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Abstract: We explore the connection between super W-algebras (SW-algebras) and

G-structures with torsion. The former are realised as symmetry algebras of strings

with N = (1, 0) supersymmetry on the worldsheet, while the latter are associated with

generic string backgrounds with non-trivial Neveu–Schwarz flux H. In particular, we

focus on manifolds featuring Spin(7), G2, SU(2), and SU(3)-structures. We compare the

full quantum algebras with their classical limits, obtained by studying the commutators

of superconformal and W-symmetry transformations—which preserve the action of the

(1, 0) non-linear σ-model. We show that, at first order in the string length scale ℓs,

the torsion deforms some of the OPE coefficients corresponding to special holonomy

through a scalar torsion class.
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1 Introduction

It is well-known that string compactifications with no fluxes on manifolds of special

holonomy are associated with extended chiral symmetry algebras on the worldsheet

[1–7]. This provides an intriguing connection between differential geometry and two-

dimensional conformal field theories (CFTs) that can be exploited to gain insight into

both subjects. The prime example of this synergy is the use of spectral flow [8] to

unveil mirror symmetry for Calabi–Yau manifolds [9]. More recently, generalisations of

these techniques have been applied to describe mirror symmetry for manifolds with G2

or Spin(7) holonomy [6, 10–15].

Perhaps surprisingly, outside the realm of special holonomy manifolds—that is,

manifolds equipped with a torsion-free G-structure—our knowledge of the underlying

chiral algebra remains quite limited, even though recent efforts have been made in

this direction [16]. In this work we take steps to identify the worldsheet algebras

associated with string backgrounds involving a G-structure with torsion. In particular,

we are interested in critical strings compactified on a d-dimensional internal Riemannian

manifold M, equipped with a (torsionful) G-structure. Furthermore, we will assume

that the torsion is given by a non-zero Neveu–Schwarz (NS) flux H on M.

The fundamental object of study for us are W-algebras: extensions of the Virasoro

algebra for which the operator product expansions (OPEs) can be non-linear in the

generators [17, 18].1 More concretely, we focus on algebras preserving N = 1 super-

symmetry, which we call super W-algebras or SW-algebras for short. These have been

extensively studied and classified according to the number and the conformal weights

of their generators [23–33].

Unfortunately, the geometric meaning (if any) of these SW-algebras is obscured in

the purely algebraic classifications: a more elaborate procedure is needed to identify the

algebra underlying a given string background. An approach that has been extensively

used in the literature is to focus on geometries such that the corresponding SW-algebra

admits a straightforward description, for example in terms of a free field realisation [6,

10, 11, 13, 14, 34–36], Gepner models [15, 37–44] or WZW models and coset realisations

[16, 45–51].2 We follow an alternative strategy and consider a non-linear σ-model with

target a critical string background as above. Howe and Papadopoulos discovered that,

for every covariantly constant differential form on M, the σ-model enjoys an additional

1W-algebras are often studied following the formalism of Vertex Operator Algebras (VOAs) pro-
posed in [19, 20] and reviewed in [21]. We adopt a different approach, following for example [22].

2Another way—found in the mathematical literature—to provide a geometric interpretation of a
W-algebra consists in finding an embedding into the sections of the chiral de Rham complex [52],
which is a sheaf of vertex algebras over a manifold. Some examples of this are [53–60].
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Figure 1: Triangle of relationships between the geometry of the string background,

the SW-algebra of the worldsheet CFT and the non-linear σ-model. The dashed line

represents the correspondence we want to study, which can be worked out explicitly

(perturbatively in the string length scale ℓs) at the level of the classical non-linear σ-

model.

(non-linear) classical symmetry [61–64]. These are called W-symmetries and hold even

in the presence of a non-zero NS flux [65] (see also [66]) and for heterotic σ-models that

include a gauge bundle sector [67–69].

A G-structure with torsion on M can be equivalently described in terms of a

collection of differential forms {Φ1, . . . ,Φn}, known as characteristic forms, that are

covariantly constant with respect to a connection with torsion. This torsion is identified

with the NS flux H at the level of the σ-model. We thus find that the σ-model enjoys

a classical algebra of W-symmetries associated to M, with a classical Noether (super)

current J i
cl. for each covariantly constant form Φi

Φi
W−→ J i

cl. .

In the torsion-free setting, this algebra is usually regarded as a classical limit of the al-

gebra of worldsheet chiral symmetries, where the Noether currents are classical versions

of the quantum chiral currents {J 1, . . . ,J n},

J i cl.−→ J i
cl. .

These relationships are pictorially summarised in Figure 1. Nevertheless, to the best

of our knowledge this correspondence has not been made fully explicit in the literature

so far. In this paper, we propose a procedure to compare the chiral algebra with
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its classical limit, simultaneously identifying the correct SW-algebra and providing a

geometric interpretation for its couplings. We do so for (1, 0) σ-models with NS flux H,

a setup that includes G-structures with torsion.3 On the one hand, from the number

(and degree) of the differential forms describing the G-structure on M—and using

the classification results for SW-algebras—we can find a family of consistent quantum

algebras that are candidates to describe the string background. These families depend

on parameters—such as the central charge c—that lack any geometrical meaning at

this stage, but are present in the OPEs of the operators J i.

On the other hand, from the classical algebra of W-symmetries we are able to

produce a set of classical OPEs for the chiral currents J i
cl.. The attribute “classical”

indicates that these OPEs encode the same information of a set of commutators [δ1
ǫ1
, δ2
ǫ2

],

where we denote by δi a symmetry transformation preserving the classical worldsheet

action. These classical OPEs encode geometrical information about the G-structure,

and in particular its torsion classes. Comparing the OPEs of the chiral currents J i with

those of their classical counterparts J i
cl., the geometry of M constrains the couplings of

the SW-algebra. Since we are comparing a quantum algebra with its classical version,

the identification is only effective up to the lowest order in the string length parameter

ℓs, and we pay close attention to this throughout our work. Remarkably, even at this

order we are able to effectively identify the contribution from scalar torsion classes.

We study different choices of G-structures, more precisely we take the group G to

be equal to O(d − n), Spin(7), G2, SU(2) and SU(3). In the absence of torsion we

recover all the special holonomy algebras, explicitly verifying the widespread lore in

the literature. For Spin(7)- and SU(2)-structures, the effect of torsion is not explicit

at the order of ℓs we are working on. Nevertheless, for G2-structures with torsion we

recover a one-parameter algebra—first studied in [16]—which can be understood as a

deformation of the Shatashvili–Vafa G2 algebra associated with special holonomy. We

find that the scalar torsion class of the G2-structure is tied to the parameter of the

family through the relation reported in Table 1.

The case of SU(3)-structures poses an additional challenge since the classification

of the underlying SW-algebras is not available. Therefore, we perform a perturba-

tive study around the Od(3) algebra corresponding to the special holonomy locus.

We find an infinitesimal deformation parametrised again by the scalar torsion classes:

this strongly suggests the existence of an honest SW-algebra associated with SU(3)-

structures with torsion.

3Since we focus on the holomorphic sector, the gauge bundle will not play an important role and
one could argue that the same result should hold for the holomorphic sector of (1, 1) σ-models as well.
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Outline of the paper

The paper is organised as follows:

⋄ In Section 1.2 and in Section 1.3 we review the notions of G-structure, torsion,

and the construction of SW-algebras, providing at the same time our superspace

conventions.

⋄ In Section 2 we review the (1,0) non-linear σ-model and the W-symmetries.

We present the computation of the commutators of the superconformal and W-

symmetries and reformulate them as classical OPEs.

⋄ In Section 3 we introduce our procedure to interpolate the classical OPEs with

their corresponding quantum version; we study explicitly the SW-algebras asso-

ciated with O(d− n)-structures as a warm-up, moving then to the study of SW-

algebras associated with manifolds endowed with Spin(7),G2, SU(2) and SU(3)-

structures.

⋄ In Section 4 we present our conclusions and outlook for future work.

⋄ In Appendix A we provide more details regarding the definition of null fields

in the context of SW-algebras, adopting a more formal point of view. We also

comment on how to test null fields through their OPEs with the generators of a

given SW-algebra.

⋄ In Appendix B we present a compendium of explicit OPEs associated with differ-

ent SW-algebras with or without torsion.

We present a brief summary of the algebras that we identify for each of the G-

structures—as well as the constraints imposed by the identification with the classical

algebras—in Table 1.

1.1 Differential forms conventions

We collect in this brief Section all our conventions regarding differential forms and their

manipulation. Given local coordinates {x1, . . . , xd} and a metric G on a manifold M
of dimension d, a generic p-form Φ has coefficients

Φ =
1

p!
Φi1···ip(x)dxi1···ip ,

where dxi1···ip := dxi1 ∧ · · · ∧ dxip . As usual, we define the exterior derivative dΦ as the

(p+ 1)-form

dΦ =
1

p!
∂jΦi1···ip(x)dxj i1···ip .
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G-struct. H = 0 H 6= 0 Par. Constraints found

O(d− n)
SVir ⊕ Freen SW

(
3
2 ,

1
2 , . . . ,

1
2

) CIJ CIJ = −σI · σJ +O(ℓ2
s)

(σ1, . . . , σn) fIJK fIJK = −ℓsHijkσ
i
Iσ

j
Jσ

k
K +O(ℓ2

s)

Spin(7)
SVSpin(7) [6] FS [23] c −

(Ψ)

G2
SVG2 [6] FGk [16] ⊂ Bl [27] k

»
2
k

7k−4
49k−24 = 1

6τ0ℓs +O(ℓ2
s)

(ϕ,ψ)

SU(2)
Od(2) [4] SW

(
3
2 , 1, 1, 1

)
c c = 6 +O(ℓ2

s)
(ω,Ω±)

SU(3)
Od(3) [4] Odε(3) ⊂ SW( 3

2 ,
3
2 ,

3
2 , 1) v±

v± = 4w±

0 ℓs +O(ℓ2
s)

(ω,Ω±) W±

0 = εw±

0 +O(ε2, ℓ2
s)

Table 1: Summary of the existing literature and new results. For each G-structure we

provide the characteristic forms in brackets. More details regarding G-structures can

be found in Sections 1.2 and 3. For each one of them we list the associated special

holonomy (H = 0) and torsionful (H 6= 0) SW-algebras studied in this paper. Up to

our knowledge, we pair each algebra with the original reference where it first appeared;

more details—including the explicit OPEs—can be found in Appendix B. Finally, we

indicate the real parameters of each torsionful algebra and we provide their relationship

with the torsion and the characteristic forms up to order O(ℓ2
s). Notice that τ0 and W±

0

indicate the scalar torsion classes respectively of the G2 and SU(3)-structure intrinsic

torsions. The derivations are presented in Section 3.

Let Ψ be another q-form on M. We define the interior product between Φ and Ψ as

the (p+ q − 2)-form

iΦ(Ψ) = Φi ∧ Ψi ,

where Φi is given by

Φi =
1

(p− 1)!
Φi

j2···jpdxj2···jp .

Given the p-form Φ and the (p+ n)-form Θ, we define the hook contraction between Φ

and Θ as

ΦyΘ =
1

p!n!
Φi1...ipΘi1···ipj1···jndxj1···jn .
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The Hodge star operator ∗ acts on the p-form Φ as follows

∗Φ =

√
G

(d− p)! p!
Φi1...ipǫi1...ipj1...jd−p

dxj1...jd−p ,

where ǫi1...id is the Levi-Civita symbol. The Hodge star and the hook contraction are

tied together by the following relation

ΦyΨ = (−1)p(d−p−n) ∗ (Φ ∧ ∗Ψ) . (1.1)

Finally, we anticipate the introduction in Section 2 of a set of bosonic (super)fields X i

and of a fermionic (super)derivative D. Given a p-form Φ on M, we denote by Φ̂ the

contraction

Φ̂ =
1

p!
Φi1···ip(X)DX i1 · · ·DX ip . (1.2)

1.2 Review of G-structures with torsion

In a supergravity compactification on a d-dimensional manifold M, demanding that

some space-time supersymmetry is preserved typically requires M to be endowed with

a G-structure. We briefly review G-structures and their most relevant properties, for

more detailed discussions we refer the reader to [70, 71].

A G-structure is a reduction of the frame bundle of M to a principal subbundle

with structure group G ⊂ GL(d,R). A G-structure on M naturally prescribes an action

of the group G on tensor fields on M, and the space of tensors decomposes into G-

representations accordingly. The singlets under this action constitute a distinguished

collection of nowhere-vanishing tensor fields on M that are G-invariant and receive

the name of characteristic tensors. Conversely, the existence of such tensors uniquely

determines each G-structure.

Thus, we will describe G-structures via their characteristic tensors in what follows.

For example, an O(d)-structure on M describes a choice of orthonormal frames and

is therefore equivalent to the manifold being Riemannian. This shows that its charac-

teristic tensor is simply a Riemannian metric G and we can equivalently work directly

with G.

Different types of G-structures can be classified according to their torsion classes

[72–74]. A connection ∇T with torsion tensor T is said to be compatible with a given

G-structure if all the corresponding characteristic tensors are covariantly constant un-

der ∇T. We will study G-structures for which the characteristic tensors are typically

differential forms Φ: it is convenient to rewrite

∇TΦ = 0 =⇒ dΦ = −iT(Φ) ,
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and note that iT(Φ) does not depend on the choice of compatible connection. There-

fore, the exterior derivatives of the characteristic forms intrinsically characterise the

G-structure, and their decomposition into irreducible G-representations provides a col-

lection of forms which are known as the torsion classes of the G-structure. These can

in turn be used to define the intrinsic torsion of the G-structure [71]. Since torsion

classes depend on the choice of group G, we will introduce them on a case-by-case basis

in Section 3.

Supersymmetry requires the existence of a unique compatible connection with to-

tally antisymmetric torsion so that it can be identified with the NS flux H, see (2.3)

below [75–77]. We will always assume that we have such a connection and denote its

torsion by Tor: this typically imposes additional constraints on the torsion classes of

the G-structure. Furthermore, Tor can be uniquely expressed in term of the torsion

classes.

To illustrate the discussion above, we briefly present the example of Spin(7)-

structures, which will be discussed in more detail in Section 3.2. A Spin(7)-structure

on an eight-dimensional manifold is determined by a single characteristic four-form Ψ

known as the Cayley form. A Spin(7)-structure has two torsion classes τ1 ∈ Ω1
8
(TM)

and τ3 ∈ Ω3
48

(TM), which are defined as follows

dΨ = −iTor(Ψ) = τ1 ∧ Ψ + ∗τ3 ,

where the totally antisymmetric torsion Tor decomposes as

Tor = −1

6
τ1yΨ − τ3 .

In this case the existence of Tor does not impose any additional constraints on the

torsion classes.

Finally, note that G-structures are a natural generalisation of the concept of G-

holonomy: when all torsion classes vanish, i.e., the G-structure is torsion-free, we

recover the usual definition of G-holonomy in terms of closed characteristic tensors.

1.3 Review of SW-algebras

In this work we are interested in the symmetry algebras of worldsheet CFTs, where

the worldsheet is spanned by a (1, 0) supersymmetric string. These algebras are chiral,

since they split into a holomorphic and an antiholomorphic sector: we will focus on

the holomorphic one, which enjoys N = 1 supersymmetry. As a consequence, we

always deal with extensions of the super Virasoro algebra, generated by the holomorphic

component of the stress-energy tensor T (z) and its super partner G(z).
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The enhancement of the Virasoro algebra via additional primary chiral currents

can be described as a W-algebra: similarly, the enhancement of the super Virasoro

algebra can be described by super W-algebras, which will be called SW-algebras in

the following. Going into further details, in our work SW-algebras are generated by

enhancing the N = 1 Virasoro algebra through the addition of primary N = 1 (super)

multiplets. The study of these algebras dates back to the seminal works [17, 18],

but we will mostly follow [22, 23, 26, 27, 35]. Since N = (1, 0) supersymmetry on

the worldsheet will be preserved throughout this paper, it will be convenient to work

in the superspace formalism [23, 26, 27]. The advantage of working with manifest

supersymmetry is the possibility to recast many OPEs into a single super OPE.

We start by setting up our superspace conventions. In addition to the holomor-

phic coordinates (z, z̄) on the worldsheet Σ, we consider a Grassmann coordinate θ

with (holomorphic) conformal weight hθ = −1
2
. The coordinates on the entire super

worldsheet Σ will be called ζ = (θ, z, z̄), while the holomorphic coordinates will be

called Z = (θ, z). The measure on Σ will be indicated as d2|1ζ = dzdz̄dθ, whereas the

holomorphic part of the measure will be denoted by dZ = dzdθ. We introduce the

super derivative

D = ∂θ + θ∂ ,

and we highlight the property D2 = ∂. Moreover, we introduce two covariant intervals

on the worldsheet [27, 53]

Z12 := z1 − z2 − θ1θ2 , θ12 := θ1 − θ2 .

It should be noted that

1

Zn
12

=
1

(z1 − z2)n

Å
1 + n

θ1θ2

z1 − z2

ã
.

Working in superspace, each super multiplet can be organised into a super operator.

For example, the Virasoro multiplet (1
2
G, T ) can be recast as the super stress-energy

tensor

T (Z) = −1

2
G(z) + θ T (z) , (1.3)

and the entire N = 1 Virasoro algebra can then be encoded in a single super OPE

T (Z1)T (Z2) ∼ c

6

1

Z3
12

+
3

2

θ12

Z2
12

T (Z2) +
θ12

Z12

∂T (Z2) +
1

2Z12

DT (Z2) + . . . , (1.4)

where the dots indicate that we are neglecting the regular terms. Note that by ex-

panding intervals and super operators in the Grassmann coordinate θ we recover the

usual Virasoro OPEs. Similarly, given a primary super multiplet (Ph, Kh) of weight h
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the four OPEs between T , G and the operators in the multiplet can be encoded into a

single super OPE between T and the primary super operator Jh

T (Z1)Jh(Z2) ∼ h θ12

Z2
12

Jh(Z2) +
θ12

Z12

∂Jh(Z2) +
1

2Z12

DJh(Z2) + . . . , (1.5)

where our conventions for the super operator are as follows:

Jh(Z) = (−i)2h
(

− Ph(z) + θ Kh(z)
)
. (1.6)

We say that a super W-algebra is generated by a set of super operators 〈1,O1,O2, . . .〉
if any super operator in the algebra can be built out of the generators using addition,

scalar multiplication, (super) derivatives and super normal ordering. Given two super

operators Oi and Oj, their super normal ordered product N(OiOj) is simply the normal

ordered product of the components, which we define in the usual way:

N(AB)(z) =
∮
z

dw

2πi

A(w)B(z)

w − z
, (1.7)

where A and B are two operators and we perform an anti-clockwise integration over

a contour circling the B(z) operator. In this work, our focus is on SW-algebras

SW(3
2
, h1, . . . , hn), generated by the identity operator 1, the super stress-energy ten-

sor T and a finite collection of primary super operators Jh1 , . . . ,Jhn
In this notation,

SW(3
2
) = SVir is the N = 1 super Virasoro algebra. In the following, we will often

drop the prefix “super”, leaving it implicit.

The OPEs between the generators of an SW-algebra are constrained by supercon-

formal symmetry. This was first described in [27] and we provide here a brief summary.

By definition, the operator content F of an SW-algebra can be split as follows

F =
∞⊕

s,r=0

DsF q.p.
r ,

where F q.p.
r denotes the set of all quasi-primary super operators of conformal weight

r. It is important to highlight that the normal ordered product of two quasi-primary

operators Oi and Oj in general does not return a quasi-primary operator. Nevertheless,

N(OiOj) can always be projected onto the space F q.p.
hr+hs

[27]. We indicate by N (OiOj)

the quasi-primary projection of the normal ordering N(OiOj), and refer to [27] for

the explicit formulas.4 For example, the normal ordered product N(T T ) = 1
4
∂DT is

the descendant of a quasi-primary on the nose. On the other hand, this is not true

for the operator N(DT T ), so we can project it on the quasi-primary N (DT T ) =

N(DT T ) − 3
8
∂∂T .

4Note however that the normal ordering convention in [27] differs from the one we are using (1.7).
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Given a set of quasi primary operators {Oi}, we introduce the two-point and the

three-point function coefficients dij and Cijk [27]:

〈Oi(Z1)Oj(Z2)〉 =
dij

Z2hi

12

,

〈Oi(Z1)Oj(Z2)Ok(Z3)〉 =





Cijk

Z
hkij

12 Z
hijk

23 Z
hjki

13

if hijk ∈ Z ,

(−1)2hi+1 Ξ123
Cijk

Z
hkij

12 Z
hijk

23 Z
hjki

13

if hijk ∈ Z + 1
2
,

where hijk = hi+hj−hk and Ξ123 = θ1Z23 −θ2Z13 +θ3Z12 +θ1θ2θ3. The coefficients Cijk
are invariant under an even permutation of the indices, while they pick a sign (−1)F

under an odd permutation where the exponent F is determined by

F =

{
hijk + 4hihj if hijk ∈ Z ,

hijk + 4(hi + 1
2
)(hj + 1

2
) + 1

2
if hijk ∈ Z + 1

2
.

(1.8)

We can now write the following Ansatz for the OPE of two generators Jhi
, Jhj

[27]:

Jhi
(Z1)Jhj

(Z2) ∼
∑

Ok∈ F q.p.
k

∞∑
r=0

Ck
ij A

r
ijk

1

Z
hijk−r/2
12

DrOk(Z2) , (1.9)

where the coefficients Arijk and Ck
ij can be computed exactly. Note that the Arijk are

purely combinatorial, whereas the Ck
ij carry physical information and are usually re-

ferred to as couplings [24, 27]. If hijk ∈ Z, the coefficients Arijk can be found in equation

(2.46) of [27] and the couplings Ck
ij are the solutions of the linear system

Cℓ
ijdℓk = Cijk .

If instead hijk ∈ Z + 1
2
, the coefficients Arijk can be found in equation (2.48) of [27] and

the couplings Ck
ij are determined by

Cℓ
ijdℓk = (−1)2hj+1Cijk .

Since dij and Cijk enjoy symmetries under the permutation of the indices, it is natural

to investigate the symmetries of the couplings Ck
ij. Normalising the basis of quasi-

primary generators {Oi} in such a way that the dij tensor is diagonal, the coefficients

of the two-point functions take the form

dij = C1

ii δij ,
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Coupling hijk ∈ Z hijk ∈ Z + 1
2

Ci
jk

(
C1

kk/C
1

ii

)
Ck
ij (−1)2(hj−hk)

(
C1

kk/C
1

ii

)
Ck
ij

Cj
ki

(
C1

kk/C
1

jj

)
Ck
ij (−1)2(hj−hi)

(
C1

kk/C
1

jj

)
Ck
ij

Ci
kj (−1)F

(
C1

kk/C
1

ii

)
Ck
ij (−1)F

(
C1

kk/C
1

ii

)
Ck
ij

Cj
ik (−1)F

(
C1

kk/C
1

jj

)
Ck
ij (−1)F (−1)2(hj−hk)

(
C1

kk/C
1

jj

)
Ck
ij

Ck
ji (−1)FCk

ij (−1)F (−1)2(hj−hi)Ck
ij

Table 2: Given three quasi-primary operators Oi, Oj and Ok, the couplings in the

first column can be rewritten in terms of a single coupling Ck
ij, the two-point function

coefficients and an overall sign which depends on the conformal weights. The couplings

should be identified with the ones in the second column if hijk is an integer number and

with those in the third column otherwise.

and we obtain the following identities

Cijk = Ck
ijC

1

kk if hijk ∈ Z , Cijk = (−1)2hj+1Ck
ijC

1

kk if hijk ∈ Z +
1

2
. (1.10)

The symmetries of the three-point functions coefficient Cijk can be made explicit as

follows, where the exponent F is given by (1.8):

Cijk = Cjki = Ckij = (−1)FCkji = (−1)FCikj = (−1)FCjik . (1.11)

Combining the identities (1.10) with the identities (1.11), we can extract two lists of

constraints, reported in Table 2. These symmetries can be applied to further simplify

the Ansatz (1.9). Finally, the Ansatz (1.9) must comply with the associativity condi-

tion, which can be encoded in a series of Jacobi identities. The outcome of imposing

such condition greatly varies depending on the number and weight of the generators

of the SW-algebra: we will therefore comment on it on a case-by-case basis for the

algebras we present in Section 3.

Finally, it is important to recall that, in some cases, it is possible to construct null

fields (sometimes also called singular fields) using the generators of the SW-algebra.

A null field is an operator such that every correlation function in which it is present

vanishes automatically [78]. Null fields generate ideals inside the original SW-algebra.
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More details about null fields and their definition, following [22], can be found in Ap-

pendix A.

Since OPEs are only meant to hold inside correlation functions, the presence of null

fields relaxes some aspects of the discussion above. For instance, the OPE consistency

conditions—including the associativity of the OPE—should only really hold up to null

fields. Examples of this can be found in the SW-algebras literature [6, 16]. Further-

more, OPEs themselves are only well-defined up to the addition of null fields. This

means the value of the couplings Ck
ij can be modified by redefining the OPE using null

fields: this will play a important role when giving a geometric interpretation to OPEs

in Section 3.

2 Classical OPEs from W-symmetries

In this Section we work with a classical (1, 0) non-linear σ-model and we study the

Noether currents associated with its superconformal and W-symmetries. These cur-

rents should be seen as the classical limits of the ones appearing in the super W-algebras

introduced in the previous Section. We study their commutators and we write down

a set of classical OPEs, i.e., OPEs between the classical limits of the currents. As

anticipated in the Introduction, the attribute “classical” indicates that such OPEs find

their origin in a set of commutators [δ1
ǫ1
, δ2
ǫ2

], where δiǫi denotes a generic symmetry

transformation preserving the worldsheet classical action.

2.1 The (1,0) non-linear σ-model

We work with the classical (1, 0) non-linear σ-model, which can be employed to describe

the dynamics of a heterotic superstring propagating on a general string background. Let

M be a d-dimensional Riemannian manifold endowed with a metric G and a two-form

(Kalb–Ramond field) B. Let V →֒ M be a gauge bundle over M of rank q endowed

with a connection A. Without loss of generality, we consider the metric on the fibres

of the bundle to be constant [67]. We can make supersymmetry manifest by working

in the (1, 0) superspace formalism (see Section 1.3 for more details and conventions).

The (1, 0) σ-model has two sets of superfields5

X i = xi + iθψi , Λα = λα + θfα .

The X i superfields are bosonic: the components xi describe the coordinates of the

internal manifold M, while ψi is a set of left-moving Majorana–Weyl fermions. The

Λα superfields are fermionic: the fields λα are right-moving Majorana–Weyl fermions

5In the following, the indices i, j, k, . . . run from 1 to d; the indices α, β, γ, . . . run from 1 to q.
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and represent sections of the gauge bundle V , whereas fα are a set of auxiliary fields.

The action of the classical two-dimensional (1, 0) non-linear σ-model reads [67, 79]

S[X,Λ] =
∫
Σ

d2|1ζ

2 ℓ2
s

[
Mij(X)∂̄X iDXj + tr (ΛDAΛ)

]
, (2.1)

where the trace is performed over the gauge bundle indices, Mij(X) = Gij(X)+Bij(X)

and DAΛα = DΛα + Âαβ(X)Λβ, with Âαβ(X) = A α
i β(X)DX i; ℓs is the string length

scale, which we write in terms of the Regge slope α′ as

ℓs =
√

2πα′ .

It is instructive to integrate out the Grassmann variable θ and the auxiliary fields fα

as we are then naturally led to introduce the gauge field strength F = dA+A∧A and

the Neveu–Schwarz three-flux (NS flux) H = dB:

S[x, ψ, λ] =
∫

Σ

dzdz̄

2 ℓ2
s

[
Mij(x)∂̄xi∂xj +Gij(x)ψi∇̄ψj − tr (λ∇Aλ)

]
,

where ∇̄ψi = ∂̄ψi + Γ+(x)ikℓ ∂̄x
ℓψk, ∇Aλ

α = ∂λα − F̃ (x)αβλ
β and

Γ+(x)ijk = Γ̊(x)ijk +
1

2
H(x)ijk , F̃ (x)αβ =

1

2
F (x) α

ij βψ
iψj . (2.2)

Here Γ̊(x) represents the Christoffel symbols associated with the target metric Gij(x).

The NS flux H will play a fundamental role in what follows. We are interested in

the case where M is equipped with a G-structure such that its characteristic tensors are

covariantly constant with respect to the connection ∇+ with symbols (2.2). This means

that ∇+ must be compatible with the G-structure: since ∇+ has totally antisymmetric

torsion, this imposes constraints on the G-structure and its torsion classes [75–77]. As

a result, we identify in what follows the flux H with the totally antisymmetric torsion

Tor we introduced in Section 1.2:

H = Tor . (2.3)

It should also be noted that this flux receives corrections at higher orders in ℓs in

heterotic supergravity via the Green–Schwarz mechanism [80]—which can also be re-

produced at the level of the σ-model [2, 79]—of the form

H = dB +
ℓ2
s

8π

(
CS3(A) − CS3(Θ)

)
, (2.4)

where CS3(·) is the Chern-Simons three-form, A is the gauge bundle connection, and

Θ is an instanton connection on the tangent bundle. As we will point out later, several
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results for (1, 0) σ-models still hold (up to the appropriate order in ℓs) when the ℓs-

corrected expression (2.4) of H is employed [67, 69].

For later convenience, we adopt the convention where the superfields X i and Λα

are adimensional from the point of view of the string background:

X i → ℓsX
i , Λα → ℓsΛ

α .

The immediate consequence is that the coordinates of the string background xi are now

adimensional. In this convention, the action (2.1) reads

S[X,Λ] =
1

2

∫
Σ

d2|1ζ
[
Mij(X)∂̄X iDXj + tr (ΛDAΛ)

]
, (2.5)

where now factors of ℓs are present in the covariant derivatives, for example

DAΛα = DΛα + ℓs Â
α
β(X)Λβ .

In the following, we will employ the action (2.5).

2.2 Symmetries and classical currents

We now study the chiral symmetries of the action (2.5). As anticipated earlier, we will

focus on the holomorphic sector and largely ignore the anti-holomorphic sector. Given

a continuous symmetry of the action (2.5), its infinitesimal variation is given by [67]

δS =
∫
Σ

d2|1ζ
{ î

−Gij

(
D∂̄Xj + ℓs ΓjkℓDX

k∂̄Xℓ
)

+ tr(ΛF̂iΛ)
ó
δX i + tr(DAΛ δAΛ)

}
,

where the notation F̂i was first defined in (1.2) and we introduced a gauge covariant

variation of the fields Λα

δAΛα = δΛα + ℓsA
α
i β δX

i Λβ .

Classically, a continuous, chiral holomorphic symmetry, whose infinitesimal transfor-

mations are parametrised by the parameter ǫ(Z), allows the variation of the action to

be written in the form

δS =
∫
Σ

d2|1ζ Jcl.(Z)∂̄ǫ(Z) ,

where we can read off the classical current Jcl.(Z). Integrating by parts one recovers

Noether’s theorem and finds that, up to equations of motion, ∂̄Jcl.(Z) = 0 classically.

We can associate a charge to the chiral current Jcl.(Z), acting on worldsheet operators

as follows

QJ O(ζ) =
1

2πi

∮
ζ

dZ ǫ(Z)Jcl.(Z)O(ζ) , (2.6)

The integral must be understood as the usual integration on the Grassmann variable

θ, plus an anti-clockwise integration over a contour circling the insertion of the O(ζ)

operator.
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Superconformal symmetry. The first chiral symmetry we want to consider is su-

perconformal symmetry. The action on the fields reads in our conventions

δT
ǫ X

i = −ǫ ∂X i − 1

2
DǫDX i , δT

ǫ,AΛ = −ǫ ∂AΛ − 1

2
DǫDAΛ .

The chiral current is the classical stress-energy tensor

Tcl. = −1

2

Ä
Gij∂X

iDXj − ℓs“H
ä
, (2.7)

where there is an explicit dependence on the torsion via H. The expression (2.7) should

be thought of as a classical realisation of the stress-energy tensor operator introduced in

Section 1.3. We recall that the stress-energy tensor can be decomposed as in equation

(1.3)

Tcl.(Z) = −1

2
Gcl.(z) + θ Tcl.(z) ,

and each component can be associated with a classical realisation

Gcl. = i
Ä
Gij∂x

iψj + ℓs‹H
ä
, Tcl. = −1

2
Gij

[
∂xi∂xj − (∂ψi + ℓsΓ

i
kℓ ∂x

kψℓ)ψj
]
,

where Γikℓ was introduced in (2.2) and ‹H = 1
3!
Hijk ψ

iψjψk. In [67] the authors showed

that the stress-energy tensor is still a chiral current at one-loop order.

W-symmetry. The geometrical information provided by a G-structure on M is en-

coded at the level of the non-linear σ-model (2.5) as a continuous, non-linear symmetry,

which in the literature goes under the name of W-symmetry [61–69] and depends on the

characteristic tensors of the G-structure. Consider the σ-model (2.5), and suppose that

the ambient manifold M is endowed with a given G-structure. Let Φ be a nowhere-

vanishing p-form, and suppose it is a characteristic tensor for the G-structure. Then,

the W-symmetry associated with Φ is encoded in the following field transformations

[67]

δΦ
ǫ X

i = ǫ(Z)Φ̂i , δΦ
ǫ,AΛα = 2ǫ(Z)Υ̂α

βDAΛβ , (2.8)

where the notation Φ̂i was introduced in (1.2). The infinitesimal parameter ǫ(Z) has

(holomorphic) conformal weight hǫ = 1−p
2

and it has odd/even Grassmann parity if p is

an even/odd integer. The second transformation in (2.8) requires the introduction of

an End(V )-valued differential (p− 2)-form Υ(X), which at this stage is completely ar-

bitrary.6 The transformations define a symmetry if and only if the following conditions

are met [67]

∇+Φ = 0 , iF (A)(Φ) = 0 , Υ(αβ) = 0 , (2.9)

6The role of Υ has been studied in relation to worldsheet supersymmetry enhancement in [81,
82]. Some comments on the W-symmetry transformation of the gauge bundle sections have recently
appeared in [68].
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where F (A) is the gauge field strength and ∇+ denotes the connection with sym-

bols (2.2), which we identify with the unique connection—compatible with the G-

structure—with totally antisymmetric torsion (2.3). When the conditions (2.9) are

satisfied we can write down the classical chiral current [67]

J Φ
cl. = (−1)p−1 Φ̂ . (2.10)

This current should be understood as the classical limit of a new operator extending

the super Virasoro algebra on the worldsheet. We denote the components of (2.10)

following the conventions we set in (1.6), that is7

J Φ
cl.(Z) = (−i)p

(
− PΦ

cl.(z) + θ KΦ
cl.(z)

)
. (2.11)

The wedge product between differential forms is mirrored at the level of the W-

symmetry classical currents. Let Φ be a p-form and Ψ a q-form complying with the

conditions (2.9). The (p + q)-form Φ ∧ Ψ automatically satisfies (2.9) as well, and its

current can be described in terms of the currents of each form as follows

J Φ∧Ψ
cl. (Z) = (−1)p+q−1÷Φ ∧ Ψ(Z) = −J Φ

cl.(Z)J Ψ
cl.(Z) ,

where the components are

PΦ∧Ψ
cl. (z) = PΦ

cl.(z)P
Ψ
cl.(z) , KΦ∧Ψ

cl. (z) = KΦ
cl.(z)P

Ψ
cl.(z) + (−1)p PΦ

cl.(z)K
Ψ
cl.(z) .

Similarly to the case of the stress-energy tensor, it was shown in [67] that the W-

symmetry current (2.10) is still chiral when we employ the ℓs-corrected flux (2.4), as

long as the connection Θ satisfies a quasi-instanton condition analogous to that of A

iR(Θ)(Φ) = 0 ,

where R(Θ) denotes the curvature of the connection Θ.

It should be noted that, in the definition of the new current (2.10), Υ does not

play any role. In fact, the definition looks completely independent from the structures

defined on the gauge bundle: this suggests that Υ does not provide additional informa-

tion compared to Φ, even though they both appear in the W-symmetry transformations

(2.8). In what follows, we will ignore the gauge bundle sector, leaving it for future

explorations.

7Our conventions for (2.10) and (2.11) are chosen so that when Φ is a one-form, say Φ = dx, the
associated current J is a super free field with components P = ψ and K = i∂x.
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2.3 From classical commutators to OPEs

The next step is studying the classical commutators of the symmetries introduced in

Section 2.2 and rewriting them in terms of further symmetries of the σ-model (2.5).

As mentioned before, we will ignore the gauge bundle sector. The algebra of classical

W-symmetries when the target manifold M is equipped with a G-structure has been

studied case by case in terms of Poisson brackets in [62–65, 83], see also [66]. We will

follow a different approach to make a connection with OPEs and SW-algebras.

[δT , δT ]: two superconformal transformations. The commutator of two super-

conformal transformations with parameters ǫ1(Z) and ǫ2(Z) returns another supercon-

formal transformation with parameter ǫ3(Z)

[δT
ǫ1
, δT
ǫ2

]X i = δT
ǫ3
X i , (2.12)

where the new infinitesimal parameter is given by

ǫ3 = ǫ1∂ǫ2 − ∂ǫ1 ǫ2 +
1

2
Dǫ1Dǫ2 . (2.13)

[δT , δΦ]: superconformal and W-transformations. The commutator between a

superconformal transformation and a W-transformation associated with a p-form Φ

returns a W-transformation associated again with the p-form Φ

[δT
ǫ1
, δΦ
ǫ2

]X i = δΦ
ǫ3
X i , (2.14)

where the new infinitesimal parameter is given by

ǫ3 = ǫ1∂ǫ2 − 1

2
(p− 1)∂ǫ1 ǫ2 +

1

2
Dǫ1Dǫ2 .

[δΦ, δΨ]: two W-transformations. Finally, we consider the commutator between

two W-symmetries. This was first studied in the case of non-zero flux H = dB in [65],

using the (1, 1) σ-model. We find that the same analysis holds completely analogously

for the (1, 0) σ-model. Furthermore, if the corrected version of the flux (2.4) is used

instead, the commutators still satisfy the same formulas—up to the corresponding order

in the string length scale ℓs.

Given two W-transformations corresponding to a p-form Φ and a q-form Ψ, their

commutator is given by the sum of three different symmetry transformations:

[δΦ
ǫ1
, δΨ
ǫ2

]X i = δUǫUX
i + δNǫNX

i + δT V
ǫT V

X i , (2.15)

where the transformations δUǫU , δNǫN and δT V
ǫT V

are described as follows:
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⋄ The transformation δUǫU is a W-transformation associated with the (p+ q − 2)-form

U =
1

cU
iΦ(Ψ) , (2.16)

where cU is a tunable constant parameter that we introduce for later convenience.

The infinitesimal parameter of the transformation is given by

ǫU = cU
(−1)pq

p+ q − 2
[(q − 1)Dǫ1 ǫ2 + (−1)p (p− 1)ǫ1 Dǫ2] .

⋄ The transformation δNǫN is a W-transformation associated with the (p+ q − 1)-form

N =
ℓs
cN

Å
Hjk ∧ Φj ∧ Ψk + (−1)p+1 2 cV

d− (p+ q − 4)
H ∧ V

ã
, (2.17)

which depends on the three-form NS flux H and the (p+ q − 4)-form V defined as

V =
1

cV
Φij ∧ Ψij .

In the formula (2.17), d stands for the dimension of the manifold M where Φ and

Ψ are defined. Analogously to the previous transformation, the constants cV and cN
are introduced for later convenience. The infinitesimal parameter reads

ǫN = cN (−1)(p−1)(q−1)ǫ1ǫ2 .

⋄ Finally, the transformation δT V
ǫT V

is different from those presented in Section 2.2 and
was first introduced in [65, 66]. It is defined as

δT V
ǫT V

Xi = −
Å
ǫT V ∂X

i +
1
2

(−1)p+qDǫT VDX
i

ã
“V + ǫT V

Å
−Tcl.

“V i +
1
2
DXiD“V

ã
, (2.18)

where the infinitesimal parameter reads

ǫT V = (−1)(p−1)q+1 2 cV
d− (p+ q − 4)

ǫ1ǫ2 .

The current associated with the transformation (2.18) can be rewritten as a composite

current

J T V
cl. (Z) = −Tcl. (Z) J V

cl.(Z) . (2.19)

It is important to note that if V = 1, the transformation (2.18) simply reduces to a

superconformal transformation and—noticing that J 1
cl. = −1 under our conventions

(2.10)—the associated current is J T 1
cl. = Tcl. , as expected.
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Finally, we explain how to translate the commutators (2.12), (2.14), and (2.15) into the

language of OPEs. This will be used in Section 3 to generate a set of classical OPEs

for each of the different G-structures, which will then be compared with those of the

underlying SW-algebras.

Consider two superconformal or W-symmetry transformations δ1 and δ2 with chiral

currents J1(Z) and J2(Z) and associated charges Q1 and Q2, defined as in (2.6). The

action of a charge on a local operator is given by the associated infinitesimal symmetry

transformation [78]

[Qi,O] = −δiO .

The formulas below should be understood to hold inside correlators, so [Q,O] = Q O
in what follows and we can write

[Q1,Q2] O(ζ) = [δ1, δ2] O(ζ) .

The key idea is to take the operator O(ζ) to be X i(ζ): the discussion in Section 2.3

shows that classically the commutator can be traded for a linear combination of trans-

formations

[Q1,Q2]X
i(ζ) = [δ1, δ2]X

i(ζ)
cl.
=

∑
r

δrX
i(ζ) = −

∑
r

QrX
i(ζ) , (2.20)

where we highlighted that this statement works at the level of the classical action by

employing the notation “
cl.
=”. The commutator of the two charges can alternatively be

expressed in terms of the currents as follows [78]

[Q1,Q2] O(ζ) = (−1)|ǫ1||J2|
∮
ζ

dZ2

2πi

∮
ζ2

dZ1

2πi
ǫ1(Z1)ǫ2(Z2) J1(Z1)J2(Z2) O(ζ) , (2.21)

where the prefactor is sensitive to the parity of the infinitesimal parameters and of the

currents. Let us denote by ǫr the infinitesimal parameter associated with the action of

the charge Qr. Again from the results of Section 2.3, note that ǫr = ǫr
(
ǫ1(Z), ǫ2(Z)

)

is actually a functional of the infinitesimal parameters ǫ1(Z) and ǫ2(Z). We can then

write ∑
r

QrX
i(ζ) =

∮
ζ

dZ

2πi

∑
r

ǫr
(
ǫ1(Z), ǫ2(Z)

)
Jr(Z)X i(ζ) , (2.22)

and by substituting the right-hand sides of the equations (2.21) and (2.22) into the

expression (2.20) we obtain the following master equation

∮
ζ

dZ2

2πi

∮
ζ2

dZ1

2πi
ǫ1(Z1)ǫ2(Z2) J1(Z1)J2(Z2)X

i(ζ)

cl.
= −(−1)|ǫ1||J2|

∮
ζ

dZ2

2πi

∑
r

ǫr
(
ǫ1(Z2), ǫ2(Z2)

)
Jr(Z2)X

i(ζ) . (2.23)
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The connection with the OPE formalism can be made explicit working with the right-

hand side of the equation (2.23). To this end, we need to manipulate the functional

ǫr
(
ǫ1(Z), ǫ2(Z)

)
using integration by parts to reproduce the ǫ1(Z1)ǫ2(Z2) structure on

the left-hand side of the equation (2.23). One can then read off a “classical OPE” for

the currents J1 and J2 in the right-hand side of the equation. We now present the

three classical OPEs associated with the commutators studied in Section 2.3.

Tcl. × Tcl. OPE. We illustrate how to use the master equation (2.23) working out in
detail the case where J1 = Tcl. and J2 = Tcl.. Equation (2.23) reads in this case

∮
ζ

dZ2

2πi

∮
ζ2

dZ1

2πi
ǫ1(Z1)ǫ2(Z2) Tcl.(Z1)Tcl.(Z2)Xi(ζ)

cl.= −
∮
ζ

dZ2

2πi

Å
ǫ1(Z2)∂ǫ2(Z2) − ∂ǫ1(Z2)ǫ2(Z2) +

1
2
Dǫ1(Z2)Dǫ2(Z2)

ã
Tcl.(Z2)Xi(ζ) , (2.24)

where we plugged the expression (2.13) in place of the functional ǫT
(
ǫ1(Z2), ǫ2(Z2)

)
.

The double-integral structure appearing in the left-hand side of equation (2.24) can be

reproduced in the right-hand side by manipulating the infinitesimal parameter ǫ1(Z2)

and its derivatives. We introduce the Dirac δ-distribution on the super worldsheet

[26, 53]

δ(Z1 − Z2) =
1

2πi

θ12

Z12

,

and we compute the following derivatives

∂2 δ(Z1 − Z2) =
1

2πi

θ12

Z2
12

, D2 δ(Z1 − Z2) = − 1

2πi

1

Z12

. (2.25)

The infinitesimal parameter ǫ1(Z2) can be rewritten as

ǫ1(Z2) =
∮
ζ2

dZ1 δ(Z1 − Z2) ǫ1(Z1) =
∮
ζ2

dZ1

2πi

θ12

Z12

ǫ1(Z1) , (2.26)

and its derivatives as follows, using the equations (2.25)

∂2ǫ1(Z2) =
∮
ζ2

dZ1

2πi

θ12

Z2
12

ǫ1(Z1) , D2ǫ1(Z2) =
∮
ζ2

dZ1

2πi

1

Z12

ǫ1(Z1) . (2.27)

We have all the ingredients needed to reshape the right-hand side of the equation (2.24).

The first step is integrating by parts to remove all the derivatives from the parameter

ǫ2(ζ2). Focusing on the right-hand side, we have

· · · cl.
=

∮
ζ

dZ2

2πi

Å
3

2
∂ǫ1(Z2)ǫ2(Z2)Tcl.(Z2) + ǫ1(Z2)ǫ2(Z2)∂Tcl.(Z2)

+
1

2
Dǫ1(Z2)ǫ2(Z2)DTcl.(Z2)

ã
X i(ζ) .
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We now substitute ǫ1(Z2) with the expression (2.26) and its derivatives with the ex-
pressions (2.27)

· · · cl.=
∮
ζ

dZ2

2πi

∮
ζ2

dZ1

2πi
ǫ1(Z1)ǫ2(Z2)

Å
3
2
θ12

Z2
12

Tcl.(Z2)+
θ12

Z12
∂Tcl.(Z2)+

DTcl.(Z2)
2Z12

ã
Xi(ζ) . (2.28)

By comparing the expression (2.28) with the left-hand side of the expression (2.24), we

extract the classical OPE between the Noether current Tcl. and itself

Tcl.(Z1)Tcl.(Z2) ∼ 3

2

θ12

Z2
12

Tcl.(Z2) +
θ12

Z12

∂Tcl.(Z2) +
1

2Z12

DTcl.(Z2) + . . . . (2.29)

We immediately notice that this classical OPE reproduces correctly every term in the

Virasoro algebra (1.4), excluding the 1
Z3

12
pole proportional to the central charge c.

This was to be expected since the information encoded in (2.29) is the same as the

one encoded in the classical commutator (2.12), hence this procedure only recovers the

classical Witt algebra and no information about its central extension is available.

T
cl.

× J Φ
cl.

OPE. Following the same procedure used to derive the classical OPE

Tcl.×Tcl., we convert the classical commutator (2.14) into a classical OPE. If we consider

Φ to be a p-form, we find

Tcl.(Z1)J Φ
cl.(Z2) ∼ p

2

θ12

Z2
12

J Φ
cl.(Z2) +

θ12

Z12

∂J Φ
cl.(Z2) +

1

2Z12

DJ Φ
cl.(Z2) + . . . . (2.30)

This classical OPE should be compared with the quantum OPE (1.5), where we made

the assumption that the current Jh was a primary. The associated classical OPE (2.30)

is compatible with such choice. Furthermore, the conformal weight of the operator

hJΦ
= p

2
is determined by the degree of the form Φ.

J Φ
cl.

× J Ψ
cl.

OPE. Finally, we consider the commutator (2.15) of two W-symmetries

associated with a p-form Φ and a q-form Ψ. The same procedure as above then returns

the classical OPE

J Φ
cl.(Z1)J Ψ

cl.(Z2) ∼ (−1)p+1 cU
J U

cl.(Z2)

Z12

+ (−1)p+1 cU

Å
p− 1

p+ q − 2

ã
θ12

Z12

DJ U
cl.(Z2)

+ (−1)p cN
θ12

Z12

J N
cl. (Z2) + cV

Å
2

d− (p+ q − 4)

ã
θ12

Z12

Tcl. (Z2)J V
cl.(Z2) + . . . . (2.31)

Notice that the last term in the right-hand side of the classical OPE (2.31) is simply a

product of Tcl. and J V
cl. evaluated at the same point, as prescribed by equation (2.19).

As it will be more evident after studying a few specific examples in Section 3, combined
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classical currents can be identified as the classical limits of the quasi-primary normal

ordered product of the associated chiral currents

N (T J Φ)
cl.−→ Tcl.J Φ

cl. , N (J ΦJ Ψ)
cl.−→ J Φ

cl.J Ψ
cl. .

This classical OPE is very interesting: although it is not able to capture all the terms

appearing in the quantum OPE, geometrical information about the manifold M and

the NS flux H is encoded into the OPE via the currents associated with the forms U ,

V , N as well as the classical stress-energy tensor Tcl.. In particular, when Φ and Ψ are

the characteristic forms of a G-structure on M, components of the intrinsic torsion of

the G-structure manifestly appear in the OPE. The classical OPE J Φ
cl. ×J Ψ

cl. is meant to

be compared with the outcome of the Ansatz (1.9)—this comparison will be the focus

of Section 3.

3 G-structures with torsion and SW-algebras

Throughout this Section we consider a superstring background compactification on a

d-dimensional Riemannian manifold M described at the classical level by the σ-model

(2.5) with target space M. Suppose that M is endowed with a G-structure with

characteristic forms Φ1,Φ2, . . . ,Φn of degrees p1, . . . , pn, respectively. We can consider

two different approaches:

⋄ The symmetries of the worldsheet CFT are described by an SW-algebra, denoted by

SW(3
2
, h1, . . . , hn) and generated by the identity, the stress-energy tensor and a set

of primary chiral currents

〈1, T ,Jh1 , . . . ,Jhn
〉 . (3.1)

The SW-algebra is completely determined by the Ansatz (1.9)

Jhi
(Z1)Jhj

(Z2) ∼
∑

Ok∈ F q.p.
k

∞∑
r=0

Ck
ij A

r
ijk

1

Z
hijk−r/2
12

DrOk(Z2) , (3.2)

and the consistency conditions of the OPEs (cf. Appendix A).

⋄ From the results of Section 2, the σ-model enjoys superconformal and W-symmetries

associated with a set of classical Noether currents

Tcl. , J Φ1
cl. , . . . , J Φn

cl. . (3.3)

These currents carry information about the G-structure and its intrinsic torsion, and
they satisfy a set of classical OPEs (2.31)
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J Φ1
cl. (Z1)J Φ2

cl. (Z2) ∼ (−1)p1+1 cU
J U

cl.(Z2)
Z12

+ (−1)p1+1 cU

Å
p1 − 1

p1 + p2 − 2

ã
θ12

Z12
DJ U

cl.(Z2)

+ (−1)p1 cN
θ12

Z12
JN

cl. (Z2) + cV

Å
2

d− (p1 + p2 − 4)

ã
θ12

Z12
Tcl. (Z2)J V

cl.(Z2) + . . . . (3.4)

The goal of this Section is to combine these two perspectives. To this end, we will

assume that the currents (3.3) are the classical limits of the generators (3.1) [7, 67]:

under this assumption, the generators of the SW-algebra read

〈
1, T ,J Φ1

p1
2

, . . . ,J Φn
pn
2

〉
. (3.5)

In the following, we will omit the weight of the generator J Φi
pi
2

→ J Φi to make the

notation less cluttered. Since symmetry arguments (see Table 2) and the associativity

condition (A.4) will fix the OPE coefficients Ck
ij up to a small number of free parameters,

the idea is to compare the two sets of OPEs (3.2) and (3.4) in order to write those

free parameters at the lowest order in the string length ℓs as functions of the torsion

classes of the underlying G-structure. In particular, the classical OPEs allow to match

coefficients up to order O(ℓ2
s): then, it is natural to interpret them as first order limits

of the OPEs of the full SW-algebras in a small ℓs expansion.

It should be noted that when all torsion classes vanish our manifold M has special

holonomy and the corresponding SW-algebras are well-understood (cf. Appendix B).

In what follows, when studying an OPE with the structure (3.2) or a classical OPE

(3.4), we will always drop the Z2 dependence of the chiral currents in the right hand

side of the expressions. This choice is meant to lighten the notation and the dependence

should always be considered to be implicitly stated.

3.1 SW
(

3
2
, 1

2
, . . . , 1

2

)
algebra and O(d− n)-structures

We illustrate the procedure described at the beginning of this Section by studying

O(d − n)-structures as a warm-up. The characteristic tensors are a set of globally

defined, nowhere-vanishing vector fields on the background manifold.

O(d−n)-structures. Suppose our d-dimensional Riemannian manifold M is endowed

with a set of linearly independent, globally defined and nowhere-vanishing vector fields

ξ1, . . . , ξn. These vectors are naturally associated to a set of one-forms σ1, . . . , σn,

defined via the isomorphism σi = Gijξ
j, where G is the metric on M. These one-

forms are the characteristic tensors of an O(d − n)-structure [84]. We are interested

in the particular case where these forms are associated with classical chiral currents

[85], which we denote by J σI

cl. := J σ
cl.,I for I = 1, . . . , n. Therefore, we must impose the
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condition (2.9), which reads

∇+
i σI,j = 0 . (3.6)

Recalling that the torsion tensor Tor involved in the equation (3.6) is totally antisym-

metric, it can be deduced that the vector fields ξI must satisfy the Killing equation and

be the infinitesimal generators of a set of isometries [85]. Thus, the O(d−n)-structures

we are studying are generated by n linearly independent Killing vector fields.

The SW(3
2
, 1

2
, . . . , 1

2
) algebra. The construction of the associated SW-algebra is rel-

atively simple, due to the low weights of the currents involved in the Virasoro extension.

Following the prescription (3.5), the generators of the algebra are

〈1, T ,J σ
1 , . . . ,J σ

n 〉 ,

where each current J σ
I has a weight hI = 1

2
and is associated with a one-form σI .

Virasoro extends to the algebra SW(3
2
, 1

2
, . . . 1

2
). By dimensional analysis, the Ansatz

(3.2) specialises to the SW(3
2
, 1

2
, . . . 1

2
) case as follows

J σ
I (Z1)J σ

J (Z2) ∼ CIJ
Z12

+ CK
IJ

θ12

Z12

J σ
K + . . . . (3.7)

Geometrical interpretation of the couplings. In order to produce an Ansatz for

the classical OPE (3.4), we first need to compute the forms U,N and V introduced in

Section 2.3, being careful with the conventions:

⋄ U is a function given by the scalar product between one-forms

UIJ =
1

cU
σI · σJ .

When the scalar product is non-zero, we choose cU = σI · σJ . In this way, U = 1

when σI · σJ 6= 0 and U = 0 otherwise.

⋄ V cannot be defined, since it can be constructed only for forms of degree 2 or

higher. Whenever V appears, we will set the term equal to zero.

⋄ N is a one-form given by

NIJ =
ℓs
cN

Ä
Hijkσ

i
Iσ

j
J

ä
dxk =

ℓs
cN
iσJ
iσI

(H) .

We will tune cN = ℓs in the following.
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Plugging the forms above in the classical OPE (3.4), we obtain8

J σ
cl.,I(Z1)J σ

cl.,J(Z2) ∼ −σI · σJ
Z12

− ℓs
θ12

Z12

J iσJ
iσI

(H)

cl. + . . . . (3.8)

We can now compare the OPEs (3.7) and (3.8) to give a geometrical interpretation to

the couplings CIJ and CK
IJ . Comparing the poles 1

Z12
, we find that

CIJ = −σI · σJ +O(ℓ2
s) , (3.9)

where we took into account possible perturbative corrections in ℓs to the classical OPE

(3.8), obtained by performing loop computations.9 We can now compare the θ12

Z12
poles

and we find

CK
IJ σ

k
K = −ℓsH k

ij σ
i
Iσ

j
J +O(ℓ2

s) . (3.10)

Multiplying both sides of the equation (3.10) by Gkℓ σ
ℓ
L and applying the result (3.9),

we obtain

fIJK := −CL
IJCLK = −ℓsHijℓσ

i
Iσ

j
Jσ

ℓ
K +O(ℓ2

s) , (3.11)

where we introduced the Cartan three-form fIJK . In summary, we found an inter-

pretation of the couplings CIJ and CK
IJ of the SW(3

2
, 1

2
, . . . 1

2
) algebra in terms of the

characteristic one-forms σI of the O(d − n)-structure and the flux H—or equivalently

the torsion Tor.

To better understand these OPEs, note that the forms being covariantly constant

under a metric connection implies that their scalar product is constant:

∂i(σI · σJ) = ∇+
i (σI · σJ) = ∇+

i G(σI , σJ) = G(∇+
i σI , σJ) +G(σI ,∇+

i σJ) = 0 .

Since the metric G is Riemannian, this means that the forms σ1, . . . , σn can always be

normalised so that their scalar product is a multiple of the identity, σI · σJ = k δIJ for

k > 0. We will choose this normalisation in what follows.

It is illustrative to consider first the case of vanishing flux H = 0. Taking k = 1

the OPEs read

J σ
I (Z1)J σ

J (Z2) ∼ − δIJ
Z12

+ . . . ,

which in our conventions are the OPEs of n independent free superfields, generating

n copies of the Free algebra. This is indeed consistent: the manifold M has O(d − n)

holonomy and the structure group is trivial for the dual vector fields ξ1, . . . , ξn. This

essentially means that the currents σ̂1, . . . , σ̂n decouple in the σ-model and can therefore

be represented by free superfields.

8By recalling our convention (2.10), note that J 1 = −1.
9See [86, 87] for efforts in this direction in a similar context.
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When H 6= 0, the resulting algebra is more complicated. However, there is a

particularly important case: suppose that we normalise the one-forms as above for some

integer k and we find that the coupling fIJL computed in (3.11) actually corresponds

to the Cartan three-form of a semisimple Lie algebra g. Then, the OPEs (3.7) with the

couplings (3.9) and (3.11) reproduce precisely the OPEs of an affine (super) Kac–Moody

algebra for g at level k.

3.2 SW
(

3
2
, 2
)

algebra and Spin(7)-structures

We now work out in full detail the case of Spin(7)-structures: these are defined by a

single characteristic four-form Ψ and only possess two torsion classes, so their associated

SW-algebra is particularly simple. This algebra first appeared in relation to Spin(7)-

holonomy in [6].

Spin(7)-structures. A Spin(7)-structure on an eight-dimensional Riemannian man-

ifold M is determined by a well defined, nowhere-vanishing four-form Ψ such that at

any given point on M it can be written as [70, 88]

Ψ = dx1234 + dx1256 + dx1278 + dx3456 + dx3478 + dx5678 + dx1357

− dx1368 − dx1458 − dx1467 − dx2358 − dx2367 − dx2457 + dx2468 ,

for some particular choice of local coordinates {x1, . . . , x8} around that point. We call

Ψ the Cayley form. It determines a metric and an orientation on M, and note that Ψ

is self-dual with respect to the associated Hodge star operator: ∗Ψ = Ψ.

There are two torsion classes associated with a Spin(7)-structure [74], which we

denote by τ1 ∈ Ω1
8
(TM) and τ3 ∈ Ω3

48
(TM). They are determined by the exterior

derivative of the characteristic form Ψ:

dΨ = τ1 ∧ Ψ + ∗τ3 .

Remarkably, on a manifold with a Spin(7)-structure there always exists a unique com-

patible connection admitting a totally antisymmetric torsion [76], given by

Tor = −1

6
τ1yΨ − τ3 .

The SW
(

3
2
, 2
)

algebra. Following the prescription (3.5), we study the algebra gen-

erated by 〈
1, T ,J Ψ

〉
,

where the primary current J Ψ has weight hΨ = 2. Virasoro thus extends to the algebra

SW
(

3
2
, 2
)
, derived for the first time in [23] and further studied in [89–91]. To formulate
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an Ansatz for the OPE J Ψ × J Ψ, we need to introduce the following quasi-primary

projections of the normal ordered operators N(DT T ) and N(T J Ψ)

N (DT T ) = N(DT T ) − 3

8
∂∂T ,

N (T J ψ) = N(T J ψ) − 1

5
∂DJ ψ .

From the general statement (3.2), the most general Ansatz for the OPE J Ψ × J Ψ is

J Ψ(Z1)J Ψ(Z2) ∼ C1

ΨΨ

Z4
12

+ CΨ
ΨΨ

Å
1

Z2
12

J Ψ +
θ12

2Z2
12

DJ Ψ +
1

2Z12

∂J Ψ +
3

10

θ12

Z12

D∂J Ψ

ã

+ CT
ΨΨ

Å
θ12

Z3
12

T +
1

Z2
12

DT +
2

3

θ12

Z2
12

∂T +
1

4Z12

D∂T +
θ12

4Z12

∂∂T
ã

+ CDT T
ΨΨ

θ12

Z12

N (DT T ) + CT Ψ
ΨΨ

θ12

Z12

N (T J Ψ) + . . . . (3.12)

The coupling symmetries reported in Table 2 do not provide any further constraints.

The OPE consistency conditions fix the couplings to be functions of the central charge

c [27], up to a normalisation C1

ΨΨ of the operator J Ψ

CT
ΨΨ =

12

c
C1

ΨΨ , CDT T
ΨΨ =

216

c (21 + 4c)
C1

ΨΨ , CT Ψ
ΨΨ =

54

6 + 5c
CΨ

ΨΨ , (3.13)

and
(
CΨ

ΨΨ

)2
= − 8(5c+ 6)2

c (c− 15)(4c+ 21)
C1

ΨΨ . (3.14)

We conclude that we have a family of algebras parametrised by the central charge

c, bounded by unitarity as 0 < c < 15.10 The special locus c = 12 corresponds to

the SVSpin(7) algebra [6], describing string backgrounds with special holonomy equal to

Spin(7). The OPEs for the SW(3
2
, 2) algebra and its locus SVSpin(7) can be found in

Appendices B.1.1 and B.1.2.

Computation of the U , V and N forms. The simplicity of this algebra allows us

to present an instructive example of how to derive the classical OPEs. In fact, there is

a single classical OPE J Ψ
cl. × J Ψ

cl. to study. The associated form U trivially vanishes:

U =
1

cU
Ψi ∧ Ψi = 0 ,

10We take the opportunity to highlight that this bound could be refined if, instead of imposing the
consistency of symmetry algebra only, we do the same for all the operators in the worldsheet CFT
(by imposing crossing symmetry, for example); a similar statement can be made for all the examples
provided in this Section. This goes beyond the scope of this paper, and we reserve it for future work.
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while the form V can be computed using the identity [77, 88]

ΨijkℓΨmnkℓ = 12δ
[i
[mδ

j]
n] + 4Ψij

mn , (3.15)

leading to

V =
1

cV
Ψij ∧ Ψij =

4!

cV
Ψ .

The choice cV = 4! results in V = Ψ. Finally, we prove that the form N vanishes. Let

us consider the Hodge dual form of N

∗N =
ℓs
cN

∗
(
Hjk ∧ Ψj ∧ Ψk − 12H ∧ Ψ

)
,

thus, it is enough to show that

∗
(
Hjk ∧ Ψj ∧ Ψk

)
= 12 ∗ (H ∧ Ψ) .

We start writing down explicitly the Hodge dual of the first term

∗
(
Hjk ∧ Ψj ∧ Ψk

)
=

√
G

7!

7!

3! 3!
H i1

jkΨji2i3i4Ψki5i6i7ǫi1i2i3i4i5i6i7i8dxi8

= − 5

3!
H i1

jkΨji2i3i4δk[i1Ψi2i3i4i8]dx
i8 ,

where we have used the identity

√
G

3!
Ψki5i6i7ǫi1i2i3i4i5i6i7i8 = −5 δk[i1Ψi2i3i4i8] .

Using again (3.15) together with the identity

ΨijkℓΨmjkℓ = 42 δim ,

we reach the desired result

∗
(
Hjk ∧ Ψj ∧ Ψk

)
= 12HyΨ = 12 ∗ (H ∧ Ψ) ,

where we used the generic identity (1.1) and the self-duality of the Cayley form Ψ = ∗Ψ.

Note that the only non-zero form is V = Ψ, which is again the Cayley form, and no

torsion classes play a role in the computation. We collect this outcome in Table 3.

In subsequent Sections, we will provide similar Tables with the final results for each

G-structure.
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J 1
cl. J 2

cl. J U
cl. J N

cl. J V
cl. cU cN cV

J Ψ
cl. J Ψ

cl. - - J Ψ
cl. - - 4!

Table 3: Currents appearing in the classical OPE J 1
cl. × J 2

cl., in the case of a Spin(7)-

structure. The torsion classes τ1 and τ3 do not explicitly appear in the coefficients

cU , cN and cV .

Geometrical interpretation of the couplings. The Spin(7) case effectively illus-

trates the difference between the classical and the quantum OPE: in fact, the former

is significantly simpler than the latter, and reads

J Ψ
cl.(Z1)J Ψ

cl.(Z2) ∼ 12
θ12

Z12

Tcl.J Ψ
cl. + . . . . (3.16)

The currents J U
cl.,J V

cl. and J N
cl. are listed in Table 3, together with our choices of coef-

ficients cU , cV and cN , as computed above. Note that in this case the torsion classes

do not explicitly appear in the coefficients, suggesting that they do not play a role

at the order in ℓs we are considering. If we identify the product of classical currents

Tcl.J Ψ
cl. as the classical limit of the quasi-primary normal ordered operator N (T J Ψ),

the comparison between (3.12) and (3.16) is straightforward and leads to

CT Ψ
ΨΨ = 12 +O(ℓ2

s) .

Since the consistency of the OPE requires the constraints (3.13) and (3.14) to be

satisfied, we have

C1

ΨΨ = −c (c− 15)(4c+ 21)

162
+O(ℓ2

s) , CΨ
ΨΨ =

2

9
(6 + 5c) +O(ℓ2

s) ,

CT
ΨΨ = − 2

27
(c− 15)(4c+ 21) +O(ℓ2

s) , CDT T
ΨΨ = −4

3
(c− 15) +O(ℓ2

s) .

In this case, the comparison between the classical and the quantum OPE was only useful

to fix the normalisation C1

ΨΨ. The central charge c retains its role of free parameter of

the family of algebras, bounded by the same unitarity bound: the existence of a generic

Spin(7)-structure does not constrain the value of c at first order in the string length scale

ℓs. In this case, the role of the torsion is relegated to loop contributions at higher orders

in ℓs. Computing these terms would shed some light into the relationship between the

central charge and torsion classes, see for example [92, 93]. As a consistency check,
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note that setting c = 12 (and taking the H → 0 limit) returns the special holonomy

algebra: the predicted couplings are

CT Ψ
ΨΨ = 12 , CΨ

ΨΨ =
44

3
, C1

ΨΨ =
46

3
, CT

ΨΨ =
46

3
, CDT T

ΨΨ = 4 ,

and we find a perfect match with the SVSpin(7) algebra, reported explicitly in Ap-

pendix B.1.2.

3.3 SW
(

3
2
, 3

2
, 2
)

algebra and G2-structures

Next, we proceed to the case of G2-structures. Since they possess two characteristic

forms, the associated SW-algebra is slightly more complicated than the Spin(7) case.

Nevertheless, the richer geometric structure gives additional control over the algebra,

having in particular a non-trivial contribution from the scalar torsion class of the G2-

structure. The case of G2-holonomy was first addressed in [6], whereas the case with

torsion has recently received attention for the first time in [16].

G2-structures. A G2-structure on a seven-dimensional Riemannian manifold M is

determined by a well defined, nowhere-vanishing three-form ϕ such that at any given

point on M it can be written as [70, 94, 95]

ϕ = dx246 − dx235 − dx145 − dx136 + dx127 + dx347 + dx567 ,

for some particular choice of local coordinates {x1, . . . , x7} around that point. We call

ϕ the associative form. It determines a metric and an orientation on M that we can

use to construct the Hodge dual four-form ψ = ∗ϕ, called the coassociative form.

There are four torsion classes associated with a G2-structure, which we denote by

τ0 ∈ Ω0
1
(TM), τ1 ∈ Ω1

7
(TM), τ2 ∈ Ω2

14
(TM) and τ3 ∈ Ω3

27
(TM). They are determined

by the exterior derivative of the characteristic tensors ϕ and ψ:

dϕ = τ0 ψ + 3 τ1 ∧ ϕ+ ∗τ3 , dψ = 4 τ1 ∧ ψ + ∗τ2 .

On a manifold with a G2-structure, the torsion class τ2 represents an obstruction to

the existence of a (unique) compatible connection with totally antisymmetric torsion

[75]. We set τ2 = 0 in what follows, and the torsion of that connection is given by

Tor =
1

6
τ0 ϕ− τ1yψ − τ3 .
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The SW(3
2
, 3

2
, 2) algebra. Since the characteristic tensors of a manifold with a G2-

structure are the three-form ϕ and the four-form ψ, the SW-algebra that describes the

corresponding worldsheet dynamics must be SW(3
2
, 3

2
, 2), with generators

〈
1, T ,J ϕ,J ψ

〉
.

This algebra was first obtained in [27], and further studied in [44]. The algebra depends

on two free parameters which we denote by c and λ following [44]: c is the central

charge and λ participates in the self-coupling Cϕ
ϕϕ.11 We will indicate the parameters

as subscripts SW [λ2,c](
3
2
, 3

2
, 2) following [16]. The complete list of OPEs following our

conventions—which are the ones required for comparison with the classical algebra and

thus differ slightly from those of [27, 44]—can be found in Appendix B.2.1.

There are some particular choices of [λ2, c] that we want to highlight since they

have proven to be especially relevant for string backgrounds with a G2-structure. First

of all, when the parameter λ vanishes and the central charge is fixed to c = 21
2

, we

recover the Shatashvili–Vafa algebra first introduced in [6], which we denote by

SVG2 := SW [0, 21
2

]

(
3
2
, 3

2
, 2
)
.

It captures the worldsheet algebra enhancement for string backgrounds with G2 holon-

omy and it has been widely studied [10, 13–15, 35, 39–41, 43–46, 48, 57]. More recently,

it was argued by the authors of [16] that the locus

λ2 =
4(3 − 2c)2(21 − 2c)

27(10c− 7)

defines a one-parameter family of worldsheet algebras describing string backgrounds

given by a direct product of an AdS3 spacetime and a manifold with a G2-structure,

both of them supporting a non-zero NS flux. We call this the Fiset–Gaberdiel family

of algebras and denote it by

FGk := SW[
32(3k−2)2

k2(49k−30)
, 21

2
− 6

k

]
(

3
2
, 3

2
, 2
)
,

where the integer parameter k > 0 is associated with the NS flux in the background

[16].12 One can also interpret
√
k as the measure of the AdS3 radius in string units,

11Up to a rescaling of the fields the algebra does not depend on the sign of λ: the true parameters
of the algebra actually are c and λ2.

12Even though the FGk algebra was obtained from pure NS-NS type II backgrounds in [16], it should
be equally valid for heterotic backgrounds. This is because the chiral currents in the holomorphic sector
of the (1, 0) σ-model agree with those of the (1, 1) σ-model, since gauge fields do not contribute—c.f.
(2.7) and (2.10).
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and note that the limit k → ∞ leads to a Minkowski spacetime, corresponding to a G2

special holonomy compactification.

Both FGk and SVG2 share a key property: they contain a tricritical Ising model as

a subalgebra. A very important consequence is the existence of a null field at level 7
2

that for FGk takes the form

NFG
k = 8

Å
3 − 4c2

7µ2

ã
N (T J ψ) − 2

3

Å
1 +

4

21
c

ã
N (DJ ϕJ ϕ) +

8c

µ2
N (DT T )

+
1√
k

8
√

2

7

Å
N (J ϕJ ψ) −

Å
3 − 4c2

3µ2

ã
N (DT J ϕ)

ã
, (3.17)

where c = 21
2

− 6
k

as above and we are using, following [44],

µ =

 
9c (4 + λ2)

2(27 − 2c)
=

 
9(7k − 4)3

2k2(49k − 30)
. (3.18)

The normal ordered products appearing in the OPEs can be projected onto quasi-

primary operators as follows

N (T J ψ) = N(T J ψ) − 1

5
∂DJ ψ ,

N (DJ ϕJ ϕ) = N(DJ ϕJ ϕ) − 3k(49k − 30)

2(7k − 4)2
∂∂T − 3

3k − 2

7k − 4

…
2

k
∂∂J ϕ − 9

5
∂DJ ψ ,

N (DT T ) = N(DT T ) − 3

8
∂∂T ,

N (J ϕJ ψ) = N(J ϕJ ψ) − 7k − 4

12k
∂∂J ϕ − 4(3k − 2)

5(7k − 4)

…
2

k
∂DJ ψ −DN (T J ϕ) ,

N (T J ϕ) = N(T J ϕ) − 1

4
∂DJ ϕ ,

N (DT J ϕ) =
1

2
N(DT J ϕ) +

1

2
N(DJ ϕT ) − 3

8
∂∂J ϕ .

Note that for k → ∞ the terms in NFG
k proportional to 1√

k
vanish and we recover the

familiar null field up to which the SVG2 algebra closes

NSV = 8 N (T J ψ) − 2 N (DJ ϕJ ϕ) +
8

3
N (DT T ) .

These null fields will play a fundamental role in the geometric interpretation of the

FGk and SVG2 algebras below. This is because the different couplings of the J ψ × J ψ

OPE are well-defined only up to the addition of null fields, and this must be taken into

account when comparing with the classical OPE.
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J 1
cl. J 2

cl. J U
cl. J N

cl. J V
cl. cU cN cV

J ϕ
cl. J ϕ

cl. J ψ
cl. - - 6 - -

J ϕ
cl. J ψ

cl. - - J ϕ
cl. - - 12

J ψ
cl. J ψ

cl. - −J ϕ
cl.J ψ

cl. J ψ
cl. - 2

3
τ0ℓs 12

Table 4: Currents appearing in the classical OPE J 1
cl. × J 2

cl., in the case of a G2-

structure.

Geometrical interpretation of the couplings. The classical currents and their

parameters for a G2-structure are presented in Table 4. From this Table, we study the

following classical OPEs:

J ϕ
cl.(Z1)J ϕ

cl.(Z2) ∼ 6

Å
1

Z12

J ψ
cl. +

θ12

2Z12

DJ ψ
cl.

ã
+ . . . , (3.19)

J ϕ
cl.(Z1)J ψ

cl.(Z2) ∼ 6
θ12

Z12

Tcl.J ϕ
cl. + . . . . (3.20)

First, we need to fix the normalisations of the operators J ϕ and J ψ to match those

of our classical currents (2.11). To do so, we impose the agreement (at first order

in ℓs) between the classical OPE coefficients appearing in (3.19) and (3.20) and the

coefficients of the SW(3
2
, 3

2
, 2) algebra, that is

Cψ
ϕϕ = 6 +O(ℓ2

s) , CT ϕ
ϕψ = 6 +O(ℓ2

s) ,

and we find that the right normalisation is

C1

ϕϕ =
2c2

µ2
+O(ℓ2

s) , C1

ψψ =
2c3

9µ2
+O(ℓ2

s) ,

where µ is again given by (3.18). The full list of OPEs following this normalisation

can be found in Appendix B.2.1, and it is immediate to check the agreement of the

coefficients with the OPEs (B.1) and (B.2).

There is one more classical OPE left to study:

J ψ
cl.(Z1)J ψ

cl.(Z2) ∼ −2

3
ℓsτ0

θ12

Z12

J ϕ
cl.J ψ

cl. + 8
θ12

Z12

Tcl.J ψ
cl. + . . . . (3.21)
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When comparing with the OPE (B.3), we seem to incur into a contradiction since the

coefficient CT ψ
ψψ takes the value of 12, which does not correspond to the classical value

of 8 in (3.21) above. Nevertheless, this puzzle can be solved by recalling that OPEs

close up to the addition of null fields. Therefore, we can interpret the mismatch in

the parameters as an indication that not all values of the parameters [λ2, c] describe

superstring backgrounds endowed with a G2-structure. The existence of null fields is

then essential in order to have a geometric interpretation of the SW-algebra we are

studying.

As a working example, we can consider the algebra FGk. It was shown in [16] that

the FGk algebra does describe backgrounds endowed with a G2-structure, although

the torsion classes were not specified. We want to show that the comparison with the

classical OPE (3.21) gives us information regarding the scalar torsion class τ0. As we

explained above, for the FGk algebra the coefficient CT ψ
ψψ is only well-defined up to

addition of null fields. Therefore, specializing to the FGk algebra we can modify the

OPE (B.3) by adding a convenient multiple of the null field (3.17) so that the condition

CT ψ
ψψ = 8 +O(ℓ2

s)

is satisfied and there is an honest match between the SW-algebra and the classical

algebra. The final OPE can be found in (B.5). We can then read off the Cϕψ
ψψ coupling

and compare with the classical prediction:

Cϕψ
ψψ = −4

…
2

k

7k − 4

49k − 24
= −2

3
τ0ℓs +O(ℓ2

s) . (3.22)

This shows that the coupling Cϕψ
ψψ is directly related to the scalar torsion τ0. We

conclude that the FGk algebra captures the worldsheet symmetry of a string background

involving a manifold endowed with a G2-structure such that τ0 6= 0. It is illustrative

to consider the limit k → ∞ corresponding to the SVG2 algebra. In this case, the

coefficient Cϕψ
ψψ vanishes identically and we obtain that τ0 = 0, consistent with the fact

that SVG2 is valid when the compact manifold has G2 holonomy and all the torsion

classes are zero. Our analysis thus recovers the expected prediction for SVG2 .

Now we would like to identify the value of τ0. As shown in [96], the parameter
√
k

is tied to the radius RAdS of the AdS3 spacetime component of the string background

k = 2π

Å
RAdS

ℓs

ã2

. (3.23)

We believe the classical OPE (3.21) to hold in the large radius limit, i.e., when the

length scale of the string background is large compared to the string length scale.
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Therefore, to read off the value of τ0 we need to expand Cϕψ
ψψ in powers of 1√

k
. We do

so around the flat limit k = ∞: after plugging the expression (3.23) in the expansion,

we obtain

Cϕψ
ψψ = − 1√

π

4

7

ℓs
RAdS

+
1√
π

8

343π

Å
ℓs

RAdS

ã3

+ . . . ,

and we can plug the result in the identification (3.22) to find

τ0 =
1√
π

6

7

1

RAdS

+O(ℓ2
s) .

This recovers the well-known fact that in supergravity the torsion class τ0 is proportional

to the inverse of the AdS radius, see for example [97, 98]. Trading the parameter k for

τ0 ℓs, we can rewrite the central charge of the FGk algebra as

c =
21

2
− 49

12
τ 2

0 ℓ
2
s +O(ℓ3

s) ,

which is compatible with the notion of the central charge being corrected at order ℓ2
s

by the norm of the torsion squared [92, 93].

Finally, we point out that there are other algebras in the SW(3
2
, 3

2
, 2) family in

which null fields at spin 7
2

arise. These could also be amenable to an interpretation

along the lines we have provided here, and we leave that exploration for future work.

3.4 SW
(

3
2
, 1, 1, 1

)
algebra and SU(2)-structures

We now turn our attention to generic SU(2)-structures—note that this includes the

case of SU(2)-holonomy corresponding to K3 surfaces. The underlying SW-algebra has

three additional currents with the same (holomorphic) weight h = 1, so the symmetries

of the couplings greatly simplify its construction.

SU(2)-structures. An SU(2)-structure on a four-dimensional Riemannian manifold

M is determined by a pair of well defined, nowhere-vanishing forms (ω,Ω), where ω is

real and Ω is complex, satisfying the relations [70, 77]

ω ∧ Ω = 0 ,
1

2
ω ∧ ω =

1

4
Ω ∧ Ω . (3.24)

We call ω the Hermitian form and Ω the holomorphic volume form. We will denote the

real and imaginary parts of Ω by

Ω+ = Re Ω , Ω− = Im Ω ,
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and we will often work with the triplet of real forms (ω,Ω+,Ω−). Note that the holo-

morphic volume form defines an almost complex structure J on M as follows [99]:

J ij =
I ij»

−1
4
Tr(I2)

, I ij = (Ω+)jk(Ω−)lmǫ
iklm , (3.25)

where ǫ is the Levi-Civita symbol. We can then use J to decompose (complex) forms

into (p, q) types. We have that ω is of (1, 1) type and Ω is of (2, 0) type, justifying

their nomenclature. Finally, note that (ω,Ω) also define an orientation via (3.24) and

a metric G through the formula Gij = ωikJ
k
j .

There are three torsion classes associated with an SU(2)-structure [72, 77, 100]:

W is a complex one-form, and ϑ, ϑ′ are complex one-forms of (1, 0) type. They are

determined by the exterior derivative of the characteristic forms:

dω = W ∧ ω , dΩ = ϑ̄ ∧ Ω + ϑ′ ∧ Ω , (3.26)

On a manifold with an SU(2)-structure there exists a compatible connection with totally

antisymmetric torsion if and only if the Nijenhuis tensor vanishes. Recall that the

Nijenhuis tensor is the (2, 1)-tensor field defined by

NJ(X, Y ) = [X, Y ] + J ([JX, Y ] + [X, JY ]) − [JX, JY ] , (3.27)

where [·, ·] is the Lie-bracket between two vector fields, J(·) is the endomorphism defined

by the almost complex structure (3.25) and X, Y are vector fields on M. We can regard

the Nijenhuis tensor as a (3, 0)-tensor using the metric G on M

N ′
J(X, Y, Z) := G(NJ [X, Y ], Z) , (3.28)

where X, Y , Z are vector fields on M. The requirement that this tensor identically

vanishes is equivalent to the almost complex structure being integrable, and from (3.26)

one deduces that the torsion classes must satisfy

ϑ′ = 0 , Reϑ = W ,

and the totally antisymmetric torsion reads

Tor = −J(W ) ∧ ω .

As a final remark, an SU(2)-structure can be equivalently described as an Sp(1)-

structure—also known as an almost hyper-Hermitian structure—due to the accidental

isomorphism SU(2) ≃ Sp(1). Such a structure is described by a triple of Hermitian

forms (ω1, ω2, ω3) which correspond to the forms (ω,Ω+,Ω−) in our notation.
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The SW(3
2
, 1, 1, 1) algebra. The algebra describing the dynamics of superstrings

compactified on a manifold with an SU(2)-structure is SW(3
2
, 1, 1, 1). In the torsionless

case, we know that this algebra should reduce to the Odake algebra Od(2) [4], which

is actually isomorphic to the (little) N = 4 Virasoro algebra [101]. The algebra is

generated by the operators

〈1, T ,J ω1 ,J ω2 ,J ω3〉 .
The Ansatz (3.2) for the most general OPE J ωI × J ωJ , where the indices I, J,K run
from 1 to 3, reduces to

J ωI (Z1)J ωJ (Z2) ∼ CIJ
Z2

12

+
CKIJ
Z12

J ωK (Z2)+
θ12

Z12

Å
CT
IJT (Z2) +

1
2
CKIJDJ ωK (Z2)

ã
+. . . . (3.29)

The associativity of the algebra constrains the OPE (3.29). To simplify the computa-

tion, we first implement the constraints coming from the symmetry of the couplings and

adopt—without loss of generality—the following two-point function normalisations:

C11 = C22 = C33 = −2 , C12 = C23 = C13 = 0 ,

so CIJ = −2 δIJ . We will soon see this is a convenient normalisation for the comparison

with the underlying geometry. This constrains the coupling CK
IJ to be

CK
IJ = C ǫ K

IJ ,

where C is a constant factor. Under this hypothesis, the OPE (3.29) reads

J ωI (Z1)J ωJ (Z2) ∼ − 2 δIJ
Z2

12

− δIJ
12

c

θ12

Z12

T (Z2)

+ C ǫ K
IJ

Å
1

Z12

J ωK (Z2) +
θ12

2Z12

DJ ωK (Z2)

ã
,

(3.30)

with

C2 =
24

c
.

The couplings of the algebra depend on a single parameter, the central charge c. We

thus have a one-parameter family of algebras SW(3
2
, 1, 1, 1). The special locus c = 6

corresponds to the Od(2) algebra.

Geometrical interpretation of the OPE data. The classical currents and their

parameters for an SU(2)-structure are presented in Table 5. We obtain the following

classical OPEs:

J ω
cl.(Z1)J ω

cl.(Z2) ∼ −2 θ12

Z12

Tcl.(Z2) ,
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J 1
cl. J 2

cl. J U
cl. J N

cl. J T V
cl. cU cN cV

J ω
cl. J ω

cl. - - T - - 4

J ω
cl. J Ω±

cl. J Ω∓

cl. - - ±2 - -

J Ω±

cl. J Ω±

cl. - - T - - 4

J Ω+

cl. J Ω−

cl. J ω
cl. - - 2 - -

Table 5: Currents appearing in the classical OPE J 1
cl.×J 2

cl., associated with an SU(2)-

structure. Torsion classes do not explicitly appear.

J ω
cl.(Z1)J Ω±

cl. (Z2) ∼ ∓ 2

Z12

J Ω∓

cl. (Z2) ∓ θ12

Z12

DJ Ω∓

cl. (Z2) ,

J Ω±

cl. (Z1)J Ω±

cl. (Z2) ∼ −2 θ12

Z12

Tcl.(Z2) ,

J Ω+

cl. (Z1)J Ω−

cl. (Z2) ∼ − 2

Z12

J ω
cl.(Z2) − θ12

Z12

DJ ω
cl.(Z2) .

We can rephrase these OPEs more compactly by switching to the notation introduced
previously, (ω,Ω+,Ω−) = (ω1, ω2, ω3):

J ωI

cl. (Z1)J ωJ

cl. (Z2) ∼ −δIJ
2 θ12

Z12
Tcl.(Z2) − 2 ǫ K

IJ

Å
1
Z12

J ωK

cl. (Z2) +
θ12

2Z12
DJ ωK

cl. (Z2)
ã
, (3.31)

where the indices I, J,K run from 1 to 3. Since the normalisation of the currents

generating the SW(3
2
, 1, 1, 1) algebra has been chosen to match that of the characteristic

forms associated with SU(2)-structure, the comparison between the OPEs (3.30) and

(3.31) simply produces the following relation

C = −
…

24

c
= −2 +O(ℓ2

s) ,

consequently leading to

c = 6 +O(ℓ2
s) .

Therefore, deviations due to torsion away from the Odake algebra locus would only

become manifest through higher orders in the string length scale.
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3.5 Odε(3) algebra and SU(3)-structures

Finally, we discuss the case of SU(3)-structures with torsion, which is interesting due

to its connection with Calabi–Yau manifolds in the torsionless limit. Unfortunately,

this case poses a challenge: the underlying algebra should be of the form SW(3
2
, 3

2
, 3

2
, 1)

and—to the best of our knowledge—a full classification of this algebra is missing in the

literature.13 We reserve a full description of this family of algebras for future endeavors.

We thus focus instead on an infinitesimal deformation of the Od(3) algebra which

we call Odε(3), where ε is the infinitesimal parameter of the deformation. This algebra

should be physically interpreted as the symmetry algebra of a worldsheet CFT where

the string background is obtained as a deformation of a Calabi–Yau background via

the introduction of an infinitesimal amount of NS flux H.

SU(3)-structures. Although SU(3)-structures present many similarities with the case

of SU(2)-structures described above, they possess additional torsion classes that will

make our study richer, as we now describe.

An SU(3)-structure on a six-dimensional Riemannian manifold M is determined

by a pair of well defined, nowhere-vanishing forms (ω,Ω), where ω is real and Ω is

complex, satisfying the following relations: [70, 77, 103]

Ω ∧ ω = 0 ,
1

6
ω ∧ ω ∧ ω =

i

8
Ω ∧ Ω , (3.32)

We call ω the Hermitian form and Ω the holomorphic volume form. We will denote the

real and imaginary parts of Ω by

Ω+ = Re Ω , Ω− = Im Ω ,

and we will often work with the triplet of real forms (ω,Ω+,Ω−). The holomorphic

volume form defines an almost complex structure J on M [99] as follows:

J ij =
I ij»

−1
6
Tr(I2)

, I ij = −(Ω+)jkl(Ω+)mnrǫ
iklmnr ,

where ǫ is the Levi-Civita symbol. As for the SU(2) case, we can employ J to decompose

(complex) forms into (p, q) types. We have that ω is of (1, 1) type and Ω is of (3, 0)

type, justifying their nomenclature. Note that (ω,Ω) also define an orientation via

(3.32) and a metric G through the formula Gij = ωikJ
k
j .

There are five torsion classes associated with an SU(3)-structure [77, 100, 103–

105]: W0 is a complex function, W1 is a real one-form, ϑ is a complex one-form of (1, 0)

13Note two special loci with central charges c = 9 and c = 1 are known and have been studied [102].
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type, W2 is a complex primitive two-form of (1, 1) type, and W3 is a real primitive

three-form of (2, 1) + (1, 2) type. They are determined by the exterior derivative of the

characteristic forms:

dω = −3

4
Im(W0 Ω) +W1 ∧ ω +W3 , dΩ = W0 ω ∧ ω +W2 ∧ ω + ϑ̄ ∧ Ω .

We will often decompose the complex function W0 into two real torsion classes

W+
0 = ReW0 , W−

0 = ImW0 .

On a manifold with an SU(3)-structure there exists a compatible connection with totally

antisymmetric torsion if and only if the Nijenhuis tensor N ′
J , defined in equation (3.28),

is totally antisymmetric [75]. This is equivalent to the vanishing of the torsion class

W2 [72, 75], and the totally antisymmetric torsion then reads

Tor = −J(dω) +N ′
J = −J(W1 ∧ ω +W3) − 1

2
Re(W 0Ω) .

The SW(3
2
, 3

2
, 3

2
, 1) and Odε(3) algebras. The SW-algebra underlying manifolds

with an SU(3)-structure must be SW(3
2
, 3

2
, 3

2
, 1). Recalling the prescription (3.5), the

generators of the algebra will be

〈
1, T ,J ω,J Ω+ ,J Ω−

〉
,

where the current J ω has weight hω = 1 and the currents J Ω± have weight hΩ± = 3
2
.

As anticipated, the high weights and the number of generators will make the explicit

construction this algebra a challenging task. To formulate the Ansatz, we need to

introduce the following quasi-primary projections of normal ordered products—note

how their structures depend on the couplings, most of them yet to be determined at

this stage:

N (T J ω) = N(T J ω) − 1

3
D∂J ω ,

N (J ωJ ω) = N(J ωJ ω) − 1

3
CΩ+
ωωDJ Ω+ − 1

3
CΩ−
ωωDJ Ω− − 1

3
CT
ωωDT ,

N (J ωJ Ω±) = N(J ωJ Ω±) − 1

6
Cω
ωΩ±

D∂J ω − 1

4
Cωω
ωΩ±

DN (J ωJ ω)

− 1

3
CT
ωΩ±

∂T − 1

3
C

Ω+

ωΩ±
∂J Ω+ − 1

3
C

Ω−

ωΩ±
∂J Ω− .
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The symmetry arguments and the normalisation reported in Section 1.3 allow us to set

the following couplings to zero:

Cω
ωω = 0 , Cω

Ω±Ω±
= 0 , CT ω

Ω±Ω±
= 0 , C

ωΩ±

Ω±Ω±
= 0 ,

C
Ω+

ωΩ+
= 0 , C

Ω−

ωΩ−
= 0 , C1

ωΩ±
= 0 , C1

Ω+Ω−
= 0 .

Moreover, we normalise the non-zero two-point functions to be the same employed in

the Od(3) algebra (see Appendix B.3.1)

C1

ωω = −3 , C1

Ω±Ω±
= 4 . (3.33)

Additional symmetries can be employed to further constrain the couplings: adopting

the normalisation (3.33)

Cω
ωΩ±

=
4CΩ±

ωω

3
, C

Ω+

Ω+Ω−
= C

Ω−

Ω+Ω+
, C

Ω−

Ω+Ω−
= C

Ω+

Ω−Ω−
,

C
Ω−

ωΩ+
= −

3Cω
Ω+Ω−

4
, C

Ω+

ωΩ−
=

3Cω
Ω+Ω−

4
.

The most general Ansatz satisfying the symmetry constraints listed above can be found

in Appendix B.3.2. Imposing the SW-algebra consistency conditions onto this Ansatz

leads to a large collection of non-linear constraints: we leave a full study of these

equations for the future and work at perturbative level instead.

As anticipated, we will construct an infinitesimal deformation of the Od(3) algebra.

The Virasoro algebra and the OPEs with the primary generators T ×J ω,Ω± are assumed

to take the usual forms (2.29) and (2.30), respectively. Consider now a generic coupling

Ck
ij appearing explicitly in the Ansatz written above, and the same coupling in the

Od(3) algebra C k
Od,ij, where special holonomy is achieved. We introduce an infinitesimal

parameter ε: assuming that Ck
ij is an analytic function of ε, we write

Ck
ij = C k

Od,ij + ε δCk
ij +

1

2
ε2δδCk

ij +O(ε3) . (3.34)

Plugging the expansion (3.34) into the OPEs of the Ansatz listed above, we produce the

infinitesimal deformation of the Od(3) algebra that we call Odε(3). The algebra Odε(3)

will be considered consistent if it satisfies the SW-algebra consistency conditions—for

example, associativity—up to terms of order O(ε3).

We present the final result. Interestingly, every coupling turns out to be either

equal to zero (up to terms of order O(ε3)) or a function of the following two deformed

couplings14

CΩ+
ωω = ε δCΩ+

ωω +
1

2
ε2δδCΩ+

ωω +O(ε3) , CΩ−
ωω = ε δCΩ−

ωω +
1

2
ε2δδCΩ−

ωω +O(ε3) .

14The couplings δδCωΩ±

Ω+Ω−
are not constrained either: however, they do not carry any physical

meaning, as we argue in the following.
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This is illustrated by the central charge, which exhibits a correction of order O(ε2)

c = 9 − 3

4
ε2

(
v2

+ + v2
−
)

+O(ε3) , (3.35)

where we have introduced the following lighter notation to unclutter the formulas:

δCΩ+
ωω = v+ , δδCΩ+

ωω = u+ , δCΩ−
ωω = v− , δδCΩ−

ωω = u− .

In analogy with the previously shown SW-algebras, we expect c to be a free parameter

(subject to unitarity bounds) of the full SW(3
2
, 3

2
, 3

2
, 1) family. Although the deforma-

tion (3.35) indeed shows that c is allowed to take different values, it is worth stressing

again that Odε(3) is only valid in a small neighbourhood around c = 9. In partic-

ular, equation (3.35) fails to capture the existence of the known c = 1 locus of the

SW(3
2
, 3

2
, 3

2
, 1) family [102].

We list the remaining couplings, fixed by associativity up to order O(ε3)

CT
ωω = −2 − 1

6
ε2

(
v2

+ + v2
−

)
+O(ε3) , CT

ωΩ+
= O(ε3) ,

Cωω
ωΩ+

= −1
2
CΩ−

ωω +O(ε3) , CT
ωΩ−

= O(ε3) ,

Cωω
ωΩ−

=
1
2
CΩ+

ωω +O(ε3) , CT
Ω±Ω±

= 4 +
1
3
ε2(v2

+ + v2
−) +O(ε3) ,

C
Ω+

Ω+Ω+
= −3

2
CΩ+

ωω +O(ε3) , C
Ω+

Ω−Ω−
= −1

2
CΩ+

ωω +O(ε3) ,

C
Ω−

Ω+Ω+
= −1

2
CΩ−

ωω +O(ε3) , C
Ω−

Ω−Ω−
= −3

2
CΩ−

ωω +O(ε3) , (3.36)

Cωω
Ω+Ω+

= −2 +
1
48
ε2

(
−v2

+ + 3v2
−

)
+O(ε3) , Cωω

Ω−Ω−
= −2 +

1
48
ε2

(
3v2

+ − v2
−

)
+O(ε3) ,

Cω
Ω+Ω−

= 4 − 1
6
ε2

(
v2

+ + v2
−

)
+O(ε3) , CT

Ω+Ω−
= O(ε3) ,

Cωω
Ω+Ω−

= − 1
12
ε2v+v− +O(ε3) , CT ω

Ω+Ω−
= 4 +

13
24
ε2

(
v2

+ + v2
−

)
+O(ε3) ,

C
ωΩ+

Ω+Ω−
= −2εv+ +

1
2
ε2δδC

ωΩ+

Ω+Ω−
+O(ε3) , C

ωΩ−

Ω+Ω−
= −2εv− +

1
2
ε2δδC

ωΩ−

Ω+Ω−
+O(ε3) .

It can be checked that, with this choice of couplings, the Odε(3) algebra closes up to the

ideals generated by two null fields N1 and N2, which can be expressed as expansions

in powers of ε as follows

N1 = N (J ωJ Ω−) − ε

6
v− N (T J ω) − ε2

12
u− N (T J ω) +O

(
ε3
)
,

N2 = N (J ωJ Ω+) − ε

6
v+ N (T J ω) − ε2

12
u+ N (T J ω) +O

(
ε3
)
.
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J 1
cl. J 2

cl. J U
cl. J N

cl. J V
cl. cU cN cV

J ω
cl. J ω

cl. - J Ω+

cl. , J Ω−

cl. −1 - 4W+
0 ℓs , 4W−

0 ℓs 6

J ω
cl. J Ω±

cl. J Ω∓

cl. −J ω
cl.J ω

cl. - ±3 ±2W∓
0 ℓs -

J Ω±

cl. J Ω±

cl. −J ω
cl.J ω

cl. - - 2 - -

J Ω+

cl. J Ω−

cl. - - J ω
cl. - - 8

Table 6: Currents appearing in the classical OPE J 1
cl. × J 2

cl. for an SU(3)-structure.

Geometrical information is encoded in the scalar torsion classes W+
0 and W−

0 .

The null fields N1 and N2 satisfy the null field conditions (A.7) and (A.8) up to terms

of order O(ε3). In the limit ε → 0, they reduce to the Odake null fields (B.6)

N1
ε→0−→ NOd,1 , N2

ε→0−→ NOd,2 , (3.37)

Following the statement (3.37), we realise that the parameters δδC
Ω±ω
Ω+Ω−

in the Ansatz

OPE J Ω+ × J Ω− multiply null fields up to order O(ε2). Thus, they are arbitrary and

we can choose to set them to zero. This completely fixes the entire Odε(3) up to the

free parameters v±, u±.

This infinitesimal deformation significantly alters the properties of the algebra. For

instance, in the Od(3) algebra, the field J ω is the U(1) supercurrent that endows the

algebra with N = 2 supersymmetry. When the parameter ε is turned on, the OPEs of

J ω are deformed away from those of a supersymmetry generator. Thus, we conclude

that the deformation we have described breaks supersymmetry down to N = 1.

Geometrical interpretation of the couplings. In Table 6 we report the data

needed to build the classical OPEs from the SU(3)-structure. The classical OPEs read

J ω
cl.(Z1)J ω

cl.(Z2) ∼ 4W+
0 ℓs

θ12

Z12

J Ω+

cl. + 4W−
0 ℓs

θ12

Z12

J Ω−

cl. − 2
θ12

Z12

Tcl. + . . . ,

J ω
cl.(Z1)J Ω±

cl. (Z2) ∼ ∓3

Å
1

Z12

J Ω∓

cl. +
θ12

3Z12

DJ Ω∓

cl.

ã
∓ 2W∓

0 ℓs
θ12

Z12

J ω
cl.J ω

cl. + . . . ,

J Ω±

cl. (Z1)J Ω±

cl. (Z2) ∼ −2

Å
1

Z12

J ω
cl.J ω

cl. +
θ12

2Z12

D (J ω
cl.J ω

cl.)

ã
+ . . . ,
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J Ω+

cl. (Z1)J Ω−

cl. (Z2) ∼ 4
θ12

Z12

Tcl.J ω
cl. + . . . .

We can identify the products of the classical currents J ω
cl.J ω

cl. and Tcl.J ω
cl. as the classical

limit of the quasi-primary normal ordered operators N (J ωJ ω) and N (T J ω), respec-

tively. By comparing the couplings of the classical OPEs with the list of couplings

(3.36), we immediately realise that the comparison is effective only up to order O(ε).

Then, we can extract the prediction

CΩ±
ωω = ε v± +O(ε2) = 4W±

0 ℓs +O(ℓ2
s) . (3.38)

From the equation (3.38), we infer that W0 is of order O(ε), so the worldsheet theory
described by the algebra Odε(3) must be associated with an infinitesimal torsion, ruled
by the same parameter ε. This scenario can be realised as follows: we introduce two
fields h and b to slightly perturb the background metric and Kalb–Ramond field in the
σ-model (2.1)

S[X,Λ] =
∫
Σ

d2|1ζ
2 ℓ2s

[(Gij(X) + hij(ε,X)) + (Bij(X) + bij(ε,X))] ∂̄XiDXj + . . . , (3.39)

where B is a closed form and b is an analytic function of ε, such that

b(ε,X) = ε δb(X) +
1

2
ε2 δδb(X) +O(ε3) .

The deformation presented in the equation (3.39) can be physically interpreted as

perturbing the original string background with a coherent state of gravitons, Kalb–

Ramond particles etc.; from the geometrical point of view, it corresponds to a slight

deformation of the Calabi–Yau three-fold metric—which is then compensated by a

deformation of the other fields to ensure the cancellation of the Weyl anomaly. The

Bianchi identity then reads

H = d (B + b(ε)) +
ℓ2
s

8π

(
CS3(A) − CS3(Θ)

)
+O(ℓ3

s) = ε d δb(X) +O(ε2, ℓ2
s) .

We can then define an adimensional w0 scalar torsion class for the “small” torsion

d δb(X) as follows15

W±
0 = εw±

0 +O(ε2, ℓ2
s) , (3.40)

15Perhaps readers familiar with the Hull–Strominger system [106, 107] are surprised by the presence
of a non-zero scalar torsion class W0. The reason for this is that we are not assuming any particular
Ansatz for the background, so our discussion applies to more general compactifications where W0 6= 0.
Examples of these include backgrounds where the spacetime is a domain wall [108–110] or where a
gaugino condensate is present [111–114].
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and plugging (3.40) in the prediction (3.38), we obtain

v± = 4w±
0 ℓs +O(ℓ2

s) .

This outcome is interesting since all the couplings (3.36) only depend on the free pa-

rameters v±, without any reference to the parameters u± (which might appear at higher

orders in ε). For example, the central charge of the special holonomy algebra is cor-

rected by the infinitesimal torsion as follows

c = 9 − 12 (ε ℓs)
2||w0||2 +O(ε3, ℓ3

s) ,

where a new effective string length scale ℓεs = ε ℓs appears. By studying the list of

couplings (3.36), we realise that the Odε(3) algebra should not be interpreted as an

ℓs expansion of the SW(3
2
, 3

2
, 3

2
, 1) algebra, but as an ℓεs expansion around the special

holonomy locus.

To conclude, we note that the limit H → 0 implies w±
0 → 0 in the case we are

considering: the algebra flows back to the Od(3) algebra, and the geometry to a special

holonomy manifold.

4 Conclusions and outlook

In this paper we have explored the possibility of identifying the worldsheet SW-algebras

associated with string backgrounds in the presence of a non-zero NS flux H, focusing

on backgrounds that include a manifold equipped with a G-structure with torsion.

We have first presented families of SW-algebras constructed from first principles

that were candidates to describe each of the different G-structure backgrounds. Next,

we have considered those same backgrounds as targets of a classical σ-model and we

have used the W-symmetries originating from the G-structures to obtain a classical

limit of the OPEs. Finally, we have combined both perspectives to identify the relevant

SW-algebras and provide a geometrical interpretation of their couplings.

Our procedure recovers all well-known special holonomy algebras. In addition, for

G2 and SU(3)-structures we have found SW-algebras that are explicitly parametrised

by the scalar torsion classes. In the G2 case, we have focused on the explicit example

given by the algebra studied by Fiset and Gaberdiel [16], and we correctly connected

the level k of their WZW worldsheet description to the scalar torsion class τ0 at the

lowest order in ℓs. In the SU(3) case, we constructed a perturbative description of the

family of algebras around the special holonomy locus Od(3), with central charge c = 9.

In this case, we also connected the OPE coefficients turned on by the deformation with

the scalar torsion classes W±
0 .
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Both of these examples are significative since they display the primary role of scalar

torsion classes in the deformation of special holonomy algebras at the lowest order in

the string length scale. Moreover, the derivation of the classical OPE is general and

it only requires the geometrical information encoded into the G-structure of the string

background, so it is suited for physically interpreting not only well known string-related

SW-algebras, but also more exotic ones.

Our results open up several interesting future directions. First of all, it should be

noted that, since we have restricted ourselves to the chiral holomorphic sector—and the

gauge bundle does not play a role in our analysis—everything should follow analogously

for (1, 1) non-linear σ-models and thus apply equally well to pure NS-NS backgrounds

of type II superstrings. It would be interesting to verify this explicitly.

In addition, we would like to complete the study of SU(3)-structures presented here

by fully constructing the SW(3
2
, 3

2
, 3

2
, 1) algebra and finding the exact correspondence

between the torsion classes and the couplings. This would be especially relevant to

better understand compactifications on non-Kähler manifolds, see for example [106,

107, 115, 116] for some foundational works in the heterotic setting. It would also be

extremely interesting to search for a connection between the Odε(3) algebra and the

literature regarding tree-level marginal deformations of (2,0) non-linear σ-models [117];

a similar path could be followed by studying Spin(7) and G2-structures [118] and the

associated tree-level marginal deformations of the worldsheet action.

Another natural follow-up would be trying to pinpoint the role of torsion classes

beyond the scalar ones. We conjecture that they should appear in loop corrections

at higher orders in ℓs, so a perturbative computation could be performed to better

understand the precise contribution of these additional torsion classes.

Moreover, the techniques we use in this paper could be applied to backgrounds with

additional geometric structures, such as the almost contact structure always present

on G2-manifolds [119]. The contact form σ would correspond to an additional chiral

current of weight hσ = 1
2

in the worldsheet CFT, and in favourable circumstances

it should be possible to recognise a subalgebra corresponding to the SU(3)-structure

induced on the manifold by the almost contact structure.

Another possible direction involves the gauge bundle of the (1, 0) non-linear σ-

model: very little is known concerning the relationship between the gauge bundle

and the worldsheet theory [67–69]. One could study the W-symmetry commutators

applied to the superfields Λα and explore the general constraints that the existence

of a G-structure on the background imposes on the gauge bundle—analogously to our

study for the superfields X i.

Mirror symmetry manifests in the worldsheet as an automorphism of the underlying
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SW-algebra [9–11]. Studying and classifying automorphisms of the algebras FGk and

Odε(3) corresponding to string backgrounds with nonzero NS flux would shed some light

on mirror symmetry in this setting. This would complement the spacetime perspective

that is already present in the literature, particularly in the case of SU(3)-structures—see

for example [120–123].

In recent years, a lot of progress has been made in the context of the AdS/CFT

correspondence to relate the features of the boundary CFTs and those of the worldsheet

theory in the presence of NS flux [96, 124–127]. It would be interesting to study the

possible holographic applications of the SW-algebras found in this work and to expand

the results already available for WZW models to more general non-linear σ-models.

Finally, it would also be illustrative to explore the similarities between our strategy

and more mathematical approaches such as the chiral de Rham complex [52], which

provides a way to quantise the classical σ-model [55, 56] and has recently been explored

for backgrounds with nonzero NS flux [59, 60].
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A Further details on null fields

In this Appendix we provide further details regarding null fields, introduced in Sec-

tion 1.3. In particular, we give a more formal definition and we discuss how to determine

whether a given field is null employing only the generators of the SW-algebra.
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Let us start by considering the two-dimensional CFT whose symmetries are encoded

in a given SW-algebra. We indicate by F the holomorphic sector of the operator

content of such algebra. Then, we can define the following bilinear map, taking a pair

of operators into a third one

[· ·]p : F ⊗ F −→ F , p ∈ Z (A.1)

such that for each pair A,B ∈ F there exists a p̂ ∈ Z for which

[· ·]p>p̂ : A⊗B 7−→ 0 .

For any triplet of operators A,B,C ∈ F , the bilinear map satisfies three properties

[22]:

⋄ unity:

[1A]0 = A , [1A]r 6=0 = 0 ; (A.2)

⋄ commutation:

[BA]r = (−1)|A||B| ∑
s≥r

(−1)s

(s− r)!
∂s−r[AB]s , ∀r ∈ Z ; (A.3)

⋄ associativity:

[A[BC]r]s = (−1)|A||B|[B[AC]s]r+
∑
t>0

Ç
s− 1

t− 1

å
[[AB]tC]r+s−t , ∀r, s ∈ Z . (A.4)

The bilinear function (A.1) is constructed in such a way that given two operators A and

B, [AB]p returns the p-th pole in the OPE between A and B. The properties (A.2),

(A.3) and (A.4) encode the OPE consistency conditions.

As already anticipated in Section 1.3, in some instances it is possible to relax

the OPE consistency conditions (A.2), (A.3) and (A.4). Since correlation functions

represent the observables of the theory, the consistency conditions should always be

considered to hold up to null fields. Any correlator containing a null field insertion

vanishes identically. Any null field N ∈ F generates an ideal IN ∈ F , where every

element of IN is a null field. Physical statements are meant to hold up to these ideals.

By employing the bilinear function (A.1), we provide a necessary condition for a field

N to be null

[NA]r 6= 1 ∀A ∈ F ,∀r ∈ Z . (A.5)

– 49 –



Usually, this is also regarded as a sufficient condition if all the operators apart from the

identity have strictly positive conformal dimensions [22]. If we consider a SW-algebra

finitely generated by the set of currents

Jh1 , . . . ,Jhn
,

we argue that testing the condition (A.5) on the set of generators is sufficient. By

definition, the rest of the operators of the algebra are constructed out of the generators

employing addition, multiplication by scalar, action of ∂ and normal ordering:

⋄ Addition and multiplication by scalar : by linearity

[N (αJhi
+ βJhj

)]r = α[NJhi
]r + β[NJhj

]r , (A.6)

where α and β are real numbers. Since by hypothesis both terms in the right-hand

side of the equation (A.6) are null fields, we conclude that the left-hand side is a null

field as well.

⋄ Action of ∂: using the properties of the OPE [22]

[N ∂Jhi
]r+1 = r[NJhi

]r + ∂[NJhi
]r+1 .

The right-hand side is by hypothesis composed of a null field and the derivative of a

null field, which is still a null field. Hence, the left-hand side is a null field as well.

⋄ Normal ordering: we consider the generalisation of Wick theorem for interacting

fields [78]

N(z1)N(Jhi
Jhj

)(z2) =
1

2πi

∮
z2

dz3

z3 − z2

∑
r>0

Å
[NJhi

]r(z3)Jhj
(z2)

(z1 − z3)r

+ (−1)|N||Jhi
| Jhi

(z3)[NJhj
]r(z2)

(z1 − z2)r

ã
.

Provided that

[[NJhi
]rJhj

]s 6= 1 ∀r, s > 0 ,

the generalised Wick theorem ensures that the OPE N × N(Jhi
Jhj

) contains only

null fields.

Iterating these four operations and checks leads to proving the condition (A.5). In

conclusion, the condition (A.5), which is difficult to test since the operator content is

infinite, can be replaced by the conditions

[NJhi
]r 6= 1 ∀r > 0 , (A.7)

[[NJhi
]rJhj

]s 6= 1 ∀r, s > 0 , (A.8)

where Jhi
,Jhj

are generators of the SW-algebra.

– 50 –



B SW-algebras and their OPEs

This Appendix is a compendium of explicit OPEs defining the SW-algebras relevant

for this work and already discussed in the literature. In addition, in Section B.3.2

we provide an Ansatz for the most general algebra associated with an SU(3)-structure

with torsion. All the algebras are named after the authors of the works where they first

appeared, up to our knowledge.

We will only provide the non-trivial OPEs between the extra currents J Φ. Each

of the following SW-algebras should be completed with the OPEs

T (Z1)T (Z2) ∼ c

6

1

Z3
12

+
3

2

θ12

Z2
12

T (Z2) +
θ12

Z12

∂T (Z2) +
1

2Z12

DT (Z2) + . . . ,

T (Z1)J Φ(Z2) ∼ p

2

θ12

Z2
12

J Φ(Z2) +
θ12

Z12

∂J Φ(Z2) +
1

2Z12

DJ Φ(Z2) + . . . ,

where p represents the degree of the characteristic form associated with the current J Φ

(the association is explicitly stated in Section 3). All the extra currents are considered

to be primary operators. Finally, in some subcases the central charge c will not be

a free parameter, being instead associated with a special locus in the corresponding

family of algebras. If this is the case, its value will be specified.

B.1 Spin(7) SW-algebras

We call Spin(7) SW-algebras those algebras enhancing the super Virasoro algebra by

means of a primary J Ψ of weight hΨ = 2.

B.1.1 Figueroa-O’Farrill–Schrans algebra FS

The full family of Spin(7) algebras was derived for the first time by Figueroa-O’Farrill
and Schrans in [23]. It only depends on the central charge c. The normalisation of the
J Ψ current is encoded in the positive parameter µ.

J Ψ(Z1)J Ψ(Z2) ∼ µ

Z4
12

+ CΨ
ΨΨ

Å
1

Z2
12

J Ψ +
θ12

2Z2
12

DJ Ψ +
1

2Z12
∂J Ψ +

3

10

θ12

Z12
D∂J Ψ

ã

+
12µ

c

Å
θ12

Z3
12

T +
1

Z2
12

DT +
2

3

θ12

Z2
12

∂T +
1

4Z12
D∂T +

θ12

4Z12
∂∂T
ã

+
216µ

c (21 + 4c)

θ12

Z12
N (DT T ) +

54

6 + 5c
CΨ

ΨΨ

θ12

Z12
N (T J Ψ) + . . . ,

where the self-coupling is given by

CΨ
ΨΨ =

 
− 8(5c+ 6)2µ

c (c− 15)(4c+ 21)
.
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It is immediate to derive the unitarity constraint c < 15, which provides an upper

bound to the range of the central charge.

B.1.2 Shatashvili–Vafa algebra SVSpin(7)

The SVSpin(7) algebra introduced by Shatashvili and Vafa in [6] describes the sym-

metry algebra on the worldsheet for superstrings propagating on a background with

Spin(7) special holonomy. It corresponds to the FS algebra for a particular choice of

normalisation µ and central charge c

µ =
46

3
, c = 12 .

J Ψ(Z1)J Ψ(Z2) ∼ 46

3

1

Z4
12

+
44

3

Å
1

Z2
12

J Ψ +
θ12

2Z2
12

DJ Ψ +
1

2Z12
∂J Ψ +

3

10

θ12

Z12
D∂J Ψ

ã

+
46

3

Å
θ12

Z3
12

T +
1

Z2
12

DT +
2

3

θ12

Z2
12

∂T +
1

4Z12
D∂T +

θ12

4Z12
∂∂T
ã

+ 4
θ12

Z12
N (DT T ) + 12

θ12

Z12
N (T J Ψ) + . . . .

The OPEs appearing in the original paper are given in a different basis and can be

recovered by performing the field redefinition

J Ψ = −J Ψ
SV − 1

3
DT ,

where J Ψ
SV encodes the operators appearing in the original formulation of this algebra.

B.2 G2 SW-algebras

We call G2 SW-algebras those algebras enhancing the super Virasoro algebra by means

of a primary J ψ of weight hψ = 2, and a primary J ϕ of weight hϕ = 3
2
.

B.2.1 Blumenhagen algebra Bl

Although the full family of G2 SW-algebras was first introduced by Blumenhagen in

[27], in this presentation we will follow [44]. The algebra depends on the central charge

c and on a positive parameter λ2. We can pack λ2 and c into a new parameter µ

µ =

 
9c (4 + λ2)

2(27 − 2c)
.

J ϕ(Z1)J ϕ(Z2) ∼ 2c2

µ2

1

Z3
12

+
18c

µ2

Å
θ12

Z2
12

T +
1

3Z12
DT +

2

3

θ12

Z12
∂T
ã
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+
3λ

√
3c

µ

Å
θ12

Z2
12

J ϕ +
1

3Z12
DJ ϕ +

2

3

θ12

Z12
∂J ϕ

ã

+ 6

Å
1

Z12
J ψ +

θ12

2Z12
DJ ψ

ã
+ . . . , (B.1)

J ϕ(Z1)J ψ(Z2) ∼ 2c

3

Å
1

Z2
12

J ϕ +
θ12

3Z2
12

DJ ϕ +
1

3Z12
∂J ϕ +

θ12

6Z12
D∂J ϕ

ã

+
2λ

√
3c

µ

Å
θ12

Z2
12

J ψ +
1

4Z12
DJ ψ +

θ12

2Z12
∂J ψ

ã
+ 6

θ12

Z12
N (T J ϕ) + . . . ,

(B.2)

J ψ(Z1)J ψ(Z2) ∼ 2c3

9µ2

1

Z4
12

+
12c

µ2

θ12

Z12
N (DT T )

+
8c2

3µ2

Å
θ12

Z3
12

T +
1

3Z2
12

DT +
2

3

θ12

Z2
12

∂T +
1

6Z12
D∂T +

θ12

4Z12
∂∂T
ã

+
10c− 27

9

Å
1

Z2
12

J ψ +
θ12

2Z2
12

DJ ψ +
1

2Z12
∂J ψ +

3

10

θ12

Z12
D∂J ψ

ã

+
2λc

√
3c

9µ

Å
θ12

Z3
12

J ϕ +
1

3Z2
12

DJ ϕ +
2

3

θ12

Z2
12

∂J ϕ +
1

6Z12
D∂J ϕ +

θ12

4Z12
∂∂J ϕ

ã

+ 12
θ12

Z12
N (T J ψ) − θ12

Z12
N (DJ ϕJ ϕ) +

2λ
√

3c

µ

θ12

Z12
N (DT J ϕ) + . . . . (B.3)

It should be noted that unitarity imposes an upper bound on the central charge, re-

quiring c < 27
2

.

The OPEs of [44] can be recovered expanding the super OPEs into OPEs and

performing a convenient rescaling. Our fields are related to those of [44] as follows

Pϕ = i
3
√

3c

µ
H , Kϕ = i

3
√

3c

µ
M , Pψ = − 2c

3µ
W , Kψ = − 2c

3µ
U .

B.2.2 Fiset–Gaberdiel algebra FGk

In [16], Fiset and Gaberdiel specialised the Blumenhagen algebra Bl to the backgrounds

AdS3 × S3 × T 4 , AdS3 × S3 × K3 .

This family of algebras can be obtained by studying WZW models adapted to the

specific backgrounds and it can be recovered from Bl by setting

c =
21

2
− 6

k
, λ2 =

32(3k − 2)2

k2(49k − 30)
, (B.4)
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where k corresponds to the integer level of the WZW model. Choosing λ > 0:

J ϕ(Z1)J ϕ(Z2) ∼ 49k − 7

7k − 4

1

Z3
12

+ 6
k(49k − 30)

(7k − 4)2

Å
θ12

Z2
12

T +
1

3Z12
DT +

2

3

θ12

Z12
∂T
ã

+ 12
√

2
1√
k

3k − 2

7k − 2

Å
θ12

Z2
12

J ϕ +
1

3Z12
DJ ϕ +

2

3

θ12

Z12
∂J ϕ

ã

+ 6

Å
1

Z12
J ψ +

θ12

2Z12
DJ ψ

ã
+ . . . ,

J ϕ(Z1)J ψ(Z2) ∼
Å

7 − 4

k

ãÅ
1

Z2
12

J ϕ +
θ12

3Z2
12

DJ ϕ +
1

3Z12
∂J ϕ +

θ12

6Z12
D∂J ϕ

ã

+ 8
√

2
1√
k

3k − 2

7k − 4

Å
θ12

Z2
12

J ψ +
1

4Z12
DJ ψ +

θ12

2Z12
∂J ψ

ã

+ 6
θ12

Z12
N (T J ϕ) + . . . ,

J ψ(Z1)J ψ(Z2) ∼
Å

49

6
− 5

k

ã
1

Z4
12

+

Å
26

3
− 20

3 k

ãÅ
1

Z2
12

J ψ +
θ12

2Z2
12

DJ ψ +
1

2Z12
∂J ψ +

3

10

θ12

Z12
D∂J ψ

ã

+

Å
28

3
− 8

3(7k − 4)

ãÅ
θ12

Z3
12

T +
1

3Z2
12

DT +
2

3

θ12

Z2
12

∂T +
1

6Z12
D∂T +

θ12

4Z12
∂∂T
ã

+
√

2
1√
k

4(3k − 2)

3 k

Å
θ12

Z3
12

J ϕ +
1

3Z2
12

DJ ϕ +
2

3

θ12

Z2
12

∂J ϕ +
1

6Z12
D∂J ϕ +

θ12

4Z12
∂∂J ϕ

ã

+ 8
θ12

Z12
N (T J Ψ) +

8k(49k − 30)(49k − 22)

3(7k − 4)2(49k − 24)

θ12

Z12
N (DT T )

+
4
√

2

3

1√
k

k(637k − 712) + 192

(7k − 4)(49k − 24)

θ12

Z12
N (DT J ϕ)

− 4

9

Å
2

49k − 24
+

1

k

ã
θ12

Z12
N (DJ ϕJ ϕ) − 4

√
2

1√
k

7k − 4

49k − 24

θ12

Z12
N (J ϕJ ψ) + . . . . (B.5)

It is important to recall from Section 3.3 that the FGk algebra closes up to a null field,

which depends on the selected level k

NFG
k = 8

Å
3 − 4c2

7µ2

ã
N (T J ψ) − 2

3

Å
1 +

4

21
c

ã
N (DJ ϕJ ϕ) +

8c

µ2
N (DT T )

+
1√
k

8
√

2

7

Å
N (J ϕJ ψ) −

Å
3 − 4c2

3µ2

ã
N (DT J ϕ)

ã
.

In fact, in our presentation substituting (B.4) into (B.3) only yields (B.5) up to the

null field above. The OPEs found in Appendix B of [16] can be recovered—again up
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to null fields—by changing to a non-primary basis and expanding the super OPEs into

OPEs.

B.2.3 Shatashvili–Vafa algebra SVG2

Similarly to the Spin(7) case, the SVG2 algebra by Shatashvili and Vafa first appeared in

[6] and describes the symmetry algebra on the worldsheet for superstrings propagating

on a background with G2 special holonomy. It can be obtained from the Bl algebra by

choosing the parameters

c =
21

2
, λ2 = 0 ,

or from the FGk algebra in the limit k → ∞. The latter method yields:

J ϕ(Z1)J ϕ(Z2) ∼ 7

Z3
12

+ 6

Å
θ12

Z2
12

T +
1

3Z12
DT +

2

3

θ12

Z12
∂T
ã

+ 6

Å
1

Z12
J ψ +

θ12

2Z12
DJ ψ

ã
+ . . . ,

J ϕ(Z1)J ψ(Z2) ∼ 7

Å
1

Z2
12

J ϕ +
θ12

3Z2
12

DJ ϕ +
1

3Z12
∂J ϕ +

θ12

6Z12
D∂J ϕ

ã

+ 6
θ12

Z12
N (T J ϕ) + . . . ,

J ψ(Z1)J ψ(Z2) ∼ 49

6

1

Z4
12

+
26

3

Å
1

Z2
12

J ψ +
θ12

2Z2
12

DJ ψ +
1

2Z12
∂J ψ +

3

10

θ12

Z12
D∂J ψ

ã

+
28

3

Å
θ12

Z3
12

T +
1

3Z2
12

DT +
2

3

θ12

Z2
12

∂T +
1

6Z12
D∂T +

θ12

4Z12
∂∂T
ã

+
8

3

θ12

Z12
N (DT T ) + 8

θ12

Z12
N (T J ψ) + . . . .

As described in Section 3.3, this algebra closes up to a null field

NSV = 8 N (T J Ψ) − 2 N (DJ ϕJ ϕ) +
8

3
N (DT T ) .

These OPEs reduce to the ones presented in [6]. Note however that the OPEs in

[6] are expressed in a different basis, which can be recovered by performing the field

redefinition

J ψ = J ψ
SV +

1

3
DT ,

where J ψ
SV encodes the operators appearing in the original formulation of this algebra.
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B.3 SU(n) SW-algebras

We call SU(n) SW-algebras those algebras enhancing the super Virasoro algebra by

means of a primary J ω of weight hω = 1, and two primaries J Ω± of weight hΩ± = n
2
.

In the following, we will focus on the cases n = 2, 3.

B.3.1 Odake algebras Od(2) and Od(3)

Although up to our knowledge the full family of SU(n) SW-algebras is not known

in the literature, the symmetry algebras on the worldsheet of strings propagating on

manifolds with SU(n) special holonomy, i.e., Calabi-Yau n-folds, first appeared in [4].
The Od(2) algebra reads

J ω(Z1)J ω(Z2) ∼ − 2

Z2
12

− 2
θ12

Z12
T + . . . ,

J ω(Z1)J Ω±(Z2) ∼ ∓2

Å
1

Z12
J Ω∓ +

θ12

2Z12
DJ Ω∓

ã
+ . . . ,

J Ω±(Z1)J Ω±(Z2) ∼ − 2

Z2
12

− 2
θ12

Z12
T + . . . ,

J Ω+(Z1)J Ω−(Z2) ∼ ∓2

Å
1

Z12
J ω +

θ12

2Z12
DJ ω

ã
+ . . . ,

and it does not require null fields to close.
The Od(3) algebra reads

J ω(Z1)J ω(Z2) ∼ − 3

Z2
12

− 2
θ12

Z12
T + . . . ,

J ω(Z1)J Ω±(Z2) ∼ ∓3

Å
1

Z12
J Ω∓ +

θ12

3Z12
DJ Ω∓

ã
+ . . . ,

J Ω±(Z1)J Ω±(Z2) ∼ 4

Z3
12

+ 4

Å
θ12

Z2
12

T +
1

3Z12
DT +

2

3

θ12

Z12
∂T
ã

− 2

Å
1

Z12
N (J ωJ ω) +

θ12

2Z12
DN (J ωJ ω)

ã
+ . . . ,

J Ω+(Z1)J Ω−(Z2) ∼ 4

Å
1

Z2
12

J ω +
θ12

2Z2
12

DJ ω +
1

2Z12
∂J ω +

θ12

3Z12
D∂J ω

ã

+ 4
θ12

Z12
N (T J ω) + . . . .

As opposed to the Od(2) algebra, the Od(3) algebra closes up to the ideals generated

by two null fields [4, 12]

NOd,1 = N (J ωJ Ω−) , NOd,2 = N (J ωJ Ω+) . (B.6)
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B.3.2 Towards a torsionful SU(3) algebra

To conclude this Appendix, we provide the explicit OPEs discussed in Section 3.5.

These correspond to the unfixed OPEs of the full family of SU(3) SW-algebras. The

coupling symmetries reported in Table 2 have already been implemented. An important

caveat is that the chosen normalisations are the same as in the Od(3) algebra:

C1

ωω = −3 , C1

Ω±Ω±
= 4 .

J ω(Z1)J ω(Z2) ∼ − 3

Z2
12

+
θ12

Z12

(
CT

ωωT + CΩ+

ωω J Ω+ + CΩ−

ωω J Ω−
)

+ . . . ,

J ω(Z1)J Ω+(Z2) ∼ 4

3
CΩ+

ωω

Å
θ12

Z2
12

J ω +
1

2Z12
DJ ω +

θ12

2Z12
∂J ω

ã

+ CT
ωΩ+

Å
1

Z12
T +

θ12

3Z12
DT
ã

− 3

4
Cω

Ω+Ω−

Å
1

Z12
J Ω− +

θ12

3Z12
DJ Ω−

ã

+ Cωω
ωΩ+

θ12

Z12
N (J ωJ ω) + . . . ,

J ω(Z1)J Ω−(Z2) ∼ 4

3
CΩ−

ωω

Å
θ12

Z2
12

J ω +
1

2Z12
DJ ω +

θ12

2Z12
∂J ω

ã

+ CT
ωΩ−

Å
1

Z12
T +

θ12

3Z12
DT
ã

+
3

4
Cω

Ω+Ω−

Å
1

Z12
J Ω+ +

θ12

3Z12
DJ Ω+

ã

+ Cωω
ωΩ−

θ12

Z12
N (J ωJ ω) + . . . ,

J Ω±(Z1)J Ω±(Z2) ∼ 4

Z3
12

+ CT
Ω±Ω±

Å
θ12

Z2
12

T +
1

3Z12
DT +

2

3

θ12

Z12
∂T
ã

+ C
Ω+

Ω±Ω±

Å
θ12

Z2
12

J Ω+ +
1

3Z12
DJ Ω+ +

2

3

θ12

Z12
∂J Ω+

ã

+ C
Ω−

Ω±Ω±

Å
θ12

Z2
12

J Ω− +
1

3Z12
DJ Ω− +

2

3

θ12

Z12
∂J Ω−

ã

+ Cωω
Ω±Ω±

Å
1

Z12
N (J ωJ ω) +

θ12

2Z12
DN (J ωJ ω)

ã
+ . . . ,

J Ω+(Z1)J Ω−(Z2) ∼ Cω
Ω+Ω−

Å
1

Z2
12

J ω +
θ12

2Z2
12

DJ ω +
1

2Z12
∂J ω +

θ12

3Z12
D∂J ω

ã

+ CT
Ω+Ω−

Å
θ12

Z2
12

T +
1

3Z12
DT +

2

3

θ12

Z12
∂T
ã

+ C
Ω−

Ω+Ω+

Å
θ12

Z2
12

J Ω+ +
1

3Z12
DJ Ω+ +

2

3

θ12

Z12
∂J Ω+

ã
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+ C
Ω+

Ω−Ω−

Å
θ12

Z2
12

J Ω− +
1

3Z12
DJ Ω− +

2

3

θ12

Z12
∂J Ω−

ã

+ Cωω
Ω+Ω−

Å
1

Z12
N (J ωJ ω) +

θ12

2Z12
DN (J ωJ ω)

ã

+
θ12

Z12

Ä
CT ω

Ω+Ω−
N (T J ω) + C

ωΩ+

Ω+Ω−
N (J ωJ Ω+) + C

ωΩ−

Ω+Ω−
N (J ωJ Ω−)

ä
+ . . . .
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