p + o0

(5.13)

obtained by combining the light and heavy quark dependencies d®,pr and ®,, respectively.
Following Eq. (5.4), this then leads to the final ansatz for ®p, of the form

®p, (a, ¢2,0m) = Pp, (0, b2, d) [1 + 5<I>aD‘S)} : (5.14)

Since many fit parameters are shared between ®p and ®p,, we opt for a global fit for deter-
mining the two quantities. Moreover, at the symmetric point, i.e., for those ensembles with
degenerate light and strange quark masses p; = us, the two decay constant coincide, and
®p = ®p,. Therefore, a global fit also helps to constrain the parameters at the symmetric
point.

Similarly to the case of the charm quark mass, we consider several specific forms of the fit
ansatz, by setting some combination of fit parameters to zero. We furthermore again match
the charm scale using the two different procedures described in Sec. 3. The result is a total
of 57 different models for each matching condition, and we use our TIC criterion to extract
a systematic uncertainty associated to the variation within the full set of fits. In this work,
our current approach deliberately excludes fits involving cuts in S or pion masses, as with the
current subset of ensembles they are significantly penalised by the TIC. As we look ahead to
future updates with the complete set of ensembles we will incorporate cuts in the data within
our analysis.

In Figure 12 we show the chiral extrapolations for fp and fp, with larger weights in the
model average. From our chiral-continuum extrapolations of ®p and ®p,, we observe a mild
dependence on the choice of the ¢y used to match the charm scale. Therefore, in the Figures
we illustrate the flavour-averaged matching condition only. We also notice that ®p shows
some curvature in ¢ arising from the chiral logs, while ®p_ presents a more linear behaviour
while approaching the physical point. Figure 13 shows an illustration of the scaling towards
the continuum limit of ®p and ®p,. We observe that the continuum approach is very well
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Figure 12: Chiral behaviour of the best fits according to the TIC criteria applied to ®p (top)
and ®p_ (bottom). Each point is projected to the physical charm quark mass, and results
are shown for the flavour-averaged matching condition QSS) Dashed lines refer to the mass
dependence at finite values of the lattice spacing, while the blue band represents the projection
to the continuum limit. Finally, the red square symbols indicate the physical point results.
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¢g) qﬁg) combined
Op || 0.8624(78)(7) 0.8583(75)(8) 0.8606(76)(21)
dp 1.0352(61)(9) 1.0295(60)(11) 1.0328(60)(30)

B

Table 4: Model average results for the observables ®p and ®p, — defined in Eq. (5.3) —
which are related to the fp and fp, decay constants, respectively, for the two different match-

ing quantities d)z). The last column reports the result of the combination of these two matching
conditions. The first error is statistical while the second is the estimate of systematic uncer-
tainty arising from the model averaging procedure.

described by leading cutoff effects of O(a?), as expected for our valence action when it is tuned
to maximal twist.

In Table 4 we show our determinations of ®p and ®p, for each of the two procedures to
match the charm scale, as well as the result from their combination. Using this combination
we arrive at the following results for the the D(,) meson decay constants,

fo = 211.3(1.9)(0.6) MeV, (5.15)
fp. = 247.0(1.9)(0.7) MeV, (5.16)

where the first error is statistical and the second the systematic uncertainty from the model
average. The error budget for the D, decay constants is dominated by the statistical uncer-
tainty of correlators and the error on chiral-continuum extrapolations. Therefore, we expect
that a future addition of other ensembles with finer lattice spacing and physical pion masses
will contribute to significantly reduce the uncertainty of our current determination. The dif-
ferent contributions to the variance of D(,) meson decay constants are shown in Figure 14.
Finally, in Figure 15 we show a comparison between our results and other Ny = 2 + 1 lattice
QCD determinations.

5.3 Direct determination of fp_ /fp

In addition to the determination of fp and fp,, we investigate the direct determination of
the ratio fp,/fp from a dedicated fit. This allows for a consistency check, since the ratio is
dimensionless and thus does not require normalisation with a reference scale such as 1/8tg. One
particular consequence is thus that this approach is only indirectly subject to the uncertainty
of the lattice scale setting. Another advantage is that the ratio is exactly 1 by construction
when ms = my, i.e., the symmetric point of our ¢4 = constant trajectory, which is part of our
line of constant physics. We can thus perform a fit that is highly constrained in the unphysical
masses region, although at the price of reducing the total number of ensembles entering in the
study of the approach to the physical point.

A first set of fit ansaetze is derived from the HMyPT expressions considered above for
®p,, - The generic form is

if;j = [1 + (5‘1’51% - 5<I>§’pT)] [14 (600 — 602)]. (5.17)
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Figure 14: Relative contributions to the total error of our determinations of fp (left) and
fp. (right). The label statistical plus y-continuum limit represents the error arising from the
statistical accuracy of our data and the chiral-continuum extrapolations. The scale setting label
denotes the error coming from the physical value tghys as determined within our setup [1], while
the model average represents the systematic error arising from the model variation according

to the TIC procedure.

Here 6® IgT introduced in Eq. (5.7) labels the light quark mass dependence of the ratio, while

5<I>a( * from Eq. (5.12) controls the continuum approach. It is worth noticing that at leading
order the physical dependence on ¢g, and also the lattice spacing dependence related to ¢g,
cancel out when expanding the ratio. Collecting all the terms entering in Eq. (5.17) from the
previous section, we end up with

v, [} 1436 4261~ 302) 2% 4 B
®p [1 - 64772¢?c 2Lk + Ly = 3La] + ¢f ( +p ¢2 " on >] (5.18)

2
[1+a—(2¢4—3¢2) < Pk >]
8t

In this expression we consider all the possible combinations of non-vanishing fit parameters,
and perform our TIC-weighted model average among the different functional forms tested to
quote a systematic uncertainty.

Given that various terms cancel in the HMyPT expressions, we will further explore the
systematic uncertainties by considering also functional forms based on a Taylor expansion of
®p,.,- The generic expression then reads

Dy
@p,, = (@ D(S)>x 1+ 30 agtor] [ 1+ 09,50, ] [1+ 002 (5.19)

where <<I> D(S)> is the value in the chiral limit and at the physical value of the heavy-quark
X
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Figure 15: Comparison of our results for fp and fp, with those from lattice QCD collaborations
based on simulations with Nt = 2 + 1 dynamical flavours as well as with FLAG21 averages [9].
Only data points with filled symbols contribute to the FLAG averages. Starting from the
bottom, results are taken from: HPQCD 10 [28], PACS-CS 11 [88], FNAL/MILC 11 [29],
HPQCD 12A [30], xQCD 14 [35], RBC/UKQCD 17 [39], xQCD 20A [89].

mass. In this expansion, the heavy and light mass dependence terms read

2
_of 1 1 oL __1
O0Pp Taylor = D), <¢—H — (ZSII)}YS) + Dy, <¢—H - QSI;}IYS )

1 1
5(I>7Dn,Taylor = pgg)% + ¢2 pgrlL) + p%)% +p£2) ((ZS_H - ¢phys>] s (520)
H
1 1
5(I>7Dr:Taylor = pgg)m + 2(¢4 - ¢2) pg’}L) +p£r2L)¢2 +p£2) ((ZSH — ¢1§1y8>] .

D
The lattice spacing dependence 6@, " can be parameterised in a similar fashion to that in
Eq. (5.12). Combining these expressions into a functional form for the ratio of decay constants
one then has

O, 1 1
5. = |1+ (204 302) P + piP by + plf) <—¢H —q%rlys)”
y 1+a2 (26 _3¢)<(1)+(3)¢2> (5.21)
_8t0 4 2) \ Pq b.,"9m)| - )

Then, in order to arrive at a final determination of fp_/fp we perform a model average
among all the HMxPT and Taylor functional forms for the two different matching conditions
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qbg) d)S) combined
fo./fp || 1.177(15)(6) 1.178(15)(6) 1.177(15)(5)

Table 5: Results of the model average for fp,/fp for the two charm-quark matching conditions.
The last column reports the combined result. The first error is statistical while the second is
the systematic uncertainty arising from the model variation procedure.

simultaneously. In Table 5 we report our results for the ratio of decay constants from the model
average separately for each charm matching condition, as well as their combination. Also for
the ratio we observe good agreement for the two different ¢(1_ZI) tested in this work. Finally, for
the result combining the two matching conditions, we quote

Ip,
fp

where the first error is statistical and the second is the systematic uncertainty based on the
model average procedure.

In Figure 16 we show the HMyPT chiral-continuum fit of the ®p_ /®p ratio with highest
weight in the model averaging procedure. In particular the plot on the left shows the chi-
ral approach to the physical point, while the plot on the right represents the lattice spacing
dependence. The observed dependence on ¢o shows only a mild curvature arising from the
chiral logs, while cutoff effects appear to be highly suppressed at the current level of statistical
precision of our data.

Figure 17 shows a summary of the model average procedure for the ratio ®p,/®p, dis-
playing the fit results for the two matching conditions together with the associated weights,
for the HMxPT and Taylor functional forms.

In Figure 18 we show the major error sources contributing to our final determination of
the ratio, where we notice that the major contribution is given by the statistical and chiral-
continuum error. Finally, in Figure 19 we show a comparison between our result for fp_/fp,
the FLAG21 average and results from other collaborations.

= 1.177(15)(5), (5.22)

6 Conclusions and outlook

In this work we have described our first computations of physical observables in the charm sector
using the Wilson fermion mixed-action setup described in greater detail in [1]. Emphasis is put
in setting up our methodology and exhibiting the characteristics of the framework. Our results
for the charm quark mass and the D(,) meson decay constants are based on a subset of CLS
ensembles, yet they already sport a level of precision similar to that of several state-of-the-art
results. We quote the values

MM (Ng = 3) = 1.485(8)(3)(14)[17] GeV,
fp = 211.3(1.9)(0.6)[2.0] MeV, (6.1)
fp. = 247.0(1.9)(0.7)[2.1] MeV, '
fp./fp=1.177(15)(5)[16],
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Figure 16: Illustration of the chiral-continuum extrapolation of the ratio ®p_ /®p for the
HMyPT model with highest TIC value. Results are shown for the flavour-averaged matching
condition. Top: Chiral approach to the physical point. The dashed lines illustrate the chiral
trajectories at finite lattice spacing, while the blue shaded band is a projection of the continuum
fit. The red square symbol represents the physical result in the continuum. The black cross
symbol corresponds to the symmetric point. Data points at finite lattice spacing are projected
to the physical charm quark mass. Bottom: Lattice spacing dependence of ®p_ /®p. The red
square symbol indicates the continuum result, while the blue shaded band shows the fitted
functional dependence on the lattice spacing. Points at finite lattice spacing are projected to
the physical values of ¢9 and ¢g.

as our main results. For the RGI charm quark mass in the 3-flavour theory, MRSI(N; = 3),

C
the first uncertainty is statistical, the second corresponds to the systematic error arising from
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Figure 17: Summary of the model average procedure for the ratio ®p_ /®p based on the

combination of the two matching conditions, (bg) and ng) Each circular symbol represents the
result of a specific functional form, and the opacity is associated to the normalised weight W of
the model based on its TIC value. The yellow band represents the systematic uncertainty arising
from the set of tested models, while the left-most red point is our final averaged result. The
labels of the 20 models specified in the horizontal axis are related to the terms characterising
the dependencies on the mass and lattice spacing in the following way: ¢HMChPT’ stands for the

expression in Eq. (5.18) where only the leading terms depending on the fit parameters pgco) and

p&l) are considered . Similarly, ‘taylor’ refers to Eq. (5.18) where only the terms depending

on the fit parameters p%) and p&l) are kept. The labels ‘p(2)’ and ‘p(4)’ correspond to the

addition of the higher order terms depending on the parameters pgf) and pgf) in Eq. (5.18),

respectively, while ‘pm(2)°’ denotes the addition of pg) from Eq. (5.21). Finally, ‘p(3)’
denotes the inclusion of the fit parameter p&g) parameterising higher order lattice spacing
dependence appearing in both the HMYPT and Taylor functional forms in Eq. (5.18) and

Eq. (5.21).

the model selection, the third arises from the RGI running factor in Eq. (4.2), and the last one
in brackets is the total error. For the decay constants fp, fp, and their ratio fp_/fp, the first
error is statistical and the second is the systematic uncertainty from the model averaging, and
the total error is given in brackets.

We foresee that these results could be improved in the future by means of a more extensive
analysis including additional CLS ensembles with a finer value of the lattice spacing and physical
pion mass simulations. This is expected to have a significant impact in reducing the statistical
uncertainty of the decay constants. The error on the charm quark mass, on the other hand, is
dominated by the uncertainty induced by the non-perturbative renormalisation group running
and thus work on that front would be required to improve the precision significantly.
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Figure 18: Left: Relative contributions to the total error on the determination of the ratio
fp./fp. The label statistical plus y-continuum limit represents the error arising from the
statistical accuracy of our data and the chiral-continuum extrapolation. The scale setting label
denotes the error coming from the physical value tghys, while the model average represents
the systematic error arising from the model variation according to the TIC procedure. Right:
Details of the relative contributions to the statistical and chiral-continuum extrapolation error
arising from specific gauge field configuration ensembles.

In a related line of work, we are also applying our framework to the computation of
semileptonic form factors for charmed meson decay, for which preliminary results have already
been presented in [91,92]. Together with the computations illustrated in this paper, they
show how a comprehensive programme of precision heavy-flavour physics can be pursued in
the framework of Wilson fermion regularisations, reaching an excellent compromise between
the latter’s advantages from the point of view of field-theoretical control and the aim of high-
precision computations.
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Appendix A GEVP implementation

In this work, ground state meson masses and matrix elements are extracted from a gener-
alised eigenvalue problem (GEVP) variational method following [64]. The GEVP has the form
described in Section 3, cf. Eq. (3.3) and the discussion that follows.

Considering only the first N state contributions in the spectral expansion, we can extract
their effective energies from the eigenvalues A\, (t, t,ef) as

>\n (t, 751’ef)

Ef(t, o) =1 —
“ " ( ’ Ief) Og (An(t + a’ tref)

> = aE, + O(e”Enr1=En)ty, (A.1)

Here the asymptotic behaviour O(e*(ENH*E")t) is ensured exclusively in the regime t,ef > /2.
Whenever £, is kept fixed the first unresolved excited state is the n 4+ 1, and the asymptotic
scaling behaves as O(e*(E"H*E")t), therefore providing shorter plateaus. In Fig. 20 we show
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a comparison of low-lying heavy-heavy pseudoscalar states as extracted from the GEVP with
different values of t,ef. In general, we observe a similar behaviour when comparing different
values of t,f, with a slightly better convergence when the condition t,os > ¢/2 is fulfilled. In
this work we therefore stick to this choice for plateau extraction by setting tf = t/2. As
explained in the main text, in order to assess the systematic uncertainty associated with the
extraction of the ground state signal from a plateau behaviour in the effective energies, we
perform numerous fits by varying the time ranges of the fitting interval, and apply the model
averaging procedure described in Appendix B — cf. the illustration in Fig. 1.

As additional cross-checks and stability tests we also computed the first excited state from
the GEVP. A comparison of the ground state and first excited state as is given in Fig. 21
together with the plateaus of choice. As we are only interested in ground state, we choose to
stick to the 2 x 2 matrix formulation of the GEVP.

In addition to the meson spectrum, in this work we also extract the matrix element
(0|P9"|PY"(p = 0)) from the GEVP analysis by considering the normalised eigenvector vy, (¢, tyef)
in Eq. (3.3), where we remind that |P?"(p = 0)) stands for a ground state. Namely, we define
for each state n the number [64]

Ry = (vn(t, trer), Co) () (¢, trep)) /% €00/, (A.2)

where (-,-) is the usual scalar product and Cp is the GEVP matrix from Eq. (3.5). Then, the
ground state matrix element is given by

PG (¢, tret) = (v0(ts tret), Cr0))Ros  (Cro)i = (Ci)ro (A.3)

The large distance behaviour of the effective matrix element is governed by
D6 (£, tre) = po + O(e™ Nt =Folteer) = py — (0|PT"| P (p = 0), (A4)

in the regime where the condition t,.s > /2 is satisfied. We perform constant fits in a number of
time intervals and use the model averaging procedure in Appendix B to estimate the systematic
uncertainty due to excited-state contamination. In Figure 11 we show a representative plateau
for a heavy-light decay constant, together with a summary of the model average with different
fit intervals.

Appendix B Model averaging procedure

In this work, the systematic uncertainties are estimated from a model averaging procedure
discussed in detail in [1]. Here we collect the main ideas and point to the relevant background
references.

As is often the case in lattice QCD calculations, in this study we deal with fits to highly
correlated data. The dichotomy thus arises between trying correlated x? fits, which typically
leads to numerical instabilities and potential biases in statistical estimators, or keeping an
uncorrelated x2, which is however not a suitable quantity to assess the goodness-of-fit. To
overcome this situation, we follow an approach introduced in [26] based on the expectation
value of the x?, denoted ngp, and its corresponding p-value, which does allow to quantify the
goodness-of-fit in a controlled manner. Furthermore, we make use of the Takeuchi Information
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Figure 20: Illustration of the ground-state effective masses determined from a GEVP analysis
with three different ways of setting the value of #,.r for the ensemble J303. The effective masses
are normalised by the central value of the mass extracted from conservative plateau choices.
The parameter t,.¢ is either kept fixed, t,o¢/a = 1,5, or varied by setting ¢ = /2 in such a
way that the condition t.s > £/2 is fulfilled.

Criteria (TIC) proposed in [25] to assign a weight to each model, which then allows to per-
form a weighted model average to arrive at a final result for the systematic uncertainty [24].
Specifically, the value of the TIC assigned to each fitting model is

TIC = x* — 2xZy, - (B.1)

To each model m in the complete set, consisting of M models, we assign a normalised weight
W defined as follows

M
1
W, o exp ( - 5TICm>, Z W, =1. (B.2)
m=1

The result of the model average for an observable O that has been determined for each of the
models is then given by

() =S Wi (O)m. (B.3)

e
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Figure 21: Illustration of the ground state and first excited state for a heavy-light pseudoscalar
meson mass as extracted from the GEVP for the ensemble J303. We use t,of = ¢/2 such that
the condition t.s > /2 is fulfilled. The shaded bands correspond to the plateaus of choice.

Finally, to estimate the systematic uncertainty arising from the model variation we employ the
weighted variance defined as follows

0h = Ml (Wm<0>$n> - (f: Wm<(’)>m>2. (B.4)

m= m=1
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