
ADAPTIVE TOTAL VARIATIONAL REGULARIZATION OF

GAUSSIAN DENOISERS FOR MULTIPLICATIVE NOISE

REMOVAL

Kehan Shi

Department of Mathematics, China Jiliang University

Hangzhou 310018, China

Computational Imaging Group and Helmholtz Imaging
Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany

Abstract. In this paper, a convex variational model based on the adaptive
total variation (TV) regularization is proposed for image restoration under

multiplicative noise. The adaptive weight allows for greater smoothing in the
bright region for the suppression of speckles. The model includes a nonconvex

data fidelity term and also a quadratic penalty term that enforces the restored

image to be close to a reference image deduced from a Gaussian denoiser. It
can be viewed as the adaptive TV regularization of the Regularization by De-

noising (RED) approach for multiplicative noise removal. We prove that the

model admits a unique minimizer in a suitable function space and provide a
fast numerical algorithm based on the alternating direction method with multi-

pliers (ADMM) for it. Different Gaussian denoisers, including the patch-based

algorithm BM3D and the learning-based algorithm DnCNN, are considered for
the model in numerical experiments. It is shown that our model efficiently

removes multiplicative noise without introducing artifacts.

1. Introduction. Image restoration is a basic and widely studied topic in image
processing. This paper considers the problem of image restoration under multiplica-
tive noise, which occurs in images obtained from coherent imaging systems, e.g.,
synthetic aperture radar (SAR) [18], ultrasound imaging [29], and laser imaging
[21]. The image degradation model is given by

f = u0n,

where u0 denotes the original noise-free image and f denotes the observed image
contaminated by the noise n. In this paper, we assume that f is a L-look image
obtained from SAR by the multi-look averaging technique. Then n follows a Gamma
distribution with mean 1, variance 1/L, and the probability density function

P (x) =
LL

Γ(L)
xL−1 exp (−Lx), x ≥ 0, L ≥ 1,

where Γ(·) is the usual Gamma function. Figure 1 shows the test image Cameraman
with Gamma multiplicative noise. We observe the signal-dependent nature of the
noise. More precisely, the higher the gray level of u0 is, the more remarkable the
influence of the noise is.
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Figure 1. The test image Cameraman and the noisy image cor-
rupted by multiplicative noise with L = 10. The blue line and
red line present the gray value of the original image and the noisy
image on the 200th row respectively.

Many methods have been proposed for the problem of image restoration under
multiplicative noise. Generally, they can be categorized as the variational method,
the patch-based method, the learning-based method, etc. In the recent paper [13],
the authors presented a detailed overview on this topic. Given this, we recall a
few variational image denoising models that are closely related to our work in the
following and refer the readers to [13] for other approaches.

A variational model for image restoration usually consists of a regularization
term and a data fidelity term. In [1], the authors proposed to combine the famous
total variation (TV) regularization [20] with a data fidelity term that is deduced
by using the maximum a posteriori (MAP) estimator for the multiplicative Gamma
noise. This leads to the AA model

min
u

∫
Ω

|∇u|dx+ η

∫
Ω

(
log u+

f

u

)
dx, (1)

where η is a positive constant.
The data fidelity term of functional (1) is noncovex. The authors of [12] sug-

gested to add a quadratic penalty term that includes the statistical information of
multiplicative noise and proposed the model

min
u

∫
Ω

|∇u|dx+ η

∫
Ω

(
log u+

f

u

)
dx+ µ

∫
Ω

(√
u

f
− 1

)2

dx. (2)

It becomes convex for a large penalty parameter µ > 0. On the other hand, AA
model can also be improved in terms of the regularization term. The authors of [33]
proposed to utilize the adaptive Euler’s elastica regularization and a convex data
fidelity term [25] for multiplicative noise removal, which reads

min
u

∫
Ω

(
α+ b

(
div

(
∇u
|∇u|

))2
)
|∇u|dx+ η

∫
Ω

(u− f log u) dx. (3)

Here b is a positive constant and α is an adaptive function (also known as the gray
level indicator [11, 17, 14, 23]) given by

α(x) =
|fσ(x)|p

|maxx∈Ω fσ(x)|p
, p > 0, (4)
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where fσ = Gσ ∗ f and Gσ = 1
2πσ2 e

− |x|
2

2σ2 is the Gaussian kernel. If α is a positive
constant, then the first term in (3) is just the usual Euler’s elastica regularization
[24]. If b ≡ 0, we have the adaptive TV regularization [26]. It has been shown that
model (3) is able to restore small geometrical structures in images.

The variational method has attracted a lot of attention in image processing.
There are two main reasons for this. Firstly, variational models generally have
good theoretical properties and fast numerical solvers. For example, the TV reg-
ularization has been studied in the space of functions of bounded variation, which
requires no differentiability or even continuity of the function [2]. Optimization al-
gorithms, including the split-Bregman algorithm [15], the primal-dual algorithm [5],
the alternating direction method with multipliers (ADMM) [3], et al., have been
developed for solving non-smooth (and nonconvex) variational models efficiently.
Secondly, variational models have strong flexibility and interpretability to handle
various image processing problems. Different data fidelity terms have been consid-
ered for different tasks, for example, image deblurring [32], image inpainting [6], and
Cauchy noise removal [22]. Let us go back to model (1) and model (3). A direct

calculation implies that the gradient flows of them contain reaction terms f−u
u2 and

f−u
u respectively. The denominators u2 and u fit the signal-dependent nature of

multiplicative noise.
Recently, the shortcoming of the variational method has become apparent. With

the emergence of many new methods, the image processing performance of the vari-
ational method is less attractive. Although the variational method has advantages
in handling cartoon images and piecewise homogeneous images, it is surpassed by
the patch-based method [9] and the learning-based method [31] for dealing natural
images.

In this paper, we propose a simple but effective approach to improve the perfor-
mance of the traditional variational model for image restoration under multiplicative
noise. This is achieved by introducing an additional quadratic penalty term, result-
ing in a convex variational model. The penalty term ensures that the minimizer of
the variational model is close to a reference image deduced by applying a sophisti-
cated Gaussian denoiser to the noisy image. Since the model is convex, it has fine
mathematical properties and can be solved efficiently by algorithms like ADMM.
Generally, a Gaussian denoiser with fixed parameters cannot effectively handle the
bright region (i.e., the region that is heavily contaminated) and the dark region
(i.e., the region that is lightly contaminated) of the noisy image simultaneously. We
propose to update the reference image through an iterative process to achieve the
desired image restoration results.

The new quadratic penalty term has a close connection with the Regularization
by Denoising (RED) method [19], which uses an image denoiser to construct the
regularization term and solves inverse problems in image processing, e.g., image
deblurring and image super-resolution, effectively. From this perspective, we could
regard the proposed model as the adaptive TV regularization of RED for multiplica-
tive noise removal. Different from the traditional variational method, the proposed
energy functional is well-posed even without the regularization term. The adaptive
TV term suppresses speckles in images by allowing greater smoothing in the bright
region and avoids artifacts introduced by the Gaussian denoiser.

This paper is organized as follows. In section 2, we state the proposed variational
model for multiplicative noise removal and discuss its properties. In section 3, we
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discuss the numerical implementation of the model. Experimental simulations are
presented in section 4. We conclude the paper in section 5.

2. Adaptive TV regularization of Gaussian denoisers for multiplicative
denoising. In this section, we propose a new convex variational model for the
removal of multiplicative noise and study the existence and uniqueness of solutions
to the model. We also discuss the relationship of the proposed model to several
existing models.

2.1. The proposed model. Let D be an image denoiser for Gaussian noise. Since
the variational method is considered in the continuous setting, we assume that
Ω ⊂ R2 is the image domain, D is an operator on the Lebesgue space L∞(Ω), and
f ∈ L∞(Ω). By applying the denoiser D to the given noise image f , we obtain a
reference image

g := D(f).

Then the proposed variational model for image restoration under multiplicative
noise is as follows

min
u
E(u) :=

∫
Ω

α(x)|∇u|dx+
µ

2

∫
Ω

|u− g|2dx+ η

∫
Ω

(
log u+

f

u

)
dx, (5)

where µ, η are two positive constants and α(x) is an adaptive function given by (4).
The first term in E(u) is an adaptive TV regularization. As we have mentioned,

the signal-dependent nature of multiplicative noise reveals the fact that the higher
the gray level of the image, the greater the influence of the noise. By introducing
α(x), we adaptively control the strength of regularization. The second L2 penalty
term enforces the restored image to be close to the reference image g. It also makes
the energy functional strictly convex if µ satisfies a certain condition. The third
fidelity term comes from the MAP estimator for the multiplicative noise.

The minimizer of energy functional E depends on the reference image g and thus
on the denoiser D. Consequently, we could take full advantage of recent impressive
achievements in Gaussian noise removal to handle the problem of multiplicative
noise removal without modifying the denoiser D. Similar idea that deploying off-
the-shelf image denoisers to solve other inverse problems in image processing has
been proposed in [28, 19]. Since D is designed for Gaussian denoising, it is expected
that the solution of (5) does not give a convincing result for our problem. An
iterative procedure is required. We leave it to section 3.

2.2. Roles of α(x) and µ. The proposed model (5) covers three image restoration
models as its special cases. Let α(x) be a constant function and µ = 0. Model
(5) is nothing but the AA model (1). If α(x) is given by (4) and µ = 0, model
(5) becomes the adaptive AA model. A similar model is considered in [33] for the
removal of multiplicative noise. The third case that α(x) ≡ 0 and µ 6= 0 is nontrivial.
To illustrate it, let us review the image restoration method of Regularization by
Denoising (RED) [19].

In RED, the regularization term in a variational model is replaced by

R(u) :=
1

2

∫
Ω

u(u−D(u))dx,
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where D, like above, is a Gaussian denoiser. Combing R(u) with the data fidelity
term of the AA model leads to

min
u

1

2

∫
Ω

u(u−D(u))dx+ η

∫
Ω

(
log u+

f

u

)
dx. (6)

Although the establishment of model (6) for multiplicative noise removal follows
directly from the basic idea of [19], the model is new in the literature as far as we
know.

Generally, it is difficult to analyze properties for R(u) since the unknown struc-
ture of the denoiser D. But under certain assumptions on D, the authors showed
that R(u) is convex [19]. More importantly, the Euler-Lagrange equation of (6) is
given by

0 = u−D(u) + η
f − u
u2

.

By using the fixed point strategy, the above equation can be solved iteratively
through

0 = u(k+1) −D(u(k)) + η
f − u(k+1)

(u(k+1))2
, k = 0, 1, 2 · · · (7)

for the given initial guess u(0) = f . We observe that equation (7) with k = 0 turns
out to be the Euler-Lagrange equation of (5) with α(x) ≡ 0 and µ = 1.

The above result reveals that the derivative of the quadratic penalty term in (5)
is equivalent to one step of the fixed point scheme for RED regularization term
R(u). Consequently, the proposed model (5) can be viewed as the combination of
the adaptive TV model and RED. The successful experience of RED gives us the
reason to believe that the proposed model (5) can effectively handle multiplicative
noise if we take an iterative procedure similar to (7) for it.

2.3. Properties. Throughout this section, we assume that Ω ⊂ Rn, n ≥ 2, is a
bounded domain with Lipschitz boundary. The given data f(x), g(x) ∈ L∞(Ω) with
infΩ f(x) > 0 and infΩ g(x) > 0. Then the adaptive function α(x) ∈ C∞(Ω,R+). In
the following, we show that (5) is strictly convex. Consequently, it admits a unique
solution in a proper function space.

Lemma 2.1. If η
µ ≤ 27 infΩ |f |2, the energy functional E(u) defined in (5) is

strictly convex.

Proof. We only need to prove that

µ

2

∫
Ω

|u− g|2dx+ η

∫
Ω

(
log u+

f

u

)
dx

is strictly convex since the adaptive TV regularization
∫

Ω
α(x)|∇u|dx is convex.

Let x ∈ Ω be fixed. We define a function h(t) as

h(t) =
µ

2
(t− g(x))2 + η

(
log t+

f(x)

t

)
, t ∈ R+.

By direct computation,

h′′(t) = µ+ η
2f(x)− t

t3
.

We observe that t3h′′(t) admits its unique minimum at t = ( η
3µ )1/2. Consequently,

if (
η

3µ

)3/2

h′′

((
η

3µ

)1/2
)

= µ

(
η

3µ

)3/2

+ η

(
2f(x)−

(
η

3µ

)1/2
)
≥ 0,
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i.e., η
µ ≤ 27|f(x)|2, h′′(t) ≥ 0 and h is strictly convex.

The functional (5) is minimized in the space of functions of bounded variation
(BV). A brief review of the solution space is in order. More details can be founded
in [7, 4].

Let u ∈ L1(Ω). The α-total variation (α-TV) of u is as follows∫
Ω

α|∇u| = sup

{∫
Ω

udivϕdx : ϕ ∈ C1
0 (Ω;RN ), |ϕi(x)| ≤ α(x) for x ∈ Ω

}
,

where ϕ = (ϕ1, ϕ2, · · · , ϕn) is a vector-valued function. We define BVα(Ω) as the
subspace of u ∈ L1(Ω) such that the α-TV of u is finite. The space BVα(Ω) equipped
with the norm ‖u‖α = ‖u‖L1(Ω) +

∫
Ω
α|∇u| is a Banach space. Moreover, the α-TV

is lower semicontinuous.

Lemma 2.2. Let un ∈ BVα(Ω) and un → u in L1(Ω) as n→ +∞. Then∫
Ω

α|∇u| ≤ lim inf
n→∞

∫
Ω

α|∇un|.

At last, we mention that the classical space BV (Ω) is defined by taking α ≡ 1 in
the definition of BVα(Ω). Given the above preliminaries, we now prove that model
(5) admits a unique minimizer in S(Ω) := {u|u ∈ BV (Ω), u > 0}.

Theorem 2.3. Problem (5) has at least one solution u ∈ S(Ω) satisfying

min
(

inf
Ω
f, inf

Ω
g
)
≤ u ≤ max

(
sup

Ω
f, sup

Ω
g

)
. (8)

Moreover, if η
µ ≤ 27 infΩ |f |2, the solution is unique.

Proof. Let c1(x) := min(f(x), g(x)), c2(x) := max(f(x), g(x)), d1 := infΩ c1, and
d2 := supΩ c2. Since E(u) is lower bounded, there exists a minimizing sequence
{ui}∞i=1 ⊂ S(Ω) for problem (5).

Let x ∈ Ω be fixed and

h(t) =
µ

2
(t− g(x))2 + η

(
log t+

f(x)

t

)
, t ∈ R+.

Then h(t) is decreasing if t ∈ (0, c1(x)) and increasing if t ∈ (c2(x),+∞). Conse-
quently,

h(min(t, c2(x))) ≤ h(t),

which leads to
F (inf(u, d2)) ≤ F (u), (9)

where

F (u) :=
µ

2

∫
Ω

|u− g|2dx+ η

∫
Ω

log u+
f

u
dx.

Recalling the definition of α-TV and the fact that u > 0, we have∫
Ω

α|∇ inf(u, d2)| ≤
∫

Ω

α|∇u|. (10)

We deduce from (9)–(10) that

E(inf(u, d2)) ≤ E(u).

In the same way we obtain

E(sup(u, d1)) ≤ E(u).
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Consequently, we can always assume that d1 ≤ ui ≤ d2, 1 ≤ i <∞.
Since {ui}∞i=1 is a minimizing sequence, we know that both F (ui) and

∫
Ω
α|∇u|

are bounded. By
∫

Ω
|∇u| ≤ 1

minα

∫
Ω
α|∇u|, we further have {ui}∞i=1 ⊂ BV (Ω).

Recalling the compactness of BV (Ω), there exist a subsequence of {ui}∞i=1 (still
denoted by itself) and a function u ∈ BV (Ω), such that

ui → u, in L1(Ω),

and (8) holds. By the lower semicontinuity of the α-TV and Fatou’s lemma, we
obtain that u is a solution of problem (5).

The uniqueness of the solution follows directly from the strict convexity of E(u).

3. Numerical implementation. In this section, we present a numerical algo-
rithm based on the alternating direction method with multipliers (ADMM) [3] for
minimizing the functional E(u) defined in (5). We also discuss details of the pro-
posed model for multiplicative noise removal.

3.1. ADMM algorithm. To simplify the notation, we use the same notation for
both the continuous contest and the discrete contest. Let f ∈ RMN be the given
noisy image. The discrete α-total variation of u is defined as

|∇u|α =

MN∑
i,j=1

αi,j

√
(∂+
x u)2

i,j + (∂+
y u)2

i,j ,

where ∇u := (∂+
x u, ∂

+
y u)T is the forward finite difference approximation of the

gradient operator with periodic boundary condition,

(∂+
x u)i,j =

{
ui+1,j − ui,j , if 1 ≤ i < M,

u1,j − uM,j , if i = M,
(∂+
y u)i,j =

{
ui,j+1 − ui,j , if 1 ≤ j < N,

ui,1 − ui,N , if j = N.

Similarly, we define the backward finite difference operators

(∂−x u)i,j =

{
ui,j − ui−1,j , if 1 < i ≤M,

u1,j − uM,j , if i = 1,
(∂−y u)i,j =

{
ui,j − ui,j−1, if 1 < j ≤ N,
ui,1 − ui,N , if j = 1,

and the discrete divergence operator

(divp)i,j = (∂−x p1)i,j + (∂−y p2)i,j ,

for any p = (p1, p2).
The discrete version of the proposed model (5) is given as

min
u∈RMN

|∇u|α +
µ

2
‖u− g‖22 + η(log u+

f

u
, 1), (11)

where ‖ · ‖2 and (·, ·) are the norm and the inner product of l2. We solve it nu-
merically by the augmented Lagrangian method. For this, we introduce auxiliary
variables p and v and rewrite (11) as the equivalent form

min
u
|p|α +

µ

2
‖u− g‖22 + η(log v +

f

v
, 1),

s.t. p = ∇u, v = u,
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which is a constrained optimization problem. The corresponding augmented La-
grangian functional is defined as

L(u, p, v;λ1, λ2) = |p|α +
µ

2
‖u− g‖22 + η(log v +

f

v
, 1) + (λ1, p−∇u)

+
r1

2
‖p−∇u‖22 + (λ2, v − u) +

r2

2
‖v − u‖22,

(12)

where λ1 and λ2 are the Lagrange multipliers, r1 and r2 are positive constants.
Then the alternating iterative algorithm for minimizing (12) is described in the
following Algorithm 1.

Algorithm 1 Solving (11) by ADMM.

Require: Images f and g, weight α, constants µ, η, r1, r2, and ε.
Initialization: k = 0, v0 and λ0

2 are null vectors, p0 and λ0
1 are null matrices.

while |E(uk)−E(uk−1)|
|E(uk)| < ε is not satisfied do

Update subproblems:

uk+1 = arg min
u
L(u, pk, vk;λk1 , λ

k
2); (13)

pk+1 = arg min
p
L(uk+1, p, vk;λk1 , λ

k
2); (14)

vk+1 = arg min
v
L(uk+1, pk+1, v;λk1 , λ

k
2). (15)

Update Lagrange multipliers:

λk+1
1 = λk1 + r1(pk+1 −∇uk+1);

λk+1
2 = λk2 + r2(vk+1 − uk+1).

Update k = k + 1.
Calculate the energy E(uk) by (11).

end while
return uk.

3.2. Solutions of subproblems. Three subproblems (13)–(15) are needed to be
solved for Algorithm 1. We discuss the solutions for them in the following.

By substituting L defined in (12) into (13) and ignoring trivial terms, we arrive
at the u-subproblem

uk+1 = arg min
u

µ

2
‖u− g‖22 + (λk1 ,−∇u) +

r1

2
‖pk −∇u‖22 + (λ2,−u) +

r2

2
‖vk − u‖22.

Then uk+1 is the solution of the linear system

−r1div∇u+ µu+ r2u = −divλk1 − r1divpk + λ2 + µg + r2v
k.

Since periodic boundary condition is imposed, it can be solved efficiently by the
fast Fourier transform. More precisely,

uk+1 = F−1

(
F(−divλk1 − r1divpk + λ2 + µg + r2v

k)

−r1F(∆) + µ+ r2

)
, (16)

where F and F−1 denote the fast Fourier transform (FFT) and its inverse transform,
respectively. More details on the calculation of F(∆) can be founded in [27].
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For the p-subproblem (14), it can be recast as

pk+1 = arg min
p
|p|α + (λk1 , p) +

r1

2
‖p−∇uk+1‖22.

We rewrite it as

pk+1 = arg min
p
|p|α +

r1

2

∥∥∥∥p− (∇uk+1 − λk1
r1

)∥∥∥∥2

2

,

and use the soft shrinkage operator [15] to find the closed-form solution

pk+1 = shrinkage

(
∇uk+1 − λk1

r1
,
α

r1

)
, (17)

where
shrinkage(x, y) = sign(x) ·max(|x| − y, 0).

At last, let us consider the v-subproblem (15), which has the following form

vk+1 = arg min
v
η(log v +

f

v
, 1) + (λk2 , v) +

r2

2
‖v − uk+1‖22.

The optimality condition for it is given by

η
v − f
v2

+ λk2 + r2(v − uk+1) = 0, (18)

which has the second derivative and can be solved by the Newton method.
In the proposed model (5), the given image g represents an approximation of u

deduced from a Gaussian denoiser. Since the variable v in the ADMM scheme is
also used for the approximation of u, we are able to approximate equation (18) by

η
v − f
g2

+ λk2 + r2(v − uk+1) = 0,

which is a linear equation and has the solution

vk+1 =
r2u

k+1 − λk2 + ηf/g2

η/g2 + r2
.

3.3. Multiplicative noise removal algorithm. The proposed model (5) includes
a reference image g that is deduced from a Gaussian denoiser. Consequently, the
restoration result of model (5) relies on the Gaussian denoiser we utilize. A Gaussian
denoiser usually has at least one free parameter for controlling the strength of
denoising. Since the parameter depends on the standard deviation of the Gaussian
noise σ, we regard σ as the only parameter of D and use the notation Dσ. It should
be noticed that the restoration result of (5) depends heavily on the choice of σ.

The denoiser Dσ is not designed for multiplicative noise removal. We could see
that g = Dσ(f) can not give a satisfied image restoration result, especially when the
multiplicative noise level is high. As a consequence, the solution of model (5) is not
what we expect. To solve this problem, we follow the idea of RED which utilizes
an iterative procedure to update g. The proposed algorithm for image restoration
under multiplicative noise is summarized in the following Algorithm 2.

In the 5th step, the parameter σ1 for D is not a constant, but a function of i. As
the parameter i increases, we can expect that the high-frequency noise in the image
is removed. We naturally want the parameter σ1 to be a decreasing function of i
to reduce the denoising strength of D. Algorithm 2 contains a few free parameters
that affect the image restoration performance. We introduce a post-processing step
in the 14th step, which makes it easier to select these parameters.
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Algorithm 2 Multiplicative noise removal by model (5).

Require: Noisy image f , denoiser D, parameters µ, η, r1, r2, ε, σ1, σ2, σ, p, N .
1: Initialization: i = 0, u0 = f .
2: while i ≤ N do

3: Calculate the adaptive function α =
|uiσ|

p

|max(uiσ)|p .

4: Calculate the reference image g = Dσ1(ui).
5: Run Algorithm 1 with input f , g, α, µ, η, r1, r2, and ε.

Denote the output by ui+1.
6: i = i+ 1.
7: end while
8: Let u = Dσ2

(uN ).
9: return The restored image u.

Figure 2. Test images. First row: Standard test images Camera-
man, Parrot, Phantom, Brain; Second row: Aerial images A1, A2,
A3, A4.

4. Numerical simulation. In this section, numerical experiments are presented
to demonstrate the performance of the proposed Alg. 2 for removing multiplicative
noise. We deploy the well-known Gaussian denoiser BM3D [9] for Alg. 2 since it
provides state-of-the-art image restoration results with acceptable running time. It
is also necessary to consider the recent learning-based algorithm for Alg. 2. We
select DnCNN [31]. 1

A set of 8-bit images with different features shown in Figure 2 are selected for the
simulation. We consider the image restoration problem under multiplicative noise
with L = 1, 4, 10. The larger the parameter L, the more heavily contaminated the
image. The quality of the restored images is evaluated by both the peak signal-to-
noise ratio (PSNR) and the structural similarity index (SSIM) [30]. The codes are
running on a desktop equipped with an Intel Core i7 3.20 GHz CPU.

1We use the codes provided by the authors. BM3D: https://webpages.tuni.fi/foi/GCF-BM3D/.

DnCNN: https://github.com/cszn/DnCNN.
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Table 1. Parameter setting for Alg. 2.

L η µ σ1 σ2 N r1 r2 ε σ p
1 250 0.05 +15 +5 10

0.1 0.3 10−5 1 34 300 0.12 +4 +0 5
10 500 0.15 +3 +0 5

4.1. Parameter setting. Alg. 2 contains a few parameters that need to be ad-
justed manually. Fortunately, some of them (i.e., r1, r2, ε, σ, p) are robust to the test
image and the noise level. For simplicity of implementation, we set the remaining
parameters (i.e., η, µ, σ1, σ2, N) as functions of L. Table 1 lists the setting of these
parameters. In the following, we briefly discuss the guideline for the selection of
these parameters.

Let us first consider the model parameter in the energy functional (5). The
parameters η and µ leverage the influence of the Gaussian denoiser and the data
fidelity term respectively. The stronger the noise, the lower the reliability of g and
f . Consequently, both η and µ shall increase with the increase of the parameter L
(i.e., the decrease of the noise level). The parameters σ and p control the adaptive
function α(x) in the adaptive TV regularizer. Figure 3 shows the relation between
the denoising results (in terms of PSNR) and the four parameters for four test
images. In each subplot, we fix all parameters according to Table 1 except the
one we are interested in. It is observed that both σ and p are not sensitive to the
test image. Although the results of parameters η and µ show some differences for
different test images, we can still find appropriate values for them according to the
subplots in Figure 3.

The utilization of the augmented Lagrangian method introduces two algorithm
parameters r1 and r2 that influence the convergence of the algorithm and the com-
putational speed. A small constant ε is also introduced for the stopping criteria. All
of them are fixed throughout this section. The proposed model (5) is convex only if
the assumption η

µ ≤ 27 infΩ |f |2 is satisfied. We numerically verify the convergence

of Alg. 1 for different N in Figure 4.
Generally, the proposed Alg. 2 does not converge as N →∞. This is due to the

fact that the denoiser D update the reference image g for each N . We also observe
from Figure 4 that the object functional (5) has the lowest energy when N = 1.
The parameter N should be chosen as a decreasing function of L.

At last, let us consider the Gaussian denoiser and its parameter. The parameter
depends on the standard deviation of the noise and controls the strength of the
denoising. It should be a decreasing function of L and also a decreasing function of
N . Roughly speaking, we are able to estimate the standard deviation of the noise
for images corrupted by multiplicative noise and let it be the parameter for the
selected Gaussian denoiser. Numerical observations indicate that an appropriate
adjustment of it improves the results dramatically. Throughout this paper, we
estimate the standard deviation of the noise by [16] and adjust it manually to
achieve the best restoration results. The proposed algorithm utilizes the Gaussian
denoiser twice. Different parameters should be used.

4.2. Image restoration results. Since we utilize BM3D as the Gaussian denoiser
for Alg. 2, we evaluate and compare the performance of Alg. 2 with
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Figure 3. The PSNR values of Alg. 2 with the denoiser BM3D
for four test images. The noise level L = 4.

Figure 4. The convergence of Alg. 1 with the denoiser BM3D for
test images Cameraman (left) and A1 (right) with L = 4.

• AA model (1): A classical variational algorithm based on the TV regulariza-
tion;

• FANS [8]: A fast adaptive nonlocal SAR despeckling algorithm based on
BM3D;

• MuLoG [10]: An image despeckling algorithm that utilizes an off-the-shelf
Gaussian denoiser. We let BM3D be the denoiser.

The parameter η in AA model (1) and the parameter L in FANS are manually
tuned to achieve the highest PSNR values. To study the role of the adaptive TV
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regularization in our model, we consider RED (i.e., Alg. 2 with α(x) ≡ 0) for
multiplicative noise removal. More precisely, we update uk+1 in Alg. 2 by solving

0 = µ(u− g)) + η
f − u
g2

,

where we once again use the reference image g to approximate the denominator of
the second term.

4.2.1. Comparison with other algorithms. Let us first consider Alg. 2 with BM3D.
In Table 2 and Table 3 we list the PSNR and SSIM values of different algorithms
for images corrupted by multiplicative noise with L = 1, 4, 10. The highest values
(excluding DnCNN) are shown in boldface. From the results of AA and Alg. 2
we observe that the new quadratic penalty term improves the image restoration
performance dramatically. MuLoG and FANS have similar results for L = 4, 10.
MuLoG outperforms FANS when L = 1. The proposed Alg. 2 obtains the highest
PSNR and SSIM values (on average). Although Alg. 2 has lower PSNR values
in individual cases, they are very close to the highest values. We notice from the
results of RED that the utilization of the adaptive TV regularization for Alg. 2
improves the denoising results by about 0.2 dB.

The restored images shown in Figure 5 clearly illustrate the advantage of Alg. 2,
i.e., avoiding the artificial effects caused by RED. Figure 6 indicates that MuLoG,
RED, and Alg. 2 achieve better visual quality than AA and FANS for aerial images.
The results of MuLoG, RED, and Alg. 2 are close. But we can still see that Alg.
2 tends to suppress bright pixels. Sometimes the bright pixels truly exist in the
test image (see the test images A2 and A3), and sometimes the bright pixels are
caused by noise (see the test image A1). Noticing that TV regularization also has
the effect of suppressing bright pixels (see the results of AA model in Figure 6), this
once again verifies that Alg. 2 inherits the characteristics of TV regularization.

Table 4 presents the average running time for five algorithms. The gradient
descent scheme is used for AA model. So it is the most time-consuming. MuLoG
and RED take about the same amount of running time. Compared to RED, the
ADMM algorithm is called 5 to 10 times by Alg. 2 for each experiment. Thus
Algorithm 2 consumes more time. It should be noticed that utilizing different
algorithm parameters r1 and r2 for different images shall reduce the running time
for Alg. 2.

4.2.2. Comparison of different image denoisers. After discussing the performance
of Alg. 2 with denoiser BM3D, it is straightforward to consider the recent learning-
based algorithm DnCNN for Alg. 2.

In Table 2 and Table 3, we also list the PSNR and SSIM values of Alg. 2 with
DnCNN (denoted by ‘DnCNN’). By observing the results of the four test images
A1-A4, we find that in the framework of Alg. 2, DnCNN has an advantage when
processing low-noise (i.e., large L) images. BM3D, on the other hand, is better at
handling high-noise images (i.e., small L). Now let us consider the first four test
images. We find no pattern in the results of BM3D and DnCNN. Sometimes DnCNN
outperforms BM3D (see Phanton with L = 1) by a large margin, and sometimes
the opposite is true (see Parrot with L = 4). We believe the reason for the above
phenomenon is that the model-based algorithm BM3D is more robust than the
learning-based algorithm DnCNN, especially when the noise does not follow the
Gaussian distribution.
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Table 2. PSNR values of the image restoration results for different algorithms.

Image C.man Parrot Phantom Brain A1 A2 A3 A4 Avg.

L = 1
AA 20.20 18.67 19.05 17.02 18.45 18.97 22.36 16.77 18.94
FANS 22.29 20.98 22.82 19.61 20.01 19.96 22.07 18.17 20.74
MuLoG 22.26 21.94 24.60 19.21 20.78 20.56 23.87 18.25 21.43
RED 22.12 22.01 24.91 20.53 20.85 20.62 23.82 18.34 21.65
Alg. 2 22.32 22.16 24.67 20.54 20.92 20.74 23.88 18.45 21.71
DnCNN 22.74 22.18 25.56 20.69 20.75 20.51 23.43 18.34 21.78

L = 4
AA 23.71 21.94 22.59 18.80 21.67 21.71 24.76 19.50 21.83
FANS 25.18 24.45 27.39 22.86 23.11 23.08 26.04 20.64 24.09
MuLoG 25.77 24.58 26.95 22.33 23.62 23.70 26.69 20.57 24.28
RED 25.68 25.06 27.45 23.49 23.55 23.84 26.65 20.71 24.55
Alg. 2 25.71 25.40 27.66 23.60 23.74 23.90 26.81 20.77 24.70
DnCNN 25.32 24.44 27.32 22.99 23.83 23.94 27.12 20.77 24.47

L = 10
AA 25.84 22.49 24.59 19.08 24.13 24.26 27.01 21.63 23.63
FANS 27.33 26.65 30.15 25.35 25.53 25.58 28.72 22.49 26.48
MuLoG 27.79 26.37 29.55 24.58 25.86 26.03 28.98 22.45 26.45
RED 27.89 26.57 30.23 25.60 25.46 26.00 28.84 22.35 26.62
Alg. 2 27.95 27.39 30.51 25.77 25.81 26.11 29.02 22.47 26.88
DnCNN 27.92 27.23 29.45 25.51 26.22 26.34 29.36 22.76 26.85

Table 3. SSIM values of the image restoration results for different algorithms.

Image C.man Parrot Phantom Brain A1 A2 A3 A4 Avg.

L = 1
AA 0.632 0.597 0.701 0.697 0.647 0.601 0.598 0.514 0.623
FANS 0.692 0.655 0.764 0.673 0.760 0.747 0.678 0.613 0.698
MuLoG 0.681 0.702 0.951 0.770 0.745 0.699 0.652 0.623 0.728
RED 0.690 0.708 0.926 0.781 0.756 0.711 0.658 0.643 0.734
Alg. 2 0.698 0.708 0.923 0.788 0.765 0.727 0.665 0.661 0.742
DnCNN 0.733 0.712 0.893 0.775 0.761 0.708 0.656 0.631 0.734

L = 4
AA 0.736 0.736 0.802 0.728 0.857 0.857 0.793 0.761 0.784
FANS 0.787 0.786 0.967 0.824 0.891 0.893 0.862 0.814 0.853
MuLoG 0.782 0.789 0.973 0.866 0.883 0.883 0.843 0.804 0.853
RED 0.775 0.791 0.973 0.868 0.892 0.894 0.852 0.817 0.858
Alg. 2 0.785 0.793 0.974 0.872 0.895 0.895 0.854 0.814 0.860
DnCNN 0.771 0.774 0.967 0.858 0.898 0.897 0.866 0.822 0.857

L = 10
AA 0.786 0.775 0.946 0.738 0.927 0.929 0.884 0.868 0.856
FANS 0.836 0.840 0.983 0.895 0.940 0.942 0.924 0.895 0.907
MuLoG 0.825 0.835 0.983 0.908 0.939 0.943 0.917 0.888 0.905
RED 0.827 0.823 0.983 0.904 0.939 0.944 0.918 0.885 0.903
Alg. 2 0.833 0.847 0.984 0.906 0.941 0.945 0.919 0.885 0.907
DnCNN 0.826 0.843 0.970 0.894 0.945 0.946 0.926 0.900 0.906
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Figure 5. The restored results of different algorithms for four test
images with L = 4. From top to bottom: Original image, AA,
FANS, MuLoG, RED, Alg. 2.
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Figure 6. The restored results of different algorithms for four test
images with L = 1. From top to bottom: Original image, AA,
FANS, MuLoG, RED, Alg. 2.
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Table 4. The average running time in seconds for all test images
and noise levels.

Algorithm AA FANS MuLoG RED Alg. 2

Time 30.0 5.0 11.5 11.4 17.1

Figure 7. Restoration results of Alg. 2 with denoisers BM3D and
DnCNN. From left to right: Original image, noisy image, BM3D,
DnCNN. From top to bottom: Camerman with L = 10, Phantom
with L = 1, A1 with L = 10, A4 with L = 1.

Figure 7 shows us the difference between BM3D and DnCNN for Alg. 2. As we
can see from the results of the test images Cameraman and A1 (L = 10), DnCNN
creates better visual quality than BM3D in restoring details. The results of the test
images Phantom and A4 (L = 1) demonstrate the disadvantage of DnCNN. It can
not suppress white speckles in the images. In summary, we suggest the state-of-
the-art model-based Gaussian denoiser for Alg. 2. More advanced learning-based
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Gaussian denoisers can also be considered for Alg. 2 if the noise is not strong and
the original image does not contain many bright pixels.

5. Conclusion. In this paper, we proposed a convex variational model that com-
bines the adaptive TV regularization and the Regularization by Denoising (RED)
for the removal of multiplicative noise. The existence and uniqueness of solutions
for the proposed model were proved. The alternating direction method of multiplier
(ADMM) was carried out for solving the model. The effectiveness of the proposed
method was verified through numerical experiments.
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