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Abstract 

 

Advances in structural biology increasingly focus on uncovering protein dynamics and 

transient or weak macromolecular complexes. Such studies require modeling of low-

occupancy species, for instance time-evolving intermediates and bound ligands. In protein 

crystallography, difference maps that compare paired perturbed and reference datasets are 
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a powerful way to identify and aid modeling of low-occupancy species.  Current methods to 

generate difference maps, however, rely on manually tuned parameters and, in cases of 

weak signal due to low occupancy, can fail to extract clear, chemically interpretable signals.  

 

We address these issues, first by showing negentropy is an effective metric to assess 

difference map quality and can therefore be used to automatically determine parameters 

needed during difference map calculation. Leveraging this, we apply total variation 

denoising, an image restoration technique that requires a choice of regularization parameter, 

to crystallographic difference maps. We show that total variation denoising improves map 

signal-to-noise and enables us to estimate the latent phase contribution of low-occupancy 

states. This technology opens new possibilities for time-resolved and ligand-screening 

crystallography in particular, allowing the detection of states that previously could not be 

resolved due to their inherently low occupancy. 
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Introduction 

 

 

A growing number of cutting-edge macromolecular crystallography methods aim to resolve 

weakly populated states rather than the primary protein conformation present in a crystal. 

Mechanistic time-resolved studies at XFELs1 and synchrotrons2, high-throughput fragment 

screens3, or the study of functional protein conformational changes upon the external 

perturbation of a crystal (using pH, temperature4, or an external field5) are important 

examples. Because full conversion to a new state through a transient stimulus, like optical 

excitation6 or substrate and ligand diffusion7–10, is difficult to achieve, such techniques rely 

on the observation of small differences between crystallographic datasets. This 

complication can limit their application: photoactivated systems with low quantum yields, 

weakly-bound ligands, and bound small molecules used for hit-to-lead drug discovery all 

produce signals with strengths comparable to the experimental noise and will benefit from 

new analysis methods that aid interpretation. 

 

Provided that perturbation-driven structural changes are not too large (i.e. the data remain 

isomorphous11), the calculation of difference electron density (DED) maps can be used to 

reveal changes in the electron density between a new dataset, which we refer to here as the 

derivative dataset, and an unperturbed native dataset. DED maps are used to identify 

regions of structural change and to extrapolate Fourier coefficients to which new 

coordinates can be refined12–14.  Any derivative structure factor F’ is a superposition of the 
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initial native structure factor (F) and the one related to the perturbed state of interest (Fpr), 

where by perturbed state we mean the pure structure of interest, i.e. ligand-bound, time-

activated, etc.: 

 

F’
 
= f × Fpr + (1− f ) × F 

here f is the occupancy of the perturbed state and we indicate complex structure factors in 

bold. Combined with measurement noise, this partial occupancy (often below 30%) means 

that dataset-dependent changes can be small, making DED map features difficult to 

interpret. Specific communities have developed different approaches to tackle this issue: 

time-resolved crystallographers use weights (w) that reduce the amplitudes of difference 

structure factors (w x [F’obs - Fobs]) if they have large experimental error and are deemed to be 

outliers12,15,16. The Xtrapol8 program12 makes a variety of such weighting schemes available 

to users, together with occupancy estimation strategies. For crystallographic fragment 

screening, the PanDDA suite17 has introduced an objective procedure to identify density 

associated with partially-occupied ligands. PanDDA looks for regions with statistically 

significant excess density as compared to reference, ligand-free datasets. While both 

strategies can identify weak signals in DED maps, experimental maps frequently remain 

dominated by noise (Figure 1). Moreover, while amplitude weighting schemes are powerful, 

they require the selection of appropriate weighting parameters, and this is left to the user’s 

discretion. One common example is adjusting the outlier rejection term in k-weighting12. This 

manual intervention requires extensive trial-and-error that is based on visual inspection of 

maps and can introduce user bias.  
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Methods that further automate DED map estimation and increase the interpretability of low-

occupancy density in an unbiased way are therefore desirable18–20; such tools will reduce 

user bias, provide faster feedback during time-resolved experiments or ligand screening 

campaigns, and allow accurate analysis of low-occupancy species where existing methods 

fail. 

 

For this reason, we aim to develop methods that improve the signal-to-noise ratio in DED 

maps. To do so, we find it essential to establish an objective, quantitative, simple measure 

of map quality to compare different map generation strategies. Work in this direction is 

greatly aided by insights from other fields as well as open-source software that enables the 

development and distribution of new crystallographic analyses21–23. 

 

We therefore first focus on identifying a suitable and reliable statistic that reports the level 

of noise present in a difference density map. We evaluate statistics that measure deviations 

between the distribution of map voxel values and a Gaussian distribution as indicators of 

DED map quality, ultimately favoring negentropy. Negentropy is routinely applied as a 

measure of non-Gaussianity in independent component analysis (ICA)24–26. We show that 

maximizing negentropy is an effective approach for selecting parameters in models that aim 

to denoise DED maps. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2024. ; https://doi.org/10.1101/2024.11.06.622276doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.06.622276
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

6 

We use this insight to propose a new way to denoise DED maps through total variation (TV) 

minimization. In crystallographic DED maps, we expect a priori that the signals of interest 

should consist of local regions of smoothly-varying signal where atoms have moved, 

appeared, or disappeared. The rest of the map should be empty. When such signal is 

corrupted by additive white Gaussian noise, the noise contribution dominates at high spatial 

frequencies. TV minimization is an established technique in image processing27 that aims to 

clarify the true signal by reducing these fluctuations. The total variation is simply defined as 

the sum of the changes from each voxel to all neighboring voxels. TV denoising seeks a new 

map that minimizes these changes while remaining as faithful as possible to the original 

signal27. Therefore, TV denoising, applied as a density modification technique to a DED map, 

will search for a new map that is similar to the given input map but attempts to set noisy, 

non-signal regions to be a constant, most likely zero. 

 

We apply TV denoising28 to DED maps and use negentropy maximization to select a 

regularization parameter that effectively trades off between fidelity to the original map and a 

smoother result. For three distinct case studies, we show that a single pass of TV denoising 

boosts the signal-to-noise ratio of DED maps and improves interpretability. We also find that 

an iterative application of TV denoising can be used to estimate phases for the derivative F’ 

dataset, with corresponding further improvement in map quality. 

 

Finally, we demonstrate how TV-denoised maps can be used to obtain extrapolated maps of 

the perturbed state and also refine multi-state coordinates (combined reference and 
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perturbed state) to an F’ dataset, revealing protein backbone and sidechain rearrangements 

in a fragment-bound COVID-19 main protease (MPro) structure29 that were not previously 

discernible.  

 

We compile this analysis as an open source python package, meteor: map enhancement 

tools for ephemeral occupancy refinement. meteor includes code to generate difference 

maps, select weighting parameters based on map negentropy, and apply an appropriate TV 

denoising protocol. Importantly, our observations on using of the use of map negentropy and 

TV denoising to improve difference density signals are compatible and stackable with 

existing methods and suites that deal with low-occupancy species in crystal datasets. 

 

 

Results 

 

Negentropy Reports on the Interpretability of a Difference Map 

 

We start by considering the voxel-value distribution for a difference map. In an ideal, error-

free DED map where the atoms move large distances, we expect the distribution to be 

bimodal in nature, with a positive and a negative mode and otherwise zero-valued voxels 

(Figure 1(a)). In the more realistic case where positive and negative peaks from different 

motions overlay and partially cancel out, the density distribution may no longer be strictly 

bimodal but should remain non-Gaussian (Figure 1(b-c)). Noise, by the central limit 
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theorem, can be expected to be an additive Gaussian contribution to the difference map 

signal. Empirically, we indeed observe that the distribution of voxel values for experimental 

maps is notably more Gaussian than that of synthetic maps calculated with no errors, 

suggesting that noise contributions dominate the former (Figure 1(d)). We therefore 

postulate that looking for deviations from Gaussianity in the voxel-value distribution may 

enable maximization of DED features that are not noise. 

 

Skewness, kurtosis, and negentropy are well-known measures for non-Gaussianity24,25,30. To 

investigate the suitability of these statistics as indicators of difference map quality, we 

extend the 1D model from Figure 1(a) by adding Gaussian noise to the bimodal signal 

(Supporting Note S1). We evaluate different signal-to-noise ratios and find that the 

negentropy decreases monotonically with the addition of noise, while kurtosis and 

skewness do not (Figure S1).  On the basis of this test, we proceed with the proposal that 

negentropy could be a useful metric to evaluate the signal-to-noise ratio in difference 

density maps.  

 

We observe, first of all, that by maximizing the negentropy we can maximization can be used 

to optimize parameters in the commonly used k-weighting12,16 amplitude modification 

scheme (Figure S2). We note, however, that, even after k-weighting, the voxel value 

distribution for experimental difference maps often remains markedly Gaussian (see below) 

and hypothesize that further denoising could yield important improvements. 
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Total Variation Denoising Facilitates Interpretation of Weak Signals in Difference Maps 

 

One such case where even the amplitude k-weighted DED map is extremely noisy is the 100 

ps trans-to-cis photoisomerization of the Cl-rsEGFP2 protein chromophore reported in 

Fadini et al.31 (PDB ID 8A6G) and shown in Figure 1(d). This dataset captures a spatially 

localized, light-induced change where the cis photoproduct coordinates are well-known 

from ground state synchrotron structures32 and is therefore an excellent example for 

methods development. We use it here to evaluate how TV denoising can assist in the 

interpretation of noisy maps. 

 

Our hypothesis is that total variation denoising should remove unwanted high-frequency 

noise, while preserving the signal features of difference density that vary more smoothly. A 

necessary step in TV denoising is to choose the degree of smoothing, dictated by a 

regularization parameter, λ (Supporting Note S2). To gain intuition into the effect of different 

choices of regularization parameter, we compare the original k-weighted Cl-rsEGFP2 DED 

map to two denoised maps, where we set λ manually based on visual interpretability of the 

resulting DED map (Figure 2). TV denoising with a moderate level of regularization (λ = 0.008) 

produces a map with stronger signals on the protein chromophore and removes much of the 

noise from the original map. An overly-aggressive denoising (λ = 0.02), leads to a less 

interpretable, overly smooth map (Figure 2(b)). To support this subjective assessment, we 

plot the power spectra of the DED maps, which show the amplitude of each spatial 

frequency component in the map. The power spectra show that the moderate value of λ 
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(0.008) restores signal and recovers the expected resolution-dependent behavior of a noise-

free synthetic map, while the higher λ (0.02) leads to a power spectrum that deviates from 

the “ground truth” spectrum computed from the synthetic example.  

 

We conclude that TV denoising is a promising method for suppressing noise in DED maps, 

but would benefit from a robust, objective, and automated choice of the regularization 

parameter. To test whether maximizing the negentropy of DED maps as a function of λ could 

effectively serve this purpose, we simulate a trans-to-cis difference map that includes 

additive noise and track map negentropy while screening a range of λ values (Figure S3). We 

observe that the value of λ that maximizes negentropy closely matches the value that 

maximizes the real-space correlation coefficient between the denoised map and the noise-

free synthetic map (Figure S3(c)). We therefore propose that the regularization parameter λ 

can be chosen by finding the value that generates the highest negentropy difference map 

(Figure 2(c)). 

 

While the TV denoising step modifies the Fourier amplitudes of the map, it also alters the 

Fourier phases (Figure S4). This is notable, as the phases traditionally used in DED maps are 

approximate: the F’ phases, which have a one-to-one correspondence to the perturbed 

state phases and are unknown. These phases are usually approximated by the native dataset 

phases coming from a well-characterized reference model ( 𝜙c )11. This assumption, 

however, approximately halves the signal-to-noise ratio in the corresponding map as 

compared to what would be obtained if the perturbed state phases were known33, an 
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undesirable effect, particularly when the perturbed signal is weakened by partial occupancy. 

Our observations suggest that TV denoising, which modifies the phases, may partially 

correct for this approximation. 

 

This insight points to the potential use of TV denoising for iterative phase improvement, 

employing a cycle similar to that used for solvent flattening in crystallography34 or phase 

retrieval in coherent diffractive imaging35,36. Inspired by this prior work, we use the set of TV-

denoised difference structure factors to better estimate the phases for the derivative 

dataset, F’, through an iterative algorithm that we name iterative-TV (it-TV) (see Methods and 

Figure 3). We again first validate the it-TV approach on a synthetic noisy map, where the 

noise-free, ground truth map is known (Supporting Note S3 and Figure S3). In Figure 3, we 

show the experimental Cl-rsEGFP2 map before and after it-TV, together with the cumulative 

phase change and negentropy values for the difference maps generated at each iteration. 

Map negentropy reaches a stable positive value, having started below 10-4 for the original 

experimental map, and the final it-TV map contains much stronger density on the protein 

chromophore. This first result indicates that application of TV denoising as a density 

modification approach could find improved phase estimates for low occupancy states in 

DED maps. 

 

Test Cases Demonstrate the Power of Negentropy-Guided TV Denoising to Recover 

Time-Resolved and Ligand-Binding Signals 
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To benchmark the single-pass and iterative TV denoising techniques, we select three distinct 

science cases: 

 

• the 100 ps time-resolved crystallography Cl-rsEGFP2 dataset from Fadini et al.31 (PDB 

ID 8A6G)  

• the example of Mpro bound to tegafur (fragment SW7-401, PDB ID: 7AWR), identified 

as a potential binder to an allosteric site with a modeled occupancy of 0.5029 

• the example of Mpro bound to a small electrophilic fragment (U1G, PDB ID: 5RGO) with 

a modeled occupancy of 0.4237. 

 

For Cl-rsEGFP2 and the Mpro-tegafur complex, we compute difference maps using the sets of 

observed amplitudes for the available derivative and native datasets (F’obs - Fobs). For the Mpro-

U1G complex, we illustrate the case where the difference map is computed between the 

observed amplitudes and the ones calculated from the model (Fobs - Fcalc), when a reference 

native dataset is not available. Both Mpro structures score very poorly for ligand goodness of 

fit to experimental data in their respective PDB depositions38, suggesting that the ligand 

density could benefit from further improvement. 

 

The first two columns in Figure 4 show the effect of TV denoising on DED maps for our three 

test cases: (a) Cl-rsEGFP2 (b) Mpro-tegafur complex (c) Mpro-U1G complex. Features like the 

outline of the chlorophenolate ring from the Cl-rsEGFP2 cis chromophore are more easily 

identifiable within the protein structure and more chemically interpretable: at ±3 rms, a large 
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negative feature is visible on the imidazolinone ring after TV denoising, and the positive 

density on the cis chlorophenolate ring extends to four carbons and the hydroxyl group. 

Relevant signals on the chromophore appear significantly stronger following TV denoising. 

For instance, the positive and negative peaks on the chlorine atom reach ±11 rms in the TV-

denoised map, compared to ±5 rms in the original map. For the Mpro-U1G complex, the 

denoising removes a large portion of uninterpretable density next to the ligand. In each case, 

visual improvements in the denoised maps are supported by increased negentropy for the 

voxel value distributions. In the Cl-rsEGFP2 case, the map negentropy increases from less 

than 10-4 to 0.059 (for comparison, the Cl-rsEGFP2 noise-free synthetic map shown in Figure 

1(c) is associated with a negentropy value of 0.35). An analysis of the changes introduced by 

the denoising step reveals that the largest modifications involve high resolution structure 

factor amplitudes and phases (Figure S4). Finally, supporting the statement that the 

denoising step removes noise from the maps, the histograms and probability plots show that 

voxel value distributions are less Gaussian after TV denoising (Figure S5).  

 

The it-TV maps for our three test cases can be found in the third column in Figure 4. These 

show clear differences that can be explicitly assigned to molecular structure. They are all 

characterized by an increased negentropy and less Gaussian voxel-value distributions 

(Figure S7) compared to their respective originals and single-pass TV maps. Note, for 

example, that the Cl-rsEGFP2 it-TV map in Figure 4 shows a clear outline of the 

chlorophenolate ring from the cis photoproduct, even though cis phases calculated from an 

atomic model are never introduced. Similarly, in the Mpro-tegafur complex map, an almost-
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complete outline of the fragment’s fluorouracil ring can be seen at 3.5 rms without ever using 

the fragment structure in the analysis. For the Mpro-U1G Fobs - Fcalc case, it-TV increases the 

strength of positive signals on the side chain atoms and ligand. Once more, the strongest 

modifications by the algorithm occur in higher resolution shells (Figure S4), effectively 

recovering the underlying high resolution signal from the starting map.  

 

 

Denoised Difference Maps Can Guide the Refinement of New Coordinates 

 

Because DED maps do not require a model of the perturbed state, they provide unbiased 

and immediate information about the structural changes that occur after a perturbation, 

such as ligand binding or light-induced protein motion. This is invaluable to understand if the 

experiment has been successful and propose models that explain the results. The ultimate 

aim of most crystallographic experiments, however, is to interpret these changes chemically 

i.e. in terms of the positions of atoms and bonds. This requires an atomic model of the 

perturbed state, which can be refined using an extrapolated map. The extrapolated map 

should ideally reveal the electron density of the perturbed state without contributions from 

the reference state, making it easier to identify perturbation-specific structural change12,17,39.  

 

To produce an extrapolated map, an accurate estimate of the perturbed state occupancy is 

essential: once an estimate for the occupancy is known, the extrapolated map can be 

computed by performing an appropriate addition in real space (between a reference map 
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and a difference map) or in reciprocal space (between reference structure factors and 

difference structure factors)40.  

 

During this procedure, TV-denoised maps are useful for in identifying the region of the 

difference signal to focus on for initial occupancy estimation (Figure S8). They can also 

improve the extrapolated map resolution: Figure 5(a) displays the extrapolated map 

obtained by real-space addition between the reference Mpro state (PDB ID 7AR6) map and the 

Mpro-tegafur it-TV map (see Methods). The map shows a clear shift of the backbone and 

sidechains in the ligand-binding pocket and can be used to refine new atomic coordinates 

for the ligand-bound state. This low-occupancy conformation was not observable in the 

original PanDDA event map (Figure S10(a)). We can refine a multi-state model of ligand 

bound and unbound states directly to the ligand-bound dataset. Figure 5(b) compares the 

model from this refinement with the deposited structure for the ligand-bound state (PDB ID 

7AWR)29. We note that refining a single model to the ligand-bound dataset results in atomic 

positions that are effectively an average between the two states in the multi-state model and 

are less representative of the underlying system. 

 

An additional use for it-TV maps in the process of modeling perturbed-state coordinates is 

to suggest an initial ligand pose for refinement. We use the it-TV denoised map for the Mpro-

U1G complex to manually remodel the ligand binding pose (Figure 4) and improve model fit 

to the data compared to both the deposited structure and a simple re-refinement of the 

deposited coordinates (Figure S11). 
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Discussion 

 

Exciting applications of crystallography, such as time-resolved mechanistic studies or high-

throughput fragment screens3, struggle with the challenge of analyzing signal from low-

occupancy species, which is at the same level as the noise in the data.  Therefore, methods 

to measure and suppress noise in these datasets can unlock new scientific opportunities. 

 

To this end, we find negentropy to be an effective reporter of difference map quality when 

seeking optimal amplitude weighting and denoising parameters. Negentropy maximization 

alone, however, cannot be used for map denoising without other restrictions to the 

procedure. Consider a putative DED map with half of the voxels randomly set to +x and half 

to -x. Such a map will have a very high negentropy, but no information content. Instead, 

negentropy, which measures how noise-like a signal is, should be thought of as a measure 

of the signal-to-noise ratio in a map. It can tell if the map contains signal, but not if that signal 

is faithful to any crystallographic or biological reality. Therefore, negentropy should only be 

used to evaluate competing DED maps generated by methods that can maintain fidelity to 

the original crystallographic data. As examples here, we show the need to choose the k 

parameter in k-weighting or the λ parameter in TV denoising, where negentropy maximization 

replaces manual selection, improving automation and reducing user bias. 
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We hypothesized that extending a single pass of TV denoising (single-TV) to an iterative 

density modification algorithm (it-TV) could improve estimates of perturbed-state phases, 

potentially doubling the signal-to-noise ratio in the difference structure factors set 

compared to the native-phase approximation used in Fobs-Fobs DED maps. Across all three 

test cases, the it-TV output maps exhibit greater chemical interpretability and higher 

negentropy than those produced by a single pass of TV denoising, suggesting that iterative 

refinement adds significant value. Our current it-TV implementation, based on the 

Gerchberg-Saxton iterative projection algorithm41, achieves this improvement effectively; 

however, it may be susceptible to local minima in the presence of experimental noise. To 

address this, a feedback-based algorithm, such as Feinup’s hybrid-input output or its 

descendants35, could potentially enhance it-TV robustness against noise-induced errors. 

 

The largest gains from TV denoising occur for F’obs-Fobs maps, which are expected to benefit 

the most from the replacement of the single-phase approximation in it-TV and also contain 

weaker signals compared to Fobs-Fcalc maps. We therefore anticipate that our denoising 

methods will be the most helpful for interpreting datasets from low-yield time-resolved 

studies or ligands that are weakly bound. Future versions of DED map denoising could 

incorporate more sophisticated models for perturbed-state phases or for the errors 

introduced by the experimental measurement and reference-state coordinates42,43; an 

important additional point is that TV minimization-based techniques will filter high-

frequency noise but will not treat scaling errors or other systematic differences between 

datasets, which difference maps are sensitive to. Deep learning models, such as 
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convolutional neural networks (CNNs), have the capacity to learn more complex patterns 

and features from data and have been shown to perform better than traditional methods in 

image restoration and denoising tasks44–46, making them potential candidates for future map 

denoising algorithms. Another advantage of such models is that, once trained, they do not 

rely on iteration and can therefore quickly process inputs. Nonetheless, it is important to 

note that the TV denoising tools we present here are fast, computationally cheap, and can 

be run from most workstations without the need to train an additional set of parameters.  

 

The field of macromolecular crystallography is moving towards novel and technically 

ambitious data collection strategies: cutting-edge experiments are now aimed at capturing 

transient reaction intermediates, leveraging high-throughput facilities for small molecule 

screens, and studying the conformational variability that underlies protein dynamics. 

Analysis methods need to match these advances with increased sensitivity, robustness to 

noise, and improved automation. The negentropy metric and total variation denoising 

techniques reduce human bias and noise in the generation of difference density maps, as 

well as enhance signal by proposing new phase estimates for low-occupancy species. We 

show that our analysis particularly improves data interpretation in cases that struggle with 

weaker signals. For these reasons we believe such treatment of difference maps could 

unlock the study of minorly-populated states that are currently discarded in fragment 

screens or not attempted in time-resolved studies. The use of negentropy as a way of 

systematically scoring difference maps should also be useful for quick decision-making 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2024. ; https://doi.org/10.1101/2024.11.06.622276doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.06.622276
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

19 

during online experiments and for processing large crystallographic datasets from high-

throughput beamlines.  

 

Methods 

 

Total Variation Denoising. To conduct TV denoising on a difference map, we employ 

Chambolle’s algorithm28 implemented in scikit-image47. TV denoising is performed in real-

space on difference map arrays. To fit the λ parameter, map negentropy is minimized using 

golden section search48,49. For the skimage.restoration.denoise_tv_chambolle function, the 

tolerance for the stop criterions is set to 5x10-8 and the maximum number of iterations to 50. 

 

Iterative Total Variation Denoising Algorithm. Native (Fobs) and derivative (F’obs) state 

amplitudes are provided as input, together with a reference model. A difference map is 

computed using the phases calculated from the reference model and the difference 

structure factor amplitudes (F’obs - Fobs). This starting difference map is denoised using 

Chambolle’s TV algorithm as described above after a small λ value optimization. The TV 

denoised map is then inverse Fourier-transformed to obtain complex difference structure 

factors. These Fourier differences are projected onto the set of input amplitudes and phases 

to obtain an updated estimate of the latent perturbed state (Figure S6). These in turn are 

Fourier transformed back to real space for TV denoising, and the procedure is iterated until 

the average phase change no longer increases by more than 10-3. The default in meteor is 

then to k-weight and TV denoise the it-TV map to produce a final output. 
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Perturbed State Extrapolation. To demonstrate how TV-denoised maps can be used in the 

process of extrapolating perturbed-state density, we generate two different types of 

extrapolated maps (Figure 5 and Figures S8-S10), described below. First, to estimate a 

perturbed state occupancy, we re-implement the background subtraction strategy used by 

PanDDA17. This procedure involves identifying a local region of change caused by the 

perturbation and finding an occupancy value that can produce a map that maximally differs 

from its reference in such localized region but is similar to the reference elsewhere.  

 

Extrapolation for perturbed state structure factors (Fpr) or density (ρpr) can be carried out in 

real or reciprocal space. 

 

Reciprocal: Fpr = Fobs + α-1 wΔF x eiϕc 

Real:  ρpr = ρref + α -1Δρ 

 

where ΔF = F’obs - Fobs, w represents error-based amplitude weights, 𝜙c  are the calculated 

phases from the reference model, and α is related to the true perturbed state occupancy (f) 

by f = 2α when the constant phase approximation is used. To estimate α (with final choice 

written α̂), the strategy from PanDDA17 finds the value that maximizes the difference in 

Pearson correlation coefficient (calculated from the reference state and the extrapolated 

map) between the entire protein and a specific local region of change. We showcase this for 

our photoisomerization example in Figure S8(a), where the local region is set as a sphere of 
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5 Å centered around the chromophore double bond. The entire protein is defined as a global 

region after a solvent mask is applied. For a range of values of 0 < α < 1, the Pearson 

correlation coefficient between the respective Fpr/ρpr map and the map obtained from the 

reference model is computed. The value that maximizes the difference between these two 

correlation coefficients is chosen as α̂ and the corresponding map is saved (Figure S8(b)).  

 

For the Mpro-tegafur complex, we use the higher-negentropy it-TV map as Δρ for real space 

extrapolation and show the extrapolated result in Figure 5. We also carry out a reciprocal 

space extrapolation, which does not use new phases from either single-TV or it-TV but is 

guided by the denoised maps in the choice of local region. The corresponding map is shown 

in Figure S10(b).  Figure S9 contains the analysis to estimate α̂ for these two extrapolation 

types. 

 

Multi-State Model Refinement. As outlined by Pearce et al.50, we combine the models 

through the use of alternate conformers, we constrain the occupancy of the atoms within 

each state to be fixed, and we set the sum of the occupancies between states to be equal to 

1. As a starting occupancy for the ligand-bound state we choose the value that minimizes R-

free (Figure 5(b)), and proceed to refine B-factors and coordinates with phenix.refine51. For 

the R-factors reported in the table in Figure 5(b), the anisotropic B-factors are removed from 

the originally deposited models (PDB ID 7AR6/7AWR) and the B-factors are re-refined with 

phenix.refine. This ensures a consistent procedure to compare the metrics obtained with the 

multi-state model refinement. 
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Code Availability. Negentropy-driven k-weighting, single pass TV denoising, and the it-TV 

algorithm are implemented as executables in the meteor package, requiring initial MTZ files 

and a reference model as input. meteor is written in python and depends on the GEMMI22, 

reciprocalspaceship23, numpy52, scikit-learn53, and panda54 packages. The code is available 

at: https://github.com/rs-station/meteor. 
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Figure 1: The voxel distribution of a difference map reflects its signal-to-noise ratio. (a) 

A 1D signal with positive and negative peaks at positions at X’ and X respectively can serve 

as a simple model for a difference map where an atom moves from X to X’. The corresponding 
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distribution for the difference map voxel values (Δρ) is non-Gaussian, with a mode at 0 and 

two modes at ρmax(X) and ρmax(X’) (the histogram is plotted with a log-scale on the y-axis). On 

the right column, the normal probability plot compares the map voxel value distribution to a 

perfect Gaussian: the observed data (sample quantiles) is ordered and plotted against the 

expected values of the ordered statistics for a sample from a standard normal distribution 

of the same size as the data (theoretical quantiles). The red line denotes the behavior for a 

sample that is normally distributed. Deviations from this straight line indicate deviations 

from a Gaussian distribution.  (b) A more realistic case is that of a carbon atom translating 

from X to X’ in three-dimensional space. Here we show the case where the positive and 

negative electron density signals from the displacement of the atom overlay and partially 

cancel. The resulting difference map voxel value distribution (Δρ) is no longer strictly 

bimodal but remains non-Gaussian. (c) Deviation from a Gaussian distribution for the 

histogram of voxel values is also noticeable for the calculated difference map of a known 

light-induced protein structural change: we display a noise-free synthetic difference 

electron density (DED) map for the 100 ps trans-to-cis photoisomerization of the Cl-rsEGFP2 

protein chromophore (PDB ID 8A6G). To match experimental data31, the map is calculated 

by converting 13% of the reference dark trans population to cis. As the dark state already 

contains 14% of the cis species, the final state (in orange here) is at 27% cis occupancy. We 

show the calculated difference map at a contour level that is comparable to the 

experimental map shown below in (d). In contrast to the calculated map, the experimental 

map31 is dominated by Gaussian noise, even after error-based amplitude k-weighting. This is 
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apparent from the histogram and probability plot of the map voxel value distribution shown 

on the right. 
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Figure 2: Total variation (TV) minimization can effectively denoise experimental DED 

maps. (a) TV denoising is used in signal processing to remove spurious noise from data. This 

is exemplified here by artificially adding white noise (sampled from a normal distribution with 

a standard deviation ≈10% of the maximum pixel value in the image) to the cameraman 

image and applying Chambolle’s total variation minimization algorithm to retrieve the 

underlying signal28. A regularization parameter λ determines the degree of denoising: a value 

of λ that is too high will produce an image that is overly "smoothed" compared to the original. 

On the right, the power spectrum for each image illustrates the effect of the added noise and 

of subsequent TV denoising to recover signal. (b) TV denoising using two different manually 
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chosen values of λ is shown for the weighted Cl-rsEGFP2 trans-to-cis photoisomerization 

DED map, along with the original experimental map (λ = 0.0). As for the 2D images in (a), 

power spectra show that, while the starting experimental map contains little signal, an 

appropriately regularized denoising yields map coefficients that approach those for the 

simulated map displayed in Figure 1(c). (c) To refine an appropriate value of λ, we denoise 

the experimental Cl-rsEGFP2 map for a range of regularization levels (0 ≤ λ ≤ 0.08) and 

identify the λ value that maximizes map negentropy.  

 

 

 

Figure 3: An iterative TV minimization algorithm estimates the phases of the structure 

factor contribution from low occupancy states. (a) The unknown perturbed state phases 

are estimated through an iterative procedure (it-TV, Figure S6). The initial difference map is 
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computed from the observed derivative and native amplitudes (F’obs and Fobs) and the phases 

from the reference state model (𝜙c). A step of difference density (∆ρ) TV denoising is followed 

by an inverse Fourier transform (FT) to reciprocal space. We then project the ∆FTV set onto 

the phase circle with magnitude F’obs (see also Figure S6) as a way of finding a new phase 

estimate for F’. The new phases are used in the next iteration. Iterations are run until 

convergence (see Methods). (b) The experimental Cl-rsEGFP2 map is shown before and after 

it-TV (in purple and orange for negative and positive density respectively, ±3 rms), together 

with the cumulative phase change and negentropy values for the difference maps generated 

at each iteration in (c). The mean phase change at each iteration is plotted in red. The 

negentropy as a function of iteration is plotted in gray.  
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Figure 4: Test cases demonstrate the power of negentropy-guided TV denoising to 

recover time-resolved and ligand-binding signals. We show single-pass TV denoising and 

iterative-TV maps with their associated negentropy values for our three test datasets:  the 

100 ps photoisomerization of the OHD chromophore in the Cl-rsEGFP2 protein (PDB ID 

8A6G) (a), the example of Mpro bound to tegafur (PDB ID 7AWR), which was identified as a 

potential binder to an allosteric site with a modeled occupancy of 0.50 (b), and the example 

of the Mpro-U1G complex (PDB ID 5RGO), with a modeled fragment occupancy of 0.42 (c). 

Reference state structures are shown in gray, while structures that we refined to the 

perturbed dataset are shown in black. Ligand outlines become stronger and more 

chemically interpretable for all three test cases. For the Mpro-tegafur complex, there are 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2024. ; https://doi.org/10.1101/2024.11.06.622276doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.06.622276
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

35 

strong signals for rearrangements of side chains and backbone atoms near the ligand 

binding pocket. For the Mpro-U1G complex, the it-TV map suggests an alternative fragment 

pose. The largest gains from the denoising step occur when the initial map is close to being 

normally distributed (as for the signal on the OHD chromophore in Cl-rsEGFP2 or in the Mpro-

tegafur complex). We show maps at ±3.5 rms, which we find is an appropriate rms cutoff to 

highlight signal for these examples. However, because TV-denoised maps are intentionally 

non-Gaussian, the second moment (rms) alone does not fully capture the distribution of 

voxel values. It's therefore important to keep in mind that common visualization thresholds, 

like ±3 rms, may not directly relate when trying to compare denoised and standard maps. 
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Figure 5: Denoised difference maps can guide the refinement of new coordinates and 

uncover low-occupancy conformations. (a) Extrapolated map for the Mpro-tegafur 

complex. This is obtained through addition of the it-TV map shown in Figure 4 to the 2mFo-

DFc map from the reference state (PDB ID 7AR6, black). We highlight the rearrangement of 

the backbone and Thr98/Tyr101/Phr103 sidechain atoms close to the ligand binding pocket. 

We refine coordinates for the bound state to this extrapolated map (light blue) and screen R-

factor values to initiate the occupancy of the ligand-bound state in a multi-state model, 

choosing an occupancy of 0.29 for initial refinement. (b) Binding pocket coordinates from 

the deposited ligand bound (PDB ID 7AWR) and unbound (PDB ID 7AR6) models and the 

multi-state model generated here are shown. The table reports final refinement R-factors for 

the deposited ligand bound and unbound models and the multi-state model when 

compared to the ligand-bound dataset. For the refined multi-state model, the reference 

chain is overlaid with the 7AR6 model.  
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