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Abstract
We consider time-dependent inverse problems in a mathematical setting using
Lebesgue-Bochner spaces. Such problems arise when one aims to recover para-
meters from given observations where the parameters or the data depend on
time. There are various important applications being subject of current research
that belong to this class of problems. Typically inverse problems are ill-posed
in the sense that already small noise in the data causes tremendous errors in
the solution. In this article we present two different concepts of ill-posedness:
temporally (pointwise) ill-posedness and uniform ill-posedness with respect to
the Lebesgue-Bochner setting. We investigate the two concepts by means of a
typical setting consisting of a time-depending observation operator composed
by a compact operator. Furthermore we develop regularization methods that
are adapted to the respective class of ill-posedness.
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1. Introduction

Time-dependent or dynamic inverse problems (DIPs) yield a large and versatile subfield of
inverse problems, which has seen a growing interest in recent years. Considering an inverse
problem, given by an operator equation

F(ϑ) = y, F :D (F)⊆ X→ Y,

the dependence on time may be reflected in the source ϑ ∈ X, in the data y ∈ Y, or in the for-
ward operator F. The dependence results for example from changes in the underlying physical
setup or from an intrinsic time-dependence of the respective system, which evolves in time.

We shall see that typically the operator F in dynamic inverse problems can be decomposed
into two types of operators that preserve the causality. In order to compute the output y(t) at
a fixed time t we apply operators of the form At acting at fixed time or B[0,t] acting in a time
interval. Again due to causality the output at time t only depends on the restriction ϑ|[0,t] to
the initial time interval. We thus see that we can approach such problems in a global or local
setting.

Many time-dependent problems have been addressed and studied in relation to applications
(see [27]), for instance, in dynamic computerized tomography [14, 15], magnetic resonance
imaging [17], emission tomography [18], magnetic particle imaging [1, 3, 26, 31], or structural
health monitoring [30, 32]. We state some recent examples for dynamic inverse problems in
real-world applications in the following:

(a) Dynamic Computerized Tomography (DCT)
The aim of CT is to recover the interior ϑ of an object from x-ray measurements. If the object
undergoes a motion (e.g. if the patient is moving), then the function ϑ to be recovered depends
on time and the forward operator is given as

F [ϑ(t)] = S(t)R [ϑ(t)] . (1.1)

Here R denotes the 2D Radon transform acting on the spatial variable of ϑ(t,x) and S(t)
describes the measurement geometry. The observation operator S(t) depends on t, since in
this way, changes in the measurement process in time are also included in the mathematical
model. In the notation above we have

y(t) = At [ϑ] ,

the problem is fully local in time.
In particular, we want to point out two approaches: The first one is to reconstruct the initial

state of the object from data that has been collected while the object is changing in time, and
taking into account the motion of the object (see, e.g. [13, 15]). In this case the motion of
the object itself is not of interest. The second approach is to reconstruct the moving object,
i.e. the object is to be reconstructed at a range of time points. Here, one usually has to deal
with sparse data or limited angle problems [2, 8, 9]. Including motion, the Radon transform is
now computed for a deformed version of ϑ over the whole time interval, which changes the
setting to

y(t) = AtB[0,t] [ϑ] .

(b) Dynamic Load Monitoring (DLM)
DLM aims for computing loads in elastic structures D from time-dependent sensor data that
are acquired at the structure’s surface. If the displacements u(t,x) are small, then the wave
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propagation in an elastic material is described using Hooke’s law by the Cauchy equation of
motion

ρü(t,x)−∇ · (C : ε(u))(t,x) = f(t,x) . (1.2)

Here C(x) denotes the elasticity tensor in x, ρ is the mass density, ε(u) = (∇u+∇u⊤)/2
is the linearized Green strain tensor, and f(t,x) is a volume body force. The hyperbolic PDE
system (1.2) is uniquely solvable if appropriate initial and boundary values are given.Dynamic
load monitoring means computing f (the load) from (partial) measurements of displacements
u at the boundary of a structure. This is a linear inverse problem with forward operator

F( f) := S(t) [Lf ] ,

and the operator Lmaps a source term f to the (unique, weak) solution u=: Lf of (1.2) equipped
with appropriate initial and boundary values, whereas S(t) is the mathematical model of the
data acquisition process. For example, S(t) may correspond to the trace operator γ,

γ [g] = g|Γ ,

with Γ⊂ ∂D or

S(t) [g] =

(ˆ
Γ

〈g(x) ,χj (x)〉dsx
)
j=1,...,J

,

whereχj is the characteristic function of sensor j. Note that in these examples S is actually inde-
pendent of time, but can be extended (by identical copies) as an operator on a time-dependent
g defined on [0,T]× ∂D, yielding a trace on ΓT = [0,T]×Γ. Let us mention that L depends on
the whole time interval, hence we effectively compute the data via

y(t) = At
[
B[0,t]f

]
.

(c) Magnetic Particle Imaging (MPI)
MPI is a relatively novel medical imaging technique, e.g. to monitor blood vessels in a patient.
Magnetic nanoparticles are injected into the bloodstream and distribute inside the patient’s
body. A strong external magnetic field with a field free point (FFP) is applied such that the
nanoparticles’ magnetic moment vectors align with the field lines of this field. Only in the
FFP, where the applied field is very weak, the particles can move freely. When the FFP moves
around the field of view, these particles inside the FFP abruptly change their magnetization.
The resulting change in the total magnetic field induces voltages in the receive coils at each
time point t during the measurement, which serve as data (see also [31]).

The goal in MPI is to reconstruct the concentration c of the magnetic particles inside the
body D from the measured voltages. The physical model is given by the K integral equations

vk (t) =
ˆ t

0
ãk (t− τ)

ˆ
D
c(x)sk (x, τ) dx dτ, sk (x, t) = pRk (x)

T
∂tm(x, t) ,

where K is the number of receive coils, ãk, k= 1, . . . ,K, are transfer functions, pRk the coil
sensitivity of the kth coil, andm is the mean magnetization. The function sk is called the system
function and represents a kind of induction potential for the kth coil. In practice, the system
function is measured in a time-consuming calibration process. This yields two types of inverse
problems. First, the actual imaging problem is to reconstruct the concentration c from the time-
dependent data. Secondly, to avoid the expensive calibration, the model-based reconstruction
of the system function from data that was obtained for known particle concentrations yields
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an inverse problem where both the source and the data are time-depending. In both cases, the
forward operator can be formulated as a composition

F [f] (t) = SI(t) [f(t)] ,

where S represents the convolution in time and I(t) the integral operator in space given a time-
varying weight. Note that Lebesgue-Bochner spaces are a convenient choice for the source
space of the inverse problem for the system function. The data space is given by the Lebesgue
space Ls([0,T]). In this case we can write the problem in the form

y(t) = B[0,t]At [f ] .

The concept of ill-posedness for inverse problems has been discussed in detail in the literat-
ure. Linear ill-posed problems have been classified by Hadamard [12]. For nonlinear forward
operators, the definition has to be adapted to the local character of nonlinear operators, which
has been done by Hofmann and Scherzer in [20, 22, 23].

Here, we address both linear and nonlinear problems, i.e. our definition of ill-posedness
will be based on the definition by Hofmann and Scherzer.

Since the dependence on time of a quantity is of an entirely different nature than the depend-
ence on space, it is not surprising that this difference is also reflected in the respective math-
ematical modelling. Regarding inverse problems, the choice of Lebesgue-Bochner spaces as
source or data space yields an adequate setting, since they admit a different treatment of these
two types of variables. A prominent example where this setting occurs naturally is parameter
identification for parabolic linear partial differential equations. The differing roles of the tem-
poral and spatial variables in this context are addressed in [42, chapter 23.1] for a classical
initial boundary value problem for the heat equation,

∂tu−∆u= f in D× (0,T) ,

u= 0 on ∂D× [0,T] ,

u(x,0) = u0 (x) in D.

We summarize some of the properties from [42, chapter 23.1]:

(a) For a fixed time t, the mapping x 7→ u(x, t) is an element of a Sobolev space V and we
denote this function by u(t).

(b) If we now vary t ∈ [0,T], we obtain the function t 7→ u(t), where u(t) is the function defined
in a). In this way, we obtain a function which has values in the Banach space V, in contrast
to the real-valued function (x, t) 7→ u(x, t).

Multiplication with a test function v ∈ V and integration over D yields

d
dt

(u(t) ,v)H+ a(u(t) ,v) = (f(t) ,v)H in (0,T) for all v ∈ V, u(0) = u0 ∈ H (1.3)

with

a(w,v) :=
ˆ
D

N∑
i=1

∂xiwi (x)∂xiv(x)dx,

( f(t) ,v)H :=

ˆ
D
f(x, t)v(x)dx.

This variational formulation shows the necessity to use two function spaces V and H:
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(c) The time-derivative yields the space H, whereas V is obtained from the spatial derivative
−∆ and the boundary condition. In this example for the heat equation, we have V⊆ H and
V is dense in H. In this context, we use the Gelfand or evolution triple

V⊆ H⊆ V∗.

(d) The time-derivative u̇ := d
dt is interpreted as a generalized derivative, i.e. the variational

equation (1.3) has to be satisfied only for almost all t ∈ (0,T).
(e) These considerations result in the choice

u ∈W1
2 (0,T;V,H) = H1 (0,T;V,H) :=

{
u ∈ L2 (0,T;V) , u̇ ∈ L2 (0,T;V∗)

}
as the state space for (1.3).

For further reading on Lebesgue-Bochner spaces and related analytic results, we also refer
to [24].

Mathematical frameworks, particularly suited for parameter identification for partial dif-
ferential equations, have been presented in [19, 25, 29]. In [25, 29], the focus is on time-
depentent PDEs and Lebesgue-Bochner spaces are used to formulate the respective mathem-
atical problems.
Outline. Section 2 provides the reader with all necessary preliminaries about Lebesgue-

Bochner spaces. We particularly discuss criteria for relatively compact subsets in such spaces.
In section 3 we develop the aforementioned concepts for pointwise and uniform ill-posedness
of time-dependent inverse problems. As an example we consider time-dependent observations
of a compact operator which applies, e.g. to dynamic CT. Corresponding to these concepts,
we construct two types of regularization concepts in section 4. For both methodologies we
present examples: variational tracking, classical variational techniques and Kaczmarz-based
regularization. The article ends with an outlook to future research in the field.

2. Some preliminaries about Lebesgue-Bochner spaces

We start with a short introduction to the theory of Lebesgue-Bochner spaces (see also [24,
42]). We use the notationK ∈ {R,C} and let 1⩽ p,p∗ <∞ with 1

p +
1
p∗ = 1. If not otherwise

specified, let X be a Banach space with norm ‖·‖X . Its dual is denoted by X ∗. Furthermore,
let (Ω,µ) denote a finite measure space with measure µ.

Recall that a function u : Ω→X is called strongly µ-measurable, if there is a sequence
{un : Ω→X} of µ-simple functions such that u is its pointwise limit, i.e. limn→∞ un(t) = u(t)
for t ∈ Ω a.e.

For a finite measure space (Ω,µ) with a measure µ we define the space

Lp (Ω;X ) := {u : Ω→X |u is stronglyµ −measurable and ‖u‖p,X <∞} ,

where

‖u‖p,X :=

(ˆ
Ω

‖u‖pX dµ

) 1
p

. (2.1)

Note that we identify functions that are equal µ-almost everywhere in Ω. The space Lp(Ω;X )
is called a Lebesgue-Bochner space or just Bochner space and is a Banach space if equipped
with the norm ‖·‖p,X . For the special case X = R we briefly write Lp(Ω).
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Particularly in applications, the measure space is often given as the time interval Ω=
[0,T]⊆ R, T > 0, with the Lebesgue measure. The respective Bochner spaces

Lp (0,T;X ) := {u : (0,T)→X |uis stronglyµ− measurable and‖u‖p,X <∞} (2.2)

play an important role in the theory of nonlinear operator equations or evolution equations.
We thus set Ω := [0,T] from now on.

The following statement is taken from [42].

Proposition 2.1. Let X̃ be a second Banach space over K.

(i) The space Cm([0,T];X ), m= 0,1, . . ., of all continuous functions u : [0,T]→X with con-
tinuous derivatives up to order m on [0,T] with the norm

‖u‖ :=
m∑
i=0

max
t∈[0,T]

|D(i)u(t)|,

where D(i) denotes the ith derivative, is a Banach space over K.
(ii) The set of all step functions σ : [0,T]→X is dense in Lp(0,T;X ).
(iii) The space C([0,T];X ) is dense in Lp(0,T;X ) and the respective embedding is continuous.
(iv) Lp(0,T;X ) is

– separable, if X is separable,
– uniformly convex, if 1< p<∞ and X is uniformly convex.

(v) If X ↪→ X̃ is continuous, then

Lq (0,T;X ) ↪→ Lr
(
0,T; X̃

)
, 1⩽ q⩽ r⩽∞,

is also continuous.

The Hölder inequality transfers from Lebesgue to Bochner spaces and is used to derive
the dual space of a Bochner space, see, e.g. [42]. For 1< p<∞ and u ∈ Lp(0,T;X ), v ∈
Lp

∗
(0,T;X ∗), the Hölder inequality reads asˆ T

0

∣∣〈v(t) ,u(t)〉X∗×X
∣∣ dt⩽ (ˆ T

0
‖v(t)‖p

∗

X∗ dt

)
·
(ˆ T

0
‖u(t)‖pX dt

)
and we have

(Lp (0,T;X ))
∗
= Lp

∗
(0,T;X ∗)

ifX fulfils the Radon–Nikodym property (which is the case if, e.g.X is reflexive and separable,
see [24]).

Regarding ill-posed problems, compact operators are of special interest since their inverse is
only continuous if the operator has finite dimensional range. This is why the characterization of
relatively compact sets in Lebesgue-Bochner spaces is very important. Recall that an operator
T : X →Y between Banach spaces is compact, if it maps compact subsets in X to relatively
compact subsets of Y . Relatively compact subsets in Lebesgue-Bochner spaces have been
characterized by Diaz and Mayoral [10] as well as recently in the two articles [40, 41] by van
Nerveen. To present the main result from [41] we need some further definitions.

A set V⊂ Lp(0,T;X ) is called uniformly Lp-integrable if

lim
r→∞

sup
f∈V

‖χ∥ f(t)∥>rf‖p = 0, (2.3)

where χ∥ f(t)∥>r is the characteristic function of the set {t : ‖ f(t)‖> r}. The set V is called
uniformly tight, if for all ε> 0 there exists a compact set K ⊂X such that

sup
f∈V

µ({t : f(t) 6∈ K})⩽ ε, (2.4)
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and it is called scalarly relatively compact if for all x∗ ∈ X ∗ the set {t 7→ 〈 f(t),x∗〉 : f ∈ V} is
relatively compact in Lp([0,T]).

Proposition 2.2. ([41, theorem 1]). Let 1⩽ p<∞. A subset V⊂ Lp(0,T;X ) is relatively
compact if and only if it is uniformly Lp-integrable, uniformly tight, and scalarly relatively
compact.

Bounded sequences {fn} ⊂ Lp(0,T;X ) fulfill the first two conditions in proposition 2.2:

Lemma 2.3. If {fn} ⊂ Lp(0,T;X ) is a bounded sequence, then {fn} is uniformly Lp-integrable
and uniformly tight.

Proof. See appendix.

Lemma 2.3 is important especially to prove compactness of operators between spaces as
Lp(0,T;X ). Another characterization of relatively compact sets in Lp(0,T;X ), where µ is the
Lebesgue measure, is given in [11, 38]. For z ∈ (0,T) and f ∈ Lp(0,T;X ) we define the trans-
lation operator

τz : [−z,T− z]→X , (τzf)(t) := f(t+ z) .

Theorem 2.4. ([38, theorem 1]). Let p ∈ [1,+∞) and V⊂ Lp(0,T;X ). Then V is relatively
compact, if and only if

(a) for any subset (a,b)⊂ [0,T] the set
{´ b

a f(t)d(t) : f ∈ V
}
is relatively compact in X ,

(b) for z with 0⩽ z< T it holds

sup
f∈V

‖τzf − f‖Lp([−z,T−z],X ) = 0 for z→ 0.

Theorem 2.4 is an analogue of the well-known Arzelà–Ascoli Theorem, which character-
izes relatively compact sets in C([0,T],X ). Note that p=+∞ is not possible: for example, the
set {f} for a discontinuous f ∈ L∞(0,T;X ) is compact, but condition (b) of theorem 2.4 is not
satisfied. As a consequence from lemma 2.3 and theorem 2.4 we immediately get

Corollary 2.5. A bounded sequence {fn} ⊂ Lp(0,T;X ) is relatively compact in Lp(0,T;X ), if
for z with 0⩽ z< T and x∗ ∈ X ∗ it holds

sup
n∈N

‖τzgn− gn‖Lp([−z,T−z]) = 0 for z→ 0, (2.5)

where gn(t) := 〈 fn(t),x∗〉.

Since parameter identification problems for partial differential equations play a crucial role
in view of many real-world applications, compact embedding theorems for Sobolev spaces are
of utmost importance. For completeness we recapitulate some of them to finish this section.

Theorem 2.6 (The Rellich–Kondrachov theorem). The Sobolev space embedding
Wm,p(D) ↪→ Lq(D), D a bounded domain in Rn, is compact, if any of these conditions holds
true:

7
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(a) n−mp> 0 and 1⩽ q< np/(n−mp),
(b) n=mp and 1⩽ q<+∞,
(c) mp> n and 1⩽ q⩽+∞.

3. Ill-posedness in Lebesgue-Bochner spaces

We at first introduce a setting in Lebesgue-Bochner spaces for time-dependent inverse prob-
lems. Consider Banach spaces X , Y , and an operator equation

F(ϑ) = y, F :D (F)⊆ X→ Y, (3.1)

where we set

X := Lp (0,T;X ) , Y := Lq (0,T;Y)

for any 1⩽ p,q<∞. We assume that only noisy data, denoted by yδ , are available with a
noise level δ > 0, fulfilling∥∥y− yδ

∥∥
Y ⩽ δ.

This is a fairly general mathematical model for time-depending problems, since in many
applications, the Banach space X is a suitable function space such as Lr(D) or H1(D) on
some open subset D⊆ RN, N ∈ N. As an example, weak solutions of hyperbolic and para-
bolic equations often are elements of spaces such as Lp(0,T;H1(D)) or subspaces thereof.
It is important to emphasize the difference in the physical meaning of the temporal variable
t ∈ [0,T] and spatial variables x= (x1, . . .,xN)T ∈ D, on which both the source function ϑ as
well as the data y may depend. The principle of causality describes the nature of time in con-
trast to space: it is usually possible to move freely in space, but one can only advance in time. In
the context of evolution equations, which describe the evolution of a system in time, Bochner
spaces allow us to encode the specific role of time: At a fixed time t0, the system is described
by a function u(t0) ∈ X where we can encode, e.g. regularity properties with respect to the
spatial variable.

The question that arises at this point is how the nature of the temporal variable can be
reflected in the notion of ill-posedness in a suitable manner. To this end, we introduce two
concepts of ill-posedness with respect to time, beginning with the one that translates directly
from the standard definition for ill-posedness of nonlinear inverse problems.

Definition 3.1. The inverse problem (3.1) is called uniformly (locally) ill-posed in ϑ+, if for
each ρ> 0 there is a sequence {ϑ(ρ)

k }k∈N ⊆ Bρ(ϑ
+)∩D(F) with

ϑ
(ρ)
k ↛ ϑ+, but F

(
ϑ
(ρ)
k

)
→ F

(
ϑ+

)
for k→∞, i.e.

lim
k→∞

∥∥∥F(ϑ(ρ)
k

)
−F

(
ϑ+

)∥∥∥q
Y
= lim

k→∞

ˆ T

0

∥∥∥F(ϑ(ρ)
k (t)

)
−F

(
ϑ+ (t)

)∥∥∥q
Y
dt= 0.

Definition 3.1 corresponds to the classical concept of local ill-posedness for nonlinear
inverse problems in Hilbert and Banach spaces transferred to Lebesgue-Bochner spaces. Note
that the statement ϑ(ρ)

k ↛ ϑ+ for k→∞ translates to
ˆ T

0

∥∥∥ϑ(ρ)
k (t)−ϑ+ (t)

∥∥∥p
X
dt↛ 0,

8
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which means that there is a subset I⊆ [0,T] with Lebesgue measure µ(I)> 0 such thatˆ
I

∥∥∥ϑ(ρ)
k (t)−ϑ+ (t)

∥∥∥p
X
dt> 0, (3.2)

and thus ∥∥∥ϑ(ρ)
k −ϑ+

∥∥∥
X
> 0

on I.
However, the above definition can also be applied point-wise in time, if the respective DIP

allows for point-evaluations in time:

Definition 3.2. The inverse problem (3.1) with F= Ft for all t is called temporally (locally)
ill-posed, if there is a set of positive measure Σ⊂ (0,T) such that for almost every t0 ∈ Σ the
operator equation

Ft0
(
ϑ̃
)
:= F(ϑ(t0)) = ỹ, Ft0 :D (Ft0)⊆X →Y

is (locally) ill-posed. Here,

D (Ft0) := {ϑ(t0) ∈ X : ϑ ∈ (C([0,T] ;X )∩D (F))}

and ỹ ∈ Ft0(D(Ft0)). This means that for all ρ> 0 there is a sequence {ϑ̃(ρ)
k }k∈N ⊆ BX

ρ (ϑ̃+)∩
D(Ft0) with

lim
k→∞

‖ϑ̃(ρ)
k − ϑ̃+‖X 6= 0, but lim

k→∞
‖ ft0

(
ϑ̃
(ρ)
k

)
−Ft0

(
ϑ̃+

)
‖Y = 0.

Let us mention that an obvious example for a locally ill-posed problem on Bochner spaces is
the dynamically sampled Radon transform discussed in the introduction. If the sampling oper-
ator S(t) does not map to a finite dimensional space, the compactness of the Radon transform
immediately implies the ill-posedness of the concatenation.

Remark 3.3. The regularity of continuity in [0,T] in definition 3.2 can be weakened to func-
tionals ϑ(t0) being bounded in X for all t0 ∈ [0,T].

3.1. An example: time-dependent observations of compact operators on X

We consider the linear operator equation

F(ϑ) = y, (3.3)

where ϑ ∈ X := Lp(0,T;X ) and y ∈ Y := Lq(0,T;Y) and the spaces X and Y are Banach
spaces. We assume that the operator F has a representation

F [ϑ(t)] = S(t)K [ϑ(t)] (3.4)

with a compact linear operator

K : X →Y

and operators S(t) ∈ L(Y) that are linear and bounded for every t ∈ [0,T]. We furthermore
suppose that the family of operator norms {‖S(t)‖} is uniformly bounded,

sup
t∈(0,T)

‖S(t)‖⩽ cS, (3.5)

9
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for a constant cS > 0. A setting such as (3.4) is very important regarding practical applications.
For instance in dynamic CT, the function ϑ ∈ X represents a moving object, the operator K is
the Radon transform, and S(t) models the time-depending measurement process, see (1.1).

Note that the operator Ft0 : X →Y, Ft0(ϑ(t0)) = S(t0)K[ϑ(t0)] is compact for each fixed
t0 ∈ [0,T] and ϑ ∈ C([0,T];X ) since it is a composition of a compact and a bounded operator.
This directly allows us to formulate the following proposition:

Proposition 3.4. If dim(Ft0(X )) =∞ for all t0 ∈ [0,T], then the inverse problem (3.3) is tem-
porally ill-posed for all t0 ∈ [0,T].

As a specific example we consider the inverse problem of DLM and show its uniform ill-
posedness in an appropriate Lebesgue-Bochner setting. At first we need a decent mathematical
setup, which we recapitulate from [5].We state Cauchy’s equation of motion for a linear elastic
body D⊂ R3,

ρ(x) ü(t,x)−∇ · (C(x) : ε(u))(t,x) = f(t,x) , (t,x) ∈ [0,T]×D (3.6)

with the fourth order elasticity tensorC ∈ H1(Ω,R3×3×3×3), the mass density ρ ∈ L∞(D), the
linearized Green strain tensor ε(u) = (∇u+∇u⊤)/2, and the vector field f(t,x) representing
the dynamic load acting on x at time t. Under the additional assumptions that

0< ρmin < ρ(x)< ρmax <∞ (3.7)

and

sup
x∈Ω

(X,C(x) : X)F ⩾ α‖X‖2F for all X ∈ R3×3 (3.8)

with α> 0 we get the following existence and uniqueness result for a weak solution of an
initial boundary value problem associated with (3.6).

Proposition 3.5. Let D be a bounded domain with Lipschitz continuous boundary, u0 ∈
H1(D)3, u1 ∈ L2(D)3, f ∈ L2(0,T;L2(D)3) and the assumptions (3.7) and (3.8) hold true. Then,
the elastic wave equation (3.6) equipped with the initial and boundary values

[C(x) : ε(u)] · ν = 0 on [0,T]× ∂D (3.9)

u(0,x) = u0 (x) in D (3.10)

u̇(0,x) = u1 (x) in D (3.11)

has a unique weak solution u ∈ L2(0,T;H1(D)3) with u̇ ∈ L2(0,T;L2(D)3). Moreover we even
have that u ∈ C(0,T;H1(D)3)with u̇ ∈ C(0,T;L2(D)3) and for u0, u1 fixed the solution operator
L : L2(0,T;L2(D)3)→ L2(0,T;H1(D)3), L( f) := u is continuous. If u0 = u1 = 0, then L even
is a linear operator.

The Neumann condition (3.9), where ν is the outer unit normal vector field, means that the
structureD is traction-free at the boundary. A proof that is based on results from Lions [34] and
the second inequality of Korn can be found in [5]. We introduce the notations V := H1(D)3,
H := L2(D)3 and

W1,q,r (0,T;V,H) := {u ∈ Lq (0,T;V) : u̇ ∈ Lr (0,T;H)}

for 1⩽ q,r⩽+∞.
A key ingredient to prove the uniform ill-posedness of the DLM-problem is the Lemma of

Aubin–Lions, see [33].

10
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Theorem 3.6 (Lemma of Aubin–Lions). If q<+∞, then the embedding

W1,q,r (0,T;V,H) ↪→ Lq (0,T;H)

is compact.

In theorem 3.6 we interpret H as a subset of the dual space V∗.
Let functions χj ∈ H1/2(∂D)3, j =,1, . . . ,J, with small supports on ∂D be given which

define the sensor characteristics, e.g. regarding size, sensitivity, etc. Then, a mathematical
model for DLM is represented by the forward operator

F [f] := S(t)γιL [f] , (3.12)

where L : L2(0,T;H)→W1,2,2(0,T;V,H), L[f] := umaps the dynamic load to the unique weak
solution of the IBVP (3.6), (3.9)–(3.11), ι :W1,2,2(0,T;V,H) ↪→ L2(0,T;H) is the embedding
being compact due to the Lemma of Aubin–Lions, γ : L2(0,T;H)→ L2(0,T;H−1/2(∂D)3) is
the trace operator, which is continuous, and

S(t) [g] :=
ˆ
∂D

〈g(t,x) ,χj (x)〉dsx, g ∈ L2
(
0,T;H−1/2 (∂D)3

)
, j =,1 . . . ,J, (3.13)

is the observation operator being linear and continuous as a mapping from

L2
(
0,T;H−1/2 (∂D)3

)
→ L2

(
0,T;RJ

)
.

In (3.13), 〈·, ·〉 is to be understood as the dual pairing in H−1/2(∂D)3 ×H1/2(∂D)3. With the
notations ϑ := f, K := γιL, X := L2(0,T;H) and Y := L2(0,T;RJ) (i.e. X := H, Y := RJ) we
immediately obtain the following result.

Theorem 3.7. The operator F= S(t)K : X→ Y is compact.

Proof. Since ι :W1,2,2(0,T;V,H) ↪→ L2(0,T;H) is compact, we have that K is compact and so
is F as a composition of a continuous and a compact operator.

Corollary 3.8. The inverse problem of DLM, i.e. (F,X,Y), is uniformly ill-posed.

Proof. This follows immediately from the compactness of F.

If we choose a fixed time t0 and neglect time-dependence, then the DLM problem can be
characterized by the elliptic problem

−∇ · (C(x) : ε(u))(x) = f(x) , x ∈ D, (3.14)

with traction-free boundary conditions

[C(x) : ε(u)] · ν = 0 on ∂D. (3.15)

The weak formulation of the Neumann problem (3.14) and (3.15) is given asˆ
D
(ε(u) , [C(x) : ε(v)])F dx=

ˆ
D
f(x) · v(x) dx (3.16)

for all v ∈ V. Using again (3.8), the Poincaré inequality as well as the Lax-Milgram theorem,
we have that the equation A(u) = f has a unique solution which depends continuously on f.
Here, A : V→ V∗ is the operator induced by the symmetric bilinear form in (3.16), i.e.

A(u) [v] :=
ˆ
D
(ε(u) , [C(x) : ε(v)])F dx, v ∈ V.

If we consider the inverse problem of computing the source term f from full field data u(x),
x ∈ D, then we immediately get the following result.

11
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Theorem 3.9. The inverse problem F̃ : H→ V, F̃( f) := u, where u is the unique weak solution
of (3.14) and (3.15), is well-posed.

Proof. The well-posedness follows from the fact that F̃ is continuously invertible as outlined
above.

Of course, if we use the compact embedding V ↪→ H, the trace operator γ : L2(D)3 →
H−1/2(∂D) and a (static) observation operator similar to S, then we obtain again a linear,
ill-posed (static) inverse problem.

The examples above lead to the following general statements.

Proposition 3.10. Let V1 ⊂X ⊂ V2 be Banach spaces with compact embedding V1 ⊂X and
continuous embedding X ⊂ V2. Furthermore, let K : Lp(0,T;X )→W1,q,r(0,T;V1,V2) with
1⩽ q<+∞, 1⩽ r⩽+∞, and S(t) : X →Y is a family of uniformly bounded operators in
L(X ,Y).
Then F : Lp(0,T;X )→ Lq(0,T,Y), F[ϑ(t)] := S(t)K[ϑ(t)] is compact and the dynamic

inverse problem (F,Lp(0,T;X ),Lq(0,T,Y)) is uniformly ill-posed. In case we have for any
fixed t= t0 that K : X → V1 is continuous, then F̃ : X →Y , F̃[ϑ] := S(t0)K[ϑ], is compact and
(F,Lp(0,T;X ),Lq(0,T,Y)) is also temporally ill-posed. If for any t0 the operator S(t0)K is con-
tinuously invertible, then the problem (F,Lp(0,T;X ),Lq(0,T,Y)) is temporally well-posed.

Proof. The proof essentially relies on the compact embedding V1 ⊂X as well as on the
Lemma of Aubin–Lions which states that the embedding W1,q,r(0,T;V1,V2) ↪→ Lq(0,T;X )
is compact.

It is now interesting to consider situations where the operator equation (3.1) is temporally
ill-posed but not uniformly ill-posed. This is important to show that these are in fact different
concepts with each of it having a justification of its own. As long as K is compact, S(t) is
linear and bounded for all t ∈ [0,T] and the fn = Fϑn are strongly measurable, parts (b) and (c)
of the proof will remain valid. Example 3.11 shows a situation where the condition of uniform
Lq-integrability of {fn} fails.

Example 3.11. We assume that the parameter ϑ to be recovered does not depend on time,
i.e. ϑ(t) = ϑ ∈ X and use the embedding ι : X ↪→ X= Lp(0,T;X ) which is defined by x 7→ fx
with fx(t) = x. The range of this embedding consists of all functions in X that are constant in
time and we write ι(X) =: Lpc(0,T,X )⊂ Lp(0,T;X ). The forward operator F : ι(X)⊂ X→ Y
is supposed to be given as

[Fϑ] (t) := S(t)K [ϑ] , ϑ ∈ Lpc (0,T;X ) (3.17)

for a linear, compact operator K : X →Y and a family of linear, bounded mappings {S(t) :
Y →Y : t ∈ (0,T)}. Setting (3.17) represents the important situation that we have to recon-
struct a parameter that has only a spatial variable from time-dependent data. Such a situ-
ation is, e.g. given in seismology, see [28], where wave speed and mass density are computed
from the full waveform. As a simple example we define S(t) = 1

t I yielding [Fϑ] = 1
tK[ϑ] for

ϑ ∈ Lpc(0,T,X ), t ∈ (0,T), and compact K. Let {ϑn}n∈N be a bounded sequence in Lpc(0,T,X ).
Then, the sequence {fn := Fϑn}n∈N is not uniformly Lq-integrable and hence F : ι(X)⊂ X→
Y is not compact. This follows immediately from

lim
k→∞

sup
n∈N

ˆ
{t:∥ fn(t)∥⩾k}

‖ fn (t)‖q dt⩾ lim
k→∞

ˆ
{t:∥ fn∗ (t)∥⩾k}

‖ fn∗ (t)‖q dt

= lim
k→∞

‖K [ϑn∗ ]‖q
ˆ ∥K[ϑn∗ ]∥/k

0

1
tq

dt=+∞

12
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for some n∗ ∈ N fixed. This means that Fϑ= y is not uniformly ill-posed provided that K has
an inverse which is bounded on K(ι(X))⊂ Y. But obviously, for fixed t ∈ (0,T), S(t)K[ϑ] is
compact as an operator from X to Y and hence Fϑ= y is temporally ill-posed.

As a consequence of the considerations in example 3.11 we obtain

Corollary 3.12. The subset ι(X )⊂ X is not compact.

A simple application of definition (2.3) furthermore shows that ι(X) is not relatively com-
pact in X.

Let us provide another example of a temporally ill-posed DIP based on imaging time-
dependent sources in a wall with Compton cameras.

Example 3.13. We assume that the source is confined in the wall represented by the planar
region P0 = {0}×D with D⊂ R2. We image with a line of Compton detectors in distance d
from the wall, located at x1 = 0 and x2 = a(t), i.e. we move the line horizontally keeping it
parallel to the wall. By registering coincidences in neighbouring detectors and their energies,
we can use the Compton formula to determine the angle photons arrive from, i.e. we can
localize them in specific cones. Assuming that the motion of the detectors and the temporal
change of the unknown ϑ(t) happen on slower time scales than the detection of photons, we
can effectively assume to measure all integrals

y(x3,φ, t) =
ˆ
P0∩Cϕ((0,a(t),x3)

ϑ(x2,x3, t) dσ(x2,x3), (3.18)

where Cϕ(z) denotes the cone starting at z ∈ R3 with opening angle φ and axis orthogonal to
the (x2,x3)-plane. If b is the length of the line of detectors we can use a coordinate system such
that x3 ∈ (0,b) without restriction of generality.

Now we can define the forward operator

Ft : L
p(D)→ Lp((0,b)× [0,π)), ϑ 7→ y(·, t)

where y is given by (3.18). For p> 1 it is easy to see that Ft has no continuous inverse for any
t. For simplicity assume that there exists a rectangle Rϵ of width ε and length L that is inside
D for ε sufficiently small. Now define ϑϵ(t) zero outside this rectangle and equal to (εL)−1/p,
i.e. ϑϵ(t) has norm one in Lp(D). Since in our measurement setup the curvature of the cone
sections is strictly bounded away from zero, there exists a constant A such that the length of
the intersection of the cone-section with Rϵ is bounded by Aε. Hence, we see that yϵ = Ftϑ
satisfies

|yϵ (x3,φ, t) |⩽ Aε(εL)−1/p
= Aε(p−1)/pL−1/p

for almost all (x3,φ). This implies that Ftϑϵ(t)→ 0 even in the supremum norm and thus also
in Lp((0,b)× [0,π)).

4. Regularization of time-dependent inverse problems

In this section we define problem-adapted classes of regularization methods for DIPs that
address the two different sorts of ill-posedness. Again we consider the inverse problem (3.1)
and aim for a stable solution of

F(ϑ) = yδ, (4.1)

where yδ ∈ Y denotes a noise contaminated version of the exact data y, i.e.

‖y− yδ‖Y < δ (4.2)

13
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for a (small) positive noise level δ > 0. We assume that

yδ (t) ∈ Ft (D (Ft)) for all t ∈ [0,T] (4.3)

and that there exists a solution ϑ+ of (3.1) with

ϑ+ ∈ (C([0,T] ;X )∩D (F)) , (4.4)

which implies that also y(t) is well-defined and

y(t) ∈ Ft (D (Ft)) for all t ∈ [0,T] .

We note that condition (4.3) is not an essential restriction with respect to applications. Usually
data are acquired for discrete time instances tk ∈ [0,T], k= 0,1, . . ., only. Hence, data yδ(t)
that are continuous in time can be obtained by simple interpolation, e.g. using piecewise linear
spline functions. Condition (4.4) can be justified by the fact that C([0,T];X )∩D(F) is dense
inD(F) and the fact that in applications the temporal development of the exact solution mostly
is continuous in time (at least this is not an essential confinement).

Definition 4.1. A temporal (pointwise) regularization method for (4.1) is a family of mappings
R̃ : [0,T]×Y × [0,+∞)→X that satisfies the following condition: For xδt,α := R̃(t,yδ(t),α)
there exists a parameter choice α : [0,T]× [0,+∞)×Y → [0, ᾱ), 0< ᾱ⩽+∞, such that

lim
δ→0

‖ϑ+ (t)− xδt,α(t,δ,yδ(t))‖X = 0 for all t ∈ [0,T] .

Definition 4.1 reflects the fact that dynamic inverse problems can be solved by defining
a partition ∆= {0= t0 < t1 < · · ·< tN = T} of [0,T] and using a stationary regularization
method for Ftk :D(Ftk)⊂X →Y for each tk. This procedure is called tracking.

Remark 4.2. Obviously a temporal regularization yields an element xδt,α ∈ X for t ∈ [0,T]
fixed. A stable regularization of (4.1), however, demands for a solution in the Lebesgue-
Bochner space X. But this can easily we achieved by simple interpolation techniques. Again
assume that we have xδtk,α ∈ X given for tk ∈∆, k= 0, . . . ,N. Define I{xδtk,α} as the piecewise
constant interpolation which is defined as

I
{
xδtk,α

}
(t) = xδtk,α for t ∈ [tk, tk+1), k= 0, . . . ,N− 1.

Because of
ˆ T

0
‖I
{
xδtk,α

}
(t)‖pX dt=

N−1∑
k=0

ˆ tk−1

tk

‖xδtk,α‖
p
X dt

⩽ Tmax
{
‖xδtk,α‖

p
X : k= 0, . . . ,N− 1

}
<+∞

we see that I{xδtk,α} ∈ X. Of course other interpolation methods, such as piecewise linear inter-
polation, can be used to obtain solutions that are smooth with respect to t. We emphasize that
we see temporal regularization not as a regularization method in the Lebesgue-Bochner spaces
X,Y, rather than as regularization inX ,Y for fixed t ∈ [0,T], which is the core idea of tracking
methods.

In contrast to tracking, problem (3.1) can also be solved uniformly in t.

Definition 4.3. A full (uniform) regularization method for (4.1) is a family of mappings
R : Y× [0,+∞)→ X that satisfies the following condition: For xδα := R(yδ,α) there exists
a parameter choice α : Y× [0,+∞)→ [0, ᾱ), 0< ᾱ⩽+∞, such that

lim
δ→0

‖ϑ+ − xδα(yδ,α)‖X = 0.

14
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4.1. Example 1: variational tracking by Tikhonov functionals

We define the functional J δ
t,α :D(Ft)⊂X → R by

J δ
t,α (x) := St

(
Ft (x) ,y

δ (t)
)
+αtQt (x) , t ∈ [0,T] , x ∈ X , (4.5)

where St : Y ×Y → [0,+∞) is a functional defining the data fitting term, Qt : X → [0,+∞]
is a penalty term to stabilize the reconstruction process and αt > 0 acts as the regularization
parameter. Note that we allow for the data fitting term, the penalty term, and the regularization
parameter to depend on t.

Based on the well-established theory for regularization methods in Banach spaces, see [4,
7, 21, 37], we formulate assumptions on Ft,D(Ft), andQt that the minimization of (4.5) yields
a temporal regularization for the special case that

St (ỹ1, ỹ2) :=
1
r

∥∥ỹ1 − ỹ2
∥∥r
Y , ỹ1, ỹ2 ∈ Y (4.6)

with 1< r<∞.

Proposition 4.4. Under the assumptions thatX ,Y are reflexive Banach spaces, C([0,T];X )∩
D(F) is dense in D(F), and that for fixed t ∈ [0,T] we have that Ft :D(Ft)⊂X →Y
is weak-to-weak sequentially continuous, Qt : X → [0,+∞] is proper, convex and lower
semi-continuous, D(Ft)∩D(Qt) 6= ∅ and the level sets MQt := {x ∈ X : Qt ⩽ c} are weakly
sequentially pre-compact. Furthermore we choose an index function αt : [0,∞)→ [0,∞), i.e.
αt is strictly increasing and continuous with αt(0) = 0, which has the asymptotic behavior

αt (δ)→ 0 and
δr

αt (δ)
→ 0 as δ → 0.

Then the Tikhonov functional (4.5) with data fitting term (4.6) has aminimizer xδt,α ∈ D(Ft) and

R̃(t,yδ(t),α) := xδt,α is a temporal regularization method in the sense that, if {δn} ⊂ (0,∞) is a

sequence with δn → 0 as n→∞, the sequence {xδnt,α(δn)} has a weakly converging subsequence
whose weak limit is a Qt-minimizing solution ϑ+(t) ∈ X of Ft(ϑ(t)) = y(t).

Since for fixed t the operator Ft[ϑ(t)] := S(t)K[ϑ(t)] from (3.4) is linear and compact, we
immediately get

Corollary 4.5. If C([0,T];X )∩D(F) is dense inD(F) and Qt satisfies the assumptions in pro-
position 4.4, then the Tikhonov regularization (4.5) and (4.6) yields a temporal regularization
method for (3.4) in the sense of proposition 4.4.

Remark 4.6. Variational tracking as in Proposition (4.4) naturally leads to dynamic algorithms
according to Osipov et al [36], i.e. if two data sets yδ1 , y

δ
2 coincide at a given time interval,

yδ1(t) = yδ2(t) for all t ∈ [0, t0] for given t0 ∈ (0,T], then the algorithm’s output coincides on
this time interval as well. In our setting it is quite obvious that under this assumption we
have R̃(t,yδ1(t),α) = R̃(t,yδ2(t),α) for all t ∈ [0, t0]. The reason is that variational tracking just
means to compute a temporal frame of stationary solutions. Dynamic algorithms in the sense
of Osipov et al inherently show causality since, if yδ1(t) 6= yδ2(t) for a t> t0, this does not affect
the output in the interval [0, t0].

4.2. Example 2: variational regularization on Lebesgue-Bochner spaces

Temporal regularization completely neglects topology, regularity and geometry of the cor-
responding time-space functional. To obtain a holistic regularization it is more convenient to
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develop regularization methods for (4.1) in X and Y. One possibility is to use variational reg-
ularization techniques. To this end we define the Tikhonov functional J δ

α :D(F)⊂ X→ R by

J δ
α (ϑ) := S

(
F(ϑ) ,yδ

)
+αQ(ϑ) , ϑ ∈ X, (4.7)

where, again, S : Y×Y→ [0,+∞) is an error functional denoting the data fitting term and
Q : X→ [0,+∞] is a penalty term whose influence is controlled by the parameter α> 0. Of
course the most popular choice for the data fitting term is again a power of the norm residual

S(y1,y2) :=
1
r

∥∥y1 − y2
∥∥r
Y, y1,y2 ∈ Y (4.8)

with 1< r<∞.
Accordingly, we can use established results on regularization theory (see again [4, 7, 21,

37]) to state the following result:

Proposition 4.7. Let us assume that X , Y are reflexive Banach spaces with 1< p<∞. We
assume that the forward operator F :D(F)⊂ X→ Y is weak-to-weak sequentially continu-
ous, Q : X→ [0,+∞] is proper, convex and lower semi-continuous, D(F)∩D(Q) 6= ∅ and
the level setsMQ := {x ∈ X : Q⩽ c} are weakly sequentially pre-compact. Furthermore we
choose an index function α : [0,∞)→ [0,∞), i.e. α is strictly increasing and continuous with
α(0) = 0, which has the asymptotic behavior

α(δ)→ 0 and
δr

α(δ)
→ 0 as δ → 0. (4.9)

Then the Tikhonov functional (4.7) with data fitting term (4.8) has a minimizer xδα ∈ D(F) and
R(yδ,α) := xδα is a full (uniform) regularization method in the sense that, if {δn} ⊂ (0,∞)
is a sequence with δn → 0 as n→∞, then the sequence {xδnα(δn)} has a weakly converging
subsequence whose weak limit is a Q-minimizing solution ϑ+ ∈ X of F(ϑ) = y.

It can be shown that for the specific setting (3.4) and Q(ϑ) being a power of the norm in
X, the Tikhonov method (4.7) with data fitting term (4.8) yields a full regularization method
for (4.1).

Theorem 4.8. Let X , Y be reflexive Banach spaces, 1< p<∞, and F : X→ Y be defined as
in (3.4). Furthermore let the penalty term Q be defined as

Q(ϑ) :=
1
q

∥∥ϑ‖qX, ϑ ∈ X.

Then R : Y× (0,+∞)→ X, where R(yδ,α) := xδα is the minimizer of the Tikhonov func-
tional (4.7) with data fitting term (4.8), and a priori parameter choice α(δ) as in (4.9) is a
full regularization method for (4.1) in the sense of proposition 4.7.

Proof. Since every bounded set in a Lebesgue-Bochner space X has a weakly converging
subsequence, it immediately follows that the level sets Mc(Q) are weakly sequentially pre-
compact.

It remains to show that F is weak-to-weak sequentially continuous. Let {ϑn} ⊂ X be a
sequence with ϑn ⇀ϑweakly as n→∞ to a limit ϑ ∈ X. SinceX∗ ∼= Lp

∗
(0,T;X ∗) andY∗ ∼=

Lq
∗
(0,T,Y∗) we have for every y∗ ∈ Lq∗(0,T;Y∗) that
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〈y∗,F(ϑn)〉Y∗×Y =

ˆ T

0
〈y∗ (t) ,S(t)K [ϑn (t)]〉Y∗×Y dt

=

ˆ T

0
〈K∗S(t)∗ y∗ (t) ,ϑn (t)〉X∗×X dt

converges to
ˆ T

0
〈K∗S(t)∗ y∗ (t) ,ϑ(t)〉X∗×X = 〈y∗,F(ϑ)〉Y∗×Y (4.10)

as n→∞ due to the weak convergence of ϑn ⇀ϑ. Equation (4.10) proves that K∗S(t)∗y∗(t) ∈
X∗ and hence can be represented by a function from Lp

∗
(0,T;X ∗). This shows the weak

sequential continuity of F and the assertion follows from proposition 4.7.

4.3. Example 3: variational regularization of time variations

In the following let us provide some other examples of variational regularization naturally
defined in Bochner spaces. For this purpose we first revisit example 3.11, where we considered
the embedding of a time-independent ϑ into a Lebesgue-Bochner space by constant extension
in time. An obvious candidate for a regularization functional is thus

Q(ϑ) :=
1
q

ˆ T

0

∥∥ϑ‖qX dt+
λ

r

ˆ T

0

∥∥ϑ‖rX ′ dt

with some space X ′ ⊃ X. Choosing λ large will lead to an optimal ϑ being close to a time-
independent function. Moreover, the Aubin–Lions lemma can be used again for compactness
properties.

Another canonical choice is to penalize a time variance or generalization thereof via

Q(ϑ) :=
1
q

ˆ T

0

∥∥ϑ(t)−ϑ‖qX dt

with

ϑ=
1
T

ˆ T

0
ϑ(t) dt.

Again, the variational model in the Lebesgue-Bochner space Lp(0,T;X) can be useful for the
modelling of time-invariant solutions ϑ. A particular advantage could be the regularization of
problems where the unknown is actually time-invariant, but there are additional perturbations
arising. An example can be dust drifting through a sample during image acquisiton, which
would actually add a dynamic component to an image ϑ.

4.4. Kaczmarz-based regularization for problems with static source

We furthermore want to emphasize that inverse problems with time-dependent data and/or
time-dependent forward operator are often formulated in a semi-discrete setting

Fi (x) = yi, i = 0, . . .,N− 1, (4.11)

where the indices i refer to discrete time points ti ∈ [0,T] or sections Ii := [ti, ti+1] of the time
interval [0,T] at which the measurements are taken. The parameter that is to be identified is
static in this setting. These problems are usually temporally or locally ill-posed and can be
regularized using Kaczmarz’s method, possibly in combination with other iterative methods
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such as the Landweber technique [35] or sequential subspace optimization [6]. We introduce
three scenarios that have been addressed in the literature and which fit into this framework.

Example 4.9. We consider magnetic particle imaging. If the concentration c of magnetic
particles inside a body D is static, i.e. independent of time, the problem of reconstructing c
from measurements of the induced voltages vk, k= 1, . . .,K, is formulated as

vk (t) = Sk (t)Kk [c] (t) , k= 1, . . . ,K,

with

Kk [c] (t) =
ˆ
D
c(x)sk (x, t) dx

and

Sk (t) =
ˆ T

0
ãk (t− τ)

ˆ
D
c(x)sk (x, τ)dxdτ.

The measurements are taken at time instances ti ∈ [0,T], i = 1, . . .,N. We thus have a time-
dependent forward operator

F= (SkKk)k=1,...,K : L2 (D)→ L2
(
0,T;R3

)
and time-dependent data v ∈ L2(0,T;R3).

Example 4.10. In [25, 35], initial boundary value problems of the form

∂tu= f(t,u(t) ,ϑ) in (0,T)×D,

u= 0 on (0,T)× ∂D,

u(0) = u0 in {0}×D,

yi = Ci u, i = 1, . . .,N,

are considered, where the parameter ϑ ∈ X is to be identified from measurements yi = Ci u :=
(Cu(ti)) at time instances ti ∈ (0,T) of the state function

u ∈W1,p,p∗ (0,T;V,V∗) =
{
v ∈ Lp (0,T;V) : ∂tv ∈ Lp

∗
(0,T;V∗)

}
⊆ C(0,T;H) .

In particular, the parameter ϑ ∈ X is assumed to be independent of time. In a Hilbert space
setting (p= p∗ = 2), we may choose, e.g. X = L2(D).

In [35], the case f(t,u(t),ϑ) = ∆u+Φ(u)+ϑ with a nonlinear function Φ is addressed.
The respective initial boundary value problems arise in several applications. For instance, the
choice Φ(u) = u(1− u2) is related to superconductivity, see [35].

Example 4.11. It is also possible to include the time-dependence, for example a motion or a
deformation, in the mathematical model while the parameter that is to be reconstructed is con-
sidered static. This is the case in dynamic CT, where a known deformation of the investigated
object can be incorporated in the forward operator, yielding a Radon transform along curves,
see, e.g. [13].

As already mentioned, the respective semi-discrete problems (4.11) can be solved iterat-
ively, for example by a combination of Kaczmarz’ method with the Landweber iteration, see,
e.g. [16, 25, 35]. The iteration reads

ϑn+1 = ϑn−
(
F ′
[n] (ϑn)

)∗ (
F[n] (ϑn)− y[n]

)
18
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and is stopped at n∗ with [n∗] = [0] when the adapted discrepancy principle∥∥F[n] (ϑn)− y[n]
∥∥⩽ τ[n]δ[n]

is fulfilled for all n= n∗ −N, . . .,n∗ − 1. Instead of using only one search direction, it is also
possible to use multiple search directions

ϑn+1 = ϑn−
∑
k∈In

tn,k
(
F ′
[n] (ϑk)

)∗ (
F[n] (ϑk)− y[n]

)
,

which has been proposed in [6]. In this sense, one loop through all time-instances corresponds
to one full iteration, in which the static source ϑ is reconstructed.

5. Conclusion and outlook

In this article we discuss the nature of time-dependence in inverse problems and introduce two
novel concepts for ill-posedness and regularization of time-dependent inverse problems, i.e. the
stable computation of time-dependent parameters from data varying in time. For such prob-
lems a mathematical setup in Lebesgue-Bochner spaces is convenient since, e.g. solutions of
hyperbolic or parabolic PDEs show different regularities in time and space. But classical treat-
ments of inverse problems usually rely on static Hilbert and Banach spaces. For both concepts,
the pointwise (temporal) and uniform ill-posedness and regularization, we gave examples such
as temporal observations of compact operators, variational tracking, Tikhonov and Kaczmarz-
based methods. Future research will further extend these theoretical findings to more general
Bochner spaces and aims at an integrated treatment of time-dependent inverse problems in
the linear and nonlinear regimes. Studying the behavior of singular values for linear inverse
problems in Bochner spaces with respect to their decay and their temporal behavior represents
another intriguing subject. Last but not least the theoretical fundaments have to be supported
by applications.
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Appendix. Proof of lemma 2.3

Let cf > 0 be a constant with ‖ fn‖Lp(µ;X ) ⩽ cf for all n ∈ N.

(a) We prove that

lim
r→∞

sup
n∈N

µ({t : ‖ fn (t)‖X > r}) = 0. (A.1)
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We assume the contrary. Let {rk}k∈N be a sequence with limk→∞ rk =+∞ such that

sup
n∈N

µ({t : ‖ fn (t)‖X > rk})> R> 0 for all k ∈ N

with some constant R> 0. Then for each k ∈ N there exists an index nk ∈ N with

µ({t : ‖ fnk (t)‖X > rk})> R.

This implies the existence of values t1(k), t2(k) ∈ [0,T] such that µ([t1(k), t2(k)])> R and
ˆ t2(k)

t1(k)
‖ fnk (t)‖X dµ(t)> µ([t1 (k) , t2 (k)])rk > Rrk.

But this immediately leads to

lim
k→∞

‖ fnk‖Lp(0,T;X ) = lim
k→∞

ˆ T

0
‖ fnk (t)‖X dµ(t)> Rrk =+∞,

which contradicts the boundedness of {fn}. Combining ‖ fn‖⩽ cf and (A.1) we finally obtain

lim
r→∞

sup
n∈N

∥∥χ∥ fn∥>rfn
∥∥p
Lp(0,T;X )

= lim
r→∞

sup
n∈N

ˆ T

0

∥∥χ∥ fn∥>rfn (t)
∥∥p
X dµ(t)

⩽ lim
r→∞

sup
n∈N

µ({t : ‖ fn (t)‖X > r})sup
n∈N

‖ fn‖pLp(0,T;X ) = 0,

proving that {fn} is uniformly Lp-integrable.

(b) Next we prove that {fn} is uniformly tight. To this end we use arguments similar to those in
the proof of theorem 1 from [41]. Let ε> 0 be given arbitrarily. Fix n ∈ N. Since fn is strongly
measurable, its distribution on the Borel sets B(X ) is tight. According to Ulam’s Theorem
(see, e.g. [39, theorem 3.1]) it follows that to each n there exists a compact set Kn ⊆X such
that

µ({t : fn (t) 6∈ Kn})⩽ 2−n. (A.2)

Let n0 ∈ N be sufficiently large that 21−n0 < ε. Define further the sets

Ln :=
{
x ∈ X : d(x,Kn)< 2−n

}
and

K :=
⋂
n⩾n0

Ln ⊆X .

We prove that K is totally bounded. Since Kn is compact, there are finitely many open balls
B(xi,2−n), xi ∈ X , that cover Kn. Then the finitely many open balls B(xi,21−n) cover Ln.
Hence, K is totally bounded and as a closed set also compact. Furthermore we have by (A.2)

µ({t : fn (t) 6∈ K}) ⩽
∑
n⩾n0

µ({t : fn (t) 6∈ Ln})⩽
∑
n⩾n0

µ({t : fn (t) 6∈ Kn})

⩽
∑
n⩾n0

2−n ⩽ 21−n0 < ε.

Since n ∈ N is arbitrary we have

sup
n∈N

µ({t : fn (t) 6∈ K})< ε,

showing that {fn}n∈N is uniformly tight.
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