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Abstract: Formany engineering problems involving control

systems, finding a good working point for steady-state oper-

ation is crucial. Therefore, this paper presents an applica-

tion of steady-state optimization with feedback on particle

accelerators, specifically the European X-ray free-electron

laser. In simulation studies, we demonstrate that feedback

optimization is able to reach a near-optimal steady-state

operation in the presence of uncertainties, even without

relying on a priori known model information but purely

data-driven through input-output measurements. Addition-

ally, we discuss the importance of including second-order

information in the optimization to ensure a satisfactory

convergence speed and propose an approximated Hessian

representation for problems without second-order knowl-

edge on the plant.

Keywords: steady-state control; feedback optimization; re-

cursive least-squares estimation; particle accelerators

Zusammenfassung: Für viele regelungstechnische Proble-

me ist es wichtig, einen guten Arbeitspunkt für die
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Betriebsführung zu finden. Aus diesem Grund präsentiert

dieser Artikel eine Anwendung von Ruhelagenoptimierung

im geschlossenen Regelkreis auf Teilchenbeschleuniger, in-

besondere den European XFEL. In Simulationwird demons-

triert, dass Feedbackoptimierung fast optimale Ruhelagen

für den Betrieb erreicht – sogar dann, wenn kein vorhande-

nes Modellwissen eingesetzt sondern datengestützt anhand

von Eingangs- und Ausgangsmessungen gearbeitet wird.

Zusätzlich wird diskutiert, dass Modellinformationen zwei-

ter Ordnung entscheidend für die Konvergenzgeschwindig-

keit der Optimierungsprobleme sind, und eine Näherung

der Hesse-Matrix vorgeschlagen, die sich datengestützt be-

rechnen lässt.

Schlagwörter: Ruhelagenregelung; Feedbackoptimierung;

rekursive Methode der kleinsten Quadrate; Teilchenbe-

schleuniger

1 Introduction

For many business and engineering scenarios, formulating

the task at hand as a mathematical optimization problem

is a powerful and convenient approach. For example, many

logistics and allocation problems can be solved using linear

programming [1], and optimal control is an established tool

in many engineering disciplines, both in its classical [2] and

predictive form [3].

The current paper falls into the context of a particular

engineering problem, the control of particle accelerators.

As large and complex machines, accelerators present sig-

nificant challenges in terms of the required performance

and scale of the control problem. Specifically, this paper

deals with steady-state optimization of particle beam prop-

erties. In this kind of problem, it is sought to find an input-

output pair that keeps a physical plant at steady state while

minimizing a user-defined cost function and is potentially

subject to constraints. Most often, such problems arise as a

high-level control task for plants that are either inherently

stable by themselves or stabilized by a low level controller.
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Approached by means of classical optimization meth-

ods, we observe a key conflict: On the one hand, running

classical model-based optimization, e.g., gradient descent or

quasi-Newton schemes like BFGS [1], allows to take advantage

of available information but is susceptible to uncertainties

since no information about the actual plant is used. On the

other hand, methods such as the Nelder-Mead algorithm [1]

or Bayesian optimization [4], [5] compute solutions based on

input-output measurements of the plant but can only par-

tially incorporate model information to improve their per-

formance. For particle accelerator control, Bayesian opti-

mization [5], the Nelder-Mead simplex algorithm [6], and

reinforcement learning [7] have proved successful when

tuning machine parameters.

In the context of control, an essential component in

improving robustness against uncertainties is feedback. In

addition to a feedforward signal computed directly from

the model, a feedback signal is determined from plant

measurements to correct for deviations from the desired

response. This idea is taken up upon by the method of

feedback optimization [8], [9]. Instead of optimizing based

only on an available model, the algorithm evaluates the

cost function gradient at the measured plant output, clos-

ing a feedback loop around the optimizer and plant. Sim-

ilar to integral behavior in linear time-invariant control

loops [10], this structure allows to suppress uncertain-

ties while maintaining optimal steady-state operation [11],

[12] and track successfully in time-varying optimization

problems [13].

As such, feedback optimization has attracted significant

interest in the past, resulting in theoretical convergence

guarantees [14]–[16] and diverse practical applications. For

example, the method has been applied in the process indus-

try [17], [18] for tracking optimal references, for congestion

control in communication networks [19], and control of elec-

tric power grids [20], [21]. Furthermore, recent work has

shown how feedback optimization can be applied in a data-

driven and model-free scenario [22]–[24]. The idea of using

online feedback in optimization has also been employed

in model predictive control [3] and especially variants that

employ the real-time iteration scheme [25]. However, while

predictive control is aimed at dynamic control problems,

feedback optimization targets static problems, i.e., steady-

state optimization without dynamics on their own or suf-

ficiently fast transients [26]. In addition, the methods pre-

viously applied in the context of particle accelerators are

either unsuitable for continuous operation [6] or require

extensive training on simulations [7].

The specific scheme of feedback optimization that the

current paper builds upon has been proposed in Ref. [16].

Instead of projecting intermediate steps onto the feasible

set or adding a penalty for constraint violation, the authors

propose to solve a constrained linearization of the original

problem. The attractiveness of their scheme stems from its

guaranteed convergence even for non-convex problems and

few oscillations in the transients even if operating close to

the constraints. However, while [16] includes a metric in its

quadratic program, the implications of choosing different

metrics are only raised in passing.

After the introduction, Section 2 states the general opti-

mization problem considered in this paper, reviews the

concept of feedback optimization, and proposes a partic-

ular approach to include second-order information in the

optimization problem. This is followed by a discussion of a

scheme for data-driven sensitivity estimation for feedback

optimizers in Section 3. The main content of the paper is

presented in Section 4, which introduces the beamline posi-

tion control problem at the European X-ray free-electron

laser (EuXFEL) particle accelerator as an example, and

evaluates feedback optimization with and without known

sensitivities as a solution. Finally, Section 5 concludes

the paper.

1.1 Contributions

The contributions of this paper are twofold:

1. Section 2.3 proposes an approximation scheme for the

Hessian matrix of the optimization problem that can

be evaluated from first-order derivative information

of the underlying plant. Using this approximation, it

becomes possible to take advantage of the Hessian

for optimization in model-free settings, significantly

improving the convergence speed of the algorithm.

2. We introduce the beam position control problem in

particle accelerators as an application of feedback opti-

mization in Section 4 that is challenging to solve with

other methods such as Bayesian optimization.

1.2 Notation

We use In to denote the n × n identity matrix. In addi-

tion, �
n
+

is the set of symmetric n × n matrices that

are positive definite. For vectors z ∈ ℝ
n, ‖z‖M :=

√
z⊤Mz

denotes the weighted 2-norm with weight M ∈ �
n
+
. If the

Euclidean norm with M = In is used, the subscript is

dropped for conciseness. Finally, M1 ⊗M2 is the Kro-

necker product of the matrices M1 and M2, and vec

denotes the column-wise vectorization operator, i.e., vec(M)

is the vector consisting of the stacked columns of the

matrixM.
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2 Feedback control for steady-state

optimization

2.1 Problem statement

Consider a stable physical plant with input u ∈ ℝ
p and

output y ∈ ℝ
n, and a twice continuously differentiable cost

functionΦ:ℝ p ×ℝ
n
→ ℝmappingu and y into a scalar cost.

Our goal is to drive the plant to a steady-state pair (u∗, y∗)

that minimizesΦ.

More precisely, we consider the physical plant to be

expressed by an unknown or at least uncertain input-output

steady-state map h:ℝ p
→ ℝ

n such that y = h(u) holds for

all steady-state pairs (u, y). Furthermore, suppose there are

polyhedral constraints Au ≤ b and Cy ≤ d on the admissible

inputs and outputs, described by appropriately sized matri-

cesA, C and vectors b, d, respectively, wherewe assume that

the constraints are decoupled for simplicity. The desired

steady-state pair (u∗, y∗) is then obtained from the solution

of the optimization problem

min
u,y

Φ(u, y) (1a)

s.t. y = h(u), (1b)

Au ≤ b, (1c)

Cy ≤ d. (1d)

Note that the costΦ is a design parameter meaning that we

assume perfect knowledge of the function.

There exist a variety of approaches for obtaining

local solutions to optimization problems in the form of

(1), e.g., projected gradient descent or sequential quadratic

programming [1], while finding global solutions is gen-

erally intractable due to non-convexity. These methods

can be roughly categorized to belong to one of two

groups: On the one hand, there are optimization meth-

ods that perform a feedforward offline optimization based

on an a priori known model of the plant. However, since

no information from the physical plant is taken into

account, the obtained input u will typically be subopti-

mal when actually applied. On the other hand, online

methods like the Nelder-Mead algorithm or Bayesian opti-

mization [1] use output measurements to find the optimal

input but can only partially include available knowledge

of the plant.

2.2 Feedback optimization

In its current formulation, the equality constraint (1b)

implies that the output y can be eliminated from the

optimization problem by substitution, leading to the new

cost function Φ̃(u):= Φ(u, h(u)) in terms of only the input

u. As such, measurements from the physical plant are not

taken into account.

Instead, feedback can be included in the optimization

process by utilizing measurements of the output y in place

of knowledge of the steady-state map h [9]. The idea is to

take advantage of the chain rule to calculate the Jacobian of

the composite function Φ̃ as

�Φ̃

�u
(u) =

�Φ

�u

(
u, h(u)

)
+

�Φ

�y

(
u, h(u)

)�h
�u

(u), (2)

followed by a substitution of h(u) by y. Note, that for comput-

ing the derivative of the composite cost Φ̃ it is therefore only

necessary to know the Jacobian �h

�u
, not the full steady-state

map h.

Based on this reformulation [16], implements the con-

trol law uk+1 = uk + ��(uk, yk) with step size � > 0 and con-

trol update �:ℝ p ×ℝ
n
→ ℝ

p, where uk is the plant input

after k steps and yk is its corresponding measured output.

For initialization, a suitable (with respect to the constraints)

input u0 can be chosen arbitrarily. At every step, the control

update � is determined by solving the parametric quadratic

program

�(u, y):= arg min
�∈ℝ p

‖‖‖ � + G−1(u, y) J⊤(u, y)
‖‖‖
2

G(u,y)
(3a)

s.t. A(u+ ��) ≤ b, (3b)

C

(
y+ �

�h

�u
(u)�

)
≤ d, (3c)

where � ∈ ℝ
p is the optimization variable that can be

thought of as the next step direction, G:ℝ p ×ℝ
n
→ �

p

+ is a

parameter-dependent weight, and

J(u, y):=
�Φ

�u
(u, y)+

�Φ

�y
(u, y)

�h

�u
(u)

is the Jacobian (2) of the composite cost evaluated at the

measured output y instead of the steady-state map h(u). As

such, the only model information required to evaluate (3) is

the Jacobian �h

�u
. An approach without any knowledge of the

plant is discussed in Section 3.

The structure of problem (3) is similar to other algo-

rithms for solving nonlinear optimization problems but has

the special property that it is partially evaluated at the mea-

sured output y. In particular, the weight G takes the role of

the approximated Hessian that is common in quasi-Newton

schemes [1]. For example, withG(u, y) ≡ I and strictly inside

the feasible set, i.e., both constraints inactive, the optimiza-

tion variable � corresponds to the negative gradient.
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Under suitable assumptions, i.e., feasibility of the

problem, regularity of the constraint set, and a sufficiently

small step size�, [16, Theorem 3] shows that the incremental

control law drives the plant into a local minimum of the

composite cost function Φ̃. However, the result does not

discuss the convergence speed of the method, especially

with respect to the weight G. For iterative optimization

algorithms, it is well known that including second-order

information in form of the Hessian (or an approximation

thereof) can drastically increase the speed of convergence

close to the optimum, e.g., quasi-Newton methods or the

Levenberg-Marquardt algorithm [1]. Hence, while conver-

gence can be guaranteed also for G(u, y) = I p, it is highly

desirable to include second-order informationwhen solving

(3) if available.

2.3 Evaluating and approximating the
Hessian

In the previous section, it was discussed how the chain

rule can be employed to partially evaluate the Jacobian

of the composite cost Φ̃ at a measured output y. Impor-

tantly, the terms in (2) can be evaluated without knowl-

edge of the full steady-state map h but only its Jacobian.

However, no analogous steps have been employed on the

Hessian, and the original formulation of the optimiza-

tion problem with the weight G only depending on the

input u does not allow for its evaluation in terms of the

output y.

As an augmentation of optimization scheme discussed

in Section 2.2, we therefore propose to perform a similar

partial evaluation at the measured output y for the Hessian.

Taking the Jacobian of
(
�Φ̃

�u

)⊤

, we obtain

�2Φ̃

�u2
(u) =

(
�h

�u
(u)

)⊤
�2Φ

�y2
(
u, h(u)

)�h
�u

(u)

+
�2Φ

�u2
(
u, h(u)

)
+

�2Φ

�u�y

(
u, h(u)

)�h
�u

(u)

+

(
�h

�u
(u)

)⊤
�2Φ

�y�u

(
u, h(u)

)

+
�Φ

�y

(
u, h(u)

)�2h
�u2

(u). (4)

Note that �2h

�u2
in the last term is a rank 3 tensor with

dimensionn × p × p sinceh is aℝn-valued function. Since

we can again assume perfect knowledge of the cost func-

tion Φ, it is sufficient to know the Jacobian �h

�u
in order to

evaluate the first four terms of (4), the knowledge of which

is already assumed to solve problem (3). Furthermore, the

reformulation allows for substituting the measured output

y for the evaluation of the steady-state map h(u). Hence,

only the final term of (4) requires information beyond the

Jacobian of h to compute, which is in particular its Hessian
�2h

�u2
.

3 Adaptive feedback using

sensitivity estimation

Section 2 shows how feedback can be included in an iter-

ative algorithm to optimize the steady-state of a physical

plant, and how existing approaches can be augmented by

second-order information. However, as discussed in Ref. [9],

achieving good convergence speed relies on having accu-

rate knowledge of the Jacobian �h

�u
. Especially for physical

plants that are difficult to model using traditional methods,

it would therefore be attractive to learn amodel from input-

output measurements.

One approach to obtain such a learned model is via

recursive least squares estimation as proposed in Refs. [23],

[24]. The idea is to have a recursive estimator, e.g., a Kalman

filter, running with the plant in an online fashion. From the

incremental changes applied to the plant, either by a con-

troller running in parallel or on purpose for the estimation,

it is then possible to extract the sensitivity, i.e., the Jacobian,

of the steady-state map h at the current operating point of

the plant. In this way, the estimator will learn the desired

Jacobian with gradually increasing accuracy [9]. A particu-

larly attractive feature of this approach is thatapriorimodel

information can be included in the filter as its initial state.

Therefore, it is possible to refine an available approximate

plant model online.

The essential idea behind the recursive estimator is to

approximate the steady-state map through a time-varying

linear system and utilize the rich literature on linear filter-

ing. As the first step, consider its first-order Taylor expan-

sion

Δyk ≈
�h

�u
(uk )Δuk (5)

of the steady-state map h with respect to the current input

uk , where the incremental input and output are defined as

Δuk := uk+1 − uk and Δyk := yk+1 − yk , respectively. Using

the properties of the matrix vectorization operator and the

Kronecker product, (5) can be rewritten as

Δyk ≈
(
Δu⊤

k
⊗ In

)
vec

(
�h

�u
(uk )

)
, (6)

which contains the Jacobian in vectorized form. Defining

xk := vec
(
�h

�u
(uk )

)
for the Jacobian and Uk := Δu⊤

k
⊗ In for
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the incremental input, (6) can be approximated as the out-

put of a linear time-varying system taking the form

xk+1 = xk + 	k (7a)

Δyk = Ukxk +
k (7b)

with disturbances 	k and
k . The behavior in (7a) is chosen

since the Jacobian is fixed for constant operating points and

slow changes can be captured in the process disturbance 	k .

Based on the artificial linear system (7), we can design a

Kalman filter for estimating xk and thus the Jacobian. Under

the hypothesis that 	k and 
k are independent zero-mean

white Gaussian noise with covariance Qe and Re, the filter

update equations are given by

x̂k+1 = x̂k + Kk
(
Δyk − Uk x̂k

)
(8a)

Σk+1 =
(
I − KkUk

)
Σk + Qe (8b)

Kk = ΣkU
⊤
k

(
Re + UkΣkU

⊤
k

)−1
(8c)

with the estimate x̂k and its covariance Σk . Under a per-

sistency of excitation condition on Δuk , [23, Proposition 1]

proves that the filter asymptotically converges towards an

unbiased estimate of the Jacobian with bounded variance.

Note, however, that the hypothesis on 	k and 
k is restric-

tive and might not be satisfied in practice and that [23,

Proposition 1] therefore only provides an indication for the

convergence properties of the above filter.

Finally, since the feedback optimization problem (3)

requires only knowledge of the Jacobian �h

�u
(uk ), sensitiv-

ity estimation can be utilized for model-free closed-loop

optimization. That is, at step k, the current estimate x̂ is

reshaped into the n × pmatrix∇h̃k which is employed for

optimization instead of �h

�u
(uk ). As such, an approximation

of problem (3) is solved, leading to the update direction

�̃(uk, yk ) being applied to the plant through the control law

uk+1 = uk + ��̃(uk, yk )+ zk,

where zk is a random excitation signal that is added to

ensure the persistency excitation condition is satisfied.With

sufficiently small step size �, the closed loop of the estimator

and optimizer converges to a mean-square bounded region

around the optimal input u∗ [23, Proposition 1].

Since the estimator for the Jacobian is based on a first-

order Taylor expansion, one could hypothesize that an anal-

ogous estimator can be formulated for the Hessian using

more series terms. As such, we compute the second-order

Taylor expansion for the i-th component of the steady-state

map h as

Δyi
k
≈

�hi
�u

(uk )Δuk +
1

2
Δu⊤

k

�2hi
�u2

(uk )Δuk . (9)

Importantly, note that (9) is affine in both the Jacobian
�hi
�u

and the Hessian �2hi
�u2

. Therefore, we obtain an extended

artificial linear system in the form of (7) with state

x̃k :=

⎡⎢⎢⎢⎢⎣

vec

(
�h

�u
(uk )

)

vec

(
�2h

�u2
(uk )

)
⎤⎥⎥⎥⎥⎦

and output matrix

Ũk :=
[
1 Δu⊤

k

]
⊗Δu⊤

k
⊗ In.

Unfortunately, vectors in the form
([
1 	⊤

]
⊗ 	⊤

)⊤

with 	 ∈ ℝ
p only span a p-dimensional subspace. As such,

no excitation Δuk is rich enough to provide enough infor-

mation for estimating the extended state x̃k , and the sensi-

tivity estimator (8) cannot be employed to approximate the

Hessian �2hi
�u2

.

4 Feedback optimization for control

of particle accelerators

Particle Accelerators are complex machines that possess

many dynamically coupled and interacting control loops.

One feature is their large timescale separation: While the

particles are moving at close to the speed of light and are

thus passing through the machine in the range of microsec-

onds, adjusting the steering magnets may take in the order

of seconds. As such, they are a prime target for application

of feedback optimization.

There are multiple kinds of particle accelerators, most

importantly circular and linear accelerators, with different

characteristics. In this paper, we will focus in particular on

the linear accelerator of EuXFEL. Operated by DESY in Ham-

burg, Germany, the EuXFELaccelerates electrons to energies

up to 17.5 GeV in order to produce X-ray pulses for multiple

experimental stations [27]. This is achieved in pulsed-mode

operation, accelerating up to 2,700 electron bunches per

pulse at a repetition rate of 4.5 MHz with a pulse rate of

10 Hz for a total of 27,000 bunches per second. A schematic

overview of the facility is given in Figure 1.

For this paper, we are interested especially in one

section of the EuXFEL, the main electron beam dump line

shown in the bottom right of Figure 1. Located at the end

of the main accelerating section, the purpose of the beam

dump is to absorb the energy of electrons that are not

intended for photon emission. The main beam dumps are

designed to continuously and safely stop an electron beam

with up to 300 kW, but it is crucial to distribute the load on
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Figure 1: A schematic overview of the EuXFEL facility. On the left is the electron source, the yellow and red tubes symbolize the superconducting

accelerating modules. After the main 1.5 km long accelerating section, the beamline branches out to the photon-emitting undulators at the top and

the main beam dump at the bottom. Along the beamline, dipole magnets (blue and cyan) are used for steering, while quadrupole magnets (red) focus

the beam.

the dump surface, which is accomplished using a pair of

sweeping magnets. However, these magnets rely on a cen-

tered and leveled incoming beam, otherwise their deflection

can misdirect the electrons off the intended surface and

overheat the dump.

Steering the beam is accomplished using a sequence of

dipole and quadrupole magnets situated along the beam-

line as indicated in Figure 1 in the section leading to the

dump. With the dipoles, it is possible to steer the beam in

the horizontal (shown in cyan) and vertical plane (blue),

and the quadrupoles (red) can focus and defocus the beam.

Additionally, quadrupoles also steer the beam if it enters the

magnet off-center. In between the magnets, beam position

monitors (BPMs) are placed to measure the transverse posi-

tion of the beam. A brief description of the beam dynamics

is provided in the next section.

4.1 Linear beamline tracking

A particle in the accelerator can be described relative to a

reference particle by a 6 + 1-dimensional state

� =
[
x px y py 
 � 1

]⊤
,

where x and y are the transverse position in horizontal and

vertical direction, px and py are the respective normalized

momenta relative to the reference momentum p0, and


 = cΔt � =
E − E0
cp0

are the longitudinal position and energy offset, respectively,

with c being the speed of light. Finally, a constant 1 is

added as the last component to cover affine effects in the

dynamics.

In the context of this paper, three types of accelera-

tor lattice elements are of special interest. We will there-

fore introduce a linear beamline model in the follow-

ing, neglecting collective effects, e.g., space charge effects,

and fringe fields at the element boundaries. Note, how-

ever, that the linear effects dominate at ultra-relativistic

particle energies, such that the linear model is reasonable

to apply to the particular EuXFEL section of interest, where

the beam has already reached GeV-level energies [28]. A

fast implementation of particle tracking routines including

non-linear and inter-particle effects is provided by CHEE-

TAH [29], [30], which will be employed for the simulations

below.

4.1.1 Drift space

The simplest kind of element are drift spaces, straight

sections of the beamline where particles travel without

disturbance by electromagnetic fields. In reality, the par-

ticle bunches would be subject to internal fields, but

these effects are neglected here. Drift spaces are char-

acterized by their length l in m and their transfer

map is

Td =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 l 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 l 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 −
l

�2
1

�2
0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (10)

where � := E

mec
2 is the relativistic Lorentz factor with elec-

tron mass me and relativistic velocity factor �:=
√
1− 1

�2
.

The formulation of the 7-dimensional transfer matrices

is taken from Ref. [30] which is based on the results

of Ref. [31].

4.1.2 Steering dipole magnet

The second kind of elements are steering magnets that

deflect the particle beam at an adjustable angle � in either
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the horizontal or vertical plane. For a horizontal steering

magnet, the transfer matrix is given by

Tsh =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 l 0 0 0 0 0

0 1 0 0 0 0 �

0 0 1 l 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 −
l

�2
1

�2
0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11)

while vertical adjustments are described by the matrix

Tsv =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 l 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 l 0 0 0

0 0 0 1 0 0 �

0 0 0 0 1 −
l

�2
1

�2
0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

The physical length of themagnet in longitudinal direc-

tion is again given by l.

4.1.3 Quadrupole

Finally, the third kind of elements are quadrupole magnets.

In contrast to dipole magnets, quadrupoles do not deflect all

particles at the same angle but act like lenses, focusing the

beam in one (horizontal or vertical) plane and defocusing

it in the other. They are parametrized by their length l and

the focusing strength k inm−2, which is positive formagnets

that focus in the horizontal plane and negative for vertical

focusing. Their transfer map is described by

Tq =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cx sx 0 0 0
1− cx
�

0

−ksx cx 0 0 0
sx
�

0

0 0 cy sy 0 0 0

0 0 ksy cy 0 0 0

sx
�

1− cx
�

0 0 1 r56 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

with

r56 =
l − sx
�2k

−
l

�2�2

and

sx = Re

(
sin(kxl)

kx

)
sy = Re

(
sin(kyl)

ky

)

cx = Re
(
cos(kxl)

)
cy = Re

(
cos(kyl)

)

kx =
√
k ky =

√
−k.

In addition to this ideal transfer map, quadrupole mag-

nets can bemisaligned, i.e., their center point does not align

with the reference particle, and tilted around the beam in

the transverse plane, leading to undesired steering of the

particle distribution. Such adjustments result in shifts and

rotations of the frame of reference, which can be captured

in additional matrices that have to be pre- and postmulti-

plied to Tq.

4.2 Dump beamline feedback with known
sensitivity

Having introduced the relevant beamline elements and

their purpose, we arrive at the specifics of the control

problem at hand. Along the beamline section of the main

electron dump, there are twelve steeringmagnets, six in the

horizontal plane and six in the vertical plane, in alternating

fashion. In between the magnets, ten BPMs are placed to

determine the transverse position of the beam, each mea-

suring the horizontal and vertical component. Furthermore,

quadrupole magnets are placed along the beamline. Our

goal is to find a tuple of steering angles (�0,… , �12) that

minimize the deviation of the particles from the center posi-

tion of the BPMs.

The prevalent disturbance in the problem is the state

of the particle beam entering the dump beamline section.

Since the main purpose of the beam is generating photons,

the particle positions at the entrance to the dump section are

not controlled, causing themean position to potentially drift

over time. Furthermore, the alignment of the quadrupoles

and BPMs with respect to the reference beam is difficult,

presenting an uncertainty in the beamline model. The task

of the optimizer is therefore to reject the disturbance and

steer the beam to the center position of the BPMs. As such,

we select the quadratic cost function

Φ(u, y) = ‖y‖2 + �‖u‖2

with tuning parameter � > 0, and set � = 10−3 in the fol-

lowing. Note that, depending on the incoming beam, it may

be impossible to center the beam at all BPMs due to the

arrangement of the positionmonitors andmagnets. In addi-

tion, the optimization problem is constrained to keep the
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beam within±2 cm of the reference at the BPMs to prevent

hitting the surrounding beam pipe.

For the first demonstration, we study the effect of

including the Hessian in the optimization problem (3) as

discussed in Section 2.3. However, since the curvature term
�2h

�u2
can be difficult to obtain, we propose to neglect the

final component of (4) while calculating the Hessian and

therefore set

G(u, y) =
�2Φ

�u2
(u, y)+

(
�h

�u
(u)

)⊤
�2Φ

�y2
(u, y)

�h

�u
(u)

+
�2Φ

�u�y
(u, y)

�h

�u
(u)+

(
�h

�u
(u)

)⊤
�2Φ

�y�u
(u, y)

(14)

for the parameter-varying weight in the optimization

problem. Note that �2h

�u2
= 0 in case of the dump beamline

position feedback problem since the dipole response matri-

ces Tsh and Tsv are linear in the steering angle �, such that

no error is incurred by this approximation for the current

scenario. Furthermore, G(u, y) is guaranteed to be positive

definite because the chosenΦ does not contain cross terms

between u and y and satisfies � > 0.

In order to evaluate the difference in convergence

speed between the two setups, we run 30 scenarios with

randomly positioned incoming beams and quadrupole mis-

alignment using the beam dynamics simulation in CHEETAH

and the quadratic programsolver QPTH [32]. Furthermore,we

take advantage of the differentiability of CHEETAH to get access

to the sensitivity �h

�u
with the reference beam and perfect

quadrupole alignment, not the actual incoming beam and

misalignment. Both the beam center and the misalignment

are sampled from zero mean normal distributions with

a standard deviation of 1 mm for the beam and 250 μm

for the magnets. All 30 scenarios are run twice, once with

only first-order information, i.e., G(u, y) = I, and step size

�jac = 10−5 and once with the (approximated) Hessian as

given in (14) and �hes = 3 × 10−1. In both cases, the step

size has beenmanually tuned for fast convergence. Increas-

ing the step size in the first-order case to above 10−4 ren-

ders the closed-loop unstable, leading to divergence of the

algorithm. The deviation is evaluated as the root mean

square error (RMSE) taken over all scenarios and summed

over the BPMs and is plotted on a logarithmic scale in

Figure 2.

As seen in Figure 2, the RMSE converges to its final

value within 20 steps when employing the second-order

information of the Hessian. On the other hand, the con-

vergence is much slower when only using the Jacobian,

obtaining an RMSE that is over a magnitude worse than

Figure 2: Comparison of the convergence speed of the closed-loop

feedback optimization with purely first-order information (Jacobian only)

and with the approximated Hessian in (14). The RMSE is taken over all

BPMs and with 30 random perturbations of the incoming electron beam

and quadrupole misalignments, while the shading indicates the best-

and worst-case scenarios.

the optimal value of the first case after 500 iterations.,

demonstrating the importance of including second-order

information when available. Furthermore, Table 1 shows

the time required for computing the derivatives, solving the

quadratic program, and in total, with and without employ-

ing the Hessian matrix. Even though the variant including

the Hessian matrix takes approximately twice as long to

evaluate, it is well within the 100 ms sampling interval of

the EuXFEL. As such, the improved convergence outweighs

the increased computational demand.

4.3 Online identification and control

For the second scenario, we assume that the sensitivity �h

�u
is

unknown and has to be estimated as described in Section 3.

The excitation signal zk is taken as zero mean white Gaus-

sian noise with standard deviation 10−7. Furthermore, we

choose G as given in (14) with the estimated sensitivity

∇h̃k substituted for the Jacobian �h

�u
and use the step size

� = 3 × 10−1. For the Kalman filter, the noise covariance

Table 1: Computation times of the feedback optimizer with and without

Hessian matrix.

Hessian Derivatives [ms] Solve [ms] Total [ms]

Median Max Median Max Median Max

Without 0.17 0.22 0.69 2.42 0.87 2.61

With 7.39 7.95 1.08 1.78 8.50 9.19
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Figure 3: RMSE over 30 random incoming electron beams and quadrupole misalignment in the x and y component of all ten BPMs.

matrices are set as Qe = 10I and Re = 10−7I, respectively,

where the magnitude of Re has to be seen relative to the

excitation zk [9].

As before, we simulate 30 runs with randomly sampled

incoming beam and quadrupole misalignment, taking the

same samples as in the previous section for better compa-

rability. In addition, the initial estimate x̂0 of the sensitiv-

ity is chosen at random for each run. The behavior of the

RMSE for each position measurement is shown in Figure 3

on a logarithmic scale. Contrasting the previous scenario

with known sensitivity �h

�u
, the optimizer is initially steering

the beam away from the BPM center positions due to the

randomly initialized sensitivities. However, the RMSE starts

improving after less than 20 iterations, quickly recovering

the lost performance and converging to an improved solu-

tion within 50 steps.

This behavior demonstrates how using the Hessian

(14) can improve the convergence speed even with esti-

mated sensitivity, resulting in a better performance than

the first-order case shown in the previous section and

a similar final RMSE to the scenario with Hessian. This

is visualized in Figure 4. For all 30 scenarios, the differ-

ence between the two schemes is not more than 20 μm

in RMSE, and in every second scenario the difference

is close to 0, indicating that the estimated sensitivity

achieves an accuracy comparable to the case with known

model.

For comparison, the same 30 scenarios have also been

optimized using the Nelder-Mead algorithm which is rou-

tinely deployed at the EuXFEL through OCELOT [6]. The imple-

mentation is taken from the PYTHON SCIPY library [33], [34]

and the resulting RMSE is shown in Figure 5. After the

initial increase, both algorithms start optimizing at approx-

imately the same RMSE. However, while the Nelder-Mead

simplex algorithm is monotonically improving its solution,

Figure 4: Histogram of the difference in final RMSE between

optimization with known model from Section 4.2 and with the sensitivity

estimation from Section 4.3. Negative values indicate that the estimated

sensitivity achieved worse accuracy.

the feedback optimizer is converging at a much faster

rate.

Finally, consider Figure 6, which shows the Frobenius

norm of the difference between the actual Jacobian �h

�u
of

the accelerator and the estimated sensitivity ∇h̃k . Similar

to the RMSE of the position, the sensitivity error shows

a fast decrease at the beginning. This is caused by the

strong excitation of the plant due to the feedback optimizer

searching for the optimal input. The filter continues to

improve its estimate based on the excitation zk once the

initial plateau is reached by the optimizer, albeit at a slower

pace, before converging after 28,000 iterations. Note, how-

ever, that the final error and the convergence speed depend

on the excitation zk and the chosen covariance matrices

Qe and Re.
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Figure 5: Comparison of the total RMSE between feedback optimization

and the Nelder-Mead algorithm. The shaded areas indicate the best and

worst case of the 30 scenarios.

Figure 6: Frobenius norm of the difference between the estimated and

actual sensitivity plotted over time. The solid line indicates the RMSE,

while the shading visualizes the best- and worst-case.

5 Conclusions

In this paper, we have introduced the beam position con-

trol problem in particle accelerators as an application of

feedback optimization. Furthermore, a particular approx-

imation of the Hessian of the resulting quadratic opti-

mization problem is proposed. The two presented sce-

narios – model-based with known steady-state sensitivity

and model-free with sensitivity estimation based on the

Kalman filter – demonstrate that feedback optimization is

a highly variable method for controlling particle acceler-

ators. Even with no initial information about the acceler-

ator, the proposed approach is able to improve the beam

positioning within 20 steps and converges to a final with

comparable accuracy to the model-based case in less than

100 iterations. Moreover, since the convergence is faster

than in the scenario without second-order information

considered in Section 4.2, the simulations show that the

Hessian approximation (14) is an essential component in

achieving the desired convergence speed in the model-free

setting.
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