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A B S T R A C T 

The gamma-ray Fermi -LAT Galactic Centre excess (GCE) has puzzled scientists for o v er 15 yr. Despite ongoing debates about its 

properties, and especially its spatial distribution, its nature remains elusive. We scrutinize how the estimated spatial morphology 

of this excess depends on models for the Galactic diffuse emission, focusing particularly on the extent to which the Galactic 

plane and point sources are masked. Our main aim is to compare a spherically symmetric morphology – potentially arising 

from the annihilation of dark matter (DM) particles – with a boxy morphology – expected if faint unresolved sources in the 

Galactic bulge dominate the excess emission. Recent claims fa v ouring a DM-moti v ated template for the GCE are shown to 

rely on a specific Galactic bulge template, which performs worse than other templates for the Galactic bulge. We find that a 

non-parametric model of the Galactic bulge derived from the VISTA Variables in the Via Lactea surv e y results in a significantly 

better fit for the GCE than DM-moti v ated templates. This result is independent of whether a GALPROP -based model or a more 

non-parametric ring-based model is used to describe the diffuse Galactic emission. This conclusion remains true even when 

additional freedom is added in the background models, allowing for non-parametric modulation of the model components and 

substantially improving the fit quality. When adopted, optimized background models provide robust results in terms of preference 

for a boxy bulge morphology for the GCE, regardless of the mask applied to the Galactic plane. 

Key words: astroparticle physics – pulsars: general – Galaxy: bulge – local interstellar matter – dark matter – gamma-rays: 

diffuse background. 

1  I N T RO D U C T I O N  

The successful deployment of the Fermi Gamma-Ray Space Tele- 

scope 15 yr ago ushered in an era of unprecedented sensitivity to the 

gamma-ray sky, with Fermi ’s Large Area Telescope (LAT) providing 

increased energy resolution and an unprecedented angular resolution 

(Atwood et al. 2009 ). A key science goal of Fermi -LAT was to 

explore gamma-ray emissions from dark matter (DM), specifically 

investigating the pair annihilation products of thermally produced 

weakly interacting massive particles (WIMPs). 

⋆ E-mail: songdeheng@yuka wa.k yoto-u.ac.jp 

Shortly after its launch, an observation was reported of an extended 

source towards the Galactic Centre (GC) consistent with thermal 

WIMP annihilation with a profile consistent with a cuspy DM halo 

(Goodenough & Hooper 2009 ; Vitale & Morselli 2009 ; Hooper & 

Goodenough 2011 ). The presence of excess emission was confirmed 

and refined with many subsequent studies (e.g. Hooper & Linden 

2011 ; Abazajian & Kaplinghat 2012 ; Gordon & Macias 2013 ; 

Hooper & Slatyer 2013 ; Abazajian et al. 2014 ; Calore, Cholis & 

Weniger 2015 ; Zhou et al. 2015 ; Ajello et al. 2016 ; Daylan et al. 

2016 ; Linden et al. 2016 ; Ackermann et al. 2017 ). 

This GC excess (GCE) may also be due to an unresolved 

population of, e.g. millisecond pulsars (MSPs), stellar remnants 

associated with the central stellar population of the Milky Way 

(Abazajian 2011 ; Abazajian & Kaplinghat 2012 ). Ho we ver, there 
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is debate on whether more GC MSPs should have been resolved (e.g. 

Hooper & Mohlabeng 2016 ; Ploeg et al. 2020 ; Dinsmore & Slatyer 

2022 ; Malyshev 2024 ) and whether there are sufficient corresponding 

low-mass X-ray binary (LMXB) systems (e.g. Haggard et al. 2017 ; 

Gautam et al. 2022 ). 

One method of distinguishing between the MSP and DM proposals 

for the GCE is whether the GCE has a spherical morphology (Calore 

et al. 2015 ; Ajello et al. 2016 ; Daylan et al. 2016 ; Di Mauro 2021 ; 

Cholis et al. 2022b ; McDermott, Zhong & Cholis 2023 ) or follows 

the bulge-like morphology of the GC’s stellar populations (Bartels 

et al. 2018 ; Macias et al. 2018 , 2019 ; Abazajian et al. 2020 ; Calore, 

Donato & Manconi 2021 ; Pohl et al. 2022 ). The main obstacle to 

accurately determining the GCE morphology is uncertainties in the 

Galactic diffuse emission. When residuals in the gamma-ray fit were 

significantly reduced either through the construction of advanced gas 

models (Macias et al. 2018 , 2019 ; Pohl et al. 2022 ) or through new, 

more flexible, fitting techniques (Bartels et al. 2018 ; Calore et al. 

2021 ), a strong preference for the excess tracing old stars in the 

Galactic bulge emerged. Recently, Di Mauro ( 2021 ), Cholis et al. 

( 2022b ), and McDermott et al. ( 2023 ) have, ho we ver, made opposite 

claims. 

Another, independent, way of discriminating between the DM 

and MSP explanations of the GCE is to look for non-Poissonian 

statistics in the GCE, which would be indicative of the MSP 

explanation (Bartels, Krishnamurthy & Weniger 2016 ; Lee et al. 

2016 ), in constrast to any other truly diffuse signal such as DM. 

Ho we ver, this is arguably even more susceptible to uncertainties in 

the Galactic diffuse emission (Leane & Slatyer 2019 ; Buschmann 

et al. 2020 ; Chang et al. 2020 ; Leane & Slatyer 2020a , b ). New 

and independent analyses, introducing methodological developments 

which ef fecti vely reduce the impact of Galactic dif fuse emission 

modelling systematics, found a sizable contribution from faint, 

subthreshold point sources to the GCE (List et al. 2020 ; Calore 

et al. 2021 ; List, Rodd & Lewis 2021 ; Mishra-Sharma & Cranmer 

2022 ). 

Accounting for uncertainties in the Galactic diffuse emission 

model is undoubtedly key to making robust inferences on the Fermi 

GCE properties and o v ercoming the so-called reality gap, i.e. the 

discrepancy between models and real data (Caron et al. 2023 ). 

Different solutions were explored in the literature to o v ercome 

systematics related to the Galactic diffuse emission modelling. 

These approaches either rely on the input from a large number 

of realizations of cosmic-ray induced diffuse gamma-ray emission 

as obtained from cosmic-ray propagation codes, like GALPROP 
1 

(Strong & Moskalenko 1998 ), (e.g. Calore et al. 2015 ; Cholis et al. 

2022b ), or they allow more flexibility in the diffuse-emission model 

by splitting the Galactic-diffuse-emission templates in multiple rings 

(e.g. Macias et al. 2018 ; Di Mauro 2021 ). Finally, a complementary 

way to optimize gamma-ray emission model components and, more 

specifically, the Galactic diffuse emission is the application of data- 

driven techniques that can reduce the residuals and minimize the 

gap between model space and reality. A tool that has been utilized 

in the context of the GCE is SKYFACT (Storm, Weniger & Calore 

2017 ; Bartels et al. 2018 ; Calore et al. 2021 ). SKYFACT combines 

the capabilities of traditional template-based maximum likelihood 

fits with image reconstruction techniques. Its advantage lies in the 

addition of spatial and spectral re-modulation for all components of 

the compiled gamma-ray emission model. In this sense, SKYFACT 

allows for a more flexible treatment of the employed templates, 

1 http://galprop.stanford.edu 

especially regarding their spatial morphology, which is fixed in 

standard template-based fits. To achieve this flexibility, SKYFACT 

introduces a large number of nuisance parameters and a penalizing 

likelihood function constraining their variation during the fit in 

addition to the Poisson likelihood function typically adopted in 

gamma-ray analyses; for technical details, see Storm et al. ( 2017 ). 

With this work, we aim at systematically scrutinizing how the 

morphology of the GCE is affected by background modelling 

uncertainties when point sources and the disc plane are masked, 

and analysis approaches are varied, and address in detail some 

contradictory findings in the recent literature, most notably those 

in McDermott et al. ( 2023 , M2023 hereafter). As such, our analysis 

is solely focused on the large-scale emission properties of the GCE 

and not on its point-source contribution. 

In Section 2 , we explain the model components and fitting pro- 

cedure, exploring the background model construction. In Section 3 , 

we focus on template fitting. We show that the ring-based fits of 

M2023 have not properly converged. We also provide evidence that 

the y hav e used a bulge template that is inconsistent with the data. 

We show that by switching to a more accurate bulge template, such 

as the one generated from the recent VISTA Variables in the Via 

Lactea (VVV) surv e y (Coleman et al. 2020 ), the b ulge is fa v oured 

o v er DM-based templates even when M2023 ’s background is used. 

In Section 3.5 , we show that the ring-based methods still find a 

preference for the Galactic bulge o v er the DM template even when 

the point sources masks are substantially increased in size. We also 

show that after masking, the inclusion of a Galactic bulge passes a 

Monte Carlo based goodness of fit test. In Section 4 , we employ a 

skyFACT modulation of the diffuse templates (Storm et al. 2017 ; 

Bartels et al. 2018 ; Calore et al. 2021 ). We find that in all cases, the 

Bayesian evidence is impro v ed by the modulation, and the addition of 

the DM template is not fa v oured once the modulation has been done 

and a Galactic bulge template has been included. The conclusions 

are given in Section 5 . 

2  G A M M A - R AY  M O D E L  C O M P O N E N T S  A N D  

FITTING  P RO C E D U R E  

In this section, we first provide a brief overview of the components 

used to model the gamma-ray sky. In general, the inner Galaxy sky 

is interpreted as the sum of the following main contributions: 

(i) Galactic diffuse emission: This contribution, which we will 

discuss in more detail below, is the result of the interactions of cosmic 

rays with the interstellar gas and low-energy interstellar radiation 

fields. The main contributors to the Galactic diffuse emission are 

the decay of neutral pions produced in collisions between cosmic- 

ray protons and interstellar gas, the inverse Compton scattering of 

the interstellar radiation field by electrons, and the bremsstrahlung 

emission from these electrons. 

(ii) Point-like and extended sources: These correspond to gamma- 

ray identified sources which are listed in the Fermi -LAT catalogues 

and can be masked or refitted in the analysis. We will discuss the 

treatment of point-like sources in the following sections. 

(iii) Isotropic diffuse gamma-ray background emission (IGRB): 

This component accounts for the (almost) isotropic emission mea- 

sured at high latitudes and is thought to originate from the super- 

position of different contributions mostly from extragalactic, faint 

sources (Ackermann et al. 2015 ). 

(iv) Galactic Centre excess, GCE: To complete the description of 

the inner Galaxy gamma rays, it has been demonstrated that one 

needs to consider an additional contribution, the so-called GCE. 
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2.1 The Galactic diffuse emission models 

Given the vast number of independent degrees of freedom across 

the sky, constructing an expected Galactic diffuse emission model 

requires numerous assumptions. Works like Cholis et al. ( 2022b , 

hereafter C2022 ) postulate that the inner galaxy is predominantly 

influenced by Galactic diffuse emission stemming from nearly 

steady-state astrophysical processes and modelled through standard 

propagation codes like GALPROP . In the following, we will refer 

to these models as ‘ GALPROP -based’ templates. In contrast, other 

approaches, such as those in Macias et al. ( 2018 , 2019 ), Abazajian 

et al. ( 2020 ), Pohl et al. ( 2022 ), introduce concentric cylindrical, 

galactocentric-based templates, which we will refer to as ‘ring-based 

templates’. 

There are conflicting reports in the literature regarding the best 

method to use for modelling the Galactic diffuse emission. First, 

on the background model construction, Pohl et al. ( 2022 , hereafter 

P2022 2 ) demonstrated that the ring-based method provided a better fit 

to the Fermi -LAT data than the non-ring-based method of Di Mauro 

( 2021 ). This was followed by M2023 , who reported that when the 

point sources and Galactic plane were masked, the GALPROP -based 

templates, generated by C2022 , provided a better fit to the Fermi - 

LAT data. Secondly, there are conflicting reports of whether the GCE 

is spherical DM-like or bulge-like. On one hand, P2022 found that 

bulge models were better explanations of the data, while, on the other 

hand, M2023 claimed a better fit for the spherical DM template as 

opposed to the Galactic bulge. 

In this work, we systematically compare ‘GALPROP -based’ and 

‘ring-based’ templates for the Galactic diffuse emission, with the 

final goal of better understanding some contradictory claims in the 

literature. 

In summary, the templates that compose the Galactic diffuse 

emission in the two approaches are as follows: 

‘ GALPROP -based’ model: C2022 and M2023 made use of GAL- 

PROP to propagate cosmic rays within the interstellar medium and 

e v aluated the dif fuse emission templates. The dif fuse emission 

of pion decay is combined with the subdominant bremsstrahlung 

contribution into one template. Inverse-Compton (ICS) emission 

was also included. The templates from GALPROP were augmented 

by templates for the isotropic background and Fermi bubbles. In 

total, the ‘ GALPROP -based’ model has four templates. 

‘Ring-based’ model: As in P2022 and M2023 , the ring-based 

approach utilizes 16 independent galactocentric cylinders. This 

model comprises four rings for the neutral atomic hydrogen (H I ) 

density and another four for the molecular hydrogen (H2) density. 

Additionally, six rings follow the ICS emission. Also included are 

two dust-derived templates, one negative and one positive valued. 

The positive dust correction template physically represents H I and 

H2 hydrogen that is not traced by the rele v ant emission, kno wn as the 

dark neutral medium, or an o v erestimation of the atomic hydrogen 

spin temperature (Acero et al. 2016 ). The ne gativ e dust correction 

template represents an underestimation of the spin temperature. The 

H I and H2 rings, shaped as annular c ylinders, hav e boundaries 

located at 3.5, 8, 10, and 50 kpc from the GC. The ICS rings share 

these boundaries, except the innermost ring is further subdivided at 

radii of 1.5, 2.5, and 3.5 kpc. Also incorporated are the identical 

isotropic background and Fermi bubbles template as was done by 

M2023 . A total of 18 templates are used for the ‘ring-based’ model. 

2 Note that there is some o v erlap in the authors of the current article and those 

of P2022 . 

2.2 The Galactic Centre excess templates 

As done by the majority of the literature, in this work we will consider 

two main hypotheses for the morphology of the GCE. 

The first one is that the signal is connected with annihilating 

DM in the inner Galaxy. To this end, we consider DM-inspired 

templates constructed as a spherical template that follows the square 

of a generalized Navarro–Frenk–White profile (gNFW 
2 ): 

ρ( r ) ∝ 
1 

( r /r c ) 
γ ( 1 + r/r c ) 

3 −γ
. (1) 

We adopt the parameters used in C2022 and M2023 , which are γ = 

1.2 and r c = 20 kpc. The DM template is then obtained by integrating 

ρ( r ) 2 along each line of sight. Note, ho we ver, that there is currently 

no clear prediction for the inner (within about 2 kpc) density profile 

of the DM halo of the MW (or its sphericity) with both cusps and 

cores found in sophisticated hydrodynamic simulations (Lazar et al. 

2020 ; Grand & White 2022 ). 

The second hypothesis builds on the fact that the GCE may 

trace the distribution of old stars in the Galactic bulge. Direct 

observations of the GC region have historically been obscured 

due to challenges posed by dust reddening. The advent of near- 

infrared surv e ys, such as the ground-breaking COBE/DIRBE study, 

has enabled significant advancements in our understanding of this 

central region (Bland-Hawthorn & Gerhard 2016 ). These surveys 

have not only confirmed the presence of the Galactic bulge/bar but 

also provided the foundational data upon which subsequent triaxial 

bar models of our galaxy were constructed (Binney et al. 1991 ; 

Weiland et al. 1994 ; Freudenreich 1998 ). Cao et al. ( 2013 ) utilized 

red clump giants from the OGLE-III surv e y to create a detailed 

photometric model of the Galactic bar. This relied on data available 

up to 2013. In an advancement, Coleman et al. ( 2020 ) utilized more 

contemporary data from the VVV surv e y. Their approach, inte grating 

non-parametric methodologies, offers a flexible means of estimating 

the morphology of the Galactic bulge, thus refining our understanding 

of this critical Galactic structure. The flexibility is important because 

we want the data and not an assumed inflexible functional form, as 

in Cao et al. ( 2013 ) for example, to determine the radial profile of 

the template. 

In this work, we consider several different bulge templates. The 

bulge model used in M2023 is publicly available as part of the 

analysis package GCEPY 
3 Following M2023 , we will label this the 

boxy-bulge BB ( GCEPY ) template. In addition to one from GCEPY , we 

consider three other bulge models: Freudenreich ( 1998 , hereinafter 

F98), Cao et al. ( 2013 , hereinafter Cao13), and Coleman et al. 

( 2020 , hereinafter Coleman20). We notice that the BB template in 

GCEPY appear be obtained from the Cao13 model ( M2023 , personal 

communication), but upon further inspection, we found that it does 

not match our version of the Cao13 template. We therefore keep 

the BB GCEPY template and the Cao13 as different, independent, 

choices for the bulge. Fig. 1 shows the spatial templates for these 

bulge models in the main region of interest (ROI) of this work, i.e. 

40 ◦ × 40 ◦ around the GC. We have normalized the templates to 

have the same flux in the ROI (in an arbitrary unit). The contours on 

the maps show the 10 per cent, 30 per cent, 50 per cent, 70 per cent, 

and 90 per cent levels with respect to the central value. The contours 

demonstrate the differences in the bulge models, both at large scales 

as well as near the centre. 

On top of the boxy-bulge, we also add a component for the nuclear 

bulge (NB) following the parametric model of Launhardt, Zylka & 

3 https:// github.com/ samueldmcdermott/ gcepy 
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Figure 1. Spatial templates of the Galactic bulge models considered in this work. References from left to right: Freudenreich ( 1998 ), Cao et al. ( 2013 ), and 

Coleman et al. ( 2020 ). Note that these are line-of-sight integrated images of the bulge templates before they are convolved with the PSF. 

Mezger ( 2002 ), which is necessary to include when not masking the 

Galactic plane (see Sections 3.5 and 4 ). 

2.3 Fitting pr ocedur e and statistical framework 

In this paper, we adopt two different fitting techniques. The first one is 

the traditional ‘template fit’, where all model components are defined 

as morphological templates that are not allowed to vary during the fit 

procedure. In template fitting, the free parameters are the independent 

bin-by-bin normalizations of the spectral energy distribution of each 

model component. The second technique is the so-called adaptive 

template fitting, where the spatial distribution of photons among 

different sky components is enabled to be re-modulated during the 

fitting procedure (Storm et al. 2017 ; Bartels et al. 2018 ; Calore 

et al. 2021 ). In what follows, we briefly introduce more technical 

details about the implementation of both data fitting approaches. We 

conclude this section by outlining the statistical inference methods 

that we apply to investigate the morphology of the GCE. 

2.3.1 Traditional template fitting 

In standard template fit analysis, the gamma-ray sky is described 

as the sum of multiple model components, k , identified by a fixed 

spatial distribution, i.e. the spatial template. The model φ is a linear 

combination of k spatial templates T binned in spatial pixels p and 

a spectral normalization � for each energy bin b , which is free to 

re-adjust during the fit: 

φpb = 

∑ 

k 

T ( k) 
p · � 

( k) 
b . (2) 

The optimization of the free energy-independent normalization is 

done by maximizing the Poissonian likelihood given the number 

count maps. 

For the optimization, M2023 employs DYNESTY to scan the param- 

eter space and then uses a No-U-Turn sampler (utilizing NUMPYRO ) 

to optimize the best-fitting result. For the sake of cross-checking the 

M2023 results, in Section 3 , we will perform the maximum likelihood 

analysis with an alternative minimizer, i.e. using the Limited memory 

Bro yden–Fletcher–Goldf arb–Shanno algorithm extended to handle 

simple box constraints (L-BFGS-B). For implementation, we use the 

PYTHON package LMFIT . We use stats.poisson.logpmf pro- 

vided by SCIPY to calculate the Poissonian log-likelihood. Following 

M2023 , we also include penalty terms (provided by GCEPY ) on the 

log-likelihood to account for when the IGRB and Fermi bubbles 

normalizations deviate too much from their spectra measured at high 

latitudes. 

Point sources in the 4FGL are masked for this analysis. We will 

provide more details on the mask implementation in Section 3 . 

2.3.2 Adaptive-constrained template fitting 

A complementary analysis technique to investigate the preferred 

morphology of the GCE is adaptive template fitting implemented in 

the software package SKYFACT . As mentioned in the introduction, 

SKYFACT is a mixture of a conventional template-based fit and more 

advanced image reconstruction routines. The main advantage is a de- 

parture from imposing a non-flexible prior on the spatial morphology 

of the compiled background and signal components of the gamma- 

ray emission model. While this flexibility enables capturing and 

remedying a certain degree of component mis-modelling, it requires 

the introduction of a large number of nuisance parameters that have 

to be controlled during the fit to a v oid o v erfitting and unphysical 

results. Therefore, SKYFCAT utilizes a combination of a Poisson and 

a penalizing likelihood function to guide the fit with constrained 

freedom for all nuisance parameters. The fit itself is the minimization 

of the mentioned log-likelihood function. 

In essence, the gamma-ray emission model compiled for SKYFACT 

is identical to the input data required for a traditional template fit. 

That is, the model φ is a (tri-)linear combination of k spatial templates 

T binned in spatial pixels p and a spectral normalization S per energy 

bin b following a certain functional form or tabulated data: 

φpb = 

∑ 

k 

τ ( k) 
p T ( k) 

p · σ
( k) 
b S 

( k) 
b · ν( k) . (3) 

Examples of suitable spatial templates are the Galactic bulge mod- 

els in Fig. 1 . The addition of SKYFACT is to introduce a global 

normalization parameter ν per component and spatial and spectral 

nuisance parameters, τ and σ , respectively. In practice, τ and σ

act as a one-to-one copy in shape of the spatial and spectral input 

priors. Both nuisance parameter sets are initialized with value 1 and 

varied – or better, re-modulated – in the priors’ stead during the 

fitting procedure. The nuisance parameters are required to be strictly 

positive. 

We note that the SKYFACT model φ allows for the inclusion of point- 

like sources according to their position and spectra listed in gamma- 

ray catalogues of choice. For them, the position inside the considered 

region of interest is fixed, i.e. there is no associated spatial template 

T . Consequently, all injected point-like sources are spectrally re-fit 

in adaptive template fitting. 
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The numerous nuisance parameters are tamed via the regularizing 

part of SKYFACT ’s likelihood function, which depends on five hyper- 

parameters per component 4 constraining the magnitude of individual 

parameters and the correlation among neighbouring parameters. All 

details about the explicit structure of the likelihood function and 

hyper-parameters is provided in Storm et al. ( 2017 ). Here, it shall 

suf fice to gi ve an illustrati v e e xample of the functionality of two 

of them, the spatial and spectral smoothing scale η and λ. They 

are defined as η = 1/ x 2 ( λ = 1/ E 
2 ), where x ( E ) is the allowed 

variation between neighbouring spatial pixels (energy bins). Setting 

the smoothing scales to zero is thus equi v alent to saying that all 

spatial pixels (energy bins) may vary entirely independently of each 

other. 

As the tuning of the hyperparameters is cumbersome due to 

computational speed, we select the configuration of RUN5 in Storm 

et al. ( 2017 ) as the foundation for our settings. The specifications of 

RUN5 assume a certain spatial smoothing for the brightest gamma- 

ray components, namely the inverse Compton component receives 

the largest smoothing, followed by the π0 -component and lastly 

the Fermi bubbles with the shortest smoothing scale. Regarding 

the remaining model elements we do not allow for any spatial re- 

modulation of the input template, this applies to the different GCE 

components, in particular. We hence ensure that the minimization 

problem remains conv e x guaranteeing conv ergence of the L-BFGS- 

B algorithm utilized in SKYFACT . Spectral smoothing is not applied 

at all. 

2.3.3 Statistical fr ame work: par ameter inference and model 

comparison 

In a frequentist setting, it is possible to properly quantify the 

preference for different gamma-ray emission models based on the 

maximum likelihood method and the resulting likelihood values 

at the optimal point. Ho we ver, a well-defined notion of model 

comparison from a statistical point of view is limited to nested 

models. By nested models we mean any gamma-ray emission model 

that is comprised of a default set of components (or base components) 

and to which further components are added without removing any 

contributions from the default set. Then it is possible to compute the 

preference in the data for the enlarged model o v er the base model in 

terms of significance. 

To be more quantitative let us assume that we add a single 

component X to the base model and perform a standard template 

fit so that the extended model has N additional parameters (normal- 

izations per energy bin). Let ln L base denote the log-likelihood value 

e v aluated for the best-fitting parameters determined via the maximum 

lik elihood approach. Lik ewise, ln L base + X is the corresponding log- 

likelihood value found for the extended base model including X . We 

choose the log-likelihood ratio test statistic as a means to quantify 

the significance: TS = 2( ln L base + X − ln L base ). Within this set-up, 

the test statistic is distributed according to a mixture distribution 

following (Macias et al. 2018 ) 

p( TS ) = 2 −N 

[ 

δ( T S) + 

N 
∑ 

k= 1 

(

N dof 

k 

)

χ2 
k ( TS ) 

] 

. (4) 

Here, δ refers to the Dirac distribution, 
(

n 
k 

)

is the binomial coefficient, 

and χ2 
k denotes a χ2 -distribution with k degrees of freedom. The 

4 Only three in the case of point-like sources. 

significance σ of the added component under the observation of the 

test statistic value ˆ TS amounts to 

σ ( ˆ TS ) = 

√ 

CDF 
−1 
(

χ2 
1 , CDF 

(

p( TS ) , ˆ TS 
))

, (5) 

where CDF( f , x ) refers to the cumulative distribution function of f at 

x and CDF 
−1 is its inverse. 

Model comparison is challenging to correctly perform in a fre- 

quentist framework as shown abo v e, while it is better defined and 

easier to access in a Bayesian approach. We also adopt the latter to 

run model comparison. Deriving the Bayesian evidence of each indi- 

vidual gamma-ray emission model allows us to perform a Bayesian 

model comparison or hypothesis testing based on the Bayes factor. 

Given the Bayesian evidence ln H X of model X and ln H Y of model 

Y, the mutual Bayes factor is given by B XY = exp ( ln H X − ln H Y ) . 

A positi ve v alue of the Bayes factor implies a certain degree of 

evidence for model X being preferred o v er model Y. In what follows, 

we utilize the empirical classification of the degree of evidence from 

table 1 of Trotta ( 2008 ) based on the logarithmic Bayes factor. 5 

While the Bayesian framework offers a direct way of stating the 

preference for one gamma-ray emission model o v er another one –

irrespective of the exact composition – it depends by construction 

on prior probabilities for all parameters. In this sense, it carries a 

certain intrinsic user bias due to the choice of priors, may it be their 

parametric shape or range. Consequently, we remark as a caveat 

that the derived preference for a model is prior-dependent. As we 

will show later in Section 3.3 , a suitable choice for the prior range 

is essential to co v er the correct best-fitting point in the model’s 

parameter space. 

3  TEMPLAT E  FIT TING:  RE PRODUCIB IL IT Y  

O F  P R E V I O U S  WO R K S  A N D  IMPROV EMENTS  

In this section, we weigh in on the findings of M2023 , first reproduc- 

ing and then improving on their analysis. The fitting technique here 

adopted is the traditional template fit (Section 2.3 ). We will perform 

Bayesian model comparison to assess what is the best model for 

describing gamma-ray data among the ones we test. We will also 

discuss how the evidence for the DM-inspired template is affected 

by different choices of point sources and Galactic plane mask, by 

making use of nested models in the frequentist approach. 

3.1 Reproducing M2023 

As a first step, we repeat the analysis performed in M2023 , by 

adopting the same data set and models. We remind the reader that the 

M2023 analysis was performed using both GALPROP - and ring-based 

background models with standard template fitting, and the authors 

claimed that the GCE is better described by a DM-like model than 

a bulge one. A summary of the data selection in C2022 and M2023 

is reported in Table 1 . We adopt this data set as publicly available 

through the GCEPY webpage. Together with the selected data set 

(counts map), the GCEPY package released also (i) Galactic plane and 

point-source mask adopted, and (ii) the model templates convolved 

with the Fermi -LAT point spread function (PSF). The mask adopted 

by M2023 (and in this section unless otherwise specified) masks 

5 We also provide the definition of TS between different models, as T S = 

2( ln L X − ln L Y ). While we refrain from assessing model comparison 

through this TS , we notice ho we ver that this practice is largely present in 

the previous literature. Therefore, for the sake of comparison, in the main 

results’ tables we will also report this value without o v erinterpreting it. 
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Table 1. Data selection according to C2022 and M2023 . 

Parameter Value 

Time range Week 9 to Week 670 (12.5 yr) 

Energy range 14 bins from 0.275 to 51.9 GeV 

ROI 40 ◦ × 40 ◦, bin size = 0.1 ◦

Data class P8R3 CLEAN V3 (evclass = 256), FRONT (evtype = 1) 

Filter (DATA QUAL == 1)&&(LAT CONFIG = = 1) 

&&(ABS(ROCK ANGLE) < 52) 

Max zenith angle 100 deg 

out both the Galactic plane ( | b | < 2 ◦) and the point sources in the 

4FGL-DR2 catalogue. 

In M2023 , two GALPROP -based models are identified as best- 

fitting ones: GALPROP 7 p is, according to M2023 , the best Galactic 

diffuse model when no GCE is added to the fit; GALPROP 8 t instead 

provides the best performance when adding a GCE modelled through 

a gNFW 
2 profile. In C2022 ’s Zenodo archive (Cholis et al. 2022a ), 

these two cases can be seen to correspond to the cases XLIII and 

XLIX, respectively, in table VIII of C2022 . 

We run a traditional template fit though maximum likelihood 

optimization, as described in Section 2.3 . The minimization is run 

with both the GCEPY code and our implementation with the L-BFGS- 

B algorithm. 

The results from the runs reproducing M2023 are reported in 

Table 2 . Following M2023 , we use the background model GALPROP 8 t , 

corresponding to the best-fitting model obtained when an additional 

gNFW 
2 component has been added. As done by M2023 , we compare 

this to the best-fitting background in the case of no GCE source 

( GALPROP 7 p ). Compared with the scenario without GCE, the BB 

GCEPY template has a ln B = 885, indicating evidence for a GCE. 

We remind the reader that no NB is included in the model, following 

M2023 . 

For GALPROP -based background models, we find very similar like- 

lihood values no matter what is the adopted minimization procedure. 

This contrasts to what happens for ring-based templates (see below). 

3.2 Model systematics I: testing other bulge templates 

We repeat the analysis performed in M2023 , but with additional bulge 

models described in Section 2 . To consistently convolve with the 

Fermi -LAT PSF (which are not included in the original M2023 ), we 

run FERMITOOLS based on the same criteria as in C2022 and M2023 

(see Table 1 for details). Namely, we use GTSELECT and GTMKTIME to 

select and filter the events, then use GTBIN to bin the data. After using 

GTLTCUBE and GTEXPCUBE 2 to obtain the live-time and exposure, we 

use GTSRCMAPS and GTMODEL to generate the convolved templates 

of the three bulge models. In Fig. 2 , we display the three additional 

bulge templates after they are convolved with the PSF at 1.02–1.32 

GeV, compared with the M2023 one. 

Table 2 reports the results using the GALPROP -based background 

model also for the different bulge templates. The mutual Bayes 

factor, ln B XY ≡ � ln H, allows us to appreciate the performance 

of the different models and to assess which one performs better. 

From Table 2 , we can see that our version of the Cao13 template 

has ln B = 180, when compared to the BB GCEPY model, meaning 

that it provides a better model for the gamma-ray data. On the 

other hand, our other two bulge models are even better than the BB 

GCEPY template, with ln B = 507 and 685 for F98 and Coleman20, 

respectively, when compared to the BB gcepy model. 

As for the comparison with the DM-inspired template, we see 

that the gNFW 
2 is preferred o v er the BB GCEPY and Cao13 model, 

consistent with the findings of M2023 . Ho we ver, F98 has ln B = 54, 

when compared to gNFW 
2 . Finally, the Coleman20 model results 

to be the best GCE template in our tests for the GALPROP -based 

background model, with a ln B = 232, when compared to gNFW 
2 . 

We conclude, therefore, that for GALPROP -based models, the choice 

of the bulge template is crucial for interpreting whether the GCE is 

DM like or bulge like. We nonetheless stress that the abo v e statement 

holds for the specific diffuse emission model adopted, which is not 

guaranteed to provide an overall good fit to gamma-ray data. We will 

discuss how ring-based models impro v e the goodness of fit in the 

next section. 

3.3 Model systematics II: testing ring-based models 

We here explore the same set of four bulge models but with the ring- 

based Galactic diffuse models of P2022 . We remind the reader that 

M2023 also presented a run with the P2022 ring-based background 

model, arguing that this al w ays provided a w orse fit to the data than 

the GALPROP -based optimized background model when no excess 

was considered, i.e. GALPROP 7p . 

Also in this case, we run the fit with both minimizers to cross-check 

the validity of the GCEPY code. Differently from the GALPROP -based 

models, when comparing the results of the two minimizers for the 

ring-based background model, we find a major discrepancy between 

our results and M2023 : Contrary to the finding of M2023 , when 

using the L-BFGS-B algorithm we find that the ring-based back- 

ground model provides a better fit compared with the GALPROP 7p 

background model. 

In Table 3 , we compare the likelihood results 6 from the L-BFGS- 

B algorithm and the GCEPY package. We focus on the no-excess 

case and compare the GALPROP -based and ring-based background 

models. Using the L-BFGS-B algorithm, we find that the TS for 

the GALPROP -based background model against the ring-based one is 

−1852. Using the GCEPY package, we find instead that the GALPROP - 

based background model has a positive TS of 3508 against the ring- 

based one. This observation aligns qualitatively with the findings 

in M2023 who report a positive TS of 4539 for the GALPROP - 

based background. Table 3 shows that the −2 ln L values for the 

GALPROP -based background model are almost the same between L- 

BFGS-B and GCEPY . Ho we ver, this is not the case for the ring-based 

background model. Thus, the discrepancy is only seen in the ring- 

based analyses. 

After investigating the fitting results in each energy bin and for 

every template, we find that the major difference between the fits 

using the L-BFGS-B algorithm and GCEPY is in the best-fitting values 

for the ne gativ e and positiv e dust corrections in the ring-based model. 

To use nested sampling to estimate Bayesian posteriors, GCEPY has to 

implement priors for the templates. The adopted priors are uniform 

in logarithmic space and are sufficiently wide for most templates. 

Ho we ver, the priors for the negative and positive dust corrections 

turned out to be too limiting. In the public code of GCEPY , the priors 

for the normalization in logarithmic space are uniform between [ −2, 

4] for the ne gativ e dust correction and [ −2, 6] for the positive dust 

correction. Ho we ver, when we adopted the L -BFGS-B algorithm, we 

6 The L-BFGS-B algorithm simply optimizes the likelihood and therefore 

does not allow for Bayesian evidence calculation. For this comparison, we, 

therefore, use � TS values, but we will show that our conclusions also hold 

when considering the Bayesian evidence. 
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Table 2. Results of the likelihood analysis for the GALPROP -based model using GCEPY , including the Bayesian evidence, and mutual Bayes factor with respect 

to the best-fitting model GALPROP 7p . We remind that the same mask as in M2023 is applied on 4FGL-DR2 sources and the Galactic plane, | b | < 2 ◦. Likelihood 

values from GCEPY are consistent with the ones obtained with the L-BFGS-B algorithm. 

Baseline model Additional source −2 ln L TS ln H ln B ≡ � ln H

GALPROP 7p none 3 752 798 0 −1876678 0 

GALPROP 8t BB ( GCEPY ) 3 750 941 1857 −1875793 885 

GALPROP 8t gNFW 2 3 750 051 2747 −1875340 1338 

GALPROP 8t Cao13 3 750 582 2216 −1875613 1065 

GALPROP 8t F98 3 749 924 2874 −1875286 1392 

GALPROP 8t Coleman20 3 749 563 3235 −1875108 1570 

Figure 2. Bulge templates after they are convolved with the PSF at 1.02–1.32 GeV. References from left to right: Freudenreich ( 1998 ), Cao et al. ( 2013 ), 

Coleman et al. ( 2020 ), and M2023 . 

Table 3. Comparison between the L-BFGS-B algorithm and GCEPY with its original priors for the GALPROP 7p -based background model and the ring-based 

background model without GCE. 

Background model Fitting algorithm −2 ln L 2 
(

ln L GALPROP 7p − ln L ring −based 

)

GALPROP 7p L-BFGS-B 3 752 792 −1852 

Ring based 3 750 940 

GALPROP 7p GCEPY 3 752 798 + 3508 

Ring based 3 756 306 

provided bounds to scale the parameters from 0 to large values, far 

exceeding the priors in GCEPY in linear space. Fig. 3 shows the best- 

fitting values for the normalization of the ne gativ e and positive dust 

corrections from L-BFGS-B and GCEPY in each energy bin for the 

ring-based background model. It is clear that the best-fit values for 

the ne gativ e dust correction from L-BFGS-B al w ays exceed the prior 

range of GCEPY . In GCEPY , the best fit found by GCEPY simply stops at 

the upper boundary of the prior for most bins. For a few high-energy 

bins, the best fit found by GCEPY is very small, likely caused by 

finding a local minimum. The same situation is also observed for the 

positive dust correction, although only for a few high-energy bins. 

In Table 4 , we find that the best-fitting likelihood for the ring-based 

model from GCEPY is again consistent with that from the L-BFGS- 

B algorithm once we widen the priors for dust corrections. More 

specifically, we widen the prior upper bound of two dust corrections 

to 10 while maintaining the other priors unchanged. We conclude 

that M2023 failed to find the real best-fitting models when using the 

ring-based background model due to inadequate priors for the dust 

corrections. Our results using the L-BFGS-B algorithm in Table 3 , 

and the GCEPY results with wider priors in Table 4 , provide a more 

accurate interpretation of the ring-based background model. 

In the ‘no-excess’ case, as detailed in Fig. 4 , the best-fitting spectra 

include the four H I and H2 rings and six ICS rings, along with both 

ne gativ e and positiv e dust corrections. Notably, the ne gativ e dust 

correction at GeV energies is about 30 per cent of the total HI and 

H2 fluxes, while the positive correction is relatively small. As the 

ne gativ e dust correction template represents an underestimation of 

the spin temperature, we would expect a constant ratio of ne gativ e 

dust correction to the H I spectrum across all energies. Although, 

this appears to mainly be the case, a deviation occurs at the highest 

energy bin. Ho we v er, this discrepanc y is not crucial for determining 

the GCE’s morphology, as the GCE’s values are minimal at such 

high energies. 

Fig. 5 displays the best-fitting count map (in log 10 scale) for the 

gas-correlated component (H I , H2, and the dust corrections) in the 

ring-based background model at the 1.02–1.32 GeV energy bin. For 

comparison, we also show the gas-correlated component (pion decay 

+ bremsstrahlung) in the best-fitting GALPROP -based background 

model for the same energy bin. Due to the ne gativ e correction, the 

photon counts associated with the gas-correlated component in the 

ring-based model are generally lower than those in the GALPROP - 

based model. Ho we v er, no pix els in the unmasked re gion hav e 

ne gativ e values when H I , H2, and dust corrections are combined. 

We have verified that this holds true for every energy bin. 

In Table 4 , we add the results from using the ring-based back- 

ground model using wider priors in GCEPY . In this case, again, 

likelihood values with the alternative minimizer are comparable. 

Comparing row one of Table 2 with row one of Table 4 shows 

that the ring-based model without GCE is a better description 

of the gamma-ray sky than the GALPROP 7p , with a ln B = 216. 

When adding a GCE component, regardless of the choice of the 

template, the Bayesian evidence for the GCE is o v erall reduced for 
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Figure 3. Best-fitting normalizations for the ne gativ e and positiv e dust corrections from L-BFGS-B and GCE P Y (with narrow priors as in the original 

implementation) using the ring-based background model developed by P2022 . We are plotting the dust template normalization against the 14 energy bins 

range from 0.275 to 51.9 GeV. 

Table 4. Similar to Table 2 except here we consider the ring-based background model developed by P2022 . We have expanded the priors for the dust corrections 

in GCEPY to ensure convergence. Note that in each row, the amplitude of the ring-based background model templates is optimized in addition to the GCE 

additional source (if there is one) to maximize the likelihood L , as explained in Section 2 . 

Baseline model Additional source −2 ln L TS ln H ln B ≡ � ln H

Ring based none 3 750 994 0 −1876462 0 

Ring based BB ( GCEPY ) 3 750 592 402 −1876297 165 

Ring based F98 3 750 570 424 −1876302 160 

Ring based Cao13 3 750 560 434 −1876276 186 

Ring based gNFW 2 3 750 433 561 −1876232 230 

Ring based Coleman20 3 750 333 661 −1876144 318 

the ring-based background model with respect to GALPROP -based 

background models (cf. Tables 2 and 4 ). Yet the evidence of the 

GCE, no matter the template adopted, is strong, i.e. ln B � 100. 

The ranking of GCE models is similar to Table 2 , except for the 

fact of F98 performing worse than Cao13 ( ln B = 26). The gNFW 
2 

template is still preferred o v er Cao13 ( ln B = 44), while Coleman20 

template provides a better fit than the gNFW 
2 template ( ln B = 88). 

We, therefore, corroborate the Coleman20 preference found in the 

GALPROP -based runs, even when the ring-based background model is 

used. 

We notice, ho we v er, that the o v erall goodness of fit of models with 

the GCE and using the GALPROP 8t background template are preferred 

with respect to our optimization of the ring-based background runs 

with ln B varying between about 500 and 1000 for the different GCE 

templates. None the less, we will sho w belo w (Section 3.4 ) that 

these very same models lead to unphysical spectra of the IGRB, 

questioning their physical interpretations. 

Fig. 6 shows the GCE spectra for the five templates tested using 

both the GALPROP -based and the ring-based background models. 

Ov erall, the GCE flux es are higher when using the gNFW 
2 template 

compared with bulge templates, by a factor of a few. All the GCE 

spectra are relatively soft, and their E 
2 d N /d E values peak at around 

1–2 GeV. 

3.4 Model systematics: degeneracy between IGRB and GCE 

In Figs 7 and 8 , we examine the spectra for the IGRB for the different 

background models and GCE templates. As can be seen from the top 

left panel of Fig. 7 , when using the GALPROP -based background 

model, instead, the IGRB is hardly ‘detected’ around GeV energies, 

no matter which GCE template is used (including no excess case). 

This result seems to be unphysical. Comparing the IGRB and GCE 

flux for different GCE templates (remaining panels of Fig. 7 ), the 

IGRB is largely missing around where the GCE is peaked. The issue 

does not seem to exist for the ring-based background model, which 

is shown in Fig. 8 . The fact that the IGRB in Fig. 7 has no flux around 

1–5 GeV is a concerning property of the GALPROP -based background 

models, which is not seen in the ring-based models. One possible 

way to ameliorate this issue may be to put strong priors on the IGRB 

flux so it does not drop to zero. 

3.5 Analysis systematics: the role of mask size and goodness of 

fit with Monte Carlo simulations 

For the sake of studying the systematic uncertainties induced by the 

choice of the masked regions, we use the same data and templates as 

P2022 . The main difference with the ring-based case in Section 3.3 
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Figure 4. Best-fitting spectra for the H I , H2, ICS, ne gativ e and positive dust 

corrections for the ring-based background model ( P2022 ). The results are 

obtained with no GCE template and are from the L-BFGS-B algorithm. 

is that the pixel resolution used is now 0.2 ◦ rather than 0.1 ◦. We 

also use a larger point-source mask, the details of which are shown 

in Table 5 . The new point-source mask was designed to be wide 

enough to mask out 90 per cent of the flux of each point source 

in each energy bin. Our masks can be compared to table 1 of the 

supplementary material of M2023 . As can be seen, our point-source 

masks have larger radii than even their ‘large’ point-source masks. 

We found that if we make our masks smaller, then we could see the 

residual point source signal leaking out from the mask. Note that we 

do not use the first two energy bins listed in Table 5 in our subsequent 

analysis for this subsection, as those bins have too high a fraction of 

the ROI masked out to provide meaningful constraints. In Fig. 9 , we 

compare the fraction of the ROI that is masked in this section to the 

fraction of the ROI that is masked in earlier sections and in M2023 . 

We also remind the reader that in M2023 and in previous sections, 

the Galactic plane was masked. 

In Table 6 , we e v aluate the statistical evidence for the additional 

GCE component, when our new point-source mask, as described 

abo v e, is applied (but the Galactic plane is unmasked). Since we do 

not mask the Galactic plane, we also add a model component for the 

NB (Nishiyama et al. 2013 ). This table can be compared to table 2 

of P2022 . As can be seen, the qualitative results are very similar to 

P2022 , with mild difference in the likelihoods probably due to the 

masking and also to having discarded the first two energy bins so that 

we have 13 bins rather than the 15 that were used by P2022 . As can 

be seen from the table, we find that, with a larger point-source mask, 

there is strong evidence for an additional component on top of the 

ring-based background model. Moreo v er, there is evidence for the 

Coleman20 template at 8.1 σ on top of the ring-based + NB model, 

while the addition of gNFW 
2 is not significant (2.8 σ ). Finally, the 

significance for DM is strongly reduced to a negligible level when 

added to the ring-based + NB + Coleman model. 

We then run the case with both new point-source mask and Galactic 

plane mask | b | < 2 ◦. In this case, the results are shown in Table 7 . As 

can be seen, with the Galactic plane and new point-source mask, 

we find neither the gNFW 
2 DM template nor the NB template 

to be significant. Conversely, the Coleman20 BB template is still 

significant. 

P2022 tested the goodness of fit using Monte Carlo simulations. 

As can be seen from their Fig. 9 , the Monte Carlo simulations were 

not consistent with the fit for the E < 5 GeV. This was somewhat 

ameliorated to E < 4 GeV by reducing the ROI from 40 ◦ by 40 ◦

to 30 ◦ by 30 ◦. In Fig. 10 , we show the full ROI Monte Carlo 

simulations for the new point-source mask, and for the case with 

both the point sources and Galactic plane masked out respectively. 

As can be seen, in all energy bins, the Monte Carlo simulations are 

consistent with the data. This indicates that, with standard template 

fitting, it is more robust to mask the point sources rather than try 

to model them when the diffuse Galactic emission is being fit. 

An alternative would be to include a model of the point sources 

and simultaneously fit the position of the point sources with the 

parameters of the Galactic diffuse emission model. Ho we ver, this 

would be very computationally intensive and goes beyond the scope 

of tests necessary in the current analysis. 

4  ADAPTIVE - T E M PL AT E  FITTING  

In this section, we show that the potential of SKYFACT to reduce 

residuals and optimize model components in a data-driven way 

allows for robust inference on the GCE morphology, as it was 

already shown in the case of the analysis of subthreshold point 

sources (Calore et al. 2021 ). Due to a large number of nuisance 

parameters, it is infeasible to optimize a given gamma-ray emission 

model on small ROIs, in particular, ROIs with a masked Galactic 

plane that encompasses the bulk of the detected gamma rays from 

the GC. Whenever we optimize a model with SKYFACT , we, therefore, 

perform the optimization with respect to the full ROI of 40 ◦ × 40 ◦

centred on the GC. 

In the SKYFACT -based part of this study, we work with the Fermi - 

LAT data selected according to Table 1 except for a change in bin size 

from 0.1 ◦ to 0.25 ◦ to render the analysis computationally tractable. 

We consider three distinct model compositions in parallel, namely 

the GALPROP 8t , ring-based, and the original SKYFACT (Bartels et al. 

2018 ) backgrounds. In all three gamma-ray emission model set-ups, 

we employ the Coleman20, NB and gNFW 
2 templates. Note that 

in this section, we only consider masking the Galactic plane. The 

point sources are added to the background model with full spectral 

freedom per point source. In the following section, we outline how 

we apply the SKYFACT re-modulation in the context of a masked ROI. 

4.1 Deriving gamma-ray optimized background models with 

SKYFACT 

SKYFACT enables us to go beyond the model iterations investi- 

gated in Section 3 by re-modulating the spatial morphology of 

the respective model’s components (where possible). As stated 

earlier in Section 2.3.2 , this is achieved via adaptive template 

fitting, invoking a large number of spectral (per energy bin) and 

spatial modulation parameters (per spatial pixel) whose ranges are 

controlled by user-input hyperparameters. The degree of variation in 

these modulation parameters is restricted via a penalizing likelihood 

function adding to a standard Poisson likelihood term to prevent 

o v erfitting. 

Such an approach is only feasible with enough information in 

the considered data set. Thus, applying SKYFACT in the presence 

of an e xtensiv e Galactic plane mask is prohibitive. Therefore, we 

devise the following scheme to incorporate re-modulated gamma- 
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Figure 5. Best-fitting count maps (in log 10 scale) for the gas-correlated component for the ring-based and GALPROP 7p based background model. We show the 

sixth energy bin (1.02–1.32 GeV). 

Figure 6. GCE spectra for the gNFW 2 template as well as the four bulge templates from different references, using the GALPROP 8 t -based background model 

(left) and the ring-based background model (right). 

ray emission models in our analysis. For each of the considered 

background model set-ups stated abo v e, we perform a fit to the 

Fermi -LAT data – data selection described in Table 1 – by enabling 

spatial re-modulation. SKYFACT hyperparameter settings are given 

in Section 2.3.2 . We obtain what we call ‘ optimized ’ versions of 

the original background model set-ups. SKYFACT ’s optimization will 

re-modulate the background templates to minimize the residual 

photons, i.e. parts of the GCE emission will be absorbed by the 

selection of background components. We deem such an approach 

conserv ati ve because we deliberately diminish the total luminosity 

of the GCE. Ho we ver, since the GCE’s spatial morphology and 

spectrum are not fully degenerate with the employed background 

components, it is very unlikely that the entire excess is re-absorbed 

in the optimized background templates (and indeed, we will confirm 

this with our results). In what follows, we investigate the performance 

of these optimized background model iterations on data sets with a 

Galactic plane mask utilizing, in a second step, standard template 

fits. 

To conv e y an idea of how the SKYFACT optimized models compare 

to the original v ersions, we e xplicitly go through the deri v ation of 

the optimized version of P2022 . In Table 8 , we list the astrophysical 

gamma-ray emission model components of the original set-up of 

P2022 , which we employ in this part of the analysis. The selected 

spatial templates and associated spectra guarantee the optimization of 

each component based on physical priors. The GCE components, in 

particular, are initialized following the average spectrum of Galactic 
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Figure 7. Top left: Spectra of IGRB in the GALPROP -based background model, using different GCE templates (including no excess). Remaining : Comparing 

the IGRB and GCE fluxes when different GCE templates are used in the GALPROP -based background model. 

MSPs detected by Fermi -LAT (McCann 2015 ), which suppresses the 

gamma-ray emission abo v e a few tens of GeV. 7 

To reduce the required computation time of SKYFACT and to 

impro v e its conv ergence, we combine the H I and H2 templates per 

ring into a single component, and we create a single inverse Compton 

template from the six initial rings. The results of the optimization run 

– in this case using the example of modelling the GCE with Cole- 

man20, NB, and gNFW 
2 to e x emplify what is maximally possible 

regarding the reduction of fit residuals – are shown in the right panel 

of Fig. 11 in terms of significance (( data − model ) / 
√ 

model ) of the 

residuals in the energy range from 1.72 to 10.8 GeV. We compare 

these residuals to the residuals we obtain with a simple template fit 

(the left panel of the same figure) using the full model as described in 

Table 8 , and which should correspond to results in Section 3.3 . Here, 

a template fit refers to a maximum likelihood fit where the spatial 

morphology of all templates is fixed, i.e. turning off all spatial and 

spectral re-modulation parameters, while all spectra are completely 

unconstrained and free to vary. As intended, SKYFACT is able to 

noticeably reduce the significant residuals of the template fit along 

the Galactic plane to the left and right of the GC. Moreo v er, the 

remaining residuals of the optimized model appear rather featureless 

and well-distributed around zero. We obtain very similar results when 

the GCE is modelled with only the gNFW 
2 DM template. This 

optimization procedure is repeated for the remaining background 

models, M2023 ’s GALPROP 8t and the model setup of RUN5 used in 

the original SKYFACT works. 

7 Further exploration of the GCE properties abo v e 10 GeV with SKYFACT is 

presented in Manconi, Calore & Donato ( 2024 ). 

4.2 DM evidence in masked analyses with the original SKYFACT 

set-up. 

To investigate the preferred spatial morphology of the GCE, we turn 

to wards an alternati ve gamma-ray emission model neither probed 

in P2022 nor M2023 . The RUN5 model iteration compiled for the 

original SKYFACT works (Storm et al. 2017 ; Bartels et al. 2018 ) 

provides an ideal candidate to shed light on the impact of a Galactic 

plane mask and its impact on template-based fits. To this end, we fully 

adopt the set-up of run5 in terms of model composition (see the cited 

publications for all details) and SKYFACT ’s hyperparameter settings. 

This gamma-ray emission model iteration contains representatives 

of most of the components listed in Table 8 except for the dust 

correction, Loop I, Sun, and Moon contributions. 

In contrast to the other two background model iterations, this one 

can only be used in its ‘optimized’ version as the original templates of 

the model are not meant to fit the data well. Following our rationale 

outlined in the previous section, we first perform an optimization 

run with respect to the selected Fermi -LAT dataset without masking 

any part of the sky while adding no explicit GCE components to 

the model definition. Afterwards, we extract the optimized model 

components with the aim of conducting several template fits based 

on the optimized background templates with varying Galactic plane 

mask sizes. In these template fits, we restrict the full energy range of 

the selected Fermi -LAT data set to energy bins co v ering 500 MeV 

to 12 GeV, i.e. 10 energy bins in total, in order to save computation 

time while still capturing the bulk of the GCE’s emission. 

To derive a statistically sound assessment of the data’s preference 

for any particular GCE morphology, we need to perform template 

fits of nested models. We perform this type of model comparison in 
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Figure 8. Same as Fig. 7 , but for the ring-based background model. 

Table 5. The energy bins and the radii, θ , of the point source masks used for 

Section 3.5 . The last column shows the fraction of pixels masked relative to 

the total number of pixels in the inner 40 ◦ × 40 ◦ GC region, including both 

the 4FGL-DR2 catalogue masked point sources and the Galactic plane | b | < 

2 ◦ mask. 

E min –E max (GeV) θ ( ◦) Masked fraction (per cent) 

0.667–0.889 1.92 88.5 

0.889–1.19 1.58 80.3 

1.19–1.58 1.28 68.7 

1.58–2.11 1.04 58.9 

2.11–2.81 0.8 49.0 

2.81–3.75 0.72 41.0 

3.75–5.0 0.56 35.3 

5.0–6.67 0.48 28.5 

6.67–8.89 0.36 26.1 

8.89–11.9 0.32 20.7 

11.9–15.8 0.2 17.7 

15.8–21.1 0.2 17.7 

21.1–28.1 0.2 17.7 

28.1–37.5 0.2 17.7 

37.5–158 0.2 17.7 

terms of the significance of the additional component as explained 

in Section 2.3.3 . We define our base model as all astrophysical 

background components plus a GCE represented by Coleman20 and 

NB templates. An extended model adds the gNFW 
2 template so 

that we can compare the likelihood values for fits with both model 

Figure 9. A comparison of the fraction of the sky masked for the analysis 

in of the sky masked in Section 3.5 (blue) and the fraction of sky masked for 

the rest of Section 3 and also M2023 (red). Note that in both cases, the plot 

is for the combined point source and Galactic plane mask. 
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Table 6. Statistical significance of the GCE templates for the ring-based 

background model of P2022 when the new point-source mask is applied 

(plane unmasked). Additional sources considered in the analysis are NB, 

Coleman20 BB, and gNFW 2 DM-like template. In addition to the TS, 

the significance of the additional component is also given in terms of the 

equi v alent number of σ . 

Baseline model Additional source TS Significance 

Ring based Coleman20 77.5 7.3 σ

Ring based gNFW 2 80.7 7.5 σ

Ring based NB 299.7 16.2 σ

Ring based + NB gNFW 2 21.0 2.8 σ

Ring based + NB Coleman20 90.9 8.1 σ

Ring based + NB + Coleman20 gNFW 2 3.5 0.3 σ

Table 7. The same as Table 6 except that the Galactic plane ( | b | < 2 ◦) is also 

masked. 

Baseline model Additional source TS Significance 

Ring based gNFW 2 12 1.7 σ

Ring based NB 19 2.6 σ

Ring based Coleman20 56 5.9 σ

Ring based + Coleman20 NB 3 0.2 σ

Ring based + Coleman20 gNFW 2 5 0.5 σ

instances. Adding a gNFW 
2 component to the base model essentially 

adds 11 degrees of freedom or parameters, which must be strictly 

positive, namely the normalizations of the DM template per energy 

bin and a global normalization parameter. 

The results of this approach are reported in Table 9 . The first row of 

this table can be compared to the last row of table 2 of P2022 . There 

a slightly lower significance was found but some minor differences 

are to be expected gi ven v ariations on ho w the point sources are 

treated, the number of energy bins used, and the modulation done 

of the background templates. In both cases, the significance of a 

gNFW 
2 template is negligible once the Coleman20 BB and NB 

have been added. The results of Table 9 indicate that the evidence 

for the necessity of adding a gNFW 
2 template to the gamma-ray 

emission model is at most 1.6 σ in the case of no Galactic plane 

mask. Interpreted differently, there is only marginal evidence that 

the preferred morphology of the GCE follows a gNFW 
2 profile. 

This is in agreement with results of Section 3.5 , also when spatial 

modulation of the background model components is allowed. 

4.3 Bayesian model comparison of original and optimized 

gamma-ray emission models 

Given the sometimes opposing findings on the preferred spatial 

morphology of the GCE reported in the broad body of literature, 

it is necessary to ask the question of how much the employed 

astrophysical background model impacts the eventual conclusion. 

Here, we investigate this question from a Bayesian point of view 

by quantifying the degree of belief in certain gamma-ray emission 

models, that is, what model fits the Fermi -LAT data best. The 

expectation is to verify that with increasing Bayesian evidence for 

a gamma-ray emission model, the preference for a particular spatial 

morphology of the GCE is converging to either DM represented by a 

gNFW 
2 template or the combination of the Coleman20 BB and NB 

templates. 

4.3.1 Model comparison without GCE components. 

In Table 10 , we consider six background models, three original 

background model template sets and three optimized template sets 

obtained by applying the rationale outlined in Section 4.1 . We first 

compare the performance of these models in a template fit without 

adding additional GCE components, i.e. we assess how well the 

background templates alone fit the GC gamma-ray emission. Note 

that we also include M2023 ’s GALPROP 7p background model (only 

original templates) since it was found in M2023 that it yields the 

best fit when not accounting for GCE components. In all runs, we 

applied a Galactic plane mask of | b | < 2 ◦, which turned out to 

be a crucial ingredient in the comparisons of DM-like and bulge 

templates. 

To derive the stated Bayesian evidence H, we proceed as follows. 

We extract the best-fitting template normalizations for each model 

iteration. We sum all model components multiplied by the retrieved 

best-fitting normalizations. Using MULTINEST (Feroz, Hobson & 

Bridges 2009 ) and specifying 1000 live points and an evidence 

tolerance of 0.2, we re-fit the masked ROI with these models while 

assigning a single normalization parameter to it and employing a 

Poisson log-likelihood function. 

By comparing these models, 8 we notice that the optimized versions 

of each respective background model iteration al w ays yield a better 

fit to the data, also in the case of ring-based background models. 

In contrast to M2023 , we do not find that the original GALPROP 7p 

performs better than the original GALPROP 8t without additional GCE 

components as shown by a Bayes factor of ln B = 277 in fa v our of 

the latter. 

Among all considered model iterations, we find that the run5 model 

of the original SKYFACT works yields the best description of the data 

by far ( ln B > 1000 to the next best iteration, the optimized M2023 ’s 

GALPROP 8t ). Yet, already at this stage, we caution the reader not to 

o v erinterpret the quoted evidence values − ln H. skyFACT is not 

a perfect tool and cannot re-modulate the templates to 100 per cent 

accurac y. F or e xample, when we compare the optimized templates 

associated with the π0 and bremsstrahlung emission (following the 

gas distribution in the Milky Way) among different background 

model iterations, we find that they do not converge to the exact 

same morphology. For instance in the most extreme case, the 

relati ve de viation of this optimized gas-related component is on 

average around 30 per cent with respect to SKYFACT ’s RUN5 and 

M2023 ’s GALPROP 8t . On one side, this is caused by the quite 

diverse gamma-ray emission model composition in P2022 , M2023 

and SKYFACT ’s RUN5 , which yields different priors for the adaptive 

template fitting routine. On the other side, this technique relies on 

user-defined hyperparameters that alter the final results. While we 

impro v e the fit results via SKYFACT , we do not claim to have derived 

the unique optimal diffuse model describing the physics of the 

GC. 

8 We stress that the numbers presented in Table 10 cannot and should not 

be directly compared to the previous results in Section 3 . The main reason 

is the differing resolution of the templates adopted for the two analyses. In 

Section 3 , we use a finer resolution of 0.1 ◦, which directly translates to larger 

likelihood values. At the same time, we have to project the gamma-ray flux 

models of each component to the chosen geometry of the data set. The initial 

resolution of the flux model is most of the times coarser than the chosen 

bin size for the data. Projection effects can distort and washout information 

so that we do not compare the exact same model each time we change the 

resolution. 
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Figure 10. Left: Monte Carlo simulations for the ring-based + NB + Coleman20 model when the point sources are masked as specified in Table 5 . Poissonian 

simulations were generated for the best-fitting parameters of this model. Each simulation was fit using the ring-based + NB + Coleman20 model, and the 

maximum likelihood for the simulation ( L sim ) was compared to the maximum likelihood for the ring-based + NB + Coleman20 model fit to the Fermi -LAT data 

( ln L data ) which is given in Table 6 . The vertical error bars were estimated from the mean and standard deviation of the simulation samples. The horizontal error 

bars indicate the energy bin widths. Right: Same as the left plot except that the Monte Carlo simulations are for the ring-based + Coleman20 model when the 

point sources are masked as specified in Table 5 and the | b | < 2 ◦ Galactic plane was also masked. 

Table 8. Summary of the spatial and spectral model components used as input for SKYFACT to derive an optimized version of the gamma-ray emission model 

of P2022 . 

Component Spatial morphology Spectrum 

π0 + bremsstrahlung H I maps P2022 and H2 maps Macias et al. ( 2018 ) in four rings (in Galactocentric radii: 

0–3.5, 3.5–8, 8–10, 10–50 kpc) 

Ackermann et al. ( 2012 ) 

Inverse Compton Numerical computation in six Galactocentric rings via GALPROP v56 Spectrum of foreground 

Based on the 3D interstellar radiation field model of (Porter, Johannesson & Moskalenko 

2017 ) 

Model A (Ackermann et al. 2015 ) 

Dust correction Positive and negative corrections maps of Abdollahi et al. ( 2020 ) Power law ∝ E −2 

Detected sources 4FGL-DR2 sources in our ROI (Ballet et al. 2020 ) Spectra listed in 4FGL-DR2 

Isotropic gamma-ray background Isotropic Fermi Science Tools 

Fermi bubbles Macias et al. ( 2019 ) Ackermann et al. ( 2017 ) for low latitudes 

Sun and Moon Data-dri ven, deri ved with the Fermi Science Tools Fermi science tools 

Loop I Wolleben ( 2007 ) Power law ∝ E −2 

DM C2022 ∝ ( E / 1 GeV ) −1 . 46 exp ( −E / 3 . 6 GeV ) 

Boxy Bulge Coleman et al. ( 2020 ) ∝ ( E / 1 GeV ) −1 . 46 exp ( −E / 3 . 6 GeV ) 

Nuclear stellar cluster Nishiyama et al. ( 2013 ) ∝ ( E / 1 GeV ) −1 . 46 exp ( −E / 3 . 6 GeV ) 

4.3.2 Model comparison with added stellar GCE components 

For each of the all gamma-ray emission models in Table 10 but 

GALPROP 7p original, we then add an additional GCE component, 

modelled as Coleman20 and NB, perform a standard template fit 

and extract Bayesian evidence values as described in the previous 

paragraph. 

As can be seen from Table 11 , in general, we find very strong 

evidence for the combination of the Coleman20 BB and NB on top of 

the background-only model iterations, as clearly implied by the large 

significance values around 20 σ in all tested cases. This means that, 

regardless of the SKYFACT optimization, Fermi -LAT data strongly 

want an additional component, i.e. the GCE. As can be seen from 

Table 11 , among the ‘original’ non- SKYFACT modulated gamma- 

ray emission models, we find that the one proposed by M2023 , 

GALPROP 8t , exhibits strong evidence (ln B ≈ 300) for being a better 

fit to the data with respect to the original P2022 set-up. This claim 

has been made in M2023 , which we are able to reproduce here (and 

in Section 3 ). Ho we ver, this does not mean that their model is, in 

general, the best description of reality since we are only looking at 

latitudes | b | > 2 ◦. The SKYFACT -modulated versions of both gamma- 

ray emission model instances are strongly preferred by the data 

compared to their original counterparts. Globally, the SKYFA CTR UN5 

model is the one performing best among all tested cases, even when 

spatial modulation are allowed on the original M2023 and P2022 

models. There is strong evidence for it being preferred o v er the 

second-best model, M2023 optimized, by ln B ≈ 1400. 

4.3.3 Model comparison and significance of a DM component 

Finally, we added a gNFW 
2 component in the subsequent fit, on 

top of the bulge Coleman20 and NB model. This way, we can 

repeat the approach outlined in Section 2.3 to quantify the statistical 
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Figure 11. Shows ( data − model ) / 
√ 

model of residuals in the integrated energy range from 1.72 to 10.8 GeV. Left: Employing SKYFACT to perform a template 

fit with the ring-based astrophysical model components listed in Table 8 with a GCE represented by the Coleman20 + NB + gNFW 2 . Right: Running the same 

model set-up with the full re-modulation power of SKYFACT to optimize the employed components. 

Table 9. Summary of the significance of an additional gNFW 2 template 

in template fits with the SKYFA CTR UN5 set-up for various Galactic plane 

mask sizes. Here, ‘base’ refers to the SKYFACT optimized RUN5 background 

templates plus the Coleman20 BB and a NB component. The SKYFACT 

optimization of background templates was performed on the RUN5 set-up 

without GCE components as outlined in Section 4.1 . 

Galactic plane mask −2 ln L base + gNFW 2 −2 ln L base TS Significance 

no mask 275 081 275 071 10 1.6 σ

| b | < 1 ◦ 260 989 260 985 4 0.5 σ

| b | < 2 ◦ 247 030 247 029 1 0.1 σ

| b | < 5 ◦ 205 937 205 932 5 0.7 σ

Table 10. Summary of the likelihoods ( L ) and evidence ( H) for different 

background models. A Galactic plane mask of | b | < 2 ◦ is applied, but the 

point sources are included as part of the background model. The optimized 

version of the background model includes a skyFACT modulated version of 

the non-point source components of the ‘original’ model. 

Background model −2 ln ( L ) − ln ( H) 

M2023 ’s GALPROP 7p ‘original’ 347 477 280175 

M2023 ’s GALPROP 8t ‘original’ 347 465 279898 

M2023 ’s GALPROP 8t ‘optimized’ 342 008 274036 

P2022 ’s ring-based ‘original’ 346 859 279723 

P2022 ’s ring-based ‘optimized’ 342 982 276 075 

SKYFACTRUN5 ‘optimized’ 340 266 272900 

significance of an additional gNFW 
2 template from the frequentist 

perspective. As can be seen from Table 12 , we are also able to 

reproduce the M2023 result of the strong evidence (more than 11 σ ) 

for the necessity of an additional DM gNFW 
2 template on top of 

Coleman20 and NB in the context of the original M2023 model set- 

up. Ho we ver, as can also be seen from Table 12 , the significance of the 

gNFW 
2 component is only marginal after SKYFACT modulating the 

spatial morphology of the background model. In contrast, consistent 

with earlier works and the results in Table 7 , we see in Table 12 that 

the setup of P2022 never required an additional gNFW 
2 template 

after accounting for the GCE as the Coleman20 BB template and NB 

template. As can also be seen from Table 12 , the SKYFACT model is 

an outlier here because the fit, including a gNFW 
2 template, is even 

worse than the one without. This situation can occur in SKYFACT 

since even in a template fit, we modulate the spatial morphology 

of the detected extended 4FGL-DR2 sources. Thus, the penalizing 

likelihood function adds a non-vanishing part to the o v erall value 

of the likelihood function. Yet, the extensions of these sources are 

marginal compared to the rest of the ROI, so we do not expect biased 

results. Consequently, there is also no evidence of the need for a 

gNFW 
2 template in this gamma-ray emission model iteration. 

In conclusion, whenever we employ an optimized astrophysical 

background model, there is no strong evidence for spherical sym- 

metry of the GCE or at least a preference for such a morphology 

even when masking the Galactic plane. Previous contrary findings 

seem to be driven by a certain amount of background mismodelling. 

We stress again that quoted values of the Bayesian evidence are 

subject to the caveats raised in Section 2.3.3 . Eventually, the Bayesian 

frame work allo wed us to single out the SKYFA CTR UN5 set-up to be the 

most suitable to describe the Galactic centre physics with adaptive 

template fitting. Its assumed priors for the spatial and spectral profile 

of the used components yield the best-fitting model among the tested 

cases, although it does by no means imply that it is the optimal model 

achie v able. 

5  C O N C L U S I O N S  

We have performed an extensive analysis of models of gamma-ray 

emission towards the GC as an explanation of the GCE, subject to 

different choices of diffuse background models, point source and 

Galactic plane masking, and extended source models. In particular, 

we tested GALPROP -based background models versus more flexible 

non-parametric ring-based models. 

First, we have thoroughly tested contradicting results in the 

literature for masked analyses, especially those pertaining to the 

preference for stellar bulge versus DM, e.g. in M2023 , where 

preference for a gNFW 
2 (DM-like) emission of the GCE was found. 
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Table 11. Summary of the TSs, significances for the Coleman20 + NB templates for different background models. The evidence ( H) is 

also given for the combined model of background + Coleman20 + NB. See Table 10 for an explanation of the background models and their 

corresponding likelihoods. 

Background model TS (Coleman20 + NB) Significance − ln ( H) 

M2023 ’s GALPROP 8t ‘original’ 2137 > 20 σ 278 929 

M2023 ’s GALPROP 8t ‘optimized’ 4822 > 20 σ 272 018 

P2022 ’s ring-based ‘original’ 445 19.1 σ 279 231 

P2022 ’s ring-based ‘optimized’ 5435 > 20 σ 272 573 

SKYFA CTR UN5 ‘optimized’ 3957 > 20 σ 270 627 

Table 12. Summary of the TSs and significances for the gNFW 2 template for different background models once the Coleman20 + NB 

templates have been added. See Table 10 for an explanation of the background models and their corresponding likelihoods. 

Base model TS(gNFW 2 ) Significance − ln ( H) 

M2023 ’s GALPROP 8t ‘original’ + Coleman20 + NB 162 11.4 σ 278843 

M2023 ’s GALPROP 8t ‘optimized’ + Coleman20 + NB 22 2.7 σ 272008 

P2022 ’s ring-based ‘original’ + Coleman20 + NB 32 3.9 σ 279202 

P2022 ’s ring-based ‘optimized’ + Coleman20 + NB 14 1.7 σ 272504 

SKYFA CTR UN 5 ‘optimized’ + Coleman20 + NB −3 – 270 673 

In Section 3 , we showed that we can reproduce the analysis in 

M2023 , and we scrutinized their main results in light of model and 

analysis systematic uncertainties. In Section 3.2 , we highlighted the 

rele v ance of the bulge templates: when using the same GALPROP - 

based background models as in M2023 , with the same data selection 

and masks, we demonstrated using Bayesian evidence that the 

Coleman20 and F98 bulge models provide a better description of 

the inner Galaxy gamma-ray sky than a gNFW 
2 model. We then 

tested an alternative model for the Galactic diffuse emission, and, in 

particular, the so-called ring-based background model. In Section 3.3 , 

we demonstrated that, in the absence of an additional GCE source, 

the ring-based model better performs with respect to GALPROP -based 

models. When adding a GCE source, the Coleman20 bulge model is 

the preferred model of the GCE, significantly better than the gNFW 
2 

template. We notice that the contrary conclusions of M2023 when 

using the ring-based model were due to their not correctly finding 

the minimum of the parameters for the ring-based templates due to 

an o v erly restrictiv e prior. We also found that M2023 used a non- 

standard version of the Galactic bulge template. This is confirmed 

by the fact that even with their GALPROP -based templates, the better- 

moti v ated Coleman20 bulge template still provides a superior fit to 

the Fermi -LAT data. In Section 3.5 , we examined the case of ring- 

based templates with more aggressive masking. We found that, when 

just the point sources are masked out, the Coleman20 BB and NB 

significantly impro v e the fit, and once they are added, the gNFW 
2 

template does not significantly impro v e the fit an ymore. When the 

Galactic plane is masked out, only the Coleman20 BB template is 

required. The NB is indeed too small in its spatial extent to have any 

significant effect on the model fit to the data in that case. We also 

showed using Monte Carlo simulations that the fits were consistent 

with simulations. 

We then looked at the case where templates could be spatially 

modulated using SKYFACT . Allowing for more freedom on the spatial 

parts of the model components, we were able to further minimize 

the residuals and impro v e the goodness of fit. We compared the 

different background models from the previous sections and added an 

additional SKYFACT model ( RUN5 ). We demonstrated that switching 

on the spatial modulation of background models al w ays provide a 

better fit to data, because of reduction of the residuals. Among all 

considered background model iterations, we find that the RUN5 model 

of the original SKYFACT works yielded the best description of the data 

by far ( ln B > 1000 to the next best iteration, the optimized M2023 ’s 

GALPROP 8t ). None the less, limitations still exist in the current SKY- 

FACT implementation. While we impro v e the fit results via SKYFACT , 

we do not claim to hav e deriv ed the unique optimal diffuse model 

describing the physics of the GC. No matter what the background 

model is, we al w ays found strong evidence for the Coleman20 + NB 

model. Moreo v er, for all background optimized models there is no 

additional evidence for a DM-like signal. We found similar results, 

i.e. DM evidence on top of the bulge model al w ays below the 4 σ

threshold, for almost all background models. We encountered one 

exception, namely the original M2023 GALPROP-based template. 

Ho we ver, this was found to have a much lower Bayesian evidence in 

comparison to the SKYFA CTR UN5 model. Finally, we found that, for 

the RUN5 model of the original SKYFACT implementation, the evidence 

for an additional DM-like contribution is not significant on top of the 

Coleman20 bulge and NB model regardless of the cut on Galactic 

latitude. 

We stress that throughout this work we have adopted Bayesian 

statistics when performing model comparison, and our conclusions 

have to be interpreted in such a statistical framework. 

In summary, the preference for a bulge-like morphology of the 

GCE in the various analyses we have done puts on even more 

solid grounds the possibility that part of the excess originates from 

unresolved point sources, such as MSPs. Future multiwavelength 

analyses of the GC will help determine the nature of the sources 

emitting across the multi-messenger spectrum from radio (Calore 

et al. 2016 ), X-rays (Berteaud et al. 2021 ), up to very high energy 

gamma rays (Song, Macias & Horiuchi 2019 ; Macias et al. 2021 ). 

Note: While our article was near completion, a new article came 

out (Zhong & Cholis 2024 ) which found that when the GALPROP - 

based background model was used, the Coleman20 bulge had a 

similar likelihood to the gNFW 
2 . No Bayesian model comparison 

is performed therein. 
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