ON THE DEVELOPMENT OF THE "PITZ-ROBOT" FOR USE AT THE FLASH @ PITZ EXPERIMENTAL AREA D. Villani^{1,2}, P. Korysko^{3,4}, W. Farabolini³, R. Corsini³, F. Müller¹, A. Grebinyk^{1,5}, N. Aftab¹, Z. Amirkhanyan¹, P. Boonpornprasert¹, D. Dmytriiev¹, S. A. Gohari¹, J. Good¹, M. Gross¹, A. Hoffmann¹, Y. Komar⁵, M. Krasilnikov¹, X. Li¹, Z. Lotfi¹, A. Oppelt¹, C. Richard¹, F. Riemer¹, F. Stephan¹, E. Tarakci^{1,5}, G. Vashchenko¹, S. Worm¹ and S. Zeeshan¹ ¹ Photo Injector Test Facility, Deutsches Elektronen-Synchrotron DESY, Zeuthen, Germany; ² Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; ³ CERN, Geneva, Switzerland; ⁴ University of Oxford, Oxford, United Kingdom; ⁵ Technical University of Applied Sciences Wildau, Division Molecular Biotechnology and Functional Genomics, Wildau, Germany - The PITZ accelerator (22 MeV, electrons) at DESY-Zeuthen is perfectly suited for FLASH-RT research, studies on a new cancer treatment technique, due to its wide parameter range available. - Number of RF pulses, number of micropulses, micropulse charge, RF repetition rate and beam size can be adjusted - Dose rates down from 0.02 Gy/s up to 10¹⁴ Gy/s are possible. - Search for best parameters is ongoing - Full FLASHlab@PITZ beamline was designed and is currently under installation. - The PITZ-Robot, a tailored copy of the C-Robot for PITZ needs, is part of the upgrade package. ## PITZ-Robot overview - The PITZ-Robot is a version of the CLEAR-Robot (C-Robot¹), tailored for PITZ beam parameters and experimental needs. Its ongoing development takes place after commissioning of the C-Robot in the startup beamline at PITZ², applying the lessons leaned with the experience. - Its main goal is the optimization of beam position alignment and dose delivery. - Consists mainly of: - 3 linear motors - 1 grabber - Storage area; and - Irradiation area It is ARDUINO coded, and MATLAB controlled. MATLAB GUI has been adapted. A custom-designed 3D-printed holder with a YAG screen and a 45° mirror serves as a beam tracker. Realtime feedback is provided by a camera attached to the grabber. Possibility of using this device as online dosimetry tool is under investigation. ¹ P. Korysko et al. "The CLEAR user facility: a review of the experimental methods and future plans" in Proc. IPAC'23, Venice, Italy, May 2023. ² D. Villani et al. Commissioning of the C-Robot at the FLASHLAB@PITZ experimental area, Physica Medica, 2024 10.1016/j.eimp.2024.104183 ## Outlook - The PITZ-Robot is part of the upgrade package of the FLASHad@PITZ, becoming the main tool for sample manipulation during irradiations. - Hardware mounting is ongoing commissioning together with upgraded beamline; - Future applications of the PITZ-Robot also include studies on luminescence and dosimetry R&D.