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Pseudospectral particle-in-cell formulation with arbitrary charge and current-density time
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This paper introduces a formulation of the particle-in-cell (PIC) method for the modeling of relativistic
plasmas, that leverages the ability of the pseudospectral analytical time-domain solver (PSATD) to handle
arbitrary time dependencies of the charge and current densities during one PIC cycle (applied to second-order
polynomial dependencies here). The formulation is applied to a modified set of Maxwell’s equations that was
proposed earlier in the context of divergence cleaning, and to recently proposed extensions of the PSATD-PIC
algorithm. Detailed analysis and testings revealed that, under some condition, the formulation can expand the
range of numerical parameters under which PIC simulations are stable and accurate when modeling relativistic
plasmas such as, e.g., plasma-based particle accelerators.
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I. INTRODUCTION

Simulations of relativistic plasmas often rely on the elec-
tromagnetic particle-in-cell (PIC) method [1–3], with varia-
tions of the method that have been proposed and are chosen
based on the application. For the modeling of plasma-based
accelerators [4,5], a variation that has gained in popularity
uses the “infinite-order” (in space and time) pseudospectral
analytical time-domain solver (PSATD) method [6,7], in-
stead of the (almost universally adopted) second-order (in
space and time) finite-difference time-domain (FDTD) “Yee”
method [8], to solve Maxwell’s equations at discrete points
in space and time. In contrast to the Yee solver, the PSATD
solver offers no numerical dispersion and no Courant condi-
tion on the field solve. Extensions of the PSATD PIC method
includes the use of finite-order spatial stencils [9,10], alter-
nating nodal-staggered representations of the field quantities
during one PIC loop [11], time-averaging of the fields gath-
ered onto the particles [12], and integration of the equations in
a Galilean frame moving at a given velocity (a.k.a. Galilean
PSATD PIC or Galilean PIC) [13,14]. The combination of
the Galilean PIC method with the other extensions has led
to stable modeling of plasma accelerators [13,14], free of the
numerical Cherenkov instability (NCI) [15] when using the
Lorentz boosted frame method to speed up simulations [16].
In some cases, however, the method, which relies on the user
setting a predefined Galilean velocity, can become inaccurate
when it cannot be assumed that the local plasma velocity is
close to that predefined velocity. As a possible remedy, this
paper introduces and starts exploring a formulation of the
PIC algorithm where the standard assumption that the current
density that is produced by the particles is constant over a time
step is relaxed.

*Contact author: jlvay@lbl.gov

The reminder of the paper is organized as follows. The
formulation of the algorithm is derived first in Sec. II A, fol-
lowed by the presentation of its finite-order stencil, alternating
nodal-staggered and time-averaged extensions in Sec. II B.
The connection between the algorithm and the Galilean PIC
formulation is discussed next in Sec. II C. The effectiveness
of the algorithm at mitigating the NCI is then explored theo-
retically and numerically on a simple uniform plasma case in
Sec. III A. Finally, the scheme is tested in simulations of laser-
plasma accelerators in a Lorentz boosted frame in Sec. III B.

II. NEW PIC-JRhom ALGORITHM

A. Presentation of the algorithm

The following modified system of Maxwell’s equations is
considered:

∂E
∂t

= c2∇ × B − J
ε0

+ c2∇F, (1a)

∂B
∂t

= −∇ × E, (1b)

∂F

∂t
= ∇ · E − ρ

ε0
. (1c)

In addition to the usual Maxwell-Faraday and Ampère-
Maxwell equations, the system contains an extra equation for
the scalar field F , which propagates deviations to Gauss’ law.
(Note that, in the case where Gauss’ law is verified in the PIC
simulation, Eq. (1c) leads to F = 0, and Eqs. (1a) and (1b)
reduce to the standard Maxwell’s equations.) These addi-
tional terms were introduced in Ref. [17] from the potential
formulation in the Lorentz gauge and used as a propaga-
tive divergence cleaning procedure, as an alternate to the
Langdon-Marder [18] or Marder [19] diffusive ones. This type
of divergence cleaning was also proposed independently and
analyzed more formally in Ref. [20]. A connection to the

2470-0045/2024/110(2)/025206(19) 025206-1 ©2024 American Physical Society

https://orcid.org/0000-0001-5662-4646
https://orcid.org/0000-0002-0040-799X
https://ror.org/02jbv0t02
https://ror.org/01js2sh04
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.110.025206&domain=pdf&date_stamp=2024-08-23
https://doi.org/10.1103/PhysRevE.110.025206


OLGA SHAPOVAL et al. PHYSICAL REVIEW E 110, 025206 (2024)

formulation of Eqs. (1) in potential form, derived more
formally than in Ref. [17], is instructive and given in
Appendix A.

While the abovementioned earlier work [17,20] considered
this formulation in the context of the standard PIC method
using FDTD discretization of Eqs. (1), this article focuses
on the PSATD [1,6,7] discretization of Eqs. (1), where the
equations are integrated analytically over one time step, in
Fourier space. The expression of Eqs. (1) in Fourier space
reads

∂Ê
∂t

= ic2k × B̂ − Ĵ
ε0

+ ic2F̂k, (2a)

∂B̂
∂t

= −ik × Ê, (2b)

∂F̂

∂t
= ik · Ê − ρ̂

ε0
, (2c)

where f̂ denotes the Fourier transform of function f . The an-
alytical integration of Eqs. (2) in time requires an assumption
on the time dependency of the current and charge densities Ĵ
and ρ̂ over the integration interval, i.e., over a time step that
goes from t = n�t to t = (n + 1)�t . In the standard PSATD
algorithm [6,7], Ĵ is assumed to constant in time, and ρ̂ is
assumed to be linear in time, within a given time step �t .

This paper considers more general time dependencies for Ĵ
and ρ̂ within one time step, which is divided into m subinter-
vals of equal size δt = �t/m. During these subintervals, Ĵ and
ρ̂ are considered to be either piecewise constant, piecewise
linear, or piecewise quadratic in time. This is illustrated in
Fig. 1. In the rest of this paper, the notation “PIC-JRhom” is
used, where J and Rho (J, Rho ∈ {C (constant), L (linear), Q
(quadratic)}) indicate the (piecewise) time dependency of the
current density Ĵ and charge density ρ̂, respectively, and m is
the number of subintervals. For example, “PIC-LL2” refers to
the PIC algorithm with linear time dependency of both Ĵ and
ρ and 2 subintervals. Note that, in this notation, “PIC-CL1”
refers to the standard PSATD PIC algorithm [7], where Ĵ is
constant and ρ̂ is linear in time over one time step.

More specifically for each �th time subinterval � ∈ Z ∩
[0, m − 1]:

(1) When ρ̂(t ) is assumed to be piecewise constant:
macroparticles deposit their charge density in the middle
of each time subinterval, i.e., at tn+(�+1/2)/m ≡ n�t + (� +
1/2)δt , and ρ̂ is then assumed to be constant in each subin-
terval:

ρ̂(t ) = ρn+(�+1/2)/m, t ∈ [n�t + �δt, n�t + (� + 1)δt].

(2) When ρ̂(t ) is assumed to be piecewise linear:
macroparticles deposit their charge density at the edge of each
time subinterval, i.e., at tn+�/m ≡ n�t + �δt and tn+(�+1)/m ≡
n�t + (� + 1)δt , and ρ̂ is then assumed to be linear in each
subinterval:

ρ̂(t ) = ρ̂ n+(�+1)/m − ρ̂ n+�/m

δt
(t − tn+(�+1/2)/m)

+ ρ̂ n+(�+1)/m + ρ̂ n+�/m

2
,

t ∈ [n�t + �δt, n�t + (� + 1)δt].

(3) When ρ̂(t ) is assumed to be piecewise quadratic:
macroparticles deposit their charge density at the middle and
edge of each time subinterval, i.e., at tn+(�+1/2)/m, and at tn+�/m

and tn+(�+1)/m. ρ̂ is then assumed to be quadratic in each
subinterval:

ρ̂(t ) = 2(ρn+(�+1)/m − 2ρ̂ n+(�+1/2)/m + ρn+�/m)

δt2

× (t − tn+(�+1/2)/m)2 + ρ̂ n+(�+1)/m − ρ̂ n+�/m

δt

× (t − tn+(�+1/2)/m) + ρn+(�+1/2)/m,

t ∈ [n�t + �δt, n�t + (� + 1)δt],

with similar definitions for Ĵ, when Ĵ(t ) is assumed to be
piecewise constant, piecewise linear, or piecewise quadratic,
respectively.

Overall, the time dependency of Ĵ and ρ̂ can thus
be expressed, for t ∈ [n�t + �δt, n�t + (� + 1)δt], with
� ∈ [0, m − 1], as

Ĵ(t ) = 2aτ
J

δt2
(t − tn+(�+1/2)/m)2 + bτ

J

δt
(t − tn+(�+1/2)/m) + cτ

J,

(3a)

ρ̂(t ) = 2aτ
ρ

δt2
(t − tn+(�+1/2)m)2 + bτ

ρ

δt
(t − tn+(�+1/2)m) + cτ

ρ,

(3b)

where the coefficients of the polynomials are given in Table I.
It is important to note that the particles’ momenta are not

updated during one time step, i.e., the proposed scheme does
not involve subcycling of the macroparticles motion. As in
standard PSATD PIC, macroparticles move in straight line
from their known position at tn = n�t to time t , using their
known momentum at tn+1/2:

x(t ) = xn + pn+1/2

m
√

1 + (pn+1/2/mc)2
(t − tn),

where xn and pn+1/2 follow the standard leap-frog time step-
ping that is commonly used in PIC simulations. Thus, here,
even though the charge and current density may be deposited
several times per time step �t , the macroparticles’ momentum
p is only updated once per time step, and therefore the fields E
and B are gathered onto macroparticles to update p only once
per time step also.

While charge-conserving deposition can be used readily
with schemes CLn, since the time dependency of the current
is the derivative of the time dependency of the charge density,
as required by the continuity equation, there are no obvious
such schemes for CCn, LLn, and QQn. Hence, exact charge
conservation is not addressed in the present work and direct
deposition of charge and current densities, i.e., ρ = ∑

S(xp −
xi, j,k )qp/V and J = ∑

S(xp − xi, j,k )qpvp/V , where qp, xp,
and vp are, respectively, the particles charge, positions, and
velocities and V = �x�y�z is the volume of a grid cell, are
used for all simulations.

Using the piecewise definition of ρ̂ and Ĵ given in Eqs. (3),
Eqs. (2) can be integrated analytically over one time step
�t , i.e., from t = n�t to t = (n + 1)�t . In practice, this is
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FIG. 1. Diagrams illustrating various time dependencies of the current density J and charge density ρ for constant/linear (CL), both
constant (CC), linear (LL), and quadratic (QQ) dependencies with m subintervals: (first column) m = 1, (second) m = 2, and (third) m = 4.
CL1 corresponds to the standard PSATD PIC method. The triangle and circle glyphs represent the times at which the macroparticles deposit
ρ and J on the grid, respectively. The dashed and solid lines represent the assumed time dependency of ρ and J within one time step, when
integrating the Maxwell equations analytically.
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TABLE I. Polynomial coefficients (PC), based on the time dependency of the current and charge densities Ĵ and ρ̂ over �th time subinterval
[n�t + �δt, n�t + (� + 1)δt].

Time dependency of Ĵ or ρ̂

PC Constant (τ = 0) Linear (τ = 1) Quadratic (τ = 2)

aτ
J 0 0 Ĵ

n+(�+1)/m − 2̂J
n+(�+1/2)/m + Ĵ

n+�/m

bτ
J 0 Ĵ

n+(�+1)/m − Ĵ
n+�/m

Ĵ
n+(�+1)/m − Ĵ

n+�/m

cτ
J Ĵ

n+(�+1/2)/m
(̂J

n+(�+1)/m + Ĵ
n+�/m

)/2 Ĵ
n+(�+1/2)/m

aτ
ρ̂ 0 0 ρ̂ n+(�+1)/m − 2ρ̂ n+(�+1/2)m + ρ̂ n+�/m

bτ
ρ̂ 0 ρ̂ n+(�+1)/m − ρ̂ n+�/m ρ̂ n+(�+1)/m − ρ̂ n+�/m

cτ
ρ̂ ρ̂ n+(�+1/2)/m (̂ρ n+(�+1)/m + ρ̂ n+�/m )/2 ρ̂ n+(�+1/2)m

done by sequentially integrating these equations over each
subinterval � ∈ [0, m − 1]:

Ê
n+(�+1)/m = CÊ

n+�/m + ic2 S

ck
k × B̂

n+�/m + ic2 S

ck
F̂ n+�/mk

+ 1

ε0ck
(Y3aJ + Y2bJ − ScJ )

+ ic2

ε0c2k2
(Y1aρ − Y5bρ − Y4cρ )k, (4a)

B̂
n+(�+1)/m = CB̂

n+�/m − i
S

ck
k × Ê

n+�/m

− i

ε0c2k2
k × (Y1aJ − Y5bJ − Y4cJ ), (4b)

F̂ n+(�+1)/m = CF̂ n+�/m + i
S

ck
k · Ê

n+�/m

+ i

ε0c2k2
k · (Y1aJ − Y5bJ − Y4cJ )

+ 1

ε0ck
(Y3aρ + Y2bρ − Scρ ), (4c)

where

C = cos(ckδt ), S = sin(ckδt ),

Y1 = (1 − C)(8 − c2k2δt2) − 4Sckδt

2c2k2δt2
,

Y2 = 2(C − 1) + Sckδt

2ckδt
,

Y3 = S(8 − c2k2δt2) − 4ckδt (1 + C)

2c2k2δt2
,

Y4 = (1 − C), Y5 = (1 + C)ckδt − 2S

2ckδt
. (5)

The steps of the PIC-JRhom cycle with sub-time-stepping
are summarized in the diagram shown in Fig. 2.

Assuming that the electric and magnetic fields are known
from the previous time step at iteration n, the particles veloc-
ities are pushed from n − 1/2 to n + 1/2, then the positions
from n to n + 1. The charge and current densities are then
obtained at every substep using direct deposition, as described
above, assuming that the velocities are constant and the posi-
tions evolve linearly over the interval n → n + 1.

It is important to note that the algorithm preserves the
property of absence of spurious self-force when using the
same shape factor for field gather as for charge and current
deposition, as with standard PIC. Further discussion of the
property preservation and tests are given in Appendix B.

B. Extensions

As shown in Refs. [9–12], the PSATD PIC algorithm can
be extended to (a) arbitrary-order spatial stencils, (b) a scheme
that alternates between nodal and staggered representations of
the field components on the simulation grid, and (c) a scheme
that averages the fields to be gathered over one timestep. Such
extensions are presented in the next sections for the PSATD
PIC-JRhom algorithm.

FIG. 2. Diagram of the PIC-JRhom algorithm.
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1. Extension to finite-order stencils

When using domain decomposition to run PSATD PIC
methods on parallel computers, it is advantageous to alter
the wave vector in the Fourier representation of the equa-
tions to emulate a finite-difference approximation of the
spatial derivatives at a finite order p, since this enhances the
locality of the field solvers and thus reduces the required
number of guard cells around each subdomain [9,10]. The
modified [kp

u ] at order p along the direction u = x, y, z are then
given by[

kp
u

]
nodal =

p/2∑
j=1

[
α

p
j

]
nodal

sin(ku j�u)

j�u
, u = x, y, z, (6a)

[
kp

u

]
staggered =

p/2∑
j=1

[
α

p
j

]
staggered

sin(ku( j − 1/2)�u)

( j − 1/2)�u
,

u = x, y, z, (6b)

for a nodal and staggered representation, respectively, with the
following Fornberg coefficients [21]:[

α
p
j

]
nodal = (−1) j+1 2[(p/2)!]2

(p/2 − j)!(p/2 + j)!
, (7a)

[
α

p
j

]
staggered = (−1) j+1

[
p!

2p(p/2)!

]2

× 4

(2 j − 1)(p/2 − j)!(p/2 + j − 1)!
. (7b)

These modified wave numbers can be readily used with the
PIC-JRhom algorithm to limit the number of guard cells and
enable efficient parallel simulations, just as with other flavors
of PSATD PIC algorithms [9,10].

2. Extension to alternating nodal-staggered grids

Just like the standard and averaged formulations of PSATD
PIC, the PIC-JRhom algorithm can readily adopt the “hybrid
nodal-staggered” scheme presented in Ref. [11] where the
field alternate between nodal and staggered representations
on the simulation grid. More precisely, the Maxwell solve
and guard cell exchanges are performed on a staggered “Yee”
grid while the charge/current depositions and fields gather are
performed with field quantities on a separate nodal grid. This
“hybrid” alternating nodal-staggered extension allows to re-
tain the advantages of low numerical dispersion and compact
stencils of the integration of Maxwell’s equations on a stag-
gered grid with the stability associated with the interpolation
of fields onto the particles from a nodal grid [11] (especially
for NCI-prone boosted-frame simulations). The application
of the “hybrid” alternating nodal-staggered scheme to PIC-
JRhom leads to the steps shown in Fig. 3.

3. Extension to the time-averaged PSATD PIC algorithm

In Ref. [12], an extension to PSATD PIC, named time-
averaged PSATD PIC (also labeled as averaged PIC for
convenience), is presented that enables stable boosted-frame
simulations even when the time step is larger than the Courant
condition along a given axis, e.g., c�t = �z > �x. With the
time-averaged algorithm, the field quantities that are gathered

onto the particles are given by time averages of the fields
on the grid obtained by analytically integrating the Ê and
B̂ fields from t = n�t to t = (n + 2)�t . The time-averaged
PIC-JRhom algorithm consists of the steps shown in Fig. 4,
where the analytical average of Ê and B̂ at time t = (n + 1)�t
are

〈
Ê

n+1〉 = 1

2�t

2m−1∑
�=0

[
S

ck
Ê n+�/m + ic2Y4

c2k2
k × B̂ n+�/m

+ ikY4

2ckδt
F̂ n+�/m + 1

ε0c2k2

(
Y1aτ

J − Y5bτ
J − Y4cτ

J

)
− ic2k

(
Y6aτ

ρ + Y7bτ
ρ + Y8cτ

ρ

)]
, (8a)

〈
B̂

n+1〉 = 1

2�t

2m−1∑
�=0

[
S

ck
B̂

n+�/m − iY4

c2k2
k × Ê

n+�/m + ik

× (
Y6aτ

J + Y7bτ
J + Y8cτ

J

)]
. (8b)

For a detailed derivation see Appendix D.

C. Relation to the Galilean PSATD PIC algorithm

This section examines the relationship between the
Galilean PIC algorithm, the standard PSATD PIC algorithm
and the PIC-JRhom algorithm. To this end, it is instructive
to “deconstruct” the Galilean PIC algorithm by separating
it in two independent steps: (i) a shift of the quantities to
recenter them on a grid moving at vgal, (ii) the integration
of the PSATD equations assuming that the current source is
constant along the flow moving at the Galilean velocity vgal.

The standard Galilean PIC scheme [13,14] can then be
written highlighting terms that arise from step (i) in red
in Eqs. (9a) and (9b) and those from step (ii) in blue in
Eqs. (10a)–(10d) and (11):

B̂
n+1 = Cθ2B̂

n − i
S

ω
k × (θ2Ê

n
) + i X1 k × θ Ĵ

n+ 1
2 , (9a)

Ê
n+1 = Cθ2Ê

n + i c2 S

ω
k × (θ2B̂

n
) + X4 θ Ĵ

n+ 1
2

+ i (X3 θ2ρ̂ n − X2 ρ̂ n+1) k, (9b)

where the coefficients X1, X2, X3, and X4 are defined as

X1 := 1

ε0(ω2−�2)

(
θ∗ − θ C+i �θ

S

ω

)
, (10a)

X2 := c2

θ∗ − θ

(
θ∗ χ1

ε0 ω2
−θ

1 − C

ε0 ω2

)
, (10b)

X3 := c2

θ∗ − θ

(
θ∗ χ1

ε0 ω2
−θ∗ 1 − C

ε0 ω2

)
, (10c)

X4 := i � X1 − θ

ε0

S

ω
, (10d)

with

χ1 := ω2

ω2−�2

(
θ∗ − θ C + i �θ

S

ω

)
, (11)
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FIG. 3. Diagram of the alternating nodal-staggered PIC-JRhom algorithm.

where � := vgal · k, ω := c k, C := cos(ω �t ), S :=
sin(ω �t ), θ := ei��t/2, and θ∗ := e−i��t/2.

When setting vgal = 0, the system (9a)–(11) converges to
the standard PSATD algorithm, as expected.

Step (i), which corresponds to the multiplication of some of
the terms by θ or θ2, in red in Eqs. (9a) and (9b), is the easiest
to interpret: noting that a multiplication by θ := ei��t/2 in
Fourier space corresponds to shifting the terms spatially by
the distance vgal�t/2 in real space, the terms known at time
n + 1/2 are multiplied by θ , hence shifted by vgal�t/2 while
the terms known at time n are multiplied by θ2, hence shifted
by vgal�t . These are exactly the shifts that are needed to bring
the corresponding quantities to their new grid location after
one time step, when assuming a Galilean frame of reference
moving at vgal.

Understanding the terms associated with step (ii) requires
a more detailed comparison between how the standard and
the Galilean PIC equations are obtained. The standard PSATD

algorithm is derived assuming that the current density (source
term) is constant over one time step on a fixed grid. The
Galilean algorithm makes the same assumption but in a
Galilean frame, i.e., that the current density (source term) is
constant over one time step on a Galilean grid. Following this
comparison, it flows logically that step (ii) ought to corre-
spond to an integration of the PSATD equations on a fixed
grid assuming that the currents are constant along a segment
of length vgal�t . Indeed, it was verified that integrating the
PSATD equations based on these assumptions leads to the
system (9a)–(11) with the terms highlighted in red replaced
by 1 in Eqs. (9a) and (9b).

From this, it follows that the algorithm PIC-JRhom is
related to step (ii) of the Galilean PIC algorithm in the fol-
lowing way. While step (ii) of Galilean PIC provides a more
accurate analytical integration of the PSATD equations over
one time step for a flow that moves uniformly at vgal, the PIC-
JRhom, with its arbitrary time-dependence of J and ρ and its
subintervals, provides a more accurate analytical integration
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FIG. 4. Diagram of the time-averaged PIC-JRhom algorithm.

of the PSATD equations over one time step for an arbitrary
local flow of particles. The PIC-JRhom algorithm can thus be
viewed as a possible generalization of step (ii) of the Galilean
PIC algorithm. Indeed, the numerical tests discussed below
show that, like the Galilean PIC algorithm, PIC-JRhom can
lead to simulations that are very stable with regard to the
numerical Cherenkov instability, and that it can also remain
accurate in cases where the Galilean assumption is becoming
less appropriate.

III. NUMERICAL TESTS

This section presents various physics applications to
test the PIC-JRhom algorithm. All simulations and results
have been performed and obtained with the open-source
electromagnetic PIC code WarpX [22–24]. The current im-
plementation provides the flexibility to:

(1) Choose an arbitrary polynomial time dependency of J
and ρ among the following combinations:
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FIG. 5. WarpX simulations of a uniform plasma with a time step at the Courant condition limit c�t = �x = �z and a stencil at infinite
order, without divergence cleaning. The total electromagnetic (EM) energy of a uniform plasma drifting at relativistic velocity v0 along the
z axis is plotted versus the time of the simulation with (a) the same time-dependencies for J and ρ and (b) different time-dependencies for
J and ρ, for various combinations of time-dependency and number of time-step subintervals. Here, ωp,r = ωp/

√
γ0 is the relativistic plasma

frequency, where time ωp,rt = 4000 corresponds to roughly 6.7 × 104 time steps.

(a) J and ρ constant in time (CCm);
(b) J constant in time and ρ linear in time (CLm);
(c) J and ρ linear in time (LLm);
(d) J and ρ quadratic in time (QQm);

(2) Choose the number of subintervals m within one time
step;

(3) Turn on/off the divergence cleaning term, that is, solve
Maxwell’s equations (1) with or without the scalar field F ;

(4) Turn on/off the time averaging of the E and B fields
gathered on the macro-particles, as in Eq. (8).

To assess the stability of the PIC-JRhom method theo-
retically, the analytical dispersion equation was derived (see

FIG. 6. WarpX simulations of a uniform plasma with a time step at the Courant limit c�t = �x = �z and a stencil at infinite order,
with divergence cleaning. The total electromagnetic (EM) energy of a uniform plasma drifting at relativistic velocity v0 along the z axis is
plotted versus the time of the simulation with (a) same time-dependencies for Ĵ and ρ̂ and (b) different time-dependencies for Ĵ and ρ̂, for
various combinations of time-dependency and number of time-step subintervals. The energy history from a simulation using the Galilean PIC
algorithm [13] is also plotted for comparison in plot (a).
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FIG. 7. NCI growth rates, with small time step c�t = �x. Normalized NCI growth rates Im(ω)/ωp,r in spectral space (kx, kz ), calculated
from (a) the analytical dispersion equation and (b) WarpX simulations using four different solvers: Galilean PIC with matched velocity
(vgal = v0), standard PIC-CL1, PIC-CC1, and PIC-LL1. All numerical and physical parameters are the same as in Fig. 6: divergence cleaning
is used in all cases except for Galilean PIC. The simulation time step is c�t = �x = �z and the transverse and longitudinal cell sizes are
�x = 6.45 × 10−2 k−1

p,r , where k2
p,r = n0e2/(ε0mec2γ0 ).

Appendix E). This allows to predict the growth rates of the nu-
merical Cherenkov instability in the case of a uniform drifting
plasma. Moreover, a variety of WarpX simulation tests were
run to further investigate the method’s stability and accuracy.
These tests include: 2D simulations of a uniform plasma drift-
ing with a relativistic velocity v0 (with/without divergence
cleaning, with/without subintervals, and with small/large
time steps) and 3D simulations of laser wakefield acceleration
(LWFA).

A. Stability of a uniform plasma drifting at relativistic velocity

This section presents WarpX simulations of a uni-
form electron-proton plasma with density n0 = ε0mec2γ0/e2

(where ε0 is the permittivity of free space, c is the speed of
light in free space, and e and me are, respectively, the electron
charge and mass), drifting along z with a relativistic velocity
v0 = (0, 0, v0), with v0 = c

√
1 − 1/γ 2

0 and Lorentz factor
γ0 = 130, through a two-dimensional computational domain
with xmin = zmin = −6.45 µm and xmax = zmax = 6.45 µm, pe-
riodic boundary conditions and 600 × 200 grid cells along
x and z, respectively. The simulations were performed with
4 particles per cell, per species, 1 pass of bilinear filter in
the transverse direction x and 4 passes in the longitudinal
direction z (the direction along which the plasma is drifting).
Four cases were considered:

(1) PIC-JRhom with c�t = �x = �z without divergence
cleaning (Fig. 5);

(2) PIC-JRhom with c�t = �x = �z with divergence
cleaning (Figs. 6 and 7);

(3) averaged PIC-JRhom with c�t = 6�x = �z with di-
vergence cleaning (Fig. 8);

(4) PIC-JRhom with c�t = �x = �z and averaged PIC-
JRhom with c�t = 6�x = �z, with divergence cleaning and
finite order stencils (Figs. 9 and 10);
and are discussed below in detail.

(1) PIC-JRhom with c�t = �x = �z without divergence
cleaning.

Figure 5 shows the total electromagnetic energy as a
function of ωp,rt = ωpt/

√
γ0 =

√
e2n0/(meε0) obtained from

WarpX simulations using PIC-JRhom with CCm, LLm, QQm,
CLm and LQm, for m = 1, 2, 5, 10, without divergence clean-
ing. In this case, increasing the order of the polynomial
dependency (from C, L, to Q), or time-step subintervals (m >

1), helps delaying the onset of the instability and lower-
ing the growth rate. When using the same time dependency
for J and ρ (CC, LL, and QQ), for a given number of
depositions per step, it is more advantageous to increase
the order of the polynomial than to increase the subinter-
vals number m. Conversely, when using a different time
dependency for J and ρ (CL, LQ), it is more advantageous
to increase the number of subintervals m than to increase
the order of the polynomial. Matching the time dependency
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FIG. 8. WarpX simulation of a uniform plasma with c�t = �z = 6�x . Total electromagnetic (EM) energy of a uniform plasma drifting
at relativistic velocity v0 along the z axis. Simulations were performed with time steps of c�t = �z = 6�x and divergence cleaning, for
(a) PIC-CLm, (b) PIC-CCm, (c) PIC-LLm, and (d) PIC-QQm, with m = 1, 2, 4. The results from a simulation using the average Galilean PIC
solver is also plotted for comparison.

of Ĵ and ρ̂ (as in CC, LL, QQ) is also increasing sta-
bility, with PIC-LL5 and PIC-QQ2 being more stable than
PIC-LQ10.

(2) PIC-JRhom with c�t = �x = �z with divergence
cleaning.

Figure 6 shows the total electromagnetic energy as a
function of ωp,rt obtained from WarpX simulations using
PIC-JRhom with CCm, LLm, QQm, CLm, and LQm for m =
1, 2, 5, 10, with divergence cleaning. The energy history from
a simulation using the Galilean PIC algorithm [13] is also
plotted for comparison.

In contrast to the previous case, when divergence cleaning
is used, having the same time dependency for Ĵ and ρ̂ leads to
an extraordinary level of stability that is comparable to the one

of the Galilean PSATD method. Conversely, turning on the
divergence cleaning degrades significantly the stability when
using different time dependencies for Ĵ and ρ̂ (CL and LQ).

The remarkable stability reported in Fig. 6 when matching
the time-dependencies is confirmed with a theoretical NCI
analysis. Figure 7 shows the NCI growth rates, Im(ω)/ωp,r ,
obtained from theoretical calculations and WarpX simulations
for the Galilean PIC, the standard PSATD PIC (CL1), PIC-
CC1, and PIC-LL1, with an excellent agreement between
theory and simulations.

A detailed derivation of the two-dimensional dispersion
equation for the PIC-JRhom scheme, for time dependencies
of Ĵ and ρ̂ up to quadratic, is presented in Appendix E, clar-
ifying the origin of the remarkable stability that is observed
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FIG. 9. WarpX simulation of a uniform plasma at finite spectral order p. Total electromagnetic (EM) energy of a uniform plasma drifting
at relativistic velocity v0 along the z axis. Simulations were performed with (a) the standard PICp-JRhom algorithm with c�t = �z = �x and
(b) the averaged PICp-JRhom algorithm with c�t = �z = 6�x, using linear time dependency for Ĵ and ρ̂ in all cases and varying the spectral
order p = 8, 16, 32.

with PIC-CC1, PIC-LL1 and PIC-QQ1. As explained in the
Appendix, it can be shown that under some conditions that
include having the same time dependency for Ĵ and ρ̂, key
terms cancel out in the analysis matrix, leading to stable real
solutions of the determinant.

(3) Averaged PIC-JRhom with c�t = 6�x = �z with di-
vergence cleaning.

In this test, the transverse cell size is intentionally set to a
much smaller value than the longitudinal cell size, as typical
in plasma accelerator simulations in a Lorentz boosted frame
of reference [16,25] with a high Lorentz factor γ0 [12], while
keeping the time step at the CFL limit of the longitudinal
cell size: c�t = �z = 6�x. The results from Fig. 8 show
that this case is more challenging for all schemes, and even

the averaged Galilean PIC scheme is not stable beyond 1000
plasma periods. Increasing the order of the polynomial and
the number of subintervals m both help delaying the onset
and lowering the growth rate of the instability, slowly for
CLm but quite effectively for CCm, LLm, and QQm, with
increasing the number of subintervals m being the most ef-
fective strategy for a given number of depositions per time
step.

(4) PICp-JRhom with c�t = �x = �z and averaged
PICp-JRhom with c�t = 6�x = �z, with divergence clean-
ing and finite order stencils.

This test shows numerical (Fig. 9) and theoretical (Fig. 10)
evidence that using a stencil at finite-order p with PICp-LLm
leads to a degradation of the stability that increases as the

FIG. 10. NCI growth rates. Normalized NCI growth rates Im(ω)/ωp,r in spectral space (kx, kz ), calculated from the analytical dispersion
equation of the PICp-LL1 algorithm with different stencil order p = 8, 16, 32. Solid grey lines correspond to (mt , mz ) = (0, 0) mode, which
blue-shifts as the stencil order increases. All numerical and physical parameters are the same as the ones used for the results reported in Fig. 9.
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FIG. 11. WarpX simulation of LWFA with various time steps. Snapshots of the longitudinal electric field Ez (x, z) slice at time t = 28.05 ps
from the 3D simulation of two consecutive laser-driven plasma accelerator stages using the Galilean PIC16 and PIC16-JRhom (with JRhom =
CC1, CL1, LL1, CC2, LL2 or QQ1) algorithms with time step (a) c�t = �x = �z/6, (b) c�t = 3�x = �z/2 and (c) c�t = 6�x = �z. The
laser (not shown) that drives the wake propagates from left to right.

order p decreases. This is because the NCI resonant modes,
caused by temporal and spatial aliasing, depends on the stencil
order:

[
kp

x,res

] =
√([

kp
z
]v0

c
+ mz

2π

�z

v0

c
− 2πmt

c�t

)2

− [
kp

z
]2

, (12)

for any mz, mt ∈ Z, where mz is the spatial alias index and
mt is the temporal alias index [26]. As the stencil order gets

lower, such resonant modes relocate to lower wavenumbers
where the resonance is stronger, as can be seen on Fig. 10
that shows the theoretical NCI growth rate at different spec-
tral orders, p = 8, 16, 32. A nonzero growth rate is observed
solely along the NCI resonant mode that is caused by aliasing
between the temporal mt = 0 and spatial mz = 0 modes. The
results from Figs. 9 and 10 indicate that the choice of stencil
order will depend on the total duration of the simulations (as
measured in plasma periods) for a given application.
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×

FIG. 12. WarpX simulation of LWFA. Ez-field lineouts at x = 0 for selected cases of the results reported in Fig. 11.

B. Laser-plasma acceleration

This section demonstrates the extension of the stability
properties observed in the uniform plasma cases to realistic
3D simulations of laser wakefield acceleration (LWFA) [4].
In these runs, a Gaussian laser pulse with amplitude a0 = 1.7,
duration τ = 73.3 fs, and waist w0 = 50 µm is injected at the
entrance of a parabolic plasma channel with a background
density n0 = 1018 cm−3 on axis. The simulations are run in
a Lorentz boosted frame of reference [16] with γ0 = 60 using
the PIC16-JRhom scheme (stencil order p = 16 in all direc-
tions) with a hybrid alternating nodal-staggered grids (using
field and current centering of order 16 in all directions) [11].
Similarly to the uniform plasma case, a bilinear filter was
applied to the current and charge densities at each time step,
with four passes in the z direction and one pass in the other di-
rection. The simulations were run on the National Energy Re-
search Scientific Computer Center (NERSC) supercomputer

Perlmutter using 36 nodes (144 GPUs), with domain de-
composition along both x and z, using 24 guard cells in
each direction. The longitudinal resolution (in the boosted
frame) was set to �z = (1 + β0)γ0λlab/24 = 4.08 µm, where
β0 =

√
1 − 1/γ 2

0 and λlab = 0.8 µm is the driving laser wave-
length in the laboratory frame, while the transverse resolution
was �x = 0.68 µm, so that �z = 6�x. Simulations were also
performed with the standard and averaged Galilean PIC16

algorithm [13,14] for reference.
Figure 11 displays snapshots of the longitudinal elec-

tric field Ez from simulations running the Galilean PIC16

and the PIC16-JRho algorithms at time t = 28.05 ps (which
corresponds to ωp,rt = 84.3) with different simulation time
steps: (a) c�t = �x = �z/6, (b) c�t = 3�x = �z/2 and (c)
c�t = 6�x = �z. Figure 12 shows the corresponding line-
outs at x = 0 for a selection of runs. Table II compares the
performance of the various runs in each case.

TABLE II. Performance comparison of runtimes for 3D LWFA simulations shown in Fig. 11 using different spectral PIC solvers, run on
the Perlmutter supercomputer without I/O, using 36 nodes (144 GPUs), with domain decomposition in x and z and with 24 guard cells in each
direction. Average time per step is from running up to time t = 1.33 ps which corresponds to the first 600 time steps with c�t = �x, or first
300 time steps with c�t = 3�x, or the first 100 time steps c�t = 6�x.

PSATD PIC
solver c�t/�x Averaged in time Stability Average time per step [s]

Total time at
t = 1.33 ps [s]

Galilean PIC 1 No Stable 0.1441 86.4602
PIC-CL1 1 No Unstable 0.1454 87.27
PIC-CC1 1 No Stable 0.1405 84.35218

Galilean PIC 3 Yes Stable, but inaccurate 0.1797 35.95
PIC-CC1 3 Yes Stable 0.2349 46.995
PIC-LL1 3 Yes Stable 0.2937 58.7453

Galilean PIC 6 Yes Stable, but inaccurate 0.1862 18.62602
PIC-CC1 6 Yes Unstable 0.2645 26.4574
PIC-CC2 6 Yes Stable 0.3995 39.956
PIC-LL1 6 Yes Unstable 0.3289 32.8913
PIC-LL2 6 Yes Stable 0.4692 46.929
PIC-QQ1 6 Yes Stable 0.465 45.52
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When using the “small” time step c�t = �x = �z/6, the
PIC16-CC1 algorithm is as effective as the standard Galilean
PIC16 algorithm for mitigating the NCI instability (which is
emerging at the end of the second stage in the simulations
using PIC16-CL1), with around 20% speedup. For larger time
steps c�t = 3�x = �z/2 and c�t = 6�x = �z, although
the averaged Galilean PIC16 method is stable, it does not
produce accurate physics results, leading to a very diminished
amplitude of the electric field in the second stage. Instead, the
averaged PIC16-JRhom method is stable and produces accu-
rate results provided that the numbers of deposition and the
number of time-step subintervals are high enough. For c�t =
3�x = �z/2, both PIC16-CC1 and PIC16-LL1 are stable and
accurate, with respective speedups of approximately 1.8×
and 1.5× as compared to the Galilean reference case with
small time steps. For c�t = 6�x = �z, both PIC16-CC1 and
PIC16-LL1 are unstable, while PIC16-CC2, PIC16-LL2, and
PIC16-QQ1 are stable and accurate, with respective speedups
of approximately 2.2×, 1.8×, and 1.9× as compared to the
Galilean reference case with small time steps.

It may seem counterintuitive that the average time per step
is slightly larger for both PIC-CC1 and PIC-LL1 when using
c�t = 6�x = �z rather than c�t = 3�x = �z/2. This is
due to the fact that when using a larger time step, the number
of plasma macroparticles that are exchanged between domain-
decomposed regions grows with the size of the time step,
leading to a fraction of extra time that grows with the time
step. This is however a fraction of the total time and is thus
not changing the general conclusions. These results show that
the PICp-JRhom method is effective, efficient, and versatile
for controlling the numerical Cherenkov instability in plasma
accelerator simulations, both in cases for which other methods
(e.g., averaged Galilean PIC) apply as well, and in other cases
that happen to be more challenging for the other methods.

IV. CONCLUSION

A formulation of pseudospectral analytical time-domain
particle-in-cell algorithm is proposed and analyzed. The
formulation includes an additional term of “hyperbolic diver-
gence cleaning” and a relaxation of the standard assumption
of constant time dependency of the current density over one
time step. Extensions of the algorithm to finite-order stencils,
alternating nodal-staggered grids and time-averaging over a
time step were also presented.

Tests and analyses revealed that assuming the same time
dependency for the evolution of the charge and current densi-
ties over one time step leads to excellent stability with regard
to the numerical Cherenkov instability. Detailed analysis of
the dispersion relation of the algorithm (see Appendix E)
provides a hint that explains the stability.

The algorithm is found to be effective, efficient, and ver-
satile for controlling the numerical Cherenkov instability in
plasma accelerator simulations, both in cases for which other
methods (e.g., Galilean PIC) apply and, more importantly,
in other cases that happen to be more challenging for the
other methods. A possible extension of the algorithm for this
particular application could be to incorporate the Galilean PIC
algorithm in each subinterval, which should provide enhanced
stability while preserving the versatility of the scheme.

While the application of the algorithm to the modeling of
plasma acceleration has proven successful, the application to
other domains must be explored with care. For example, initial
testings of the application of the method to the modeling
of relativistic plasma shocks [27] has led to the observation
of unphysical effects that have been tentatively attributed
to unphysical coupling between the unphysical longitudinal
electric field waves associated with divergence cleaning [from
the term F in Eq. (1c)] and the plasmas. Further studies are
needed to fully understand the underlying mechanisms and
propose possible remedies.
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APPENDIX A: CONNECTION BETWEEN THE MODIFIED
SYSTEM OF MAXWELL’S EQUATIONS

AND A POTENTIAL FORMULATION

It is instructive to derive the modified system of Maxwell’s
equations (1) in its potential form, starting with

∂E
∂t

= c2∇ × B − J
ε0

+ c2∇F, (A1a)

∂B
∂t

= −∇ × E, (A1b)

∂F

∂t
= ∇ · E − ρ

ε0
, (A1c)

∇ · B = 0. (A1d)
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Equation (A1d) implies that B can be derived from a potential
B = ∇ × A which, when inserted into Eq. (A1b), gives ∇ ×
(E + ∂A

∂t ) = 0. This means that E + ∂A
∂t can be written as the

gradient of a potential �, giving

E = −∇� − ∂A
∂t

. (A2)

Plugging Eq. (A2) into Eqs. (A1a) and (A1c) leads to

∇2� + ∂

∂t
(∇ · A) = − ρ

ε0
− ∂F

∂t
, (A3a)

∇2A − ∂2A
c2∂t2

− ∇
(

∇ · A + 1

c2

∂�

∂t

)
= −μ0J + ∇F,

(A3b)

which, choosing � and A that verify the Lorentz gauge ∇A +
1
c2

∂�
∂t = 0, gives

∇2� − ∂2�

c2∂t2
= − ρ

ε0
− ∂F

∂t
, (A4a)

∇2A − ∂2A
c2∂t2

= −μ0J + ∇F, (A4b)

∇2F − ∂2F

c2∂t2
= μ0

(
∇ · J + ∂ρ

∂t

)
. (A4c)

A gauge transformation

A′ = A − ∇�, (A5a)

φ′ = φ + 1

c2

∂�

∂t
, (A5b)

with

F =
(

−∇2 + 1

c2

∂2

∂t2

)
� = −

(
∇A′ + ∂�′

c2∂t

)
(A6a)

then leads to

∇2�′ − ∂2�′

c2∂t2
= − ρ

ε0
, (A7a)

∇2A′ − ∂2A′

c2∂t2
= −μ0J. (A7b)

This is consistent with the derivation given in Ref. [17],
where Eqs. (A1a)–(A1c) were derived from Maxwell’s equa-
tions in the Lorentz gauge form [i.e., the form of Eqs. (A7a)
and (A7b)] with the assumption that J = J0 + δJ where J0

is the portion of J that verifies the continuity equation ∂ρ

∂t +
∇J0 = 0, and defining F = −∇δA such that A′ = A + δA
with ∇A + ∂�′

c2∂t = 0.
In addition to showing that the term F can arise from

considerations other than a “divergence cleaning” term, this
derivation also highlights how F relates more directly to the
continuity equation via Eq. (A4c) and gauges via Eq. (A6).

APPENDIX B: ABSENCE OF SPURIOUS SELF-FORCE

The main reason behind the recommendation to use the
same shape factor for charge and current deposition and field
gather in PIC codes is to avoid a gravitational-like instability
that occurs when using a shape factor for field gather that is

at lower order than for charge and current deposition [29].
Also, as stated in Sec. 8.5 of Ref. [3], “If the difference
equations relating the densities to the electric fields are sym-
metric in space, use of the same weight function eliminates
the self-force and ensures conservation of momentum.” The
analyses of the self-force in these earlier work by Langdon,
Birdsall, and others [30] indeed rely on the spatial symmetries
of the difference equations used by the algorithm, which are
preserved in the proposed scheme by the use of PSATD and
the same splines for charge and current deposition and field
gather. The subcycling in the deposition of the charge and
current densities does not change the spatial symmetries of the
difference equations, and hence do not lead to self-forces. We
have indeed verified on simulations of a single particle at rest
that the electric field gathered onto the particle was zero to ma-
chine precision (relative to the maximum electric field near the
particle), independently of the position of the particle within a
cell:

(1) Electric field (relative to maximum electric field) ex-
perienced by a single particle located at [0.25*dx, 0.75*dy,
0.5*dz] within a cell at the center of the simulation box (where
dx, dy, and dz is the cell size along x, y, and z) after 20 times
steps after initialization:

(a) CL1: Ex ≈ 1.85e − 17, Ey ≈ −1.38e − 16,
Ez ≈ 1.48e − 17

(b) CC1: Ex ≈ −8.54e − 18, Ey ≈ −4.59e − 16,
Ez ≈ 2.56e − 17

(c) LL2: Ex ≈ 7.69.3e − 17, Ey ≈ −2.15e − 16,
Ez ≈ 1.01e − 16
The CL1 algorithm is the standard PIC algorithm, for

which it is well known already that there is no self-force, and
verified here. It was also verified for a number of different
configurations of the algorithm (CC1 and LL2 are reported
here) that the property is preserved, as evidenced by the rel-
ative values of self-field experienced by the particle reported
above being zero to machine precision.

APPENDIX C: DERIVATION OF THE PIC-JRhoM
EQUATIONS

We first rewrite Eqs. (2) in an equivalent second-order
differential form,

∂2Ê
∂t2

+ c2k2Ê = − 1

ε0

(
∂ Ĵ
∂t

+ ic2kρ̂

)
, (C1a)

∂2B̂
∂t2

+ c2k2B̂ = 1

ε0
ik × Ĵ, (C1b)

∂2F̂

∂t2
+ c2k2F̂ = − 1

ε0

(
∂ρ̂

∂t
+ k̂J

)
, (C1c)

and then we sequentially integrate them analytically
over each subinterval [n�t + �δt, n�t + (� + 1)δt],
� ∈ [0, m − 1] with δt = �t/m, assuming that the current
and charge densities are piecewise functions of time, given by
Eqs. (3a) and (3b). Each of those equations can be expressed
in the following generalized form with a right part as time
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TABLE III. Integration coefficients over �th time subinterval [n�t + �δt, n�t + (� + 1)δt].

f̂ ∂t f̂ (tn + �/m) C3 C4 C5

Ê ic2k × Bn+�/m − Jn+�/m

ε0
−i

2aτ
ρ c2k

ε0δt2 − 4aτ
J+ibτ

ρc2δtk

ε0δt2

4iaτ
ρ c2k−bτ

Jω2δt−ic2cρω2δt2k

ε0δt2

+ic2F̂ n+�/mk

B̂ −ik × En+�/m i
2aτ

J c2k×
ε0δt2 i

bτ
J k×
ε0δt

−4iaτ
J k×+icJω2δt2k×

ε0δt2ω2

F̂ ik · Ê
n+�/m − ρ̂ n+�/m

ε0
−i

2aτ
J k

ε0δt2 −i
4aτ

ρ k+ibJδtk

ε0δt2

4iaτ
J k−bρ δtω2−icJω2δt2k

ε0δt2ω2

polynomial up to order two:(
∂2

∂t2
+ c2k2

)
f̂ =

2∑
j=0

a0 jt
j, (C2)

where {a0 j}2
j=0 are known coefficients for any given f̂ =

Ê, B̂, F̂ . The general solution of such a second-order PDE
equation with constant coefficients is

f̂ (t ) = C1 cos(ω(t − tn+�/m)) + C2 sin(ω(t − tn+�/m))

+ 1

ω2
(C3(t − tn+(�+1/2)m)2

+ C4(t − tn+(�+1/2)m) + C5), (C3)

where {Ck}5
k=1 are integration coefficients to be determined.

The coefficients Ck with indexes k = 3, 4, 5 for any given
f̂ = Ê, B̂, F̂ can be determined by solving a system of linear
equations, obtained from substitution of Eq. (C3) into the
corresponding Eq. (C1) and calculated at time steps tn+�/m,
tn+(�+1/2)/m and tn+(�+1)/m. While the remaining coefficients C1

and C2 can be determined from the initial conditions f̂ (t )|tn+�/m

and ∂t f̂ (t )|tn+�/m , respectively,

C1 = f (tn + �/m) − (C3(δt/2)2 + C4(δt/2) + C5)/ω2,

C2 = ∂t f (tn + �/m) − (2C3(δt/2) + C4)/ω2. (C4)

The expression of the field components f̂ (tn+(�+1)/m) at the
next time subinterval are then given by

f̂ (tn+(�+1)/m) = C1 cos(ωδt ) + C2 sin(ωδt )

+ 1

ω2
(C3(δt/2)2 + C4(δt/2) + C5). (C5)

where C2, C3 and C4 are given in Table III.

APPENDIX D: DERIVATION OF THE AVERAGED
PIC-JRhoM EQUATIONS

The notation 〈 f̂ (t )〉n+1 is introduced to refer to the av-
erage of any given function f̂ (t ) over the time interval
[n�t, (n + 1)�t] as

〈 f̂ 〉n+1 = 1

2�t

∫ tn+2�t

tn

f̂ (t ′)dt ′, where f̂ = Ê, B̂. (D1)

For any given number of subintervals m, the integral in
Eq. (D1) can be split into a sum over 2m integrals over

[tn + �δt, tn + (� + 1)δt], � = 0, .., 2m − 1 as

〈 f̂ 〉n+1 = 1

2�t

2m−1∑
�=0

∫ tn+(�+1)�t

tn+�δt
f̂ (t ′)dt ′, where f̂ = Ê, B̂.

(D2)

The averaged 〈Ê〉 and 〈B̂〉 fields are obtained through se-
quential integration of Eq. (C3) over each subinterval [tn +
�δt, tn + (� + 1)δt], � = 0, .., 2m − 1 and then substituted
into Eq. (D2),∫ tn+(�+1)δt

tn+�δt
Ê(t ′)dt ′ = S

ck
Ê

n+�/m + ic2Y4

c2k2
k × B̂

n+�/m

+ ikY4

2ckδt
F̂ n+�/m

+ 1

ε0c2k2
(Y1a j − Y5bJ − Y4cJ )

− ic2k(Y6aρ + Y7bρ + Y8cρ ),

(D3a)∫ tn+(�+1)δt

tn+�δt
B̂(t ′)dt ′ = S

ck
B̂

n+�/m − iY4

c2k2
k × Ê

n+�/m

+ ik × (Y6aJ + Y7bJ + Y8cJ ),

(D3b)

with

Y6 = 1

6ε0c5k5δt2
((ckδt )2 − 3δ(ckδt )2S

− 12ckδt (1 + C) + 24S), (D4a)

Y7 = 1

2ε0c4k4δt
(ckδtS + 2(C − 1)), (D4b)

Y8 = δt

ε0c2k2

(
1 − S

ckδt

)
. (D4c)

APPENDIX E: DISPERSION RELATION FOR THE
PIC-JRhom ALGORITHM

The 2D dispersion relation for Eqs. (4) is derived to an-
alyze the algorithm’s stability with respect to the numerical
Cherenkov instability (NCI), for a uniform plasma flowing
through a periodic grid along the z axis with a velocity v0 =
(0, 0, v0), where v0 = c(1 − 1/γ 2

0 )1/2. Following the analy-
sis from Refs. [12,13], we consider the discretized perturbed
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Vlasov equation, expressed in Fourier space:

δ f̂ n+1/2(km, p)eikm·v�t/2 − f̂ n−1/2(km, p)e−ikm·v�t/2

+ q�t Ŝ(km)[Ê
n
(k) + v × B̂

n
(k)] · ∂ f0

∂ p
= 0, (E1)

where f0 = n0δ(p − mγ0v0) is the distribution function of the
uniform plasma in a state of equilibrium, and δ f is a perturba-
tion to f0. The discretized formulas for the deposited current
and charge in Fourier space at any time ��t , � ∈ [n, n + 1]
centered around δ f̂ n+1/2, are given by

Ĵ
�
(k) =

∑
m

S(km)
∫

d pqvδ f̂ n+1/2(km, p)e−ikm·v(�−(n+1/2))�t ,

(E2)

ρ̂ �(k) =
∑

m

S(km)
∫

d pqδ f̂ n+1/2(km, p)e−ikm·v(�−(n+1/2))�t .

(E3)

Then, assuming the same e−iωt time evolution for
Ê, B̂, F̂ , Ĵ, ρ̂, and δ̂ f with the following anzatz:

Ê
n
(k) = Ê(k)e−iωn�t , (E4a)

δ f̂ n+1/2(km, p) = δ f̂ (km, p)e−iω(n+1/2)�t , (E4b)

Ĵ
n
(k) = Ĵ(k)e−iωn�t , (E4c)

ρ̂n(k) = ρ̂(k)e−iωn�t . (E4d)

Equation (E1) yields

δ f̂ (km, p) = −i
q�t

2
Ŝ(km)

Ê(k) + v × B̂(k)

sin((ω − km · v)�t/2)
. (E5)

Substituting the Vlasov equation (E1) into Eqs. (E2) and (E3)
gives the following expressions for the deposited current Ĵ(k)
and the charge ρ̂(k):

Ĵ = i
ckε0

T̂

(
ξ0 + (ξ · Q̂)

v

c

)
, (E6)

ρ̂ = ikε0

T̂
(ξ · Q̂), (E7)

Q̂(k) = Ê(k) + v × B̂(k) − (v · Ê(k))v/c2, (E8)

ξ0 = T̂ ω2
p

γ0ck

+∞∑
m=−∞

S2(km) · 1
2
�t s′

ω

, (E9)

ξ = T̂ ω2
p

γ0k

+∞∑
m=−∞

S2(km) · kmc′
ω(

2
�t s′

ω

)2 , (E10)

where T̂ = ∏
i [1 − sin(ki�i/2)] is one pass of a binomial

smoothing operator, and ωp = (n0q2m−1
e ε−1

0 )1/2 is the plasma
frequency, and Ŝ(km) is the particle shape factor. Still fol-
lowing Refs. [12,13], Eqs. (4) are then rewritten in the
time-symmetrical form

(Ê
n+(�+1)/m − Ê

n+�/m
) = i

S

(1 + C)ck
c2k × (B̂

n+(�+1)/m) + B̂
n+�/m

) + i
S

(1 + C)ck
c2k(F̂ n+(�+1)/m + F̂ n+�/m)

+ 1

ε0ω
(Y9a j − 2S(1 + C)−1c j ) − ic2

ε0c2k2
Y10kbρ,

(E11a)

(B̂
n+(�+1)/m − B̂

n+�/m
) = − S

(1 + C)ck
ik × (Ê

n+(�+1)/m + Ê
n+�/m

) + ik × b j

ε0c2k2
Y10, (E11b)

(F̂ n+(�+1)/m − F̂ n+�/m) = S

(1 + C)ck
ik(Ê

n+(�+1)/m + Ê
n+�/m

) − 1

ε0c2k2
ikb jY10 + 1

ε0ck
(Y9aρ − 2S(1 + C)−1cρ ). (E11c)

Substitution of Eqs. (E4) in Eqs. (E11a)–(E11c) gives

sωÊ = −tckcωk × cB̂ − cωtck k̂cF̂ + i
(
Y9ãτ

ω/2 − tck c̃τ
ω

)̂
J + (

Y10b̃τ
ω/2

)
kρ̂, (E12a)

sωB̂ = tckcωk × Ê − (
Y10b̃τ

ω/2
)
k × Ĵ, (E12b)

sωcF̂ = −tckcωk · Ê + k · Ĵ
(
Y10b̃τ

ω/2
) + i

(
Y9ãτ

ω/2 − tck c̃ω

)̂
ρ. (E12c)
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Projecting Eqs. (E6) and (E12a) along x and z and Eq. (E12b) along y gives the following 2D dispersion equation in matrix form:

MUT = 0, (E13a)

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−sω 0 cωk̂ztck −cωk̂xtck iT χτJ 0 −iT k̂xψτρ

0 −sω −cωk̂xtck −cωk̂ztck 0 iT χτJ −iT k̂zψτ ρ

cωk̂ztck −cωk̂xtck −sω 0 iT k̂zψτJ −iT k̂xψτJ 0

−cωk̂xtck −cωk̂ztck 0 −sω −iT k̂xψτJ −iT k̂zψτJ iT χτ ρ

i
T ξ0 0 − i

T ξ0β0 0 −1 0 0

i
T ξxβ0

i
T

(
1 − β2

0

)
(ξ0 + ξzβ0) − i

T ξxβ
2
0 0 0 −1 0

i
T ξx

i
T ξz

(
1 − β2

0

) − i
T ξxβ0 0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (E13b)

where U = (Êx, Êz, cB̂y, cF̂ , Ĵx/(ck ε0), Ĵz/(ck ε0), ρ̂/(k ε0))
and k̂ = k/k is the normalized wave vector. The matrix coeffi-
cients in M that depend on the time dependency of the current
and charge densities Ĵ and ρ̂ are summarized in Table IV. For
example, the upper index τJ/ρ in the coefficients ψτJ/ρ and χτJ/ρ

indicates the time dependency of Ĵ and ρ̂ and can be constant
(C), linear (L), or quadratic (Q).

The other coefficients are given by

cω = cos(ωδt/2), (E14a)

sω = sin(ωδt/2), (E14b)

tω = sω/cω, (E14c)

c′
ω = cos ((ω − km · v)�t/2), (E14d)

s′
ω = sin ((ω − km · v)�t/2), (E14e)

km = k + 2πm/�r, m ∈ Z, (E14f)

tck = tan(ckδt/2), (E14g)

Y9 = tck (8 − c2k2δt2) − 4ckδt

(1 + C)(ckδt )2
, (E14h)

Y10 =
(

1 − 2tck

ckδt

)
, (E14i)

TABLE IV. Matrix coefficients of the dispersion
equation (E13a), based on the time dependency of the current
and charge densities Ĵ and ρ̂ over one time subinterval, δt = �t/m.

Time dependency of Ĵ or ρ̂

Coefficients Constant (τ = 0) Linear (τ = 1) Quadratic (τ = 2)

ãτ
ω 0 0 (cω − 1)

b̃τ
ω 0 sω sω

c̃τ
ω 1 cω 1

χτ −tck −cωtck Y9(cω − 1) − tck

ψτ 0 −isωY10 −isωY10

χτ = Y9ãτ
ω − tck c̃τ

ω, (E14j)

ψτ = Y10b̃τ
ω. (E14k)

The dispersion relation is given by computing the determinant
of (M) using the Sarrus rule. Interestingly, when the charge
and current densities have the same temporal dependency,
e.g., with CC, LL, or QQ, the determinant simplifies to the
straightforward expression

det(M) = α1α2, (E15)

where

α1 = T̂ 3
[
ξ0(β0k̂z(χτ cωtck + ψτ sω ) − (χτ sω + ψτ cωtck ))

+ (
c2
ωt2

ck − s2
ω

)]
, (E16a)

α2 = (
c2
ωt2

ck − s2
ω

) + (
1 − β2

0

)
[(ξxk̂x + ξzk̂z )(χτ cωtck + ψτ sω )

+ψτ cωtck (ξ0 + ξzβ0) + χτ (ξzcωβ0 + ξ0sω )]. (E16b)

Here, such simplification is possible due to the presence of
similar terms of opposite sign that cancel each other when the
charge and current densities have the same time dependency.
For example, terms like (ψτJ )

2
kxkzc2

ω − ψτJ ψτρ
kxkzc2

ω =
0, since ψτJ = ψτρ

= ψτ (τJ = τρ = τ ). Moreover, at the
asymptotic limit, assuming that (i) δω = ω − kmv0 is small
and (ii) considering an ultrarelativistic regime, e.g., β0 =
v0/c = 1, the determinant equation reduces to

ξ0
(̂
kz(χτ ckmv0tck + ψτ skmv0 ) − (χτ skmv0 + ψτ ckmv0tck )

)
+ (

c2
kmv0

t2
ck − s2

kmv0

) = 0, (E17)

where ckmv0 = cos(kmvδt/2), skmv0 = sin(kmvδt/2), and ξ τ
0 is

proportional to 1/δω and reads

ξ τ
0 = T̂ ω2

pS2(km)

γ0ck

1

δω
+ T̂ ω2

p

γ0ck

+∞∑
j=−∞, m �= j

S2(kj) · 1
2
�t s′

k jv0

= αm

δω
+ βm. (E18)
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Finally, we obtain a first-order equation for δω with real coefficients,

δω = − αm
(̂
kz(χτ ckmv0tck + ψτ skmv0 ) − (χτ skmv0 + ψτ ckmv0tck )

)
βm

(̂
kz(χτ ckmv0tck + ψτ skmv0 ) − (χτ skmv0 + ψτ ckmv0tck )

) + (c2
kmv0

t2
ck − s2

kmv0
)
. (E19)

It follows that, under assumptions (i)–(ii), the determinant has only real coefficients, δω is real, and the algorithm is stable.
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