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Abstract: For many engineering problems involving control
systems, finding a good working point for steady-state oper-
ation is crucial. Therefore, this paper presents an applica-
tion of steady-state optimization with feedback on particle
accelerators, specifically the European X-ray free-electron
laser. In simulation studies, we demonstrate that feedback
optimization is able to reach a near-optimal steady-state
operation in the presence of uncertainties, even without
relying on a priori known model information but purely
data-driven through input-output measurements. Addition-
ally, we discuss the importance of including second-order
information in the optimization to ensure a satisfactory
convergence speed and propose an approximated Hessian
representation for problems without second-order knowl-
edge on the plant.

Keywords: steady-state control; feedback optimization; re-
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Zusammenfassung: Fiir viele regelungstechnische Proble-
me ist es wichtig, einen guten Arbeitspunkt fir die
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Betriebsfithrung zu finden. Aus diesem Grund présentiert
dieser Artikel eine Anwendung von Ruhelagenoptimierung
im geschlossenen Regelkreis auf Teilchenbeschleuniger, in-
besondere den European XFEL. In Simulation wird demons-
triert, dass Feedbackoptimierung fast optimale Ruhelagen
flir den Betrieb erreicht — sogar dann, wenn kein vorhande-
nes Modellwissen eingesetzt sondern datengestiitzt anhand
von Eingangs- und Ausgangsmessungen gearbeitet wird.
Zusatzlich wird diskutiert, dass Modellinformationen zwei-
ter Ordnung entscheidend fiir die Konvergenzgeschwindig-
keit der Optimierungsprobleme sind, und eine Ndherung
der Hesse-Matrix vorgeschlagen, die sich datengestiitzt be-
rechnen l&sst.

Schlagwérter: Ruhelagenregelung; Feedbackoptimierung;
rekursive Methode der kleinsten Quadrate; Teilchenbe-
schleuniger

1 Introduction

For many business and engineering scenarios, formulating
the task at hand as a mathematical optimization problem
is a powerful and convenient approach. For example, many
logistics and allocation problems can be solved using linear
programming [1], and optimal control is an established tool
in many engineering disciplines, both in its classical [2] and
predictive form [3].

The current paper falls into the context of a particular
engineering problem, the control of particle accelerators.
As large and complex machines, accelerators present sig-
nificant challenges in terms of the required performance
and scale of the control problem. Specifically, this paper
deals with steady-state optimization of particle beam prop-
erties. In this kind of problem, it is sought to find an input-
output pair that keeps a physical plant at steady state while
minimizing a user-defined cost function and is potentially
subject to constraints. Most often, such problems arise as a
high-level control task for plants that are either inherently
stable by themselves or stabilized by a low level controller.

3 Open Access. © 2025 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.
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Approached by means of classical optimization meth-
ods, we observe a key conflict: On the one hand, running
classical model-based optimization, e.g., gradient descent or
quasi-Newton schemes like srcs [1], allows to take advantage
of available information but is susceptible to uncertainties
since no information about the actual plant is used. On the
other hand, methods such as the Nelder-Mead algorithm [1]
or Bayesian optimization [4], [5] compute solutions based on
input-output measurements of the plant but can only par-
tially incorporate model information to improve their per-
formance. For particle accelerator control, Bayesian opti-
mization [5], the Nelder-Mead simplex algorithm [6], and
reinforcement learning [7] have proved successful when
tuning machine parameters.

In the context of control, an essential component in
improving robustness against uncertainties is feedback. In
addition to a feedforward signal computed directly from
the model, a feedback signal is determined from plant
measurements to correct for deviations from the desired
response. This idea is taken up upon by the method of
feedback optimization [8], [9]. Instead of optimizing based
only on an available model, the algorithm evaluates the
cost function gradient at the measured plant output, clos-
ing a feedback loop around the optimizer and plant. Sim-
ilar to integral behavior in linear time-invariant control
loops [10], this structure allows to suppress uncertain-
ties while maintaining optimal steady-state operation [11],
[12] and track successfully in time-varying optimization
problems [13].

Assuch, feedback optimization has attracted significant
interest in the past, resulting in theoretical convergence
guarantees [14]-[16] and diverse practical applications. For
example, the method has been applied in the process indus-
try [17], [18] for tracking optimal references, for congestion
controlin communication networks [19], and control of elec-
tric power grids [20], [21]. Furthermore, recent work has
shown how feedback optimization can be applied in a data-
driven and model-free scenario [22]-[24]. The idea of using
online feedback in optimization has also been employed
in model predictive control [3] and especially variants that
employ the real-time iteration scheme [25]. However, while
predictive control is aimed at dynamic control problems,
feedback optimization targets static problems, i.e., steady-
state optimization without dynamics on their own or suf-
ficiently fast transients [26]. In addition, the methods pre-
viously applied in the context of particle accelerators are
either unsuitable for continuous operation [6] or require
extensive training on simulations [7].

The specific scheme of feedback optimization that the
current paper builds upon has been proposed in Ref. [16].
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Instead of projecting intermediate steps onto the feasible
set or adding a penalty for constraint violation, the authors
propose to solve a constrained linearization of the original
problem. The attractiveness of their scheme stems from its
guaranteed convergence even for non-convex problems and
few oscillations in the transients even if operating close to
the constraints. However, while [16] includes a metric in its
quadratic program, the implications of choosing different
metrics are only raised in passing.

After the introduction, Section 2 states the general opti-
mization problem considered in this paper, reviews the
concept of feedback optimization, and proposes a partic-
ular approach to include second-order information in the
optimization problem. This is followed by a discussion of a
scheme for data-driven sensitivity estimation for feedback
optimizers in Section 3. The main content of the paper is
presented in Section 4, which introduces the beamline posi-
tion control problem at the European X-ray free-electron
laser (EuXFEL) particle accelerator as an example, and
evaluates feedback optimization with and without known
sensitivities as a solution. Finally, Section 5 concludes
the paper.

1.1 Contributions

The contributions of this paper are twofold:

1. Section 2.3 proposes an approximation scheme for the
Hessian matrix of the optimization problem that can
be evaluated from first-order derivative information
of the underlying plant. Using this approximation, it
becomes possible to take advantage of the Hessian
for optimization in model-free settings, significantly
improving the convergence speed of the algorithm.

2. We introduce the beam position control problem in
particle accelerators as an application of feedback opti-
mization in Section 4 that is challenging to solve with
other methods such as Bayesian optimization.

1.2 Notation

We use I, to denote the n X n identity matrix. In addi-
tion, S'}r is the set of symmetric n X n matrices that

are positive definite. For vectors z € R", ||z||,;:= Vz Mz
denotes the weighted 2-norm with weight M € S'}. If the
Euclidean normwith M =1, is used, the subscript is
dropped for conciseness. Finally, M; ® M, is the Kro-
necker product of the matrices M; and M,, and vec
denotes the column-wise vectorization operator, i.e., vec(M)
is the vector consisting of the stacked columns of the
matrix M.
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2 Feedback control for steady-state
optimization

2.1 Problem statement

Consider a stable physical plant with input u € R? and
output y € R", and a twice continuously differentiable cost
function @: R? X R" — R mapping u and y into a scalar cost.
Our goal is to drive the plant to a steady-state pair (u*, y*)
that minimizes ®.

More precisely, we consider the physical plant to be
expressed by an unknown or at least uncertain input-output
steady-state map h: R? — R" such that y = h(u) holds for
all steady-state pairs (u, y). Furthermore, suppose there are
polyhedral constraints Au < b and Cy < d on the admissible
inputs and outputs, described by appropriately sized matri-
ces A, C and vectors b, d, respectively, where we assume that
the constraints are decoupled for simplicity. The desired
steady-state pair (u*, y*) is then obtained from the solution
of the optimization problem

Iruuyn D(u, y) (1a)
st y=hw, (1b)
Au < b, (10
Cy<d. (1d)

Note that the cost @ is a design parameter meaning that we
assume perfect knowledge of the function.

There exist a variety of approaches for obtaining
local solutions to optimization problems in the form of
(1), e.g., projected gradient descent or sequential quadratic
programming [1], while finding global solutions is gen-
erally intractable due to non-convexity. These methods
can be roughly categorized to belong to one of two
groups: On the one hand, there are optimization meth-
ods that perform a feedforward offline optimization based
on an a priori known model of the plant. However, since
no information from the physical plant is taken into
account, the obtained input u will typically be subopti-
mal when actually applied. On the other hand, online
methods like the Nelder-Mead algorithm or Bayesian opti-
mization [1] use output measurements to find the optimal
input but can only partially include available knowledge
of the plant.

2.2 Feedback optimization

In its current formulation, the equality constraint (1b)
implies that the output y can be eliminated from the
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optimization problem by substitution, leading to the new
cost function ®(u): = ®(u, h(u)) in terms of only the input
u. As such, measurements from the physical plant are not
taken into account.

Instead, feedback can be included in the optimization
process by utilizing measurements of the output y in place
of knowledge of the steady-state map h [9]. The idea is to
take advantage of the chain rule to calculate the Jacobian of
the composite function ® as

I w =2 (u,hw) + %(u, hw)Sw, @
followed by a substitution of h(u) by y. Note, that for comput-
ing the derivative of the composite cost @ it is therefore only
necessary to know the Jacobian %, not the full steady-state
map h.

Based on this reformulation [16], implements the con-
trollaw u;, = w, + px(uy, y,) with step size p > 0 and con-
trol update x:R? X R" - RP, where u,, is the plant input
after k steps and y, is its corresponding measured output.
For initialization, a suitable (with respect to the constraints)
input u, can be chosen arbitrarily. At every step, the control
update « is determined by solving the parametric quadratic
program

k(u, y):= arg min
VER?P

|v+6 y)||;u’y) (3a)

st. Au+pv)<h, (3b)

oh
Cly+p—(u <d, 3c
<y Pou )V> < o)
where v € RP? is the optimization variable that can be
thought of as the next step direction, G: R? X R" — SJ’: isa
parameter-dependent weight, and

L 9P, )0h
Jw,y):= au(u,y)+ ay(u,y)au(u)

is the Jacobian (2) of the composite cost evaluated at the
measured output y instead of the steady-state map h(u). As
such, the only model information required to evaluate (3) is
the Jacobian %. An approach without any knowledge of the
plant is discussed in Section 3.

The structure of problem (3) is similar to other algo-
rithms for solving nonlinear optimization problems but has
the special property that it is partially evaluated at the mea-
sured output y. In particular, the weight G takes the role of
the approximated Hessian that is common in quasi-Newton
schemes [1]. For example, with G(u, y) = I and strictly inside
the feasible set, i.e., both constraints inactive, the optimiza-
tion variable v corresponds to the negative gradient.
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Under suitable assumptions, i.e., feasibility of the
problem, regularity of the constraint set, and a sufficiently
small step size p, [16, Theorem 3] shows that the incremental
control law drives the plant into a local minimum of the
composite cost function ®. However, the result does not
discuss the convergence speed of the method, especially
with respect to the weight G. For iterative optimization
algorithms, it is well known that including second-order
information in form of the Hessian (or an approximation
thereof) can drastically increase the speed of convergence
close to the optimum, e.g., quasi-Newton methods or the
Levenberg-Marquardt algorithm [1]. Hence, while conver-
gence can be guaranteed also for G(u,y) = I, it is highly
desirable to include second-order information when solving
(3) if available.

2.3 Evaluating and approximating the
Hessian

In the previous section, it was discussed how the chain
rule can be employed to partially evaluate the Jacobian
of the composite cost ® at a measured output y. Impor-
tantly, the terms in (2) can be evaluated without knowl-
edge of the full steady-state map h but only its Jacobian.
However, no analogous steps have been employed on the
Hessian, and the original formulation of the optimiza-
tion problem with the weight G only depending on the
input u does not allow for its evaluation in terms of the
output y.

As an augmentation of optimization scheme discussed
in Section 2.2, we therefore propose to perform a similar
partial evaluation at the measured output y for the Hessian.

SN T
Taking the Jacobian of (%) , We obtain

2
(( )) 22 (w hw) 2w

0*®
02

(o) 2

0D 0%h
+ @( ,h(u))ﬁ(u). @

0*®
Y W =

0’0

+ oudy

oh
(u, h(w) + (u, hw) = @

*D

(. h(w)

Note that % in the last term is a rank 3 tensor with
dimensionn X p X psince hisaR"-valued function. Since
we can again assume perfect knowledge of the cost func-
tion @, it is sufficient to know the Jacobian z—z in order to
evaluate the first four terms of (4), the knowledge of which
is already assumed to solve problem (3). Furthermore, the
reformulation allows for substituting the measured output
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y for the evaluation of the steady-state map h(u). Hence,
only the final term of (4) requires information beyond the

Jacobian of h to compute, which is in particular its Hessian
o*h
ou?”

3 Adaptive feedback using
sensitivity estimation

Section 2 shows how feedback can be included in an iter-
ative algorithm to optimize the steady-state of a physical
plant, and how existing approaches can be augmented by
second-order information. However, as discussed in Ref. [9],
achieving good convergence speed relies on having accu-
rate knowledge of the ]acoblan Espec1a11y for physical
plants that are difficult to model usmg traditional methods,
it would therefore be attractive to learn a model from input-
output measurements.

One approach to obtain such a learned model is via
recursive least squares estimation as proposed in Refs. [23],
[24]. The idea is to have a recursive estimator, e.g., a Kalman
filter, running with the plant in an online fashion. From the
incremental changes applied to the plant, either by a con-
troller running in parallel or on purpose for the estimation,
it is then possible to extract the sensitivity, i.e., the Jacobian,
of the steady-state map h at the current operating point of
the plant. In this way, the estimator will learn the desired
Jacobian with gradually increasing accuracy [9]. A particu-
larly attractive feature of this approach is that a priorimodel
information can be included in the filter as its initial state.
Therefore, it is possible to refine an available approximate
plant model online.

The essential idea behind the recursive estimator is to
approximate the steady-state map through a time-varying
linear system and utilize the rich literature on linear filter-
ing. As the first step, consider its first-order Taylor expan-
sion

Ay, ~ %(ukmuk )]

of the steady-state map h with respect to the current input
uy, where the incremental input and output are defined as
Aug: = U, — uy and Ay, = y,,q — Yy, respectively. Using
the properties of the matrix vectorization operator and the
Kronecker product, (5) can be rewritten as

Ay, = (Au; ® In)vec<gZ(uk)>, (6)

which contains the Jacobian in vectorized form. Defining
X = vec(%(uﬂ) for the Jacobian and Uj: = Au; ® I, for
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the incremental input, (6) can be approximated as the out-
put of a linear time-varying system taking the form

(7a)
(7b)

Xpg1 = X + Uy
Ay = UpXy + wy,

with disturbances v;, and wy,. The behavior in (7a) is chosen
since the Jacobian is fixed for constant operating points and
slow changes can be captured in the process disturbance v,.

Based on the artificial linear system (7), we can design a
Kalman filter for estimating x; and thus the Jacobian. Under
the hypothesis that v, and wy, are independent zero-mean
white Gaussian noise with covariance Q, and R,, the filter
update equations are given by

X1 = X+ Ki(Ayy — UpRy ) (8a)
Ky = ZU] (R + U U )™ (8c)

with the estimate X, and its covariance X,. Under a per-
sistency of excitation condition on Auw,, [23, Proposition 1]
proves that the filter asymptotically converges towards an
unbiased estimate of the Jacobian with bounded variance.
Note, however, that the hypothesis on v;, and w; is restric-
tive and might not be satisfied in practice and that [23,
Proposition 1] therefore only provides an indication for the
convergence properties of the above filter.

Finally, since the feedback optimization problem (3)
requires only knowledge of the Jacobian %(uk), sensitiv-
ity estimation can be utilized for model-free closed-loop
optimization. That is, at step k, the current estimate X is
reshaped into then X p matrix Vi, which is employed for
optimization instead of %(uk). As such, an approximation
of problem (3) is solved, leading to the update direction
K (uy, y;) being applied to the plant through the control law

Uiy = Uy + pE Uy, Vi) + 24,

where z, is a random excitation signal that is added to
ensure the persistency excitation condition is satisfied. With
sufficiently small step size p, the closed loop of the estimator
and optimizer converges to a mean-square bounded region
around the optimal input u* [23, Proposition 1].

Since the estimator for the Jacobian is based on a first-
order Taylor expansion, one could hypothesize that an anal-
ogous estimator can be formulated for the Hessian using
more series terms. As such, we compute the second-order
Taylor expansion for the i-th component of the steady-state
map h as

T 0%

K g (u)Auy. ©)]

Ayl ~ Sl Au + %Au
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Importantly, note that (9) is affine in both the Jacobian

. 3 2 i i
% and the Hessian ‘; Lﬁl. Therefore, we obtain an extended

artificial linear system in the form of (7) with state

oh
o vec<au(uk)>
a I
vec<auz(uk)>

and output matrix

U= [1 Au;] ® Aul ®I,.

Unfortunately, vectors in the form ([1 UT] ® UT)T
with v € R? only span a p-dimensional subspace. As such,
no excitation Ay is rich enough to provide enough infor-
mation for estimating the extended state X, and the sensi-
tivity estimator (8) cannot be employed to approximate the

0
Hessian PR

4 Feedback optimization for control
of particle accelerators

Particle Accelerators are complex machines that possess
many dynamically coupled and interacting control loops.
One feature is their large timescale separation: While the
particles are moving at close to the speed of light and are
thus passing through the machine in the range of microsec-
onds, adjusting the steering magnets may take in the order
of seconds. As such, they are a prime target for application
of feedback optimization.

There are multiple kinds of particle accelerators, most
importantly circular and linear accelerators, with different
characteristics. In this paper, we will focus in particular on
thelinear accelerator of EuUXFEL. Operated by DESY in Ham-
burg, Germany, the EUXFEL accelerates electrons to energies
up to 17.5 GeV in order to produce X-ray pulses for multiple
experimental stations [27]. This is achieved in pulsed-mode
operation, accelerating up to 2,700 electron bunches per
pulse at a repetition rate of 4.5 MHz with a pulse rate of
10 Hz for a total of 27,000 bunches per second. A schematic
overview of the facility is given in Figure 1.

For this paper, we are interested especially in one
section of the EuXFEL, the main electron beam dump line
shown in the bottom right of Figure 1. Located at the end
of the main accelerating section, the purpose of the beam
dump is to absorb the energy of electrons that are not
intended for photon emission. The main beam dumps are
designed to continuously and safely stop an electron beam
with up to 300 kW, but it is crucial to distribute the load on



434 = C.Hespe et al.: Data-driven feedback optimization for accelerators

s}

e - §

. J;/?

DE GRUYTER OLDENBOURG

| 1

=

Figure 1: A schematic overview of the EuXFEL facility. On the left is the electron source, the yellow and red tubes symbolize the superconducting
accelerating modules. After the main 1.5 km long accelerating section, the beamline branches out to the photon-emitting undulators at the top and
the main beam dump at the bottom. Along the beamline, dipole magnets (blue and cyan) are used for steering, while quadrupole magnets (red) focus

the beam.

the dump surface, which is accomplished using a pair of
sweeping magnets. However, these magnets rely on a cen-
tered and leveled incoming beam, otherwise their deflection
can misdirect the electrons off the intended surface and
overheat the dump.

Steering the beam is accomplished using a sequence of
dipole and quadrupole magnets situated along the beam-
line as indicated in Figure 1 in the section leading to the
dump. With the dipoles, it is possible to steer the beam in
the horizontal (shown in cyan) and vertical plane (blue),
and the quadrupoles (red) can focus and defocus the beam.
Additionally, quadrupoles also steer the beam if it enters the
magnet off-center. In between the magnets, beam position
monitors (BPMs) are placed to measure the transverse posi-
tion of the beam. A brief description of the beam dynamics
is provided in the next section.

4.1 Linear beamline tracking

A particle in the accelerator can be described relative to a
reference particle by a 6 4+ 1-dimensional state

.
§=|x by pyp T 6 1,

where x and y are the transverse position in horizontal and
vertical direction, p, and p, are the respective normalized
momenta relative to the reference momentum p,, and

E-E,
CDo

T=CcAt 6=

are the longitudinal position and energy offset, respectively,
with ¢ being the speed of light. Finally, a constant 1 is
added as the last component to cover affine effects in the
dynamics.

In the context of this paper, three types of accelera-
tor lattice elements are of special interest. We will there-
fore introduce a linear beamline model in the follow-
ing, neglecting collective effects, e.g., space charge effects,
and fringe fields at the element boundaries. Note, how-
ever, that the linear effects dominate at ultra-relativistic

particle energies, such that the linear model is reasonable
to apply to the particular EuXFEL section of interest, where
the beam has already reached GeV-level energies [28]. A
fast implementation of particle tracking routines including
non-linear and inter-particle effects is provided by cueE-
1an [29], [30], which will be employed for the simulations
below.

4.1.1 Drift space

The simplest kind of element are drift spaces, straight
sections of the beamline where particles travel without
disturbance by electromagnetic fields. In reality, the par-
ticle bunches would be subject to internal fields, but
these effects are neglected here. Drift spaces are char-
acterized by their length [ in m and their transfer
map is

17000 0 0

01000 0 0

00110 0 0
r,=[0 0010 0 0f 10)

00001 —#%fo

000 0 10

00000 o0 1]

where y: = ﬁ is the relativistic Lorentz factor with elec-

tron mass m, and relativistic velocity factor f:= /1 — %
The formulation of the 7-dimensional transfer matrices
is taken from Ref. [30] which is based on the results
of Ref. [31].

4.1.2 Steering dipole magnet

The second kind of elements are steering magnets that
deflect the particle beam at an adjustable angle « in either
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the horizontal or vertical plane. For a horizontal steering
magnet, the transfer matrix is given by

11 000 0 0
01000 0 a
001170 0 0
T, = 00010 0 0] an
11

00001 — 7y 0
0 00O 1 0

|0 0 0 0 O 0 1]

while vertical adjustments are described by the matrix

[1 1 0 0 0 0 0]
01 000 0 0
0 011710 0 0
0 00 01 —# % 0
0 000 O 1 0

0 0 0 0 O 0 ]

The physical length of the magnet in longitudinal direc-
tion is again given by L

4.1.3 Quadrupole

Finally, the third kind of elements are quadrupole magnets.
In contrast to dipole magnets, quadrupoles do not deflect all
particles at the same angle but act like lenses, focusing the
beam in one (horizontal or vertical) plane and defocusing
it in the other. They are parametrized by their length [ and
the focusing strength k in m~2, which is positive for magnets
that focus in the horizontal plane and negative for vertical
focusing. Their transfer map is described by

¢, s, 0 0 0 =% g
ks, ¢ 0 0 0 %X 0
0 0 ¢ s, 0 0 0 |
T, = 13
a=| 0 0 ks, c, o o ¢
%X 1_/30)( 0 0 1 rg O
0 0 0 1 0
| o o 0 00 0 1

with
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and

sin(k, 1) _ sin(k, D)
sX:Re(kx> sy_Re< kyy

¢, = Re(cos(k,])) ¢, = Re(cos(k,D))
k.= Vk k, = V-k.

In addition to this ideal transfer map, quadrupole mag-
nets can be misaligned, i.e., their center point does not align
with the reference particle, and tilted around the beam in
the transverse plane, leading to undesired steering of the
particle distribution. Such adjustments result in shifts and
rotations of the frame of reference, which can be captured
in additional matrices that have to be pre- and postmulti-
plied to T

4.2 Dump beamline feedback with known
sensitivity

Having introduced the relevant beamline elements and
their purpose, we arrive at the specifics of the control
problem at hand. Along the beamline section of the main
electron dump, there are twelve steering magnets, six in the
horizontal plane and six in the vertical plane, in alternating
fashion. In between the magnets, ten BPMs are placed to
determine the transverse position of the beam, each mea-
suring the horizontal and vertical component. Furthermore,
quadrupole magnets are placed along the beamline. Our
goal is to find a tuple of steering angles («y, ..., a;,) that
minimize the deviation of the particles from the center posi-
tion of the BPMs.

The prevalent disturbance in the problem is the state
of the particle beam entering the dump beamline section.
Since the main purpose of the beam is generating photons,
the particle positions at the entrance to the dump section are
not controlled, causing the mean position to potentially drift
over time. Furthermore, the alignment of the quadrupoles
and BPMs with respect to the reference beam is difficult,
presenting an uncertainty in the beamline model. The task
of the optimizer is therefore to reject the disturbance and
steer the beam to the center position of the BPMs. As such,
we select the quadratic cost function

@(u,y) = |lylI* + nljull?

with tuning parameter # > 0, and set # = 1073 in the fol-
lowing. Note that, depending on the incoming beam, it may
be impossible to center the beam at all BPMs due to the
arrangement of the position monitors and magnets. In addi-
tion, the optimization problem is constrained to keep the
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beam within +2 cm of the reference at the BPMs to prevent
hitting the surrounding beam pipe.

For the first demonstration, we study the effect of
including the Hessian in the optimization problem (3) as
discussed in Section 2.3. However, since the curvature term
% can be difficult to obtain, we propose to neglect the
final component of (4) while calculating the Hessian and
therefore set

2
G, y) = ‘g—u‘f(u,yn <(u)> e ,y) ( )
azq> on, .\ oo
(u y)—(u)+ (au(u)> ayﬁu(u,y)
14)

for the parameter- varying weight in the optimization
problem. Note that ¢ 7 = 0 in case of the dump beamline
position feedback problem since the dipole response matri-
ces T, and T, are linear in the steering angle «, such that
no error is incurred by this approximation for the current
scenario. Furthermore, G(u, y) is guaranteed to be positive
definite because the chosen @ does not contain cross terms
between u and y and satisfies # > 0.

In order to evaluate the difference in convergence
speed between the two setups, we run 30 scenarios with
randomly positioned incoming beams and quadrupole mis-
alignment using the beam dynamics simulation in cHeeran
and the quadratic program solver qerH [32]. Furthermore, we
take advantage of the differentiability of cueeran to get access
to the sensitivity % with the reference beam and perfect
quadrupole alignment, not the actual incoming beam and
misalignment. Both the beam center and the misalignment
are sampled from zero mean normal distributions with
a standard deviation of 1mm for the beam and 250 pm
for the magnets. All 30 scenarios are run twice, once with
only first-order information, i.e., G(u, y) = I, and step size
Piac = 1075 and once with the (approximated) Hessian as
given in (14) and p,., =3 X 107L In both cases, the step
size has been manually tuned for fast convergence. Increas-
ing the step size in the first-order case to above 10~* ren-
ders the closed-loop unstable, leading to divergence of the
algorithm. The deviation is evaluated as the root mean
square error (RMSE) taken over all scenarios and summed
over the BPMs and is plotted on a logarithmic scale in
Figure 2.

As seen in Figure 2, the RMSE converges to its final
value within 20 steps when employing the second-order
information of the Hessian. On the other hand, the con-
vergence is much slower when only using the Jacobian,
obtaining an RMSE that is over a magnitude worse than
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Figure 2: Comparison of the convergence speed of the closed-loop
feedback optimization with purely first-order information (Jacobian only)
and with the approximated Hessian in (14). The RMSE is taken over all
BPMs and with 30 random perturbations of the incoming electron beam
and quadrupole misalignments, while the shading indicates the best-
and worst-case scenarios.

the optimal value of the first case after 500 iterations.,
demonstrating the importance of including second-order
information when available. Furthermore, Table 1 shows
the time required for computing the derivatives, solving the
quadratic program, and in total, with and without employ-
ing the Hessian matrix. Even though the variant including
the Hessian matrix takes approximately twice as long to
evaluate, it is well within the 100 ms sampling interval of
the EuXFEL. As such, the improved convergence outweighs
the increased computational demand.

4.3 Online identification and control

For the second scenario, we assume that the sen31t1v1ty = 1s
unknown and has to be estimated as described in Sectlon 3.
The excitation signal z, is taken as zero mean white Gaus-
sian noise with standard deviation 10~7. Furthermore, we
choose G as given in (14) with the estimated sensitivity
th substituted for the ]acoblan and use the step size

=3 X 107 For the Kalman ﬁlter the noise covariance

Table 1: Computation times of the feedback optimizer with and without
Hessian matrix.

Hessian Derivatives [ms] Solve [ms] Total [ms]
Median Max Median Max Median Max

Without 0.17 0.22 0.69 242 0.87 2.61

With 7.39 7.95 1.08 1.78 8.50 9.19
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Figure 3: RMSE over 30 random incoming electron beams and quadrupole misalignment in the x and y component of all ten BPMs.

matrices are set as Q, = 10I and R, = 1077I, respectively,
where the magnitude of R, has to be seen relative to the
excitation z; [9].

As before, we simulate 30 runs with randomly sampled
incoming beam and quadrupole misalignment, taking the
same samples as in the previous section for better compa-
rability. In addition, the initial estimate X, of the sensitiv-
ity is chosen at random for each run. The behavior of the
RMSE for each position measurement is shown in Figure 3
on a logarithmic scale. Contrasting the previous scenario
with known sensitivity Z—Z, the optimizer is initially steering
the beam away from the BPM center positions due to the
randomly initialized sensitivities. However, the RMSE starts
improving after less than 20 iterations, quickly recovering
the lost performance and converging to an improved solu-
tion within 50 steps.

This behavior demonstrates how using the Hessian
(14) can improve the convergence speed even with esti-
mated sensitivity, resulting in a better performance than
the first-order case shown in the previous section and
a similar final RMSE to the scenario with Hessian. This
is visualized in Figure 4. For all 30 scenarios, the differ-
ence between the two schemes is not more than 20 pm
in RMSE, and in every second scenario the difference
is close to 0, indicating that the estimated sensitivity
achieves an accuracy comparable to the case with known
model.

For comparison, the same 30 scenarios have also been
optimized using the Nelder-Mead algorithm which is rou-
tinely deployed at the EuXFEL through octror [6]. The imple-
mentation is taken from the pyrHon sciey library [33], [34]
and the resulting RMSE is shown in Figure 5. After the
initial increase, both algorithms start optimizing at approx-
imately the same RMSE. However, while the Nelder-Mead
simplex algorithm is monotonically improving its solution,

= —
[\ =

T
I I

—_
(e}
T
1

Number of scenarios

1

-10 -5 0
Difference in RMSE in um

o L

—15

Figure 4: Histogram of the difference in final RMSE between
optimization with known model from Section 4.2 and with the sensitivity
estimation from Section 4.3. Negative values indicate that the estimated
sensitivity achieved worse accuracy.

the feedback optimizer is converging at a much faster
rate.

Finally, consider Figure 6, which shows the Frobenius
norm of the difference between the actual Jacobian g—z of
the accelerator and the estimated sensitivity Vh,. Similar
to the RMSE of the position, the sensitivity error shows
a fast decrease at the beginning. This is caused by the
strong excitation of the plant due to the feedback optimizer
searching for the optimal input. The filter continues to
improve its estimate based on the excitation z, once the
initial plateau is reached by the optimizer, albeit at a slower
pace, before converging after 28,000 iterations. Note, how-
ever, that the final error and the convergence speed depend
on the excitation z, and the chosen covariance matrices

Q. and R,.
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Figure 5: Comparison of the total RMSE between feedback optimization
and the Nelder-Mead algorithm. The shaded areas indicate the best and
worst case of the 30 scenarios.
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Figure 6: Frobenius norm of the difference between the estimated and
actual sensitivity plotted over time. The solid line indicates the RMSE,
while the shading visualizes the best- and worst-case.

5 Conclusions

In this paper, we have introduced the beam position con-
trol problem in particle accelerators as an application of
feedback optimization. Furthermore, a particular approx-
imation of the Hessian of the resulting quadratic opti-
mization problem is proposed. The two presented sce-
narios — model-based with known steady-state sensitivity
and model-free with sensitivity estimation based on the
Kalman filter — demonstrate that feedback optimization is
a highly variable method for controlling particle acceler-
ators. Even with no initial information about the acceler-
ator, the proposed approach is able to improve the beam
positioning within 20 steps and converges to a final with

DE GRUYTER OLDENBOURG

comparable accuracy to the model-based case in less than
100 iterations. Moreover, since the convergence is faster
than in the scenario without second-order information
considered in Section 4.2, the simulations show that the
Hessian approximation (14) is an essential component in
achieving the desired convergence speed in the model-free
setting.
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