
Flow-Based Sampling for Entanglement Entropy and the Machine Learning of Defects

Andrea Bulgarelli ,1,* Elia Cellini ,1 Karl Jansen,2,3 Stefan Kühn ,3 Alessandro Nada ,1 Shinichi Nakajima ,4,5,6

Kim A. Nicoli ,7,8 and Marco Panero 1,9

1Department of Physics, University of Turin and INFN, Turin unit, Via Pietro Giuria 1, I-10125 Turin, Italy
2Computation-Based Science and Technology Research Center, The Cyprus Institute, Nicosia, Cyprus

3Deutsches Elektronen-Synchrotron DESY, Zeuthen, Germany
4Berlin Institute for the Foundations of Learning and Data (BIFOLD), Berlin, Germany

5Machine Learning Group, Technische Universität Berlin, Berlin, Germany
6RIKEN Center for AIP, Tokyo, Japan

7Transdisciplinary Research Area (TRA) Matter, University of Bonn, Germany
8Helmholtz Institute for Radiation and Nuclear Physics (HISKP), Bonn, Germany

9Department of Physics and Helsinki Institute of Physics, PL 64, FIN-00014 University of Helsinki, Finland

(Received 25 October 2024; revised 16 January 2025; accepted 27 March 2025; published 15 April 2025)

We introduce a novel technique to numerically calculate Rényi entanglement entropies in lattice
quantum field theory using generative models. We describe how flow-based approaches can be combined
with the replica trick using a custom neural-network architecture around a lattice defect connecting two
replicas. Numerical tests for the ϕ4 scalar field theory in two and three dimensions demonstrate that our
technique outperforms state-of-the-art Monte Carlo calculations, and exhibit a promising scaling with the
defect size.
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Introduction—Quantum entanglement is a key property
of quantum systems, and has profound implications rang-
ing from high-energy physics [1] to condensed-matter
theory [2], holding an important role in probing quantum
phases of matter and quantum phase transitions. Also, as
quantum simulations are emerging as a new tool to study
quantum phenomena [3], characterizing entanglement in
quantum many-body systems is increasingly important. For
a system with a factorizable Hilbert space and a density
matrix ρ, the bipartite entanglement between a subsystem A
and its complement B can be quantified by the entangle-
ment entropy

SA ¼ −TrðρA ln ρAÞ; ρA ¼ TrBρ; ð1Þ
namely, the von Neumann entropy of the reduced density
matrix ρA. While the leading term in the entanglement
entropy is proportional to the area of the boundary ∂A
between A and B [4], and is ultraviolet divergent in a
quantum field theory, the derivative of the entanglement
entropy with respect to the linear size l of the subsystem A
is finite, and is called the entropic c function [5,6]

C ¼ lD−1

j∂Aj
∂SA
∂l

; ð2Þ

where D is the number of spacetime dimensions and j∂Aj
the area of ∂A. As its name suggests, this quantity provides

a measure of the effective number of degrees of freedom of
a theory [7–10].
Computing the entanglement entropy directly from

Eq. (1) is not possible when ρA is not known; tensor
networks allow for directly accessing SA, but scaling these
methods beyond 1þ 1 dimensions is often challenging.
However, introducing the Rényi entropies [11]

Sn ¼
1

1 − n
ln TrρnA ð3Þ

(and the associated entropic c functions Cn), one can obtain
SA as the n → 1 limit of Sn. The advantage of Rényi
entropies is that they can be computed through the replica
trick [12], expressing the trace in Eq. (3) as the partition
function of n copies of the original system, joined together
in correspondence of the subsystem A (but not of B). The
new geometry, analogous to a Riemann surface, is char-
acterized by the presence of a defect, namely the boundary
between A and B, breaking some of the spacetime sym-
metries of the original theory [13]. Sn and Cn can then be
expressed in terms of ratios of partition functions in this
replica geometry, which can be computed either with tensor
networks [14], or with classical [15,16] or quantum
Monte Carlo algorithms [17–19]. Classical Monte Carlo
calculations, however, are often inefficient in the estimate
of ratios of partition functions, since the latter cannot be
computed directly as primary observables.
In recent years, this problem has been tackled by means

of nonequilibrium Monte Carlo calculations based on*Contact author: andrea.bulgarelli@unito.it
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Jarzynski’s equality [20], successfully applied in calcula-
tions of various physical quantities [21–23], including
Rényi entropies [24] and entropic c functions [25,26].
In parallel with these developments, during the past

decade deep generative models have emerged as a new tool
to sample Boltzmann-like distributions [27–30]. Of par-
ticular interest are autoregressive neural networks [31] and
normalizing flows (NFs) [32] which provide access to the
exact probability distributions of statistical systems and to
unbiased estimators of partition functions from the learned
variational distributions [33,34].
The main question we address in this Letter is whether

deep generative models can also be used to efficiently study
entanglement for generic quantum field theories regular-
ized on a lattice. As will be shown below, we give an
affirmative answer to this question, and we also present a
novel framework in which normalizing flows can be used to
study defects in large-scale lattice simulations.
Related work—In recent years, significant efforts were

devoted to develop efficient algorithms to estimate ratios of
partition functions. In Refs. [25,26], entanglement-related
quantities were accurately evaluated through nonequili-
briumMarkov-chain Monte Carlo (NE-MCMC), leading to
a thermodynamic and continuum extrapolation of C2 in the
confining Z2 gauge theory in 2þ 1 dimensions. At the
same time, the idea of using NFs to sample Boltzmann
distributions rapidly gained momentum: as reviewed in
Ref. [29], initial proof-of-concept studies in quantum
chemistry [27] and lattice quantum field theory [35–37]
were soon followed by works addressing computationally
more challenging physical systems, such as lattice quantum
chromodynamics in 3þ 1 dimensions [38].
Following another line of work, Nicoli et al. [33,34,39]

demonstrated that asymptotically unbiased estimators of
partition functions could be obtained from a trained
generative model. While NFs are efficient for low-dimen-
sional systems, they generally exhibit poor scalability with
the number of degrees of freedom (d.o.f.). Conversely, NE-
MCMC has good scaling properties [40] but often requires
a large number of Monte Carlo updates to be effective. To
try and combine the advantages of the two methods,
stochastic normalizing flows (SNFs) were introduced
[41,42], and recent studies [43,44] have indeed shown
their improved scalability and effectiveness.
In the context of entanglement and replica trick, Białas

et al. [45] employed autoregressive neural networks to
estimate Rényi entropies, acknowledging the poor scaling
of this approach for larger systems. In contrast, our
proposed method introduces a novel type of coupling layer
for normalizing flows that focuses solely on a region near
the defect rather than resampling the entire lattice. This
straightforward yet effective modification enables our
approach to substantially reduce the relevant number of
d.o.f. and to overcome the well-known scaling limitations
of NFs. For the first time, we demonstrate that NFs can be

used to estimate thermodynamic observables in large
lattices for (1þ 1)- and (2þ 1)-dimensional scalar field
theories.
Lattice field theory and entanglement entropy—We test

our proposed methods for a ϕ4 real scalar field on a lattice
Λ; the Euclidean action is

S ¼
X

x∈Λ
ð1 − 2λÞϕ2ðxÞ þ λϕ4ðxÞ − 2κ

XD

μ¼1

ϕðxÞϕðxþ aμ̂Þ;

ð4Þ

a being the lattice spacing, κ the hopping parameter, λ the
bare quartic coupling, and μ̂ a positively oriented unit
vector along the direction μ. The action is invariant under
globalZ2 transformations, ϕ → �ϕ, and the phase diagram
of the model is characterized by a critical line of second-
order phase transitions in the Ising universality class;
therefore, in 1þ 1 dimensions, our results can be bench-
marked against exact predictions from conformal field
theory [12].
The calculation of Rényi entropies through Monte Carlo

simulations is based on the replica trick [12]: the system is
replicated in n independent copies, joined together in the
Euclidean-time direction in the subsystem A, effectively
opening a “cut” in the replicated lattice: see Fig. 1 for a
sketch for n ¼ 2. The trace in Eq. (3) is then rewritten as
TrρnA ¼ Zn=Zn, where Z is the partition function of the
original model and Zn the partition function of the replica-
ted system. Similarly, the entropic c function becomes

Cn ¼
lD−1

j∂Aj
1

n − 1
lim
a→0

1

a
ln

ZnðlÞ
Znðlþ aÞ : ð5Þ

Nonequilibrium MCMC—Partition-function ratios like
the one in Eq. (5) can be computed using Jarzynski’s

FIG. 1. (1þ 1)-dimensional lattice with two replicas (τ is the
Euclidean-time direction). Purple links connect different replicas;
dashed lines separate A and B. When defect coupling layers act
on the configuration, the lattice is divided in three parts: the
environment (black sites), which does not enter the coupling
layer; frozen sites (empty cyan circles), that are the neural
network input; active sites (orange diamonds), which are trans-
formed by the layer.
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equality [20]: an initial equilibrium distribution q0 ¼
expð−SiÞ=Zi is driven toward a final distribution p ¼
expð−SÞ=Z by a sequence of updates, following a protocol
bðjÞ, with a varying transition probability PbðjÞ that
satisfies detailed balance

ϕ0⟶
Pbð1Þ

ϕ1⟶
Pbð2Þ

… ⟶
PbðnstepÞ

ϕnstep ; ð6Þ

driving it out of equilibrium. The ratio of partition functions
corresponding to the initial and the final distributions is
then expressed as

Z
Zi

¼ hexpð−WÞif ; ð7Þ

where h…if denotes an average over a set of such
evolutions, and W is the (dimensionless) work done on
the system:

W ¼
Xnstep−1

j¼0

Sbðjþ1ÞðϕjÞ − SbðjÞðϕjÞ ð8Þ

¼ SðϕnstepÞ − Siðϕ0Þ −Q; ð9Þ

with SbðnstepÞ ¼ S, Sbð0Þ ¼ Si, and Q being the (dimension-
less) heat. The deviation from equilibrium of a given
evolution can be quantified by the Kullback–Leibler
(KL) divergence [46] between the forward and reverse
transition probabilities:

DKLðq0PfkpPrÞ ¼ hWif þ ln
Z
Zi

; ð10Þ

with Pfðϕ0;…;ϕÞ ¼ Qnstep−1
j¼0 Pjþ1ðϕj → ϕjþ1Þ, and Pr the

same for a reversed evolution. This approach is equivalent
to annealed importance sampling [47].
Normalizing flows—Deep generative models can be used

to directly estimate partition functions. In particular, NFs
[32,48] allow one to sample highly nontrivial probability
distributions. A NF is a composition of diffeomorphisms
between probability distributions, which can be imple-
mented as coupling layers gl. Concatenating several cou-
pling layers,

gθðϕ0Þ ¼ ðgN∘…∘g1Þðϕ0Þ; ð11Þ

one maps a configuration ϕ0, sampled from a base
distribution q0, into a configuration ϕ ¼ gθðϕ0Þ from the
learned distribution qθ. Compared to other generative
models, NFs give access to the exact likelihood of the
variational density

qθðϕÞ ¼ q0ðg−1θ ðϕÞÞJ−1gθ ; ð12Þ

where Jgθ is the Jacobian determinant of the transformation
gθ. By training the parameters of each layer (collectively
denoted by θ) one can approximate the target distribution p
with the variational Ansatz qθ. While NFs allow us to
compute the partition function of a target system [34], here
we evaluate ratios of partition functions, transforming
samples from the distribution q0 ¼ expð−SiÞ=Zi to the
target distribution p ¼ expð−SÞ=Z. The variational density
qθ is constructed by minimizing the KL divergence

DKLðqθkpÞ ¼ h− ln w̃iqθ þ ln
Z
Zi

; ð13Þ

with respect to θ, and with the weight

w̃ ¼ exp ð−ðSðϕÞ − Siðg−1θ ðϕÞÞ − ln JgθÞÞ: ð14Þ

Using q0 as the prior distribution one can show that

Z
Zi

¼ hw̃iqθ ; ð15Þ

where the average hw̃iqθ is computed on configurations
from the qθ distribution.
Stochastic normalizing flows—The similarity of Eqs. (7)

and (15) makes it natural to combine the two approaches in
a more general architecture, called stochastic normalizing
flows (SNFs) [41,42]. In practice, NE-MCMC updates are
interleaved with coupling layers,

ϕ0⟶
g1 g1ðϕ0Þ⟶

Pbð1Þ
ϕ1⟶

g2
… ⟶

PbðnstepÞ
ϕnstep : ð16Þ

Equation (7) is still valid if a generalized work is used,

WSNF ¼ SðϕnstepÞ − Siðϕ0Þ −Q − ln Jgθ ; ð17Þ

and if the parameters of the coupling layers gl are trained
minimizing the KL divergence of Eq. (10) using WSNF.
Crucially, compared to NFs, SNFs benefit from a more

favorable scaling with the d.o.f., inherited from the under-
lying NE-MCMC, as demonstrated in [44], while it was
shown that standard NFs suffer from poor scaling [49–51].
Furthermore, SNFs are generally cheaper than NE-MCMC,
since coupling layers are more computationally efficient
than Monte Carlo updates.
Proposed method—The partition functions in Eq. (5) are

associated with systems that differ only for a localized set
of links on the lattice. This led us to introduce the defect
coupling layer as a new architecture to study the entropic c
function, where the flow acts on a codimension-2 defect,
e.g., ðL=aÞD−2. For a pictorial representation see Fig. 1.
In the lth coupling layer, while most of the system
(the “environment”) is not affected by the transformation,
a subset of the lattice is updated by means of a RealNVP
affine transformation [52],
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ϕlþ1
active ¼ expð−jsðϕl

frozenÞjÞϕl
active þ tðϕl

frozenÞ; ð18Þ

where s and t are the outputs of an odd neural network,
enforcing the Z2 equivariance [34,49]. A related architec-
ture has been discussed in Ref. [53], with a different active-
frozen partitioning; here, we exploit an even-odd replica
decomposition, transforming one replica at a time while
keeping the others frozen. The neural networks we used are
fully connected (FCNN) and convolutional (CNN).
Numerical tests—In what follows, we consider NE-

MCMC as the state-of-the-art baseline to benchmark our
method. Although SNFs feature better scaling for larger
volumes, plain NFs are known to be more computationally
efficient for smaller systems; therefore, it is worth inves-
tigating both approaches. We compare the various methods
by studying their effective sample size (ESS),

ESS ¼ he−wi2
he−2wi ; ð19Þ

with w ¼ W for NE-MCMC, w ¼ WSNF for SNF, and
w ¼ − ln w̃ for NF. Note that 0 ≤ ESS ≤ 1, and that the
larger the ESS, the smaller the variance of the estimator of
Z=Zi [34,40].
Figure 2, top row, displays a comparison of architectures

that were trained to compute the ratio (5) with l=a ¼ 1, for
the scalar theory in 1þ 1 dimensions on a lattice of sizes
T=a × L=a ¼ 128 × 16 and for a critical value of the

couplings, ðκc; λcÞ ¼ ð0.2758297; 0.03Þ [54]. The trained
models have been then transferred to other values of the
parameters without further retraining.
For all volumes we simulated and for a large set of

couplings close to the critical point, both SNFs and NFs
significantly outperform the NE-MCMC, with the NFs
being the ones with the largest ESS. As the models are
transferred to larger volumes, the ESS remains constant,
which is not surprising since the patch where the trans-
formation of Eq. (18) acts is independent of the volume of
the lattice and effectively encodes all relevant information.
This allows one to study C2 with high precision for large
volumes without further retraining (see Fig. 2, top right
panel). When κ is varied, the NFs are still the models with
the best performances for a significant range of couplings
around the critical point.
The results in 2þ 1 dimensions share some similarities

with those in 1þ 1 dimensions. We trained the model for
l=a ¼ 1, ðL=aÞ2 ¼ 82, T=a ¼ 32 and at the critical point
ðκc; λcÞ ¼ ð0.18670475; 0.1Þ [55], and again we transferred
without retraining. The behavior at different values of κ is
qualitatively similar to the previous case, with the flow-
based algorithm outperforming the NE-MCMC for a large
range of couplings; moreover, as the lattice volume is
increased, NFs always display the largest ESS; see Fig. 2,
bottom row. In contrast to the (1þ 1)-dimensional case,
however, the ESS decreases with the size of the lattice: this
behavior is not unexpected as in 2þ 1 dimensions the
number of d.o.f. on which the model acts grows as L=a.

FIG. 2. Top row: results in 1þ 1 dimensions. Bottom row: results in 2þ 1 dimensions. Left panels: quality of the sampling as the
model, trained at the smaller value of the volume, is transferred to larger volumes. Central panel: transfer in the hopping parameter κ of
the model trained at ðκc; λcÞ. Right panel: estimate of the critical behavior of C2; in 1þ 1 dimensions it is compared with the analytical
solution [12]. In all the plots, the quantities in the titles are fixed.
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Nonetheless, the ESS of the flow-based samplers is still
large enough to perform a high-precision study of C2 for
large lattices (T=a × L2=a2 ¼ 192 × 322 in the bottom
right panel of Fig. 2).
Finally, we studied the total cost for training, thermal-

ization, and sampling, for each method. In Fig. 3 we plot
the cumulative cost to perform the simulations up to a given
lattice volume, to compute the entropic c function at the
critical point in 2þ 1 dimensions, similar to the study in
Fig. 2, bottom right panel.
This Letter presents, for the first time in the lattice

literature, evidence that flow-based methods outperform
MCMC-based simulations across a physically relevant
range of volumes, establishing a new state of the art. As
it is known that SNFs exhibit a more favorable scaling with
the degrees of freedom, we expect them to hold promise of
being more effective than NFs for larger volumes. We refer
the reader to Supplemental Material [56] for additional
results on the scaling for both NFs and SNFs.
Conclusions—In this Letter, we introduced a novel

method to compute physical observables relevant for
studying entanglement in quantum systems. Our approach
represents a new state-of-the-art method for the numerical
evaluation of Rényi entropies in the Lagrangian approach.
Specifically, we proposed a new type of coupling layer for
normalizing flows, which acts on a reduced number of
degrees of freedom, and is particularly efficient to study
lattice defects.
This Letter is the first example of flow-based sampling

outperforming state-of-the-art baselines for large lattices.
The scaling of our method in 2þ 1 dimensions is espe-
cially promising when employing SNFs. The implementa-
tion of direct transfer learning enables efficient sampling
across different system volumes, coupling constant values
and defect lengths without the need for retraining. This key

advantage allows for a single, inexpensive training on small
lattices, facilitating sampling from different configurations
of the theory.
Our approach has a broad range of potential applications,

including the study of interfaces in spin models and
the sampling of different topological sectors in lattice
gauge theories. We leave the study of these subjects for
future work.
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