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Abstract: Small instantons which increase the axion mass due to an appropriate modification

of QCD at a UV scale ΛSI, can also enhance the effect of CP-violating operators to shift

the axion potential minimum by an amount, θind, proportional to the flavorful couplings in

the SMEFT. Since physical observables must be flavor basis independent, we construct a

basis of determinant-like flavor invariants that arise from instanton calculations containing

the effects of dimension-six CP-odd operators at the scale Λ
✟✟CP. This new basis provides

a more reliable estimate of the shift θind, that is severely constrained by neutron electric

dipole moment experiments. In particular, for the case of four-quark, semi-leptonic and

gluon dipole operators, these invariants are then used to provide improved limits on the

ratio of scales ΛSI/Λ✟✟CP for different flavor scenarios. The CP-odd flavor invariants also

provide a classification of the leading effects from Wilson coefficients, and as an example, we

show that a semi-leptonic four-fermion operator is subdominant compared to the four-quark

operators. More generally, the flavor invariants, together with an instanton NDA, can be

used to more accurately estimate small instanton effects in the axion potential that arise

from any SMEFT operator.
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1 Introduction

The Standard Model (SM) has provided a remarkably successful description of the elementary

particles and non-gravitational interactions. However, one unresolved issue is CP violation

which remains to be completely understood. In particular, there are two sources of CP violation

in the Standard Model at the renormalizable level: a weak CP phase from the CKM matrix

and the strong CP phase θ̄ = θQCD − arg det[YuYd], where θQCD is the QCD vacuum angle

and Yu,d are the up, down Yukawa coupling matrices. Limits from not observing a neutron

electric dipole moment (EDM) imply an upper bound θ̄ . 10−10 [1]. This unexpectedly small

value for θ̄ compares with the order-one weak CP phase and leads to the well-known strong
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CP problem. The strong CP problem occurs at the renormalizable level in the SM Lagrangian

and remains rather stable under renormalization group flow where radiative corrections to θ̄,

induced by the weak CP phase, first appear at seven loops [2, 3] (finite contributions appear

at four loops although still highly suppressed [4]). However, the problem can be exacerbated

by phases arising from higher-dimensional terms in the UV theory, which can cause order-one

shifts in θ̄ thereby potentially invalidating solutions to the strong CP problem [5].

Such a solution to the strong CP problem is the Peccei-Quinn (PQ) mechanism [6] where

a global U(1) PQ symmetry is spontaneously broken giving rise to the axion [7, 8]. The

PQ symmetry is anomalous because it is explicitly broken by non-perturbative QCD effects,

generating the axion potential with a minimum that exactly cancels θ̄. However, an underlying

assumption of the PQ mechanism is that the explicit breaking of the global PQ symmetry

must be dominated by non-perturbative QCD effects. Generically, shift-symmetry violating

terms (which may be CP-violating) arising from interactions of the axion with gravity spoil

the axion solution by misaligning the axion potential minimum. These contributions must

therefore be sufficiently suppressed, leading to the so-called axion quality problem, which can

be addressed by one of several mechanisms in the literature (see for example refs. [9–16]).

However, even under the assumption that shift-violating operators in the axion EFT

are sufficiently suppressed, another aspect of the axion quality problem occurs within the

Standard Model Effective Field Theory (SMEFT) where higher-dimensional CP-violating

terms induced at a scale Λ
✟✟CP can shift θ̄ and misalign the axion potential [17–19]. These new

sources of CP violation depend on the specific UV completion. If QCD is not modified in

the UV completion then the effects on the axion potential and the neutron EDM constrain

Λ
✟✟CP and these effects decouple as Λ

✟✟CP →∞. Alternatively, there has been renewed interest

in the old idea to modify QCD at a UV scale, ΛSI that can increase the axion mass while

still solving the strong CP problem [17, 20–29]. In this case, new CP-violating sources can

also be enhanced by small (UV) instantons whose effects are no longer suppressed due to the

assumed larger QCD coupling at the scale ΛSI. The leading contributions to θ̄ then scale as

Λ2
SI/Λ

2
✟✟CP [19] which do not necessarily decouple (i.e. when ΛSI,Λ✟✟CP →∞ with a finite ratio

ΛSI/Λ✟✟CP) and give rise to important constraints on CP violation in certain UV scenarios.

For a sufficiently small (although large) QCD gauge coupling these effects can be computed

by performing a one-instanton calculation which provides the dominant contribution to

the action. However, when the QCD gauge coupling becomes non-perturbative, the dilute

instanton gas approximation breaks down and non-perturbative methods must be used.

The effects of CP-violation arising from higher-dimension operators in an instanton

background, including a four-quark SMEFT operator were computed in refs. [19, 30, 31] and

estimated using an instanton naive dimensional analysis (NDA) in ref. [32]. However, different

CP-violating UV scenarios can give rise to many other operators [33, 34] and therefore

previous estimates of the contributions to θ̄ should be generalized for the complete list of

SMEFT operators. These new contributions to θ̄ must be independent of the flavor basis,

and hence can be written in terms of flavor-invariant quantities constructed from the Wilson

coefficients. Flavor-invariant quantities allow for an estimation of the physical consequences

of the Wilson coefficients — especially when used together with other NDA techniques [32] —

prior to any explicit computation. Indeed, knowledge of CP-violating invariants has previously
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been used for physical estimates [2, 3, 35–38]. This is particularly relevant in instanton

calculations where the computation can become quite cumbersome. Besides providing an

order parameter to estimate CP-violating physical effects, CP-odd invariants also provide

selection rules on the contribution from a particular Wilson coefficient, such as the number

of Yukawa coupling insertions or loop factor suppressions. For example, we will show that

semi-leptonic operators generate a θ but are suppressed by one extra loop-order and an

extra lepton Yukawa factor compared with four-quark operators. Furthermore, knowing

the number of up, down and lepton Yukawa couplings needed to construct the invariants,

we will be able to classify the leading contributions for arbitrary Wilson coefficients. The

use of flavor invariants also helps to explain the size of the instanton effects in different

flavor scenarios. Moreover, most computations in the literature have focused on the limit of

completely diagonal Yukawa matrices but, with the help of flavor invariants, the extension

to general flavorful matrices becomes simpler.

Due to the CP-nature of θ̄, the induced θ̄ in the presence of different SMEFT operators

can be parameterized via the CP-violating invariants introduced in refs. [39, 40], where a

basis of CP-odd flavor invariants was proposed at leading order in the corresponding Wilson

coefficient. The invariants introduced were all constructed as the imaginary part of a trace

of flavorful matrices. However, as will be made clear throughout this work, we find that

the instanton calculations can be more directly captured by a different basis, built out of

determinant-like structures, which were first pointed out in appendix F of ref. [39]. Indeed,

we find that the instanton computations of the enhanced θ̄ directly result in quantities

proportional to invariants in our new basis, instead of a complicated combination of CP-even

and -odd invariants if the results were projected onto the trace-like basis. We will show

that these determinant-like structures naturally arise in the path integral calculation of θ̄,

after performing the Grassmann integration over fermion zero modes. While any CP-odd

quantity can clearly be projected into both bases, the invariants built in this paper allow

for an immediate estimation of the CP-violating effects in the SMEFT, in the presence

of instanton backgrounds.

While the new flavor invariants introduced in this paper improve the estimate of θ̄ induced

in the SMEFT, we will also perform the detailed computation of θ̄ in the presence of small

instantons, using the one-instanton (or dilute instanton gas) approximation, to explicitly

show how the new invariants appear and more naturally describe physical processes that arise

from instanton computations. In particular, we generalize previous results on the insertion

of the CP-violating four-quark operator O
(1)
quqd and calculate the effects of the semi-leptonic,

O
(1)
lequ and gluon dipole, OdG operators. These results can then be used to translate the

stringent upper bound on θ̄ into limits on the scale of new physics generating these operators.

For the leading order operators, such as the four-quark and gluon dipole operators, we find

that Λ
✟✟CP & 106 ΛSI, assuming a minimally flavor violating (MFV) scenario for the SMEFT

couplings. Under these same flavor assumptions, the loop suppressed contributions, arising

from O
(1)
lequ, lead to the weaker constraint Λ

✟✟CP & 104 ΛSI. The bounds become more stringent

if there is no flavor structure in the Wilson coefficients, such as the anarchic flavor scenario.

In this case, assuming all the Wilson coefficients are order one, we obtain Λ
✟✟CP & 1011 ΛSI

for the four-quark operator O
(1)
quqd, Λ

✟✟CP & 108 ΛSI for the gluon dipole operator OdG and
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Λ
✟✟CP & 107 ΛSI for the semi-leptonic operator O

(1)
lequ. As a non-trivial check, we also verify

the expected independence of the renormalization scheme as well as the cancellation of

divergences in the renormalized effective theory that arise from loop integrals. To arrive

at this cancellation, one has to include the appropriate counterterms which lead to the

renormalization group equations (RGEs) of the SMEFT.

The paper is organized as follows. In section 2, we introduce the determinant-like

invariants, showing that they form a basis of CP-violating invariants, and then build such a

basis for certain SMEFT operators. The instanton calculations are presented in section 3

where we show explicitly that the determinant-like invariants appear directly from the

topological susceptibility computation; furthermore, we also explore why the determinant

structures appear in this sort of calculation and the information it contains prior to any

actual computation. In section 4, we compute the enhanced θ̄ and obtain new bounds on the

ratio between the small-instanton scale ΛSI and the CP-violating scale Λ
✟✟CP . We conclude

and suggest future directions for this work in section 5. The appendices review background

information and contain further details of the calculation. In appendix A, we introduce

our conventions and the relevant SMEFT operators. A complete basis of determinant-like

invariants is given in appendix B, while in appendix C we briefly review the basics of

instanton calculations that are relevant for this paper. Finally, in appendix D we perform

the integrals over collective coordinates used throughout the main text; in particular, we

verify the cancellation of divergences with the appropriate counterterms, which is a new

result obtained from an instanton calculation.

2 Flavor invariants featuring θQCD

Perturbative CP violation in the SM induced by the CKM phase is an intricate collective

effect that can only be properly described by a combination of Lagrangian parameters. The

most effective way to capture this effect in the SM is by using the Jarlskog invariant J4,

defined as [41–43]

J4 = Im
(
Tr [Xu, Xd]3

)
, (2.1)

where Xu,d ≡ Yu,dY
†

u,d. The quantity J4 captures, in a flavor basis-invariant way (cf. table 1),

the single physical phase that appears in the renormalizable part of the SM Lagrangian

and hence is the order parameter of CP violation in the SM. Here, we have used the fact

that U(3)5 ≡ U(3)Q × U(3)u × U(3)d × U(3)L × U(3)e is the largest possible flavor group

allowed by the SM fermion kinetic terms and is only broken by the SM Yukawa couplings and

global anomalies. The Lagrangian can be formally made invariant under this symmetry by

promoting the Yukawa couplings to spurions transforming under U(3)5 as given in the table 1.

Following the same logic, refs. [39, 40] constructed the flavor invariants which capture new

CP-violating phases present at lowest order in the SMEFT parametrization of UV physics.

In appendix A, we briefly introduce the SMEFT and the relevant operators which will be

considered throughout our work. The construction of these invariants specifically adopted

the philosophy of the Jarlskog invariant in eq. (2.1) in the sense that they are built out of

traces of flavorful matrices. Similarly, we can construct an invariant for the QCD theta angle,
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U(3)Q U(3)u U(3)d U(3)L U(3)e

eiθQCD 1+6 1−3 1−3 10 10

Yu 3+1 3̄−1 10 10 10

Yd 3+1 10 3̄−1 10 10

Ye 10 10 10 3+1 3̄−1

Table 1. Flavor transformation properties of θQCD and the Yukawa coupling matrices Yu,d,e. The

subscripts of the SU(3) representations denote the charge under the U(1) part of the flavor symmetry.

θQCD. Using the charges introduced in table 1, the flavor invariant given by1

Jθ = Im[e−iθQCD det(YuYd)] , (2.2)

captures the non-perturbative source of CP violation in the SM Lagrangian, specifically

θ̄ = θQCD − arg det[YuYd]. Indeed, contributions to the θ potential in the presence of an

instanton background gives the following dependence [23, 46]:

V (θQCD, Yu, Yd) ∝ e−iθQCD

3∏

i=1

ŷu,i ŷd,i , (2.3)

where ŷu,i, ŷd,i are the Yukawa matrix eigenvalues and i labels the quark flavors. Later, the

eigenvalues will sometimes be referred to by their particle name, i.e. for instance ŷu,3 = yt.

This result does not appear to be flavor invariant. However, the result can be reproduced

from Jθ or Kθ = Re[e−iθQCD det(YuYd)] (depending on the CP parity of the contribution to V )

that is calculated by expanding the invariants in the limit of diagonal SM Yukawa matrices.

This suggests that the flavor invariants can appear directly in the instanton calculations

provided general flavorful couplings are used in the computation.

In this paper, our goal is to consider the contribution of SMEFT operators to the

topological susceptibility in the presence of (small) instantons. We begin by considering the

effect of the four-fermion operator O
(1)
quqd = Q̄uQ̄d in the Lagrangian, L ⊃ C

(1)
quqdO

(1)
quqd/Λ

2
✟✟CP.

The effect of inserting this effective operator in an instanton background to the topological

susceptibility, χquqd, or equivalently the potential, was calculated in ref. [19] (see figure 1(a)).

In the limit of diagonal SM Yukawa couplings,2 we obtain a contribution proportional to

V
(
θQCD, Yu, Yd, C

(1)
quqd

)
∝ e−iθQCD

cij
ŷu,iŷd,j

3∏

k=1

ŷu,kŷd,k , (2.4)

where cij captures the contribution from the two possible flavor structures cij = C
(1)
quqd,iijj

or cij = C
(1)
quqd,ijji and k labels the six entries of the diagonal Yukawa matrices. The

1For instance, the correction to the axion mass in the SM is proportional to Kθ = Re[e−iθQCD det(YuYd)] ∝

cos θ̄, leading to the well-known cosine potential [44, 45], whereas the linear term of the axion potential

generated via non-perturbative QCD effects in the SM is proportional to Jθ ∝ sin θ̄.
2The CKM matrix is assumed to be unity here, which is possible in the SM below the W -boson mass, since

all effects of the CKM matrix can be put into effective operators.
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proportionality factor in eq. (2.4) depends on the details of the instanton calculation and

these factors will be derived in section 3.

It is not immediately apparent that eq. (2.4) is related in any way to the trace-like

invariants introduced in ref. [39]. As mentioned in the Introduction, determinant-like invariants

are much better suited to describe instanton calculations. Respecting the charge assignments

introduced in table 1, we can build the following simplest leading order (in the EFT power

counting) invariant

I(C
(1,8)
quqd) = Im

[
e−iθQCDǫABCǫabcǫDEF ǫdefYu,AaYu,BbC

(1,8)
quqd,CcDdYd,EeYd,Ff

]
, (2.5)

which contains the Wilson coefficient C
(1,8)
quqd,ijkl and we sum over repeated indices. Note

that this exact invariant had already been proposed in appendix F of ref. [39]. In the

limit of diagonal Yukawa couplings and vanishing θQCD (assumed in ref. [19]), eq. (2.5)

can be expanded as

I(C
(1,8)
quqd) = 4

(
3∏

k=1

ŷu,kŷd,k

)
3∑

i,j=1

Im[C
(1,8)
quqd]iijj

ŷu,iŷd,j
, (2.6)

which matches the result obtained in eq. (2.4) and explains the flavor structure appearing in

the instanton contribution. Similarly, the C
(1,8)
quqd,ijji flavor structure arises if we consider a

second invariant where the indices C and D are interchanged.

At this point several questions arise regarding these determinant-like invariants: why do

they seem to more naturally appear in instanton calculations? How can their knowledge help

in these computations? Can we construct similar determinant-like invariants for all effective

operators and how do they appear in instanton calculations? Furthermore, one should also

connect with the previously constructed trace-like basis of invariants: can a complete basis

be built out of the determinant-like invariants and how do they relate with the previously

constructed basis? While the former questions will be addressed in detail in section 3,

the remainder of section 2 will answer the latter questions regarding the construction of a

determinant-like basis suitable for instanton calculations.

2.1 A basis of determinant-like flavor invariants

In this section, we will discuss how one can, in principle, construct a complete basis of flavor

invariants for all SMEFT operators that are suitable for instanton calculations featuring

θQCD. By complete, we mean that the basis captures all CP-violating effects from UV phases

in the Wilson coefficients of SMEFT operators. Hence, we do not include opportunistic effects

where the interference of the real part of a Wilson coefficient with the CKM phase induces CP

violation, as previously considered in ref. [40]. We also want to emphasize that we only work

at leading order in the EFT, i.e., all flavor invariants will be linear in the Wilson coefficients.

Higher-order terms are negligible and we have estimated their effects in appendix D.1.

To test our set for completeness we will use the transfer matrix method introduced in

ref. [39]. The linearity of the invariants in the Wilson coefficients implies that there is a linear

map between the flavor invariants and the entries of the Wilson coefficients C(6)

Ia

(
C(6)

)
= Tai

~C
(6)
i , (2.7)

– 6 –
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where we have defined the transfer matrix T and the vector of Wilson coefficients ~C
(6)
i =((

ReC(6)
)

1
,
(
ReC(6)

)

2
, . . . ,

(
ImC(6)

)

1
,
(
ImC(6)

)

2
, . . .

)
which is a list of the real and imag-

inary parts of the entries of the Wilson coefficients. The index a ranges from 1 to the total

number of independent flavor invariants built out of C(6) and the index i ranges from 1 to

the total number of parameters in the theory which cannot be removed by field redefinitions

and that can appear in an interference amplitude with the SM. The transfer matrix has a

block-diagonal form T =
(
T R T I

)
where the block T R will be ignored because it captures

the interference of the real part of the Wilson coefficients with the phases of the SM. To

check if the set captures all sufficient and necessary conditions of CP violation at the leading

order in the EFT, we simply check if the block T I of the transfer matrix has full rank, i.e., if

the rank equals the number of phases which can interfere with the SM (see ref. [39], where

the maximal ranks are given for all operators in the Warsaw basis). Note also that, in this

paper, we do not consider Yukawa matrices with any special values, e.g. degenerate masses,

zero masses or texture zeros in the CKM matrix, that enlarge the flavor symmetry of the

SM left unbroken by the Yukawa couplings.

OuH operator. As a first example for building a complete basis with determinant-like

invariants, we consider the higher-dimensional Yukawa interactions of the up-type quarks,

OuH = |H|2Q̄H̃u. This requires constructing an object that simultaneously removes the U(1)

transformations of e−iθQCD (which appears in instanton calculations) and is invariant under

the remaining non-Abelian part of the flavor symmetry, while at the same time being linear

in the Wilson coefficients. Following the previous discussion, the simplest flavor invariant

object that fulfills all these requirements is

Im
[
e−iθQCDǫIJKǫijkYu,IiYu,JjCuH,Kk detYd

]
, (2.8)

where the rephasings of the Yukawa couplings and the Wilson coefficients precisely cancel

those of e−iθQCD and the determinant-like structure of the Levi-Civita symbols allows the

construction of SU(3)-invariant structures. Starting from the form in eq. (2.8), we can now

systematically construct flavor invariants that can capture all phases in the Wilson coefficient

CuH by using the matrices Xu,d = Yu,dY
†

u,d, transforming in the adjoint of SU(3)Q, to project

out different entries of the Wilson coefficients.

With the help of the transfer matrix method, one can check that a set of flavor invariants

which captures all the sources of CP violation for the operator OuH, for J4 = Jθ = 0, is

I0000(CuH), I1000(CuH), I0100(CuH), I1100(CuH), I0110(CuH),

I2200(CuH), I0220(CuH), I1220(CuH), I0122(CuH) ,
(2.9)

where we have defined

Iabcd(CuH) ≡ Im
[
e−iθQCDǫIJKǫijkYu,IiYu,Jj

(
Xa

uX
b
dX

c
uX

d
dCuH

)

Kk
detYd

]
. (2.10)

O
(1,8)
quqd operators. After discussing this simple complete example for an operator that only

contains 9 CPV phases, we next return to the four-fermion operator O
(1)
quqd, and its SU(3)
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adjoint form O
(8)
quqd, that appeared in the previous section. A complete invariant basis can

also be built for this operator by defining the following two structures

Aa1,b1,c1,d1

a2,b2,c2,d2
(C

(1,8)
quqd) = Im

[
e−iθQCDǫABCǫabcǫDEF ǫdefYu,AaYu,Bb

(
Xa1

u Xb1
d X

c1
u X

d1
d

) C′

C

×C
(1,8)
quqd,C′cD′d

(
Xa2

u Xb2
d X

c2
u X

d2
d

) D′

D
Yd,EeYd,Ff

]
,

Ba1,b1,c1,d1

a2,b2,c2,d2
(C

(1,8)
quqd) = Im

[
e−iθQCDǫABCǫabcǫDEF ǫdefYu,AaYu,Bb

(
Xa1

u Xb1
d X

c1
u X

d1
d

) C′

D

×C
(1,8)
quqd,C′cD′d

(
Xa2

u Xb2
d X

c2
u X

d2
d

) D′

C
Yd,EeYd,Ff

]
.

(2.11)

Here, the index assignment A0000
0000(C

(1,8)
quqd) corresponds to the invariant in eq. (2.5) and

B0000
0000(C

(1,8)
quqd) corresponds to the second invariant mentioned in the last section, where the

indices C and D are interchanged. The operator O
(1,8)
quqd has 81 phases that can interfere with

the dimension-4 terms of the SM. We list a full set of 81 invariants that capture all these

phases in non-perturbative calculations in appendix B.1.

O
(1,3)
lequ operators. One can also build determinant-like invariants for (semi-)leptonic opera-

tors. For instance, the invariants capturing the 27 CP-odd phases of the Wilson coefficients

C
(1,3)
lequ of the semi-leptonic operator O

(1)
lequ =

(
L̄e
) (
Q̄u
)

and its SU(2) adjoint form O
(3)
lequ are

If
abcd(C

(1,3)
lequ )≡ Im

[
e−iθQCDǫIJKǫijkYu,IiYu,Jj

(
Xa

uX
b
dX

c
uX

d
d

) L

K

(
Y †

e X
f
e

)mN

C
(1,3)
lequ,NmLk detYd

]
.

(2.12)

Here again the index assignments for the insertion of Xu,d,e are the same as those in the trace

invariants of ref. [39] for the same operators, which are also mentioned in section B.1.

O
(1,3)
Hq operators. As a last example, one can also build invariants for SMEFT operators

that are not charged under the U(1) rephasings of the flavor group. For instance, for the

phases in the Wilson coefficients C
(1,3)
Hq of the operator O

(1)
Hq =

(
H†i
←→
DµH

) (
Q̄γµQ

)
and its

SU(2) adjoint form O
(3)
Hq, one can write down the following invariants

I1100(C
(1,3)
Hq ), I2200(C

(1,3)
Hq ), I1122(C

(1,3)
Hq ) , (2.13)

where

Iabcd(C
(1,3)
Hq ) ≡ Im

[
e−iθQCDǫIJKǫijkYu,IiYu,Jj

(
Xa

uX
b
dX

c
uX

d
d C

(1,3)
Hq Yu

)

Kk
detYd

]
. (2.14)

Following this procedure, a complete set of flavor invariants capturing all CP-violating effects

at leading order in the SMEFT expansion can be built for all operators in the Warsaw

basis [47]. We present a few more complete examples in appendix B.1.

Let us once again emphasize that these new invariants are redundant with respect to

the trace-like invariants introduced in ref. [39], as those were already a complete basis of

invariants which fully characterize the CP-violating phases of the theory. Therefore, the
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determinant-like invariants must be redundant in regards to the trace-like invariants. For

example, the invariants in eq. (2.13) can be rewritten as

Iabcd(C
(1,3)
Hq ) = Im

[(
e−iθQCD det (YuYd)

)
ǫIJKǫIJL

(
Xa

uX
b
dX

c
uX

d
dC

(1,3)
Hq

) L

K

]

= 2
(
Jθ Rabcd(C

(1,3)
Hq ) +Kθ Labcd(C

(1,3)
Hq )

)
, (2.15)

where Rabcd(C) = Re
[
Tr
(
Xa

uX
b
dX

c
uX

d
dC
)]

and Labcd(C) = Im
[
Tr
(
Xa

uX
b
dX

c
uX

d
dC
)]

, as

defined in ref. [39]. There are also similar relations for other operators such as

Iabcd(CuH) = 2
(
Jθ R(a−1)bcd(CuHY

†
u ) +Kθ L(a−1)bcd(CuHY

†
u )
)
, (2.16)

Ifabcd(C
(1,3)
lequ ) = 2

(
Jθ ImAf(a−1)bcd(C

(1,3)
lequ ) +Kθ ReAf(a−1)bcd(C

(1,3)
lequ )

)
, (2.17)

where Afabcd(C
(1,3)
lequ ) = Xf

e,ji

(
Xa

uX
b
dX

c
uX

d
d

)

lk
Y †

e,mjYu,nlC
(1,3)
lequ,imkn. This procedure allows us

to map all determinant-like invariants directly to the trace invariants of ref. [39] for all

operators up to the invariants of the form I0bcd(CuH), where inverse Yukawa couplings appear

in the trace invariants (cf. I0000(CuH) in eq. (2.16)). We will show in appendix B.2 how

these latter invariants can also be mapped to the old basis, or alternatively a different basis

from the one given in ref. [39] would be required, including invariants with inverse Yukawa

couplings. It also becomes apparent that Iabcd captures both the CP-violation due to the

phases introduced by SMEFT operators and that due to the interference between these

SMEFT operators and the SM strong CP phase.

In the next section we will explore why (and when) the determinant-like invariants are

better suited to describe CP violation.

3 The interplay of topological susceptibilities and flavor invariants

As mentioned earlier, the determinant-like invariants capture the interference between the

strong CP phase θ̄ and the Wilson coefficients of various SMEFT operators. In particular,

we focus on CP-violating SMEFT operators

L ⊃
Cij···

O

ΛD−4
✟✟CP

OD, ij··· , (3.1)

where D is the mass dimension of the EFT operator O and i, j, . . . are the flavor indices.

Since both the parameters θ̄ and C
O

are odd under CP , the vacuum energy is given by [48]

V (θ̄, C
O

) =
1

2

(
uθ θ̄

2 + 2uθO θ̄ CO
+ uO C

2
O

)
, (3.2)

where uθ, uθO, uO can be computed in terms of SM and SMEFT operators. We can arrive

at eq. (3.2) by computing the terms quadratic in the θ term and the SMEFT operator O

in the effective action, which implies

uθ ∼

〈(
GG̃

)2
〉
, uθO ∼

1

ΛD−4
✟✟CP

〈
GG̃O

〉
, uO ∼

1

Λ2D−8
✟✟CP

〈
O2
〉
. (3.3)
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As such, the uO term can be neglected compared to the other two terms. Note that eq. (3.2)

introduces a linear term in θ̄, implying that the minimum of the energy is shifted. In the PQ

mechanism, i.e., when θ̄ is promoted to a/fa, a dynamical degree of freedom, the effective

value of θ̄ ≡ 〈a/fa〉 is determined by eq. (3.2). To be concrete, the potential can be re-written

in terms of the axion field a

V (a) = χ
O

(0)
a

fa
+

1

2
χ(0)

(
a

fa

)2

, (3.4)

where we have introduced χ(0) and χ
O

(0) to replace uθ and uθO, respectively, which can

be defined as [49–52]

χ(0) = −i lim
k→0

∫
d4x eikx

〈
0

∣∣∣∣∣T
{

g2

32π2
GG̃(x) ,

g2

32π2
GG̃(0)

}∣∣∣∣∣ 0
〉
, (3.5)

known as the QCD topological susceptibility and

χ
O

(0) = −i lim
k→0

∫
d4x eikx

〈
0

∣∣∣∣∣T
{

g2

32π2
GaµνG̃

µν
a (x) ,

Cij···
O

ΛD−4
✟✟CP

OD, ij···(0)

}∣∣∣∣∣ 0
〉
. (3.6)

The shift in the axion potential of eq. (3.4) is then given by

θind ≡ −
χ

O
(0)

χ(0)
. (3.7)

Experimental bounds on the neutron EDM lead to the constraint θind . 10−10, which can

then be used to obtain limits on any UV parameters contained in χ
O

(0).

Usually, models of axions or axion-like particles (ALPs) are constructed with a U(1)

Peccei-Quinn symmetry in mind, which dictates the ALP couplings to the SM particles —

either directly or in an EFT after integrating out the heavy modes from the theory. If one

allows for some explicit breaking of the U(1) symmetry,3 responsible for the Nambu-Goldstone

boson nature of the ALP, an axion potential can be generated in ordinary perturbation

theory. The interactions of the ALP with the SM particles, including those breaking the shift

symmetry, can be captured in an EFT in a relatively model-independent way. In this case, the

axion potential can be determined by calculating the Coleman-Weinberg potential in the ALP

EFT including operators that break the shift symmetry of the ALP explicitly. The tadpole

term of the resulting potential should be proportional to the invariants presented in ref. [58]

that capture all sources of shift symmetry breaking in the effective theory (see also ref. [59]).

In this work, we focus on the dimension-six SMEFT operators in the Warsaw basis [47]

— see also appendix A for definitions and conventions. We will show in section 3.2 how the

determinant-like CP-odd invariants introduced in section 2 arise in the vacuum-to-vacuum

amplitude in eq. (3.6) in the presence of the one-(anti)instanton background. To illustrate how

the invariants for different types of SMEFT operators appear in the instanton calculations,

we will focus on the operators O
(1)
quqd, O

(1)
lequ, OdG. The full instanton computation to estimate

the contribution of the SMEFT operators to χ
O

(0) requires the substitution of the zero

3Even if this explicit breaking is not introduced by hand it will be generated by quantum gravity

effects [53–57].
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mode profile of fermions and gauge fields, which are reviewed in appendix C.1, as well as

the evaluation of loop and collective coordinates integrals. These final steps will be carried

out in detail in appendix D, where the calculated expressions will then be used in section 4

to obtain phenomenological bounds on the CP-odd invariants.

3.1 Topological susceptibilities

In quantum field theory, much of the essential information (e.g. the S-matrix elements, power

spectrum) can be accessed by evaluating correlation functions of operators. In this section,

we schematically evaluate the two-point correlation functions which are relevant for our

calculations in the presence of a one-(anti)-instanton background by using the path integral

formalism together with the result derived by ’t Hooft [46] (see eq. (C.13) in appendix C.).

As an example to illustrate how to evaluate the correlator defined in eq. (3.6), we consider

a generic dimension-six operator O[ϕI, ϕ], where ϕI are fields with instanton solutions (e.g.

gluon and quark fields), and ϕ denotes the other fields unrelated to instanton dynamics (e.g.

Higgs or lepton fields). The susceptibility associated with O is given by

χ
O

(0) = −i lim
k→0

∫
d4x eikx

〈
0

∣∣∣∣∣T
{

g2

32π2
GG̃(x) ,

C
O

Λ2
✟✟CP

O[ϕI, ϕ](0)

}∣∣∣∣∣ 0
〉
,

= e−iθQCD

∫
d4x0

∫
dρ

ρ5
dN (ρ)

∫ Nf∏

f=1

(
ρ dξ

(0)
f dξ̄

(0)
f

)

×

∫
Dϕe−S0[ϕ]−Sint[ϕI,ϕ]

∫
d4x

g2

32π2
GG̃(x)×

C
O

Λ2
✟✟CP

O[ϕI, ϕ](0)

∣∣∣∣
1-(a.-)inst.

, (3.8)

where S0[ϕ], Sint[ϕI, ϕ] describe the action containing the ϕ kinetic terms and the interactions

between ϕI and ϕ, respectively. The key points to evaluate eq. (3.8) depend on the different

treatments of the fields ϕI, ϕ and their corresponding path integrals. The essential steps

are summarized as follows:

• Fields with instanton solutions ϕI. The field ϕI is expanded in eigenmodes, where only

the zero modes of ϕI are replaced by the instanton solutions. In particular, the fermion

fields are expanded as

ψf (x) =
∑

k

ξ
(k)
f ψ(k) ; ψ̄f (x) =

∑

k

ξ̄
(k)
f ψ̄(k) , (3.9)

where ξ
(k)
f , ξ̄

(k)
f are Grassmann variables, f is a fermion flavor index and the explicit

form of ψ(0) is given in eq. (C.10). Importantly, the non-zero modes of ϕI are integrated

out and the path integral over the zero modes is interpreted as an integration over

collective coordinates (see appendix C for further details). Thus, we can directly replace

the path integral of ϕI using ’t Hooft’s result [46]

∫
DϕI e

−SE [ϕI] → e−iθQCD

∫
d4x0

∫
dρ

ρ5
dN (ρ)

∫ Nf∏

f=1

(
ρ dξ

(0)
f dξ̄

(0)
f

)
, (3.10)

where dξ(0), dξ̄(0) are Grassmann integration measures associated with the fermion zero

modes and dN (ρ) is the instanton density in the SU(N) theory (see eq. (C.14)) with ρ

denoting the instanton size.

– 11 –



J
H
E
P
0
6
(
2
0
2
4
)
1
5
6

• Fields without instanton solutions ϕ. The remaining fields, ϕ, are integrated over

without performing the eigenmode expansion. This procedure can be diagrammatically

seen as closing the external legs ϕI (e.g. quark fields) which are coupled to the instanton

vertex by using the fields ϕ (e.g. Higgs fields), e.g. see figure 1(a). The crucial step is

to expand the interaction terms of e−Sint[ϕI,ϕ], obtaining the contributions of the ϕI

zero modes.

• The remaining steps require substituting the zero mode profiles of ϕI (given by

eqs. (C.4), (C.10)) and evaluating the remaining loop integrals induced by ϕ and

collective coordinate integrals. Most of these calculations are carried out in appendix D.

Finally, the integral over instanton size, ρ, is performed in section 4, where some UV

scenarios responsible for the instanton dynamics are specified.

Another relevant correlation function is the QCD topological susceptibility defined in eq. (3.5).

This two-point correlation function has been computed in the literature, assuming χ(0) only

receives contributions from the Standard Model, and within the perturbative regime and

one-instanton approximation is given by [23, 60]

χ(0) = −3! (2Kθ) i

∫
dρ

ρ5
dN (ρ)

1

(6π2)3
, (3.11)

where Kθ = Re
[
e−iθQCD det (YuYd)

]
as introduced in the footnote 1.

3.2 Relevance of determinant-like flavor invariants

The appearance of determinant-like structures in instanton computations, which are more

directly parameterized by the invariants introduced in section 2.1, is related to the technicalities

introduced in the previous section which are explored in further detail here.

The main point relates to the treatment of the fermionic contributions in the instanton

background. The fermion fields are expanded in their eigenmodes, such that one can then

isolate the zero modes as in eq. (C.9). The Grassmann integration measures dξ
(0)
f will

effectively project out the zero modes of the fermions, since
∫
dξ

(0)
f ξ

(0)
f = 1. In the full path

integral calculation, the following Grassmann integral relations are useful

∫
d3ξ1d

3ξ2 e
ξ1Aξ2 = detA ,

∫
d3ξ1d

3ξ2 e
ξ1Aξ2ξ1Bξ2 =

1

2
ǫi1i2i3ǫj1j2j3Ai1j1Ai2j2Bi3j3 ,

∫
d3ξ1d

3ξ2d
3ξ3d

3ξ4 e
ξ1Aξ2+ξ3Bξ4ξ1Cξ2 =

1

2
ǫi1i2i3ǫj1j2j3Ai1j1Ai2j2Ci3j3 detB ,

∫
d3ξ1d

3ξ2d
3ξ3d

3ξ4 e
ξ1Aξ2+ξ3Bξ4ξ1Cξ2 ξ3Dξ4 =

1

4
ǫi1i2i3ǫj1j2j3Ai1j1Ai2j2Ci3j3

× ǫk1k2k3ǫl1l2l3Bk1l1Bk2l2Dk3l3 ,

(3.12)

where ξ1,...,4 are three-dimensional Grassmann variables and A,B,C,D are 3× 3 matrices.

These identities are at the origin of the appearance of flavorful objects contracted with

Levi-Civita symbols in the calculation, which we describe as determinant-like.
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H

H

I
O

(1)
quqd

(a) Instanton diagram with an insertion

of the effective operator O
(1)
quqd.

HH

H

I
O

(1)
quqd

(b) Instanton diagram with an insertion

of the effective operator O
(1)
quqd and addi-

tional Yukawa coupling insertions, corre-

sponding to invariants of higher order in

the Yukawa couplings.

H

H

I

O
(1)
Hq

(c) Instanton diagram with an insertion

of a non-chirality-flipping effective opera-

tor O
(1)
Hq .

O
(1)
lequ H

H

H

I

(d) Instanton diagram with an insertion

of an effective operator, giving rise to

mixed trace and determinant-like invari-

ants. One example is the insertion of the

effective operator O
(1)
lequ.

Figure 1. Examples of instanton diagrams corresponding to invariants discussed in the text. Here,

the gray blob depicts the instanton background that the fermions (solid lines) are coupled to. The

fermion lines are closed via Yukawa interactions with the Higgs (dashed lines).

As such, in computations where the fermion zero modes in an effective operator are

integrated over, the determinant-like invariants introduced in section 2.1 are better suited

at describing CP-violation. This happens not only because the final result is more easily

connected to them, but also because they capture the full dependency of the final result

in terms of the flavorful couplings of the theory. In other words, the result obtained

will be proportional to a determinant-like invariant times instanton-related quantities; all

the dependence on the rest of the theory (in this case Yukawa couplings) is captured

by the invariant. This would not be the case if we were considering the trace-like basis

of invariants. While the results could be projected into this basis, this would occur as

complicated combinations of the invariants and with coefficients which include other SM

flavor invariants as we explicitly show in appendix B.1.

Furthermore, a direct relation between diagrammatic contributions and invariants seems

to be clear. Consider the example of the calculation performed in ref. [19], where the

topological susceptibility from an insertion of the effective operator O
(1)
quqd was studied.
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Diagrammatically this process can be understood as that of figure 1(a); one can observe in

the diagram that since all fermion legs of the effective operator are directly connected to

the instanton background, this corresponds to their zero modes being projected out in the

path integral calculations. Therefore, as previously shown, the resulting contribution will

follow a determinant-like structure on all indices of the Wilson coefficient. Indeed, as we

will prove explicitly in the next section, this diagram gives a contribution proportional to

the introduced invariants A0000
0000(C

(1)
quqd) and B0000

0000(C
(1)
quqd).

Another interesting contribution which illustrates the previous points is the contribution

from the insertion of the operator O
(1)
lequ. The corresponding diagram is that of figure 1(d)

and only the quarks emerging from the effective operator have zero modes, as the leptons

are assumed not to be charged under the symmetry group responsible for the instanton

dynamics. Indeed, looking at the constructed invariants Ifabcd(C
(1)
lequ), we see exactly that

only the quark indices are contracted with the anti-symmetric ǫ-structure (determinant-like)

whereas the lepton indices are contracted in a trace-like manner over a matrix product with

a lepton Yukawa coupling.

A final illustrative example is that of rephasing invariant operators such as O
(1)
Hq. In this

case, even at the lowest order in Yukawa couplings, one cannot build an invariant where both

quark indices are directly contracted with an ǫ-structure; at most one index is contracted,

as shown in the invariant Iabcd(C
(1)
Hq ). This means that diagrammatically only one fermionic

propagator is directly connected to the instanton background, that is, only one zero mode is

projected out from the effective operator. This case is illustrated in figure 1(c).

We have so far argued that the result of instanton calculations are proportional to the

determinant-like invariants (and no extra flavor structures). Next, we will show how these

patterns arise explicitly.

3.3 Four-quark operator

Diagrammatically speaking, having effective operators in the theory allows for a different

way to contract the open fermion legs coupled to the instanton vertex apart from utilizing

mass terms or Yukawa couplings [28]. Let us start by considering the operator O
(1)
quqd, which

can give rise to the instanton diagram in figure 1(a). Since the SM SU(2) gauge group is

unrelated to the instanton dynamics, the SU(2) quark structure can be treated in the same

way as a flavor index. As such, zero modes in the instanton background will not depend

on the SU(2) index. The topological susceptibility, eq. (3.6), induced by the four-fermion

operator can be calculated as4

χ
(1)
quqd(0)1−inst. =−i lim

k→0

∫
d4xeikx

〈
0

∣∣∣∣∣∣
T





1

32π2
GG̃(x),

C
(1)
quqd

Λ2
✟✟CP

O
(1)
quqd(0)





∣∣∣∣∣∣
0

〉
,

= e−iθQCD

∫
d4x0

∫
dρ

ρ5
dN (ρ)

∫
DHDH† e−S0[H,H†]

∫ 3∏

f=1

(
ρ2 dξ(0)

uf
dξ

(0)
df
d2ξ̄

(0)
Qf

)

×e
∫
d4x(Q̄YuH̃u+Q̄YdHd+h.c.)(x) 1

32π2

∫
d4xGG̃(x)


C

(1)
quqd

Λ2
✟✟CP

Q̄uQ̄d(0)+h.c.


 ,

(3.13)

4Note, that all computations are done in Euclidean space by Wick-rotating the time coordinate everywhere

in the calculations.
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where d2ξ̄
(0)

Q
f

≡ dξ̄
(0)

Q1
f

dξ̄
(0)

Q2
f

for the two components of the SU(2) quark doublet. The fermions

are expanded in their eigenmodes (cf. eq. (C.9)) and only those terms containing fields

with zero modes in the instanton background have been kept. As can be seen in eq. (C.10)

this will be u, d,Q† in the instanton background and the conjugates will contribute to the

anti-instanton scenario.

The next step is to expand the exponential of the interacting action of the fermions and

Higgs, such that precisely enough fermion fields appear in the Grassmann integral to obtain

a non-vanishing result. We will also make the SU(2) indices of all SU(2) doublets explicit in

the following calculations by giving all SU(2) doublets upper case indices. We find

χ
(1)
quqd(0)1−inst. =

e−iθQCD

∫
d4x0

∫
dρ

ρ5
dN (ρ)

∫
DHDH† e−S0[H,H†]

3∏

f=1

(
ρ2 dξ(0)

uf
dξ

(0)
df
d2ξ̄

(0)
Qf

)

×

∫
d4x1d

4x2d
4x3d

4x4
1

4!




∑

perm. over
fermion fields

ξ̄
(0)

QI
i1

(ψ̄(0)Yu,i1j1H̃
IPRψ

(0))(x1)ξ(0)
uj1

×ξ̄
(0)

QJ
i2

(ψ̄(0)Yu,i2j2H̃
JPRψ

(0))(x2)ξ(0)
uj2

ξ̄
(0)

QK
k1

(ψ̄(0)Yd,k1l1H
KPRψ

(0))(x3)ξ
(0)
dl1

(3.14)

×ξ̄
(0)

QL
k2

(ψ̄(0)Yd,k2l2H
LPRψ

(0))(x4)ξ
(0)
dl2

∫
d4x

GG̃(x)

32π2


C

(1)
quqd,mnop

Λ2
✟✟CP

ξ̄
(0)
QM

m
(ψ̄(0)PRψ

(0))ξ(0)
un
ǫMN

×ξ̄
(0)
QN

o
(ψ̄(0)PRψ

(0))ξ
(0)
dp


(0)


 ,

where the indices m,M of ξ
(0)
QM

m
denote the SU(2) and flavor indices, respectively, of the zero

mode Grassmann vector ξQ, which in this case is six-dimensional. After integrating over all

Grassmann variables of the zero modes and considering all the permutations over the fermion

fields, we find that the flavor invariants constructed in section 2 appear explicitly

χ
(1)
quqd(0)1−inst. =

1

4Λ2
✟✟CP

[
e−iθQCDǫi1i2mǫj1j2nYu,i1j1Yu,i2j2C

(1)
quqd,mnopǫ

k1k2oǫl1l2pYd,k1l1Yd,k2l2

+e−iθQCDǫi1i2mǫj1j2nYu,i1j1Yu,i2j2C
(1)
quqd,onmpǫ

k1k2oǫl1l2pYd,k1l1Yd,k2l2

] ∫
d4x0

∫
dρ

ρ5
dN (ρ)ρ6

×

∫
DHDH† e−S0[H,H†]

[∫
d4x1d

4x2(ψ̄(0)H†
I ǫ
IJPRψ

(0))(x1) (ψ̄(0)ǫJKH
KPRψ

(0))(x2)

]2

︸ ︷︷ ︸
=2! [

∫
d4x1d4x2(ψ̄(0)PRψ(0))(x1)∆H(x1−x2)ǫIJ ǫJI(ψ̄(0)PRψ(0))(x2)]

2
≡2! I2

×
(
ǫMN ǫ

MN ψ̄(0)PRψ
(0) ψ̄(0)PRψ

(0)
)

(0)

∫
d4x

GG̃(x)

32π2
.

(3.15)

The factor of 1/4 at the beginning of eq. (3.15) appears because the integral over the fermion

zero modes is expressed in terms of the Levi-Civita symbols (see also eq. (3.12)). The last

– 15 –



J
H
E
P
0
6
(
2
0
2
4
)
1
5
6

step is to integrate over the Higgs field in the Euclidean path integral; using the definition

of the Higgs propagator in position space

∫
DHDH†e−S0[H,H†]HI(x1)H†

J(x2) = ∆H(x1 − x2) δIJ , (3.16)

we are left with the integral

I = 2

∫
d4x1d

4x2(ψ̄(0)PRψ
(0))(x1)∆H(x1 − x2)(ψ̄(0)PRψ

(0))(x2) , (3.17)

multiplying the invariant that we set out to find. After some simplifications, we finally arrive at

χ
(1)
quqd(0)1−inst. =

A
(1)
quqd +B

(1)
quqd

Λ2
✟✟CP

∫
d4x0

∫
dρ

ρ5
dN (ρ)ρ6I2

(
ψ̄(0)PRψ

(0)ψ̄(0)PRψ
(0)
)

(0) ,

(3.18)

where we have defined

A
(1)
quqd = e−iθQCDǫi1i2mǫj1j2nYu,i1j1Yu,i2j2C

(1)
quqd,mnopǫ

k1k2oǫl1l2pYd,k1l1Yd,k2l2 ,

B
(1)
quqd = e−iθQCDǫi1i2mǫj1j2nYu,i1j1Yu,i2j2C

(1)
quqd,onmpǫ

k1k2oǫl1l2pYd,k1l1Yd,k2l2 .
(3.19)

The same calculation can be performed with the anti-instanton solution. In this case, the

non-vanishing contributions will arise from the Hermitian conjugate terms in the calculation.

Furthermore, the winding number
∫
d4xGG̃(x) will flip its sign, which also induces a sign flip

in the exponential of θQCD. Therefore, the full one-instanton and anti-instanton contribution

to the topological susceptibility induced by a four-fermion operator reads

χ
(1)
quqd(0) =χ

(1)
quqd(0)

∣∣
1−inst.

+χ
(1)
quqd(0)

∣∣
1−a.-inst.

=
1

Λ2
✟✟CP

(
A

(1)
quqd+B

(1)
quqd

)∫
d4x0

∫
dρ

ρ5
dN (ρ)ρ6I2

(
ψ̄(0)PRψ

(0) ψ̄(0)PRψ
(0)
)

(0)

∣∣∣∣
1-inst.

−
1

Λ2
✟✟CP

(
A

(1)
quqd+B

(1)
quqd

)∗
∫
d4x0

∫
dρ

ρ5
dN (ρ)ρ6I2

(
ψ̄(0)PLψ

(0) ψ̄(0)PLψ
(0)
)

(0)

∣∣∣∣
1-a.-inst.

.

(3.20)

Substituting the explicit form of the fermion zero modes from eq. (C.10) gives

ψ̄
(0)
i PRψ

(0)
i ψ̄

(0)
j PRψ

(0)
j

∣∣∣∣
1-inst.

=
4ρ4

π4

1

(x2
0 + ρ2)6

= ψ̄
(0)
i PLψ

(0)
i ψ̄

(0)
j PLψ

(0)
j

∣∣∣∣
1-a.-inst.

, (3.21)

which in turn leads to the result

χ
(1)
quqd(0) =

2i

Λ2
✟✟CP

Im
(
A

(1)
quqd +B

(1)
quqd

) ∫
d4x0

∫
dρ

ρ5
dN (ρ)ρ6I2

[
4ρ4

π4

1

(x2
0 + ρ2)6

]
. (3.22)

As expected, the final result depends explicitly on the determinant-like invariants introduced

in eq. (2.11), since using eq. (3.19) we find

Im(A
(1)
quqd) = A0000

0000

(
C

(1)
quqd

)
, Im(B

(1)
quqd) = B0000

0000

(
C

(1)
quqd

)
. (3.23)

– 16 –



J
H
E
P
0
6
(
2
0
2
4
)
1
5
6

It is instructive to compare our results with the NDA estimates introduced in ref. [32],

which states that the loop factor suppression, (4π)−α, can be predicted by

α = z − 2v + 2p , (3.24)

where z is the number of fermion zero modes, v the number of vertices and p the number of

propagators in the instanton calculation. From figure 1(a), we verify that for an insertion

of O
(1)
quqd we have α = 12 − 10 + 4 = 6. After appropriately substituting the fermion zero

modes, our result in eq. (D.6) gives a suppression of 1/(45π6). Clearly, the power of π

matches the NDA prediction, but the numerical factor is smaller than 46 obtained from NDA.

This difference arises from the fact that we have assumed an unbroken SU(2) group and

there are also combinatoric factors. Taking these effects into account and summing both

the instanton and anti-instanton configurations, the estimation from NDA would predict a

suppression factor 1/(256π6) in eq. (D.6), which is within one order of magnitude compared

to the full calculation.

3.4 Semileptonic four-fermion operator

In section 2.1, we showed that invariants featuring θQCD can also be constructed for the

semileptonic operator O
(1)
lequ, so it is important to verify whether they arise in instanton calcu-

lations. As the leptons are not charged under the gauge group generating the instantons, they

are not coupled to the instanton vertex directly and should, hence, be treated perturbatively

like the Higgs field in the last section. The invariants of a semi-leptonic operator can therefore

only enter by treating the leptons perturbatively on top of the instanton background giving

the special functional form to the quark zero modes (cf. eq. (C.10)), as we will now show.

The topological susceptibility will be calculated with an insertion of the operator O
(1)
lequ, where

the leptons will be kept in the path integral. As before, we will split off the zero modes and

integrate over the non-zero modes of the quark fields. This gives

χ
(1)
lequ(0)1−inst. =−i lim

k→0

∫
d4xeikx

〈
0

∣∣∣∣∣∣
T





1

32π2
GG̃(x),

C
(1)
lequ

Λ2
✟✟CP

O
(1)
lequ(0)





∣∣∣∣∣∣
0

〉
,

= e−iθQCD

∫
d4x0

∫
dρ

ρ5
dN (ρ)

∫
DHDH†DLDL̄DeDē e−S0[H,H†] e−S0[L,L̄] e−S0[e,ē]

×

∫ 3∏

f=1

(
ρ2 dξ(0)

uf
dξ

(0)
df
d2ξ̄

(0)
Qf

)
e
∫

d4x(Q̄YuH̃u+Q̄YeHd+L̄YeHe+h.c.)(x)

×
1

32π2

∫
d4xGG̃(x)


C

(1)
lequ

Λ2
✟✟CP

L̄eQ̄u(0)+h.c.


 .

(3.25)

As previously, we will now expand the exponential of the action containing the fermion and

Higgs field. We expand the exponential over the quark Yukawa couplings in the zero modes

as before and neglect the quark non-zero modes. Then, as is usually done in perturbation

theory, we expand the exponential of the lepton Yukawa interaction order by order in the

small Yukawa coupling, since expanding the exponential to first order will be sufficient to
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obtain a non-vanishing result.

χ
(1)
lequ(0)1−inst. =

e−iθQCD

∫
d4x0

∫
dρ

ρ5
dN (ρ)

∫
DHDH†DLDL̄DeDē e−S0[H,H†]

× e−S0[L,L̄] e−S0[e,ē]
3∏

f=1

(
ρ2 dξ(0)

uf
dξ

(0)
df
d2ξ̄

(0)
Qf

) ∫
d4x1d

4x2d
4x3d

4x4d
4x5

×
1

6!




∑

perm. over
fermion fields

ξ̄
(0)

QI
i1

(ψ̄(0)Yu,i1j1H̃
IPRψ

(0))(x1)ξ(0)
uj1

ξ̄
(0)

QJ
i2

(ψ̄(0)Yu,i2j2H̃
JPRψ

(0))(x2)ξ(0)
uj2

×ξ̄
(0)

QK
k1

(ψ̄(0)Yd,k1l1H
KPRψ

(0))(x3)ξ
(0)
dl1

ξ̄
(0)

QL
k2

(ψ̄(0)Yd,k2l2H
LPRψ

(0))(x4)ξ
(0)
dl2

×ξ̄
(0)

QM
k3

(ψ̄(0)Yd,k3l3H
MPRψ

(0))(x5)ξ
(0)
dl3

∫
d4x

GG̃(x)

32π2


C

(1)
lequ,mnop

Λ2
✟✟CP

(
L̄Nmen

)
ǫNO

×ξ̄
(0)
QO

o
(ψ̄(0)PRψ

(0))ξ(0)
up


 (0)



∫
d4x6

(
ēqY

†
e,qrH

†,PLPr

)
(x6) .

(3.26)

Note that in comparison to the computation of O
(1)
quqd, an extra down Yukawa coupling is

needed to complete the zero mode expansion because O
(1)
lequ has no down-quark bilinear. In

the next step, we will perform the integration in the path integral over the Higgs and lepton

fields, as well as the zero mode integrals. Using

∫
DψDψ̄ e−S0[ψ,ψ̄] ψI(x1)ψ̄J(x2) ≡ ∆F (x1 − x2) δIJ , (3.27)

the lepton fields are contracted to form a loop.5 The resulting expression reads

χ
(1)
lequ(0)1−inst. =

1

2Λ2
✟✟CP

e−iθQCDǫi1i2mǫj1j2nYu,i1j1
Yu,i2j2

C
(1)
lequ,opmnY

†
e,podetYd

︸ ︷︷ ︸
≡I

(1)
lequ

×3!

∫
d4x0

∫
dρ

ρ5
dN (ρ)ρ6I2

∫
d4x5d

4x6

(
ψ̄(0)PRψ

(0)
)

(x5)∆H(x5−x6)

×tr
(
PR∆F (x6−0)PL∆F (0−x6)

)(
ψ̄(0)PRψ

(0)
)

(0)ǫOP ǫ
PO
∫
d4x

GG̃(x)

32π2
.

(3.28)

As before, we add the anti-instanton contribution to obtain the full result, which leads to

the complex conjugate invariants appearing with the opposite sign in the final result. Thus,

the final result is proportional to the invariant

Im
(
I

(1)
lequ

)
= Im

[
e−iθQCDǫi1i2mǫj1j2nYu,i1j1

Yu,i2j2
C

(1)
lequ,opmnY

†
e,po detYd

]
= I0

0000

(
C

(1)
lequ

)
,

(3.29)

5The indices I, J represent all internal indices, like the flavor and SU(2) gauge group indices.
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that we have defined in section 2.1 multiplied by a complicated integral. In appendix D.2,

the integrals in eq. (3.28) are evaluated; in particular the integral over the leptonic loop is

divergent. We have explicitly verified that when considering the appropriate renormalized

effective field theory, the counterterms cancel this divergence, as expected. Furthermore, the

NDA estimation of ref. [32] also works in this case: following eq. (3.24), we expect a suppression

of (4π)−8 which matches the π suppression of the result obtained in eq. (D.19), where the

numerical factor ≃ 1/(450π8). For this factor, if we take into account the combinatoric

factors, the unbroken SU(2) and the sum over instanton and anti-instanton configurations,

the NDA estimation of 4−8 becomes approximately half of the full result.

This analysis can be repeated for all other operators in the SMEFT following the same

procedure. We present calculations for the insertion of the gluon dipole operator OdG in

appendix D.3, that will also be considered in a phenomenological study in section 4. For some

SMEFT operators, their leading contribution might not arise from projecting the zero modes

out of all the fermion legs. Indeed, considering non-zero modes of the quarks in the effective

operators is also needed to obtain the invariants with more powers of Yukawa couplings

introduced in section 2.1. We next discuss the calculations in these cases.

3.5 Higher-order invariants and selection rules

In our calculations we have only considered contributions at leading order with the least

possible power of the Yukawa couplings. However, one could compute higher-loop diagrams

with more powers of Yukawa couplings, which would be captured by higher-order invariants,

such as the diagram depicted in figure 1(b). The explicit calculation of higher-loop diagrams

works differently than what was performed in sections 3.3 and 3.4, because some interactions

mix the zero and non-zero modes of the fermions charged under the instanton group. Explicitly

performing this calculation is beyond the scope of this paper but we will comment on how

these calculations work in principle. Instead of just including the quark zero modes in the

calculations, one would have to include the non-zero mode interactions in the action as well.

These should be treated perturbatively as was done for the leptons in section 3.4. As a

consequence, one can no longer simply integrate over the free part of the action containing

just the non-zero modes to remove them from the path integral as done in eq. (3.10), since

their interactions with the zero modes necessarily appear in the action as well. Hence, we

would have to reevaluate ’t Hooft’s result for the non-zero mode integration (i.e., remove the

factor of e0.292Nf from the instanton density in eq. (C.15)) and treat the non-zero modes of

the colored fields as perturbations around the instanton background.

In summary, including extra powers of Yukawas from the interacting part of the action

forces us to consider terms mixing zero- and non-zero modes of the quarks. The contraction

of the flavor indices of the non-zero mode fermions in the Yukawa interactions is done by

Kronecker deltas as a result of flavorful propagators introduced in the perturbative calculation

(cf. the calculation with the semi-leptonic operator in section 3.4). This results in the

higher-order invariants introduced in section 2.1, where the extra Yukawas are contracted

in a matrix product. The indices corresponding to non-zero modes remain contracted in a

determinant-like manner, i.e. via the ǫ symbol.

In addition, flavor invariants offer an explanation as to why operators invariant under
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the flavor-diagonal U(1) quark rephasings (shown in table 1) cannot enter through zero mode

contributions in instanton calculations. One example for such an operator is O
(1)
Hq, which is

invariant under Q→ eiαQQ, where all flavors are rephased with the same parameter. Because

the operator is rephasing invariant, other flavorful objects besides the Wilson coefficient

are needed to counteract the rephasing of e−iθQCD that necessarily appears in instanton

calculations. Due to the linearity of the flavor invariants in the Wilson coefficient, this object

can only be constructed by SM Yukawa couplings. There are two options to construct a flavor

invariant given these constraints. The object counteracting the rephasing of e−iθQCD can either

be detYuYd with the Wilson coefficient appearing in a trace invariant or a determinant-like

invariant where, even at lowest order, the Wilson coefficient multiplies one of the Yukawa

couplings (cf. eq. (2.13)).6 As we have discussed previously, both traces and matrix products

can only appear through propagators in perturbative calculations of the non-zero modes

of quarks around the instanton background. Hence, the flavor invariants imply a selection

rule on all operators that are invariant under rephasings to only contribute in instanton

calculations when the non-zero modes of its fermions are considered.

As a more general statement, flavor invariants can be used to understand how the

contribution from any SMEFT operator will contract with the flavor structure of the theory

without explicitly doing the path integral computations, as we have anticipated in section 3.2.

Furthermore, knowing how the non-vanishing contributions scale and connect with an

instanton diagram, allows to correctly account for the loop factors coming from the zero

modes and from the rest of the perturbative calculation; invariants can therefore allow for a

more refined NDA estimate of the instanton effects in the spirit of what was done in ref. [32].

4 Constraints on dimension-six CP-violating operators

The results derived in the previous sections can now be used to place bounds on the scale

Λ
✟✟CP associated with dimension-six CP violating operators. We will assume that QCD is

modified at a scale ΛSI where the one-instanton approximation remains valid and small

instantons induce a shift in θ̄ proportional to Λ2
SI/Λ

2
✟✟CP. Using the determinant-like invariants

arising from the one-instanton calculation, we will then obtain limits on the ratio ΛSI/Λ✟✟CP,

under the assumption that this induced θ̄ in the small instanton background saturates the

experimental bound from the neutron EDM, θ̄ . 10−10 [1].

The effects from small (UV) instantons are enhanced, provided the gauge coupling

becomes larger in the UV. In this limit, the one instanton calculation remains consistent and

the invariants derived in section 2 can be directly used. As such, we can reliably compute the

effects of various dimension-six operators and compare them to the topological susceptibility

χ(0) shown in eq. (3.11). There are two UV models that modify QCD UV dynamics to

enhance the topological susceptibility for which the instanton computation is relevant and

these will be briefly reviewed below:

Product group models. A natural way to explicitly compute the instanton integrals

discussed in section 3 is to Higgs an enlarged gauge group containing QCD color. This

6These two types of invariants are equivalent as we show explicitly in eq. (2.15) for the operator O
(1)
Hq and

all arguments presented here work for both forms.
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modifies the instanton measure dN (ρ) by an exponential factor

dN (ρ)→ dN (ρ) e−2π2ρ2
∑

|〈σ〉|2 , (4.1)

where the sum extends over all the scalars σ that Higgs the gauge group. This provides a

cutoff ∼ 1/|〈σ〉| for the instanton integrals. In particular, we consider the product group

model introduced in refs. [27, 28], where the gauge group SU(3)1 × SU(3)2 × · · · × SU(3)k
is Higgsed to the diagonal SU(3)c via bifundamental scalars σ. The gauge couplings of the

individual gauge groups at the UV scale can be chosen to be larger than the QCD coupling

while still in the perturbative regime so that small instantons are enhanced and instanton

computations are applicable.

5D instantons. Another model where small instantons provide a significant contribution

to the topological susceptibility was studied in ref. [61]. This involves uplifting the BPST

instanton presented in eq. (C.4) to a compact extra dimension of size R, which modifies

the running of the effective gauge coupling in eq. (C.16) above the compactification scale

1/R. The effective action then becomes

Seff ≃
8π2

g2(1/R)
−
R

ρ
+ b0 ln

R

ρ
, (4.2)

where b0 is the β-function coefficient of the zero modes and the linear term R/ρ is due to

additional contributions in eq. (C.11) from the Kaluza-Klein modes. As such, the instanton

measure becomes modified by an amount

dN (ρ)→ dN (ρ) eR/ρ . (4.3)

The dilute instanton gas approximation can then be used to compute the topological sus-

ceptibility in this model by imposing the 5D perturbativity condition

ΛSIR .
24π2

g2
, (4.4)

where ΛSI is identified with the cutoff scale of the 5D gauge theory.

4.1 Bounds from induced θ̄

As discussed in section 3, new sources of CP violation in the SMEFT can induce a shift in θ̄,

which leads to observable effects such as the neutron EDM. In principle, all the invariants

discussed in section 2.1 and appendix B.1 will give contributions to θ̄. However, due to the

different flavor structures, there are only a few invariants that contribute to leading order.

In the following, we consider three different flavor scenarios to study their impact on the

bounds obtained from the induced θ̄-angle. We will briefly introduce them here.

1. The simplest is the anarchic flavor scenario, in which all Wilson coefficients have an

O(1) value. Compared to the SM, this will in particular lead to large flavor-changing

interactions.
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2. A slightly more restrictive flavor assumption is the MFV [62–64] scenario. As we

have noted earlier, in the SM the only breaking of the U(3)5 flavor symmetry of

the fermion kinetic term is due to the SM Yukawa couplings. Taking the Yukawa

couplings to be spurions under this symmetry (cf. table 1), makes the Lagrangian

formally invariant under this approximate symmetry. In MFV we assume that the

non-renormalizable operators of the SMEFT follow the same symmetry scheme. Thus,

all SMEFT Wilson coefficients are polynomials in the Yukawa couplings dictated by

the spurious transformations of the Wilson coefficients under the flavor group.

3. Lastly, we consider a Froggatt-Nielsen (FN) scenario [65] that offers an explanation

for the size of the SM lepton and quark masses as well as the parameters in the CKM

matrix. In this scenario, the SM fields are extended by a complex scalar field φ which

is a singlet under the SM gauge group. The new scalar field has charge −1 under a

global U(1) symmetry. Constructing a Lagrangian invariant under the SM gauge group

and the newly postulated U(1) yields

L = −

(
φ⋆

ΛFN

)qQi
+quj

CuijQ̄iH̃uj−

(
φ⋆

ΛFN

)qQi
+qdj

CdijQ̄iHdj−

(
φ⋆

ΛFN

)qLi
+qej

CeijL̄iHej ,

(4.5)

where the FN charges of the left-handed fermions Q, u†, d†, L, e† are denoted as

qQ, qu, qd, qL, qe, respectively, qH = 0, ΛFN is the effective scale where the Froggatt-

Nielsen scenario is UV completed and the coefficients Cu,d,eij are O(1) complex numbers.

Eventually, the global U(1) symmetry is broken by the VEV of the complex scalar,

which yields hierarchical Yukawa couplings as powers of λ = 〈φ〉
ΛFN
∼ 0.2 dictated by

the FN charges. One set of charge assignments that can reproduce the SM Yukawa

couplings to large accuracy is

qQ = {3, 2, 0}, qu = {5, 2, 0}, qd = {4, 3, 3} , (4.6)

for the quarks and

qL = {9, 5, 3}, qe = {0, 0, 0} , (4.7)

for the leptons. This construction can be extended to the effective operators of the

SMEFT [66], resulting in hierarchical entries for the Wilson coefficients.

We begin by identifying the leading order invariants amongst those given in section 2. This can

be easily achieved by studying the FN scaling of the invariant with the least number of Yukawa

matrices for each operator. Consider the topological susceptibility of QCD, χ(0) ∝ Kθ, e.g.,

which scales as ∝ λ27. This compares with the SMEFT invariants in section 2.1 which scale as

I0000(CuH), A0000
0000(C

(1,8)
quqd), B0000

0000(C
(1,8)
quqd) ∝ λ27 , (4.8)

I1100(C
(1,3)
Hq ), I0

0000(C
(1,3)
lequ ) ∝ λ33 . (4.9)

This scaling helps to determine which invariants are important and hence phenomenologically

the most interesting. For instance, eqs. (4.8) and (4.9) indicate that the operators OuH and

O
(1,8)
quqd lead to larger effects compared to O

(1,3)
Hq or O

(1,3)
lequ , i.e. if the Wilson coefficients are
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assumed to be of the same order (up to the appropriate power of the FN parameter λ),

the contribution of the operator O
(1,8)
quqd (or OuH) to θind dominates over that of O

(1,3)
lequ (or

O
(1,3)
Hq ). This can also be understood from figure 1(a) and figure 1(d) — the latter figure

contains additional loops and Yukawa couplings, compared to the former figure and the

leading order contribution from χ(0).

Below, we study in more detail how these invariants contribute to the shift in the axion

potential minimum, θind, for two leading-order operators — O
(1)
quqd as well as the dipole

operator OdG, and the sub-leading semi-leptonic operator O
(1)
lequ.

For this analysis, the MFV (at leading order) and FN flavor scenarios result in the

same scaling for the Wilson coefficients, which occurs because we are only considering the

contribution from chirality-flipping operators to one observable. For instance, the scaling

of O
(1)
quqd is

C
(1)
quqd,ijkl

MFV
∼ c1Yu,ijYd,kl +O(Y 3

u,d) , C
(1)
quqd,ijkl

FN
∼ c1,ijklλ

qQi
+quj

+qQk
+qdl , (4.10)

where c1 are O(1) coefficients. Since by the FN construction, eq. (4.5), Yu ∼ λqQ+qu and

Yd ∼ λqQ+qd , we explicitly see the same scaling in both scenarios. Therefore, we will only

present constraints on Λ
✟✟CP (for a given ΛSI) under anarchic and MFV scenarios for the

considered operators in the following.

4.1.1 Four-quark operators

For the four-quark operator O
(1)
quqd, the topological susceptibility is computed in appendix D.1

and the result is given in eq. (D.6). Performing the integral over ρ in the product group

model SU(3)k → SU(3)c and assuming |〈σ〉| = ΛSI, we obtain

θind =
16π2

5(b0 − 6)Kθ

(
A0000

0000

(
C

(1)
quqd

)
+ B0000

0000

(
C

(1)
quqd

)) Λ2
SI

Λ2
✟✟CP

, (4.11)

where b0 = 13/2 for SU(3)1 and b0 = 21/2 for SU(3)k . For SU(3)2, . . . SU(3)k−1 , b0 = 10

and we get an additional factor of 2 on the r.h.s. of eq. (4.11). In the case of 5D instantons,

we obtain

θind =
2

5Kθ

(
A0000

0000

(
C

(1)
quqd

)
+ B0000

0000

(
C

(1)
quqd

)) Λ2
SI

Λ2
✟✟CP

. (4.12)

Note that as a consequence of the Higgsed theory, the product group model has a smooth

cutoff on the instanton size ρ, which leads to a mild dependence on the β function coefficient,

b0 in eq. (4.11).

In contrast, eq. (4.3) implies that the integral over ρ is dominated by instantons of size

ρ ∼ 1/ΛSI. Therefore, all the susceptibilities for the 5D model only depend on ΛSI, up to

an overall factor. This factor cancels when taking the ratio of susceptibilities, implying that

θind is independent of the β function coefficient, b0.

The constraints arising from eqs. (4.11) and (4.12) are shown in figure 2, where for the

product group model, we use b0 = 13/2 since it gives the most stringent constraints. Note

that the same value of b0 will be used in constraining the semi-leptonic and gluon dipole
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contributions to the neutron EDM from the SMEFT operators which should also be taken

into account. These contributions from parameters other than θ have been considered in

refs. [52, 67–71].

5 Conclusion

The enhanced effect of small (UV) instantons due to new high-energy dynamics that modifies

QCD at a UV scale ΛSI can be used to increase the QCD axion mass while still solving the

strong CP problem [17, 21–23, 27, 28, 61]. However, in the presence of higher-dimension

CP-odd operators at a scale Λ
✟✟CP, an extra contribution to θ̄ can also be induced from these

small instantons which can misalign the axion potential and give rise to a large neutron

EDM, leading to stringent constraints on the ratio ΛSI/Λ✟✟CP [19]. In this paper, we have

further explored these contributions for generic UV CP-violating scenarios parameterized

by SMEFT operators. In order to estimate the induced shift θind, the calculations have

been performed in the one-(anti-)-instanton (or dilute instanton gas) approximation, valid

when the instanton dynamics can be treated as perturbative. This assumes that the QCD

coupling near the scale ΛSI is large or semi-perturbative (in order to amplify the effect of small

instantons). The calculation is not applicable for non-perturbatively large QCD couplings,

where non-perturbative methods must be used.

Given that the instanton calculations involve complicated integrals and are usually

considered as estimations [32], a more accurate estimation can be obtained by including the

effect of flavorful couplings in the theory. However, since physical observable are flavor basis

independent, the flavorful couplings should be arranged into rephasing flavor invariants. In

particular, the topological susceptibility from small instantons can be described in terms of

SMEFT CP-odd invariants introduced in ref. [39]. However, the basis of trace invariants

presented in ref. [39] is not well-suited to characterize the results from the instanton calculation

of topological susceptibilities. The results, when projected into the basis of trace invariants,

yield complicated linear combinations of the invariants with coefficients that may contain

inverse powers of Yukawa couplings, therefore making the task of estimating physical effects

with these invariants impractical. Instead, in this work we have proposed a new basis of

CP-odd SMEFT invariants, built from determinant-like structures which are much better

suited to describe instanton computations. We have explicitly shown and argued that the

instanton calculations give results that are directly proportional to elements of our new

basis with no extra powers of flavorful couplings. The flavor invariants derived in this paper

therefore allow a more refined estimation of the effects of including CP-violating new physics

in small-instanton calculations, complementing the instanton NDA estimates in ref. [32].

Furthermore, the new invariants directly imply selection rules on which kind of operators

can appear at the leading order in the instanton calculation since they determine the number

of Yukawa couplings and loop factors. We have also shown that rephasing invariant operators

cannot contribute only via fermion zero modes which usually give the dominant contribution.

For example, we show in the case of the semi-leptonic operator contribution how invariants

encapsulate the expected lepton Yukawa dependence and extra loop suppression. Performing

the computations in a flavor-invariant fashion also allows us to easily test different flavor

assumptions for the SMEFT Wilson coefficients. For instance, we find that for the four-quark
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operator O
(1)
quqd, the leading order invariant in the MFV scenario contains an extra product of

the up and down Yukawa couplings (or just the down Yukawa coupling for the gluon dipole

operator OdG) compared to the anarchic scenario. Using the experimental bound on θ, we

obtain constraints on the scale of the higher-dimension CP-violating operators by assuming

that the contribution to θ is entirely due to the calculated effect of the small instantons. We

also show that for the leading order operators O
(1)
quqd and OdG the invariants are approximately

∼ sin θ̄ and result in similar bounds Λ
✟✟CP & 106 ΛSI for the MFV scenario. However, for the

anarchic scenario, the limits are operator dependent and become much more stringent — for

O
(1)
quqd, we obtain Λ

✟✟CP & 1011 ΛSI while for OdG, the bound becomes Λ
✟✟CP & 108 ΛSI.

The cancellation of divergences appearing in the instanton loop integrals can be used as

a non-trivial cross-check of our calculations. The divergences in the correlation functions are

canceled by including the counterterms of the SMEFT in a Green’s basis. This cancellation

has been explicitly shown for the semi-leptonic operator O
(1)
lequ to obtain a divergence-free

result that is then used for a phenomenological study.

Our work can be extended in several directions. The most immediate one is to perform

similar calculations by including all relevant SMEFT operators systematically, explicitly

verifying the appearance of the constructed invariants. In addition, considering higher orders

in the Yukawa couplings would also prove interesting. Another possible extension of our work

is to consider the effect of higher-dimensional effective operators (e.g. considering the double

insertions of dimension-six SMEFT operators, or a single insertion of the dimension-eight

SMEFT operators). Since these operators could allow for different topologies than those of

figure 1, their effect might not be in general trivially extrapolated from our results. While we

estimated that a higher-dimensional effect would be suppressed, as expected, in the case of

the double insertion of O
(1)
quqd in appendix D.1, a more systematic study of higher-dimensional

operators could be relevant.

Furthermore, we have solely focused on contributions to the linear term in the axion

potential in this work. However, similar computations could be performed to estimate the

small instanton effects on the axion mass term using CP-even SMEFT invariants. Having

more reliable estimates of observables to probe SMEFT operators can help to better direct

experimental searches.
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A SMEFT conventions

In this work, we consider the SMEFT up to dimension-six terms and assume dimensionless

Wilson coefficients Ca, i1...in defined as

LSMEFT = LSM +
1

Λ2
✟✟CP

∑

a

Ca, i1...inO
i1...in
a , (A.1)

where Λ
✟✟CP is the cutoff scale associated with the CP-violating operator, a labels the type of

dimension-six operator and i1 . . . in correspond to the n flavor indices of fermionic operators.

Above the electroweak breaking scale, the SM Lagrangian is given by

LSM = −
1

4
GAµνG

A,µν −
1

4
W I
µνW

I,µν −
1

4
BµνB

µν + θQCD
g2

32π2
GAµνG̃

A,µν

+ i
(
Q̄ /DQ+ ū /Du+ d̄ /Dd+ L̄ /DL+ ē /De

)
−
(
Q̄YuH̃u+ Q̄YdHd+ L̄YeHe+ h.c.

)

+ (DµH)†(DµH) +m2
H(H†H)−

λ

2
(H†H)2 , (A.2)

where Yu,d,e are the Yukawa coupling matrices and H̃ i = ǫijH∗
j . Our sign convention for

covariant derivatives is mostly positive, e.g. the covariant derivative acting on a field φ reads

Dµφ =
(
∂µ + igTACG

A
µ + ig2T

IW I
µ + ig1YφBµ

)
φ , (A.3)

where g, g2, g1 are dimensionless gauge coupling constants and TAC , T
I are the SU(3) and

SU(2) generators in the representations of φ respectively; Yφ stands for the hypercharge

of φ. Here, it is convenient to define the covariant derivatives acting to the field and its

Hermitian conjugate,

H†i
←→
D µH ≡H

†(iDµH)−(iDµH
†)H , H†i

←→
D I

µH ≡H
†τ I(iDµH)−(iDµH

†)τ IH , (A.4)

where τ I are the Pauli matrices. We adopt the Warsaw basis [47] conventions for the

definitions of the effective operators. The fermionic operators are given for completeness in

tables 2 and 3. We only consider fermionic operators and neglect fully bosonic ones in our

analysis because only the former have zero modes projected out resulting in determinant-like

structures, as explored in detail in section 3.

B Details on determinant-like invariants and their relation to trace

invariants

B.1 Complete set of flavor invariants featuring θQCD for all SMEFT operators

In this appendix, we present a complete set of flavor invariants, featuring θQCD and are linear

in the Wilson coefficient, for all dimension-six SMEFT operators, which were not shown in the

main text due to their length. We begin with the operators that are used as examples in the

main text. For the operator O
(1,8)
quqd, a complete set can be built with the following 81 invariants

A0000
0000

(
C

(1,8)
quqd

)
, A0000

1000

(
C

(1,8)
quqd

)
, A1000

0000

(
C

(1,8)
quqd

)
, A1000

1000

(
C

(1,8)
quqd

)
, A0000

0100

(
C

(1,8)
quqd

)
,

A0100
0000

(
C

(1,8)
quqd

)
, A0000

1100

(
C

(1,8)
quqd

)
, A0000

0110

(
C

(1,8)
quqd

)
, A0100

1000

(
C

(1,8)
quqd

)
, A1000

0100

(
C

(1,8)
quqd

)
,

A1100
0000

(
C

(1,8)
quqd

)
, A0110

0000

(
C

(1,8)
quqd

)
, A1000

1100

(
C

(1,8)
quqd

)
, A1000

0110

(
C

(1,8)
quqd

)
, A1100

1000

(
C

(1,8)
quqd

)
,
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Label Operator # phases # primary phases

OeH (H†H)(L̄iejH) + h.c. 9 3

OuH (H†H)(Q̄iujH̃) + h.c. 9 9

OdH (H†H)(Q̄idjH) + h.c. 9 9

OeW (L̄iσ
µνej)τ

IHW I
µν + h.c. 9 3

OeB (L̄iσ
µνej)HBµν + h.c. 9 3

OuG (Q̄iσ
µνTAuj)H̃ GAµν + h.c. 9 9

OuW (Q̄iσ
µνuj)τ

IH̃ W I
µν + h.c. 9 9

OuB (Q̄iσ
µνuj)H̃ Bµν + h.c. 9 9

OdG (Q̄iσ
µνTAdj)H GAµν + h.c. 9 9

OdW (Q̄iσ
µνdj)τ

IHW I
µν + h.c. 9 9

OdB (Q̄iσ
µνdj)H Bµν + h.c. 9 9

O
(1)
Hl (H†i

←→
D µH)(L̄iγ

µLj) 3 0

O
(3)
Hl (H†i

←→
D I

µH)(L̄iτ
IγµLj) 3 0

OHe (H†i
←→
D µH)(ēiγ

µej) 3 0

O
(1)
Hq (H†i

←→
D µH)(Q̄iγ

µQj) 3 3

O
(3)
Hq (H†i

←→
D I

µH)(Q̄iτ
IγµQj) 3 3

OHu (H†i
←→
D µH)(ūiγ

µuj) 3 3

OHd (H†i
←→
D µH)(d̄iγ

µdj) 3 3

OHud (H̃†iDµH)(ūiγ
µdj) + h.c. 9 9

Table 2. Table of bilinear fermionic operators in the Warsaw basis [47]. For each operator, we also

indicate the number of phases and the number of primary phases [39], i.e. the number of flavor-invariant

CP-odd quantities capturing the interference with the SM. The lower-case indices i, j, k, l denote

flavor indices, while the uppercase indices I and A denote the indices of the adjoint representation of

the SU(2)L and SU(3)c gauge groups, respectively.

A0100
0100

(
C

(1,8)
quqd

)
, A0100

1100

(
C

(1,8)
quqd

)
, A0100

0110

(
C

(1,8)
quqd

)
, A0110

0100

(
C

(1,8)
quqd

)
, A0000

2200

(
C

(1,8)
quqd

)
,

A0000
0220

(
C

(1,8)
quqd

)
, A0200

2000

(
C

(1,8)
quqd

)
, A1100

1100

(
C

(1,8)
quqd

)
, A1100

0110

(
C

(1,8)
quqd

)
, A2000

0200

(
C

(1,8)
quqd

)
,

A2100
0100

(
C

(1,8)
quqd

)
, A0110

1100

(
C

(1,8)
quqd

)
, A0110

0110

(
C

(1,8)
quqd

)
, A0210

1000

(
C

(1,8)
quqd

)
, A0000

1220

(
C

(1,8)
quqd

)
,

A1200
2000

(
C

(1,8)
quqd

)
, A0000

0122

(
C

(1,8)
quqd

)
, A0100

1220

(
C

(1,8)
quqd

)
, A1000

0122

(
C

(1,8)
quqd

)
, A1100

2200

(
C

(1,8)
quqd

)
,

A1100
0220

(
C

(1,8)
quqd

)
, A1200

2100

(
C

(1,8)
quqd

)
, A2100

1200

(
C

(1,8)
quqd

)
, A2100

0210

(
C

(1,8)
quqd

)
, A2200

0110

(
C

(1,8)
quqd

)
,

A0110
2200

(
C

(1,8)
quqd

)
, A0110

0220

(
C

(1,8)
quqd

)
, A0112

2000

(
C

(1,8)
quqd

)
, A1100

1220

(
C

(1,8)
quqd

)
, A2100

0112

(
C

(1,8)
quqd

)
, (B.1)

A1200
1220

(
C

(1,8)
quqd

)
, A2200

2200

(
C

(1,8)
quqd

)
, A0110

1122

(
C

(1,8)
quqd

)
, A0122

2100

(
C

(1,8)
quqd

)
, A0220

0220

(
C

(1,8)
quqd

)
,

B0000
0000

(
C

(1,8)
quqd

)
, B0000

0100

(
C

(1,8)
quqd

)
, B0000

1000

(
C

(1,8)
quqd

)
, B0000

1100

(
C

(1,8)
quqd

)
, B0000

2200

(
C

(1,8)
quqd

)
,

B0000
0110

(
C

(1,8)
quqd

)
, B0000

0122

(
C

(1,8)
quqd

)
, B0000

0220

(
C

(1,8)
quqd

)
, B0100

0000

(
C

(1,8)
quqd

)
, B0100

1000

(
C

(1,8)
quqd

)
,
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Label Operator # phases # primary phases

Oll (L̄iγµLj)(L̄kγ
µLl) 18 0

O
(1)
qq (Q̄iγµQj)(Q̄kγ

µQl) 18 18

O
(3)
qq (Q̄iγµτ

IQj)(Q̄kγ
µτ IQl) 18 18

O
(1)
lq (L̄iγµLj)(Q̄kγ

µQl) 36 9

O
(3)
lq (L̄iγµτ

ILj)(Q̄kγ
µτ IQl) 36 9

Oee (ēiγµej)(ēkγ
µel) 15 0

Ouu (ūiγµuj)(ūkγ
µul) 18 18

Odd (d̄iγµdj)(d̄kγ
µdl) 18 18

Oeu (ēiγµej)(ūkγ
µul) 36 9

Oed (ēiγµej)(d̄kγ
µdl) 36 9

O
(1)
ud (ūiγµuj)(d̄kγ

µdl) 36 36

O
(8)
ud (ūiγµT

Auj)(d̄kγ
µTAdl) 36 36

Ole (L̄iγµLj)(ēkγ
µel) 36 3

Olu (L̄iγµLj)(ūkγ
µul) 36 9

Old (L̄iγµLj)(d̄kγ
µdl) 36 9

Oqe (Q̄iγµQj)(ēkγ
µel) 36 9

O
(1)
qu (Q̄iγµQj)(ūkγ

µul) 36 36

O
(8)
qu (Q̄iγµT

AQj)(ūkγ
µTAul) 36 36

O
(1)
qd (Q̄iγµQj)(d̄kγ

µdl) 36 36

O
(8)
qd (Q̄iγµT

AQj)(d̄kγ
µTAdl) 36 36

Oledq (L̄ai ej)(d̄kQla) + h.c. 81 27

O
(1)
quqd (Q̄ai uj)(Q̄

b
kdl) + h.c. 81 81

O
(8)
quqd (Q̄ai T

Auj)(Q̄
b
kT

Adl) + h.c. 81 81

O
(1)
lequ (L̄ai ej)(Q̄

b
kul) + h.c. 81 27

O
(3)
lequ (L̄ai σµνej)(Q̄

k
sσ

µνut) + h.c. 81 27

Table 3. Table of four-fermion operators in the Warsaw basis [47]. For each operator, we also indicate

the number of phases and the number of primary phases [39], i.e. the number of flavor-invariant

CP-odd objects capturing the interference with the SM.

B0100
1100

(
C

(1,8)
quqd

)
, B0100

2100

(
C

(1,8)
quqd

)
, B0100

0120

(
C

(1,8)
quqd

)
, B0100

1220

(
C

(1,8)
quqd

)
, B0200

1120

(
C

(1,8)
quqd

)
,

B1000
0000

(
C

(1,8)
quqd

)
, B1000

0100

(
C

(1,8)
quqd

)
, B1000

1200

(
C

(1,8)
quqd

)
, B1000

0110

(
C

(1,8)
quqd

)
, B1000

0122

(
C

(1,8)
quqd

)
,

B1000
0210

(
C

(1,8)
quqd

)
, B1100

0000

(
C

(1,8)
quqd

)
, B1100

1100

(
C

(1,8)
quqd

)
, B1100

2200

(
C

(1,8)
quqd

)
, B1100

0110

(
C

(1,8)
quqd

)
,

B1100
0220

(
C

(1,8)
quqd

)
, B1100

1122

(
C

(1,8)
quqd

)
, B1200

2100

(
C

(1,8)
quqd

)
, B2100

0122

(
C

(1,8)
quqd

)
, B2200

0000

(
C

(1,8)
quqd

)
,

A2200
1122

(
C

(1,8)
quqd

)
,

where the two structures A(C
(1,8)
quqd) and B(C

(1,8)
quqd) are defined in eq. (2.11).
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We have also used the operator O
(1,3)
lequ in section 2.1 for which the full list of 27 in-

variants reads

I0
0000

(
C

(1,3)
lequ

)
, I1

0000

(
C

(1,3)
lequ

)
, I2

0000

(
C

(1,3)
lequ

)
, I0

1000

(
C

(1,3)
lequ

)
, I1

1000

(
C

(1,3)
lequ

)
,

I2
1000

(
C

(1,3)
lequ

)
, I0

0100

(
C

(1,3)
lequ

)
, I1

0100

(
C

(1,3)
lequ

)
, I2

0100

(
C

(1,3)
lequ

)
, I0

1100

(
C

(1,3)
lequ

)
,

I1
1100

(
C

(1,3)
lequ

)
, I2

1100

(
C

(1,3)
lequ

)
, I0

0110

(
C

(1,3)
lequ

)
, I1

0110

(
C

(1,3)
lequ

)
, I2

0110

(
C

(1,3)
lequ

)
,

I0
2200

(
C

(1,3)
lequ

)
, I1

2200

(
C

(1,3)
lequ

)
, I2

2200

(
C

(1,3)
lequ

)
, I0

0220

(
C

(1,3)
lequ

)
, I1

0220

(
C

(1,3)
lequ

)
,

I2
0220

(
C

(1,3)
lequ

)
, I0

1220

(
C

(1,3)
lequ

)
, I1

1220

(
C

(1,3)
lequ

)
, I2

1220

(
C

(1,3)
lequ

)
, I0

0122

(
C

(1,3)
lequ

)
,

I1
0122

(
C

(1,3)
lequ

)
, I2

0122

(
C

(1,3)
lequ

)

(B.2)

where I(C
(1,3)
lequ ) is defined in eq. (2.12).

We next continue with all other invariants in the Warsaw basis of the SMEFT. Only the

form of the invariants will be given and we refer to ref. [39] for the index assignments that are

needed to obtain a complete set of invariants which will be exactly the same as those that are

needed for the determinant-like invariants. Consider first the fermion bilinears where we have

already defined the invariants for OuH in eq. (2.10) and the invariant for OdH can be defined

in a similar way. Furthermore, the dipole operators OuB,OuW,OuG and OdB,OdW,OdG, fall

into the same class of operators and the invariants have exactly the same form as those for

OuH and OdH. For OeH, the form of the invariants is

Ia(CeH) ≡ Im
[
e−iθQCDTr (Xa

eCeH) det (YuYd)
]
, (B.3)

where the index assignments for a, for this operator and all other operators below, are the same

as for the trace invariants in ref. [39]. OeB and OeW fall again into the same class of operators.

For the bilinear current-current operators, the Hermitian leptonic operators O
(1,3)
Hl and

OHe do not have any phases interfering with the SM at the leading order and consequently

there exist no flavor invariants. For the operators containing quarks we have already defined

the invariants for O
(1,3)
Hq in eq. (2.13). The phases introduced by the operators OHu and OHd

can be obtained from the invariants of O
(1,3)
Hq by replacing C

(1,3)
Hq → YuCHuY

†
u , YdCHdY

†
d , while

the phases in OHud can be obtained from the invariants of OuH by replacing CuH → CHudY
†

d .

Only the four-fermion operators remain to be treated. Again, for the purely leptonic

“Hermitian” four-fermion operators Oll and Oee, whose Wilson coefficients satisfy the identity

C∗
ijkl = Cjilk, no CP-odd invariants arise at leading order in the Wilson coefficients. For

Ole, we can define the following invariants

Ia(Cle) ≡ Im
[
e−iθQCD(Xa

e )ijY
†

e,klCle,jlmiYe,mk det (YuYd)
]
. (B.4)

The remaining semi-leptonic four-fermion operators can be divided into two classes. In the

first class Oqe,Oed,Oeu, can be captured by the following invariant forms

Ifabcd(Cqe) ≡ Im
[
e−iθQCD(Xa

uX
b
dX

c
uX

d
d)ij(X

f
e Ye)klCqe,jilmY

†
e,mk det (YuYd)

]
,

Ifabcd(Ced) ≡ Im
[
e−iθQCD(Xf

e Ye)ij(X
a
uX

b
dX

c
uX

d
dYd)lmCed,jkmnY

†
e,kiY

†
d,nl det (YuYd)

]
,

(B.5)

and the Oeu invariants are obtained by Yd,lmCed,jkmnY
†

d,nl → Yu,lmCeu,jkmnY
†

u,nl.
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The second class O
(1,3)
lq ,Old,Olu is captured by the invariants of the following form

Ifabcd(C
(1,3)
lq ) ≡ Im

[
e−iθQCD(Xf

e )ij(X
a
uX

b
dX

c
uX

d
d)klC

(1,3)
lq,jilk det (YuYd)

]
,

Ifabcd(Cld) ≡ Im
[
e−iθQCD(Xf

e )ij(X
a
uX

b
dX

c
uX

d
dYd)klCld,jilmY

†
d,mk det (YuYd)

]
,

(B.6)

and the Olu invariants are obtained by Yd,klCld,jilmY
†

d,mk → Yu,klClu,jilmY
†

u,mk.

The phases introduced by the operator Oledq are captured by the following invariant

Ifabcd(Cledq) ≡ Im
[
e−iθQCD(Y †

e X
f
e )ij(YdX

a
uX

b
dX

c
uX

d
d)klC

(1,3)
ledq,jilk det (YuYd)

]
. (B.7)

The operators O
(1,3)
qq ,Ouu,Odd can all be described by invariants of the form

Aa2b2c2d2
a1b1c1d1

(C(1,3)
qq ) ≡ Im

[
e−iθQCD(Xa1

u Xb1
d X

c1
u X

d1
d )ij(X

a2
u Xb2

d X
c2
u X

d2
d )klC

(1,3)
qq,jilk det (YuYd)

]
,

Ba2b2c2d2
a1b1c1d1

(C(1,3)
qq ) ≡ Im

[
e−iθQCD(Xa1

u Xb1
d X

c1
u X

d1
d )ij(X

a2
u Xb2

d X
c2
u X

d2
d )klC

(1,3)
qq,lijk det (YuYd)

]
,

(B.8)

where the following replacements have to be made for the latter two operators C
(1,3)
qq,ijkl →

Yu,imY
†

u,njCuu,mnopYu,koY
†

u,pl , Yd,imY
†

d,njCdd,mnopYd,koY
†

d,pl.
7

For the operators O
(1,8)
qu ,O

(1,8)
qd , a complete set of invariants can be found by considering

the following forms of invariants

Aa2b2c2d2
a1b1c1d1

(C(1,8)
qu ) ≡ Im

[
e−iθQCD(Xa1

u Xb1
d X

c1
u X

d1
d )ij(X

a2
u Xb2

d X
c2
u X

d2
d )kl

×Yu,lmC
(1,8)
qu,jimnY

†
u,nk det (YuYd)

]
,

Ba2b2c2d2
a1b1c1d1

(C(1,8)
qu ) ≡ Im

[
e−iθQCD(Xa1

u Xb1
d X

c1
u X

d1
d )ij(X

a2
u Xb2

d X
c2
u X

d2
d )kl

×Yu,lmC
(1,8)
qu,mijnY

†
u,nk det (YuYd)

]
,

(B.9)

where for O
(1,8)
qd the replacement Yu,lmC

(1,8)
qu,mijnY

†
u,nk → Yd,lmC

(1,8)
qd,mijnY

†
d,nk has to be made.

Finally, the CP violation introduced by the operator O
(1,8)
ud can be captured by invariants

of the form

Aa2b2c2d2
a1b1c1d1

(C
(1,8)
ud ) ≡ Im

[
e−iθQCD(Xa1

u Xb1
d X

c1
u X

d1
d )ij(X

a2
u Xb2

d X
c2
u X

d2
d )kl

×Yu,jmYd,lnC
(1,8)
ud,monpY

†
u,oiY

†
d,pk det (YuYd)

]
,

Ba2b2c2d2
a1b1c1d1

(C
(1,8)
ud ) ≡ Im

[
e−iθQCD(Xa1

u Xb1
d X

c1
u X

d1
d )ij(X

a2
u Xb2

d X
c2
u X

d2
d )kl

×Yu,jmYd,lnC
(1,8)
ud,nompY

†
u,oiY

†
d,pk det (YuYd)

]
.

(B.10)

7Note, that we have chosen the same form for all invariants here while ref. [39] chooses a form with fewer

insertions of Yukawa couplings, whenever no insertions of Xu,d are made in one of the bilinears of right-handed

quarks. We chose to do this here to present the invariants in a more compact form. We will also do this for

the following four-fermion operators containing only quark fields.
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B.2 Conversion of invariants with negative powers of Yukawa couplings

In section 2.1, all determinant-like invariants were related to the basis of trace invariants of

ref. [39], except for invariants of the form I0bcd(CuH) which are mapped to the trace invariants

L(C) and R(C) defined below eq. (2.15)

I0bcd(CuH) = 2
(
Jθ R(−1)bcd(CuHY

†
u ) +Kθ L(−1)bcd(CuHY

†
u )
)
, (B.11)

that contain inverse powers of Yukawa couplings, which is clearly not in the basis of ref. [39].

To convert the right-hand side of eq. (B.11) to the basis we will use the following relation

A−1 =
1

detA

[
A2 −ATrA+

1

2

(
(TrA)2 − Tr(A2)

)
1

]
, (B.12)

which directly follows from the Cayley-Hamilton theorem. Making use of this identity, we

can write

L(−1)bcd(CuHY
†

u ) = Im Tr
(
X−1

u Xb
dX

c
uX

d
dCuHY

†
u

)

=
1

detXu

(
L2bcd(CuHY

†
u )− Tr(Xu)L1bcd(CuHY

†
u )

+
1

2

(
(TrXu)2 − Tr(X2

u)
)
L0bcd(CuHY

†
u )

)
,

(B.13)

given that detXu 6= 0. Repeating the same for R(−1)000(CuHY
†

u ) enables us to fully map all

determinant-like invariants of CuH to the trace invariants of ref. [39]. The same procedure can

be followed for all other operators with chirality flipping currents where the same problem

occurs. In some cases further syzygies have to be imposed in order to map the invariants

appearing on the right-hand side of eq. (B.13) to the basis of ref. [39]. For instance, the

invariant I0100(CuH) is mapped to the CP-odd trace invariants L2100(CuHY
†

u ), L1100(CuHY
†

u )

and L0100(CuHY
†

u ), out of which only the last two appear in the basis of ref. [39] without further

manipulations. Therefore, more syzygies have to be applied to the invariant L2100(CuHY
†

u )

in order to reduce it to the basis in ref. [39].

C Basics of instanton calculations

In this appendix, we briefly give an overview of instantons and their calculus. There is a

vast literature on instantons, and more details can be found in the standard lectures and

recent reviews of this topic such as refs. [28, 32, 72–78].

C.1 Instanton calculations: technical preliminaries

The presence of instantons is necessary if the vacuum of the theory considered is degenerate in

the space of fields. Within the semi-classical approximation, instantons describe the tunneling

effects that connect the two distinct energy-degenerate states in the space of fields. They

are localized objects in Euclidean spacetime, satisfying the Euclidean equation of motion

with non-trivial topologies and therefore minimize the Euclidean action.

The instanton solutions for pure Yang-Mills theories were first discovered in 1975 by

Belavin, Polyakov, Schwarz and Tyupkin (usually refered as BPST instantons) [79]. These
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solutions play a primary role in revealing the non-trivial vacuum structure of Yang-Mills

theories, i.e. the existence of the θ vacuum, as a superposition of the so-called “n-vacua”

which are degenerate but topologically distinct and characterized by the winding number

n of the gauge field at infinity [80].

We begin with the pure Yang-Mills part of the QCD Lagrangian, including the contri-

bution of the vacuum angle θQCD. From the Lagrangian formalism, we then write down

the Euclidean action of this theory.8

SYM =

∫
d4x

(
1

4
GAµνG

A,µν + iθQCD
g2

32π2
GAµνG̃

A,µν

)
, (C.1)

where Gµν = GAµνT
A with the gluon field strength tensor given by

GAµν = ∂µG
A
ν − ∂νG

A
µ − gf

ABCGBµG
C
ν . (C.2)

Here, A = 1, . . . , 8 are gauge indices, TA and fABC are SU(3) generators and structure

constant, respectively. The QCD gauge coupling is g. Our convention for the dual field

strength tensor is GAµν = 1
2ǫµνρσG

A,ρσ, with the choice ǫ0123 = +1. We define the topological

charge as

g2

32π2

∫
d4xGAµνG̃

A,µν(x)

∣∣∣∣
inst.

= Q , where Q ∈ Z . (C.3)

Within the perturbative regime, we can fix the topological charge Q = ±1, because these

configurations will minimize the Euclidean action and dominate over all path integral tra-

jectories.9 Later on, the subscript |inst. will be replaced by |1-(a)-inst. for the background

with the one-(anti)-instanton solution.

For the Q = +1 configuration, using the regular Landau gauge, an explicit form of the

BPST instanton solutions for the SU(2) gauge theory is given by [79],

Gaµ(x)
∣∣
1−inst.

= 2 ηaµν
(x− x0)ν

(x− x0)2 + ρ2
, ηaµν =





ǫaµν , µ, ν ∈ {1, 2, 3}

−δaν , µ = 0

+δaµ, ν = 0

0, µ = ν = 0

, (C.4)

where a = 1, 2, 3 label the SU(2) gauge indices, µ, ν are the Euclidean spacetime indices

and ηaµν is the group-theoretic ’t Hooft η symbol defined in eq. (C.4). The relations and

index contractions of the η symbols can be found in ref. [46]. The instanton solution in

eq. (C.4) depends on five parameters, the Euclidean four-vector xµ0 and ρ which describes

the instanton location and size, respectively.10

8When switching from Minkowski to Euclidean space, the field strength tensor components are related

by (GA
ij)M = (GA

ij)E , (GA
0j)M = i(GA

4j)E . For the Euclidean path integral, each trajectory is weighted by the

factor e−SYM .
9In the non-perturbative regime, all topological configurations contribute to the path integral equally. Thus,

one needs to consider multi-instanton solutions and the interactions between (anti-)instantons [81–86].
10For an SU(2) theory, Gµ = Ga

µT a there are an additional three gauge parameters, for a total of eight

parameters. Different values of these parameters just lead to equivalent instanton solutions. In the language

of soliton physics, these parameters and the family of equivalent solutions given by eq. (C.4) are referred to as

collective coordinates and zero modes, respectively.
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The anti-instanton solution has exactly the same form illustrated by eq. (C.4), with

the replacement ηaµν → η̄aµν , where the symbols η̄aµν are defined by the modification

δaµ, δaν → −δaµ, δaν in eq. (C.4). Since we usually work with field strength tensors instead

of gauge fields, it is convenient to give an explicit form of the field strength tensor in the

presence of a one-instanton background,

Gaµν
∣∣
1-inst.

= −4 ηaµν
ρ2

[(x− x0)2 + ρ2]2
. (C.5)

Furthermore, note that the instanton solutions for the SU(N) gauge theory can be obtained

by embedding the SU(2) solutions into SU(N). Therefore, in this work, when contracting

the gauge index of GAµν
∣∣
1-inst.

with TA or fABC , only A,B,C ∈ {1, 2, 3} yields non-vanishing

results.

An important property of the one-(anti-)instanton solution is that it satisfies the (anti-)

self-dual equation

Gaµν = ±G̃aµν , (C.6)

and thus, due to the Bianchi identity, automatically solves the gluon equation of motion

DµGaµν = DµG̃aµν = 0. With all of these properties, the one-(anti)-instanton solution then

yields the finite QCD classical action

S1-inst.
YM =

∫
d4x

(
1

4
GAµνG

A,µν + iθQCD
g2

32π2
GAµνG̃

A,µν

) ∣∣∣∣
1-(a.-)inst.

=
8π2

g2
± iθQCD . (C.7)

Fermion zero modes. Next, we consider the SU(N) gauge theory with massless fermions

in the presence of an instanton background. The fermionic Euclidean action is given by

Sψ =

∫
d4x ψ̄f

(
− i /D

)
ψf , (C.8)

where Dµ = ∂µ + igGaµT
a, and f is fermion flavor index. The spectrum of the Dirac operator

can be obtained by expanding the fermion fields into their eigenmodes,

ψf (x) =
∑

k

ξ
(k)
f ψ(k)(x) ; ψ̄f (x) =

∑

k

ξ̄
(k)
f ψ̄(k)(x) , (C.9)

where ξ
(k)
f and ξ̄

(k)
f are Grassmann variables. The crucial point is that the interaction of

fermion with the instanton background leads to the so-called fermion zero modes which satisfy

the massless Dirac equation, −i /D
∣∣
1-inst.

ψ(0)(x) = 0. For the SU(2) gauge theory, an explicit

form of ψ(0)(x) in the regular Landau gauge is given by [73, 74]

ψ(0)(x)

∣∣∣∣
1-inst.

=

(
χL
χR

)
=

1

π

ρ
[
(x− x0)2 + ρ2

]3/2

(
0

ϕ

)
, ϕαm = ǫαm , (C.10)

where α = 1, 2 and m = 1, 2 are spinor and SU(2) gauge indices and ǫ is the anti-symmetric

tensor in two dimensions. Here, the fermion zero modes given by eq. (C.10) are normalized by

imposing the condition
∫
d4x

[
ψ(0)†

ψ(0)
]
(x) = 1. In the presence of an instanton background,
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only χ†
L, χR Weyl components possess the zero mode solutions of the Dirac equations and vice

versa for the anti-instanton background. Also, notice that the zero modes are independent

of the flavor of the respective fermion.

Vacuum-to-vacuum amplitude. Within the semi-classical approximation, one can expand

the fields around their classical configuration in the presence of the one-instanton background,

up to quadratic order in the quantum fluctuations, the Euclidean action reads

SE = S1-inst.
YM +

∫
d4x

∑

i

δΦ†
i

(
MΦiΦi

)
δΦi , (C.11)

where in QCD, S1-inst.
YM is given by eq. (C.7), δΦ encapsulates all quantum fluctuations of

the gauge Aµ, ghost η, scalar φ and fermion ψ fields.11 We are interested in the vacuum-

to-vacuum amplitude, and, following refs. [28, 46], we express this amplitude in terms of

path integral as follows,

〈0|0〉
∣∣
1-inst.

=

∫
DAµDηDη̄DφDφ

†DψDψ̄ e−SE

∣∣∣
1-inst.∫

DAµDηDη̄DφDφ†DψDψ̄ e−SE

∣∣∣
Acl

µ =0

. (C.12)

The computation of this amplitude requires a lot of effort. First, one has to split the

path integral measure into an integration over zero modes and non-zero modes. The path

integral over zero modes can be replaced by an integration over collective coordinates and the

corresponding Jacobian must be computed properly. Second, the non-zero modes need to be

integrated out, their contributions can be viewed as the product of the infinite non-vanishing

eigenvalues of the operator MΦiΦi
. This product is divergent due to many large eigenvalues and

needs to be regularized. The final result that will be used in our calculations is given by [46]

〈0|0〉
∣∣
1-inst.

= e−iθQCD

∫
d4x0

∫
dρ

ρ5
dN (ρ)

∫ Nf∏

f=1

(
ρ dξ

(0)
f dξ̄

(0)
f

)
e−ψ̄Jψ+h.c. , (C.13)

where J is a source term describing the interaction between fermions (charged under the

instanton gauge groups) and other quantum fields (unrelated to instanton dynamics). An

important quantity appearing in eq. (C.13) is the instanton density in SU(N) theory,

dN (ρ) = C[N ]

(
8π2

g2

)2N

e−8π2/g2(1/ρ) . (C.14)

Notice that the gauge coupling g in the pre-factor (8π2/g2)2N is the bare coupling and only

receives radiative corrections beginning at two-loop order. Furthermore, the running gauge

coupling in the exponential factor, resulting from the contributions of non-zero modes, is

evaluated at one-loop order and the full expression can be found in eq. (C.16). In presence

of scalars, σ, that are charged under the gauge group, the instanton density is modified

as in eq. (4.1).

11The fluctuations δΦ include both zero modes and non-zero modes.
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The coefficient C[N ] includes the contributions of non-zero modes and the Jacobian

factor when transforming
∫
DA

(0)
µ to the integration over collective coordinates and it is

given by [28, 32, 46, 87]

C[N ] =
C1 e

−C2N

(N − 1)!(N − 2)!
e0.292Nf , (C.15)

where C1 ≈ 0.466, C2 ≈ 1.678; the contribution of fermion non-zero modes yields the factor

e0.292Nf where Nf is the number of fermions. Note that the coefficient C1 is just a constant

while C2 and e0.292Nf are scheme-dependent due to the renormalization of the gauge coupling.

Here, the coefficient C[N ] is defined in the Pauli-Villars regularization scheme. In this paper,

we evaluate loop integrals using dimensional regularization and the MS scheme, therefore

dN (ρ) should be converted into MS scheme. The details of this step will be discussed in

appendix C.2. Eventually, the running of the gauge coupling is given by

8π2

g2(1/ρ)
=

8π2

g2
0(ΛUV)

− b0 log ρΛUV , b0 =
11

3
N −

2

3
Nf . (C.16)

C.2 Divergences and scheme independence of the results

The calculation of the topological susceptibility, χ
O

(0) defined in eq. (3.6), induced by effective

operators can involve divergent loop integrals. Within the SMEFT, the standard technique to

regularize these divergences is to use dimensional regularization, supplemented by the modified

minimal subtraction (MS) renormalization scheme. Therefore, to consistently evaluate χ
O

(0),

as well as the ratio χ
O

(0)/χ(0) in eq. (3.7), the instanton density dN (ρ), defined in Pauli-

Villars (PV) renormalization scheme, must be converted to the MS renormalization scheme.

The details of this conversion procedure can be found in the appendix B of ref. [28].

It is clear that the computations of χ
O

(0) and χ(0) are scheme dependent. However,

χ
O

(0)/χ(0) does not depend on the renormalization scheme since it is the ratio of two

topological susceptibilities and both scale in the same fashion when converted to a different

renormalization scheme [28]

χMS
(O)

(0) = e(N−Nf )/6 χPV
(O)

(0) , (C.17)

where the bracket notation in the subscript of χ
(O)

(0) indicates either the χ(0) or χ
O

(0)

susceptibilities. To deal with the divergences arising from the insertion of SMEFT operators

that will only affect χ
O

, one has to consider the renormalized SMEFT, i.e. with the appropriate

counterterms calculated in the MS scheme.

As an example to illustrate this feature, in appendix D.2, we explicitly calculate the

divergent part of the topological susceptibility χ
(1)
lequ(0) resulting from the insertion of the

semi-leptonic operator O
(1)
lequ. The divergences appearing in loop calculations are expected

to be canceled in renormalized perturbation theory by appropriate counterterms. To obtain

these counterterms we make use of the SMEFT RGEs12 [91–94] that are computed from

the SMEFT counterterms. It is important to note that we will require off-shell correlation

12Inspired by previous studies [88–90], the β-function of a given operator (related to instanton dynamics)

can also be computed in the instanton background instead of using the traditional diagrammatic approach.
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functions and therefore to observe the cancellation at the level of the correlation functions,

the counterterms will be calculated in an off-shell Green’s basis [95]. The details of this

computation will be given in appendix D.2.

D Evaluating loop and collective coordinates integrals

D.1 Four-quark operator

With the insertion of the four-quark operator Oquqd, we have shown in eq. (3.22) that the

two-point correlation function χ
(1)
quqd(0) is proportional to the determinant-like flavor invariant.

However, to complete the calculation of the topological susceptibility we still need to evaluate

the integral I and perform the final integral over the collective coordinate x0 in eq. (3.22).

The integral I has been previously calculated in the literature [19, 23, 28] and reads,

I = ǫIJǫ
IJ
∫
d4x1

∫
d4x2

(
ψ̄(0)PRψ

(0))(x1)∆H(x1 − x2)
(
ψ̄(0)PRψ

(0))(x2) ,

=

∫
d4x1

∫
d4x2

∫
d4k

ρ4

2π8

e−ikx1

(
x2

1 + ρ2
)3

1

k2 +m2
H

eikx2

(
x2

2 + ρ2
)3 =

ρ2

8π4

∫
d4k

[
kρK1(kρ)

]2

(kρ)2 + (mHρ)2
,

(D.1)

where we have substituted the zero mode profile in eq. (C.10) and the (Euclidean) scalar

propagator into the first line of eq. (D.1). The integrals over the Euclidean coordinates

x1, x2 are performed using the identity
∫
d4x

e−ikx

(x2 + ρ2)3
=
π2

2

k

ρ
K1(kρ) , (D.2)

where K1(kρ) is the modified Bessel function of the second kind. In the small instanton limit,

i.e., mHρ ≪ 1, the integral in eq. (D.1) can be evaluated to give

I(UV) ≃
1

6π2ρ2
. (D.3)

Secondly, we can evaluate the integrals over the collective coordinate (x0 in eq. (3.22))

resulting from the insertion of the four-quark operator:
∫
d4x0

(
ψ̄(0)PR(L)ψ

(0) ψ̄(0)PR(L)ψ
(0))(0)

∣∣∣∣
1−(a)−inst.

=

∫
d4x0

4ρ4

π4

1

(x2
0 + ρ2)6

=
1

5π2ρ4
. (D.4)

Finally, substituting the results derived in eqs. (D.1) and (D.4) into eq. (3.22), we obtain

χ
(1)
quqd(0) =

i

Λ2
✟✟CP

(
A0000

0000

(
C

(1)
quqd

)
+ B0000

0000

(
C

(1)
quqd

)) ∫ dρ

ρ5
dN (ρ)ρ6

[
ρ2

8π4

∫
d4k

(kρ)2K2
1 (kρ)

(kρ)2 + (mHρ)2

]2
2

5π2ρ4
.

(D.5)

In the small instanton limit, mHρ ≪ 1, the topological susceptibility induced by the

operator O
(1)
quqd is then given by

χ
(1) (UV)
quqd (0) =

i

Λ2
✟✟CP

(
A0000

0000

(
C

(1)
quqd

)
+ B0000

0000

(
C

(1)
quqd

)) ∫ dρ

ρ5
dN (ρ)

2!

(6π2)2

2

5π2ρ2
. (D.6)
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The integration over the instanton size, ρ, can be performed once the details of the UV

dynamics at the small instanton scale are known. Some examples of UV models will be

explored in section 4.

The results obtained in this appendix also allow us to estimate the higher-order contri-

bution of having an insertion of the CP-odd phase from O
(1)
quqd and a CP-even parameter

from the same operator. This extra insertion of the SMEFT operator would result in one

less Higgs needed to close the fermion legs in figure 1. With this substitution, the final

result has one less power of the integral I, eq. (D.3), which would then be substituted by

one more power of the result of eq. (D.4). As such, the higher-dimensional contribution will

be suppressed by an additional factor of
(

ΛSI
Λ
✟✟CP

)2
.

D.2 Semi-leptonic operator

Evaluating the integral associated with the insertion of the semi-leptonic operator O
(1)
lequ

is analogous to previous computations, where we begin with eq. (3.28) and then add the

anti-instanton contribution. The topological susceptibility, χ
(1)
lequ(0) reads

χ
(1)
lequ(0) =

i

Λ2
✟✟CP

I0
0000

(
C

(1)
lequ

) ∫ dρ

ρ5
dN (ρ)

(
3! ρ6I2) Ilequ , (D.7)

where the contribution of O
(1)
lequ is included inside the integral Ilequ, defined as

Ilequ = ǫOP ǫ
OP
∫
d4x0

∫
d4x5

∫
d4x6

×
(
ψ̄(0)PRψ

(0))(x5)∆H(x5 − x6) tr
(
PR ∆F (x6 − 0)PL ∆F (0− x6)

)(
ψ̄(0)PRψ

(0))(0) .

(D.8)

Evaluating the divergent part of Ilequ. Next, we substitute the (Euclidean) scalar and

fermion propagators into eq. (D.8) to give

Ilequ = 2

∫
d4x0

(
ψ̄(0)PRψ

(0))(0)

×

∫
d4x5

∫
d4k

(2π)4

∫
ddq

(2π)d
tr

[
PR

/q

q2
PL

/q + /k

(q + k)2

]
e−ikx5

k2 +m2
H

(
ψ̄(0)PRψ

(0))(x5) . (D.9)

Here, to obtain eq. (D.9), the integral representation of the four-dimensional Dirac delta

distribution has been used to eliminate the
∫
d4x6 integration and simplify the four-momentum

variables. To regulate the divergences appearing in the integral in eq. (D.9), we employ

dimensional regularization [96] in the MS scheme as well as the semi-naive procedure [97]

to deal with γ5 matrices in d = 4− 2ǫ dimensions. Finally, we obtain the following for the

divergent part of the integral Ilequ,

I div.
lequ =

1

16π2ǫ

[
2

∫
d4x0d

4x5
(
ψ̄(0)PRψ

(0))(0)

∫
d4k

(2π)4

k2 e−ikx5

k2 +m2
H

(
ψ̄(0)PRψ

(0))(x5)

]
.

(D.10)

The crucial point is that eq. (D.10) contains a UV divergence manifested as a 1
ǫ -pole, which

can be canceled by identifying the appropriate counterterms.
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Divergence cancellation and relation with SMEFT RGEs. Using the results in

ref. [93] we can extract the appropriate counterterm needed to cancel the divergence in

χ
(1)
lequ(0). The SMEFT RGEs reveal that the only counterterm that can cancel the divergence

in χ
(1)
lequ(0) is the one responsible for the running of the on-shell operator O

(1)
quqd (all other

counterterms either yield the wrong flavor structure or require additional insertions of gauge

couplings). However, since we are requiring the divergence cancellation at the level of

correlation functions, which are not invariant under field redefinitions [98, 99], we need to

consider the counterterms in an enlarged Green’s basis instead. For this particular case,

we can verify that the contribution of O
(1)
lequ to the RGE of O

(1)
quqd is fully determined by a

Green’s basis operator. Considering the Green’s basis of ref. [95], we find [93]

C
(1), c.t.
quqd,mnop ⊃ −Yd,opG

c.t.
uHD1,mn , G c.t.

uHD1,mn =
1

16π2 ǫ
C

(1)
lequ,stmn Y

†
e,ts , (D.11)

where G c.t.
uHD1,mn is the Wilson coefficient of the redundant operator OuHD1 = Q̄uD2H̃ that

is reduced to O
(1)
quqd via field redefinitions — or equivalently at this order, replacing D2H̃

by the Higgs equation of motion. To cancel the 1
ǫ -pole in χ

(1), div.
lequ (0), we need to compute

the correlation function

χc.t.
uHD1(0)

∣∣
1−inst.

= −i lim
k→0

∫
d4xeikx

〈
0

∣∣∣∣∣T
{

1

32π2
GG̃(x),

G c.t.
uHD1

Λ2
✟✟CP

OuHD1(0)

}∣∣∣∣∣ 0
〉

1−inst.

,

(D.12)

using similar steps to those used previously in section D.1. Eventually, we obtain

χc.t.
uHD1(0) = −

i

Λ2
✟✟CP

Im
(
IuHD1

) ∫ dρ

ρ5
dN (ρ)

(
3! ρ6I2) IuHD1 , (D.13)

where the invariant IuHD1, supplemented by the counterterm in eq. (D.11), yields

Im
(
IuHD1

)
= Im

[
e−iθQCDǫi1i2mǫj1j2nYu,i1j1Yu,i2j2G

c.t.
uHD1,mn detYd

]
=

1

16π2 ǫ
I0

0000

(
C

(1)
lequ

)
.

(D.14)

The explicit form of the integral IuHD1 reads

IuHD1 = 2

∫
d4x0

(
ψ̄(0)PRψ

(0))(0)

∫
d4x5

∫
d4k

(2π)4

k2 e−ikx5

k2 +m2
H

(
ψ̄(0)PRψ

(0))(x5) , (D.15)

where we have used the fact that the Green’s basis operator contains derivatives (in Euclidean

space) acting on the Higgs, hence the path integral over the Higgs fields yields

∫
DHDH†e−S0[H,H†]HI(x1)∂2H†

J(x2) = ∂2
x2

∆H(x1 − x2)δIJ = −

∫
d4k

(2π)4

k2e−ik(x1−x2)

k2 +m2
H

δIJ .

(D.16)

At this point, we have found that the integral IuHD1 in eq. (D.15) obtained from including

the counterterm is the same as the integral I div.
lequ in eq. (D.10) up to the overall factor

1/(16π2ǫ). Thus, substituting eqs. (D.14) and (D.15) into eq. (D.13), one can easily observe

that χc.t.
uHD1(0) precisely cancels the 1

ǫ -pole in χ
(1)
lequ(0).
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Evaluating the finite part of Ilequ. Starting from eq. (D.9), we can also extract the finite

contribution of the integration over the loop momentum q,

I
(finite)
lequ = 2

∫
d4x0

(
ψ̄(0)PRψ

(0))(0)

×

∫
d4x5

∫
d4k

(2π)4

k2 e−ikx5

k2 +m2
H

[
1

8π2
+

1

16π2
log

µ2

k2

]
(
ψ̄(0)PRψ

(0))(x5) , (D.17)

where µ is the renormalization scale. To evaluate eq. (D.17), we follow similar steps to the

previous computations by first substituting the fermion zero mode solutions in eq. (C.10),

then integrating over all locations x5 and the collective coordinates x0. The final integral

over the momentum k can be performed in the limit of mH → 0, to explicitly give

I
(finite,UV)
lequ ≃

∫
d4k

(2π)4

1

4π2

[
1 +

1

2
log

µ2

k2

]
4ρ4

π4

∫
d4x0

e−ikx0

(
x2

0 + ρ2
)3
∫
d4x5

e−ik(x5−x0)

(
(x5 − x0)2 + ρ2

)3 ,

=

∫
d4k

(2π)4

1

4π2

[
1 +

1

2
log

µ2

k2

]
[
kρK1(kρ)

]2
,

=
1

20π4ρ4

(
11

30
+ logµρ+ γE − log 2

)
. (D.18)

Finally, substituting eq. (D.3) and eq. (D.18) into eq. (D.7), the topological susceptibility

χ
(1)
lequ(0) induced by the operator O

(1)
lequ becomes

χ
(1)(finite,UV)
lequ (0) =

i

Λ2
✟✟CP

I0
0000

(
C

(1)
lequ

) ∫ dρ

ρ5
dN (ρ)

3!

(6π2)2

11 + 30 (log (ρΛ
✟✟CP) + γE − log 2)

600π4ρ2
.

(D.19)

The dependence on the renormalization scale µ in eq. (D.19) has already been removed by

performing the RG evolution induced by C
(1)
lequ, rendering the final result of θind independent

of the renormalization scale as expected. The result in eq. (D.19) will be used in section 4.1.2

to place bounds on the scale Λ
✟✟CP.

D.3 Gluon dipole operator

The calculation for the insertion of the gluon dipole operator OdG = Q̄σµνTAdHGAµν in

the correlation function works similarly to those previously presented in section 3.3. The

field strength tensor in OdG is set to its instanton background value, while the rest of the

calculation proceeds in a similar fashion to the other effective operators: we assume all

fermions only contribute zero modes at leading order and subsequently contract all Higgses.

As discussed in appendix B.1, the insertion of the gluon dipole operator yields a similar flavor

invariant structure as given in eq. (2.10). Following the previous calculations, combining

both the instanton and anti-instanton contributions, the topological susceptibility χdG(0)

can be written as a flavor invariant times a complicated integral

χdG(0) =
i

Λ2
✟✟CP

I0000(CdG)

∫
dρ

ρ5
dN (ρ) 3! ρ6I2 IdG , (D.20)
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where the OdG operator is included inside the integral IdG, and defined as

IdG = ǫIJǫ
IJ
∫
d4x0

∫
d4x3

(
ψ̄(0)PRψ

(0))(x3)∆H(x3)
(
ψ̄(0)σµνTAPRψ

(0)GAµν
∣∣
1−inst.

)
(0) .

(D.21)

The computation of χdG(0) proceeds in the same way as the integral of χ
(1)
quqd(0). Since most of

the computations have already been performed in appendix D.1, we only need to evaluate the

remaining integral IdG. Substituting the zero modes of fermions (C.10) and gauge fields (C.5)

into eq. (D.21), then contracting spinor and color indices,13 the integral IdG becomes

IdG =
192ρ6

π4

∫
d4k

(2π)4

∫
d4x0

∫
d4x3

eikx3

(x2
3 + ρ2)3

1

k2 +m2
H

e−ikx0

(x2
0 + ρ2)5

,

=
96ρ6

π2

∫
d4k

(2π)4

kρ K1(kρ)

(kρ)2 + (mHρ)2

∫
d4x0

e−ikx0

(x2
0 + ρ2)5

,

=
1

16π4

∫
d4k

(kρ)4K1(kρ)K3(kρ)

(kρ)2 + (mHρ)2
. (D.22)

Here, the only extra computation is to evaluate the integral over collective coordinate
∫
d4x0

and express the result in terms of the Bessel function, Kn. This step can be easily performed

by ρ differentiation and using the identity in eq. (D.2), to give

∫
d4x0

e−ikx0

(x2
0 + ρ2)5

=
1

12

(
∂

∂ρ2

)2 ∫
d4x0

e−ikx0

(x2
0 + ρ2)3

=
π2

24

(
∂

∂ρ2

)2 [k
ρ
K1(kρ)

]
,

=
π2

96

(
k

ρ

)3

K3(kρ) , (D.23)

where differentiation of Kn satisfies the following identity

∂

∂ρ2

[
1

ρn
Kn(kρ)

]
= −

k

2ρn+1
Kn+1(kρ) . (D.24)

Analogously to the previous section, the last integral in eq. (D.22) can be evaluated in the

small instanton limit, i.e., mHρ ≪ 1, to give

I
(UV)
dG ≃

6

5π2ρ4
. (D.25)

Substituting eqs. (D.3) and (D.25) into eq. (D.20), we obtain

χ
(UV)
dG (0) ≃

i

Λ2
✟✟CP

I0000(CdG)

∫
dρ

ρ5
dN (ρ)

3!

(6π2)2

6

5π2ρ2
. (D.26)

This result will be used in section 4.1.3 to place bounds on Λ
✟✟CP for various UV models.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

13As mentioned in appendix C.1, T AGA
µν

∣∣
1−inst.

only receives contributions from A = 1, 2, 3.
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