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Abstract
Quadrupole resonators (QPRs) serve to characterize superconducting samples. Like any cavity,
during operation, they will deviate from the design geometry for various reasons. Those
deviations can be static, stemming from manufacturing variations reflected in the manufacturing
tolerances, or dynamic, such as electromagnetic radiation pressure (Lorentz detuning) or
microphonics. As a result, a QPR’s measurement accuracy and general operation can be
severely limited. In particular, during operation, it became evident that the third operating mode
of typical QPRs is mainly affected. In this work, by solving the underlying multiphysics
problem with random input parameters, we predict the predominant sources of significant
measurement bias in surface resistance. On the one hand, we employ the stochastic collocation
method compound with the polynomial chaos expansion (PC-SCM) to quantify uncertainties in
the physical model governed by a coupled electro-stress-heat problem. On the other hand, we
explore the perturbation analysis to calculate the mean-worst-scenario bound of the merit
functions due to the first-order truncation of the Taylor expansion around mean parameter
values. The developed method allows us to study the effect of a small nonlinear deformation on
the performance of the QPR. Finally, we discuss the simulation results and their implication for
the operational conditions of the QPRs.

Keywords: uncertainty quantification, shape perturbation analysis, Lorentz force (LF) detuning,
weakly coupled E-S-H problem, quadrupole resonator
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1. Introduction

In particle accelerator technology, current radio frequency
(RF) resonators are often made of niobium and operated at
ultra-low temperatures in the superconducting state to min-
imize surface losses [1]. For future accelerating structures,
surface losses and associated operating costs can be further
reduced using new superconducting materials or thin film
deposition techniques. In fact, the material properties, sur-
face resistance, and critical RF field predominantly determine
the energy consumption and maximum acceleration gradient.
Thus, since lower surface resistance results in reduced energy
consumption, there is a great need for experiments to determ-
ine the superconducting properties of such materials accur-
ately [2–5].

For a precise determination of the RF properties of such
superconducting materials, a calorimetric measurement is car-
ried out with the aid of a so-called quadrupole resonator
(QPR). The studied QPR was initially developed at CERN
in 1997 by [7] to conduct high-precision surface-resistance
measurements of niobium samples. Later on, its design
was further adapted to operating frequencies of 433MHz,
866MHz, and 1.3GHz at the Helmholtz–Zentrum Berlin [3].
More recently, the HZB configuration has been further mod-
ified, amongst others, to overcome existing problems with
the influence of microphonics and Lorentz force detuning on
measurements bias [8, 9].

A fundamental issue inherent to the existing configurations
of QPRs is the measurement bias observed in the third oper-
ating mode of the given HZB-QPR (in the range of 1.3GHz).
To illustrate, the RS(T)measurement data obtained from a bulk
niobium sample is presented in figure 3 for all three QPR oper-
ating modes with an RF field level of Bsample = 10mT. The
unexpectedly high surface resistance measured at 1286MHz
is evident when compared to the measurements provided for
other modes, see [11, 12]. Besides the RF losses on the
adapter flange [6, 13], microphonics and Lorentz force (LF)
detuning [11, 14–16] may constitute the possible explanation
of this negative phenomenon. More precisely, according to
Slater’s theorem [17], any deformation of the cavity shape, for
example, due to an external or RF field pressure, could result
in the detuning of the resonance frequency [3]. Consequently,
mechanical oscillations (microphonics) can be triggered due
to the strong LF, especially in the high-field region at the bot-
tom end of the quadrupole rods that break the quadrupole sym-
metry of the resonator [11, 18]. As a result, due to the relatively
small frequency distance between the third quadrupole mode
and the closest dipole mode, the closest neighboring mode
can be excited [6]. As an illustration of this phenomenon, we
present the measurement data obtained when a neighboring
dipole mode was simultaneously excited at 1287MHz (wave-
form #12 in figure 4). This observation was made during
pulsed measurements at the frequency of the third operating
mode. Ultimately, this could yield significantly increased RF
losses on the bottom stainless steel flange, which might be the

probable explanation for the larger measurement bias of the
surface resistance for the third quadrupole mode [12].

The QPR consists of a screening cavity made of two
thermally isolated chambers and four rods, which are welded
at the top plate and bent at the end into half-ring pole shoes,
as shown in figure 1. The calorimetry chamber is mounted
below these two loops. The resulting power dissipation caused
by eddy currents is measured by temperature probes installed
inside the calorimetry chamber with a proportional-integral-
derivative controller as

∆PRF (p) := [PDC1 (p)−PDC2 (p)] , (1)

where PDC1 and PDC2 denote the heater power required for
temperature stabilization at the initial temperature Tint and
the reduced heater power PDC2 determined after switching on
the RF antenna and reaching again equilibrium for Tint, as
depicted in figure 2, respectively. Thus, the surface resistance
can be calculated using the calorimetric RF-DC-compensation
method and reads as

RS (p) =
2∆PRF (p)´
ΩS

|h(p) |2 dx
, (2)

with the magnetic field strength as a function of geometrical
parameters denoted by h(p), where the integral term appearing
in the denominator of equation (2) is approximated numeric-
ally. Specifically, it is a product of a simulation constant c and
the stored energy U in the cavity, which is measured using
a pickup antenna. For details, we refer to [2, 7]. As a result,
the surface resistance is prone to various sources of uncer-
tainties associated with the RF-DC-compensation methodand
those resulted from surface treatment methods affecting the
surface roughness of superconductors [4].

In particular, the accuracy of the surface resistance meas-
urement, which is determined by both the uncertainty in the
RF measurement and the manufacturing imperfections, is of
key importance. Specifically, microphonics and LF detuning
seem problematic for the operation of the QPR since they
directly affect the stability of the resonance field excited by
the RF source and, consequently, lead to biased measure-
ments [3]. Also, the static LF detuning can be a key negative
factor because it may enlarge the risk of excitation of neigh-
boring modes for some configurations of the QPR [6, 11],
for example, the CERNII-QPR design [19]. Besides mechan-
ical vibrations and the LF detuning, manufacturing tolerances
deteriorate the QPR’s performance [3, 18]. Mathematically,
uncertainties related to the physical domain, material coeffi-
cients or boundary conditions naturally affect the boundary
value problems (BVP) under consideration.

The main problem we face here is to develop a robust
and reliable method to measure the impact of a relatively
small deformation caused by the LF detuning and the hydro-
static pressure onto suitably chosen merit functions. Its further
application is the efficient optimization of QPR design under
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Figure 1. Layout of the QPR (left) with its parameterized model
(right). Reproduced from [6]. CC BY 3.0.

Figure 2. According to the calorimetric method, the surface
resistance of a superconducting sample is derived from a DC
measurement. Reproduced from [10]. CC BY 3.0.

uncertainty5 We note that the standard finite element analysis
(FEA) with dynamic re-meshing of the perturbed computa-
tional domain may yield a biased solution due to the numer-
ical noise associated with re-meshing, and data transfer [25].
In addition to the boundary representation problem, the math-
ematical and software limitations6 can hinder the use of the
FEA for studying small nonlinear deformations.

Although we present a particular application of the QPR
model, the proposed approach is general and can be applied
to stochastic multi-physics modeling devices such as multi-
cell cavities or couplers from accelerator physics [1, 15, 23].
A comparable approach focusing on the worst-case scenario
for an elliptic partial differential equation (PDE) and without

5 Even though the proposed approach for manufacturing processes represent-
ation is quite general [20, 21], we prefer the robust formulation, consisting
of the expectation’s weighted functions and the standard deviation as in [18,
22–24].
6 In the CST Studio Suite®—software used for our simulations—a shape
sensitivity analysis is implemented only for built-in functions like fre-
quency [26].

Figure 3. Measurements of RS(T) conducted for the frequencies of
HZB-QPR’s three operating modes. Reproduced from [11].
CC BY 3.0.

employing the UQ technique, has been previously explored,
e.g. in [27, 28]. In turn, Harbrecht [24] developed a determ-
inistic measure of robustness using the perturbation method
with respect to material coefficients. In the context of fin-
ance mathematics, the worst-case-expectation formulation for
optimizing data processes under uncertainties has been stud-
ied in [29]. Moreover, the work presented in [30, 31] addresses
certain aspects of the shape derivative for Maxwell’s eigen-
problem, from a deterministic perspective in a mathematically
rigorous manner. The optimization problem constrained by the
stochastic formulation of Maxwell’s eigenproblem has been
successfully studied in our previous work [6, 23].

This paper presents a novel approach to uncertainty quan-
tification analysis and shape perturbation methods, combining
them in a worst-case-expectation framework. This approach
offers a viable alternative to the method proposed in [25],
which employs either a continuum Lagrangian sensitivity ana-
lysis or a Monte Carlo method to simulate stochastic phenom-
ena. The proposed adjoint-based a posteriori scheme derives
the approximation of an upper bound on the deformation
caused by the LF radiation and hydrostatic pressure under geo-
metric uncertainty. In this respect, we apply the material and
shape derivative to the nonlinear stochastic Maxwell’s eigen-
value problem (MEVP) and derive a shape sensitivity in the
continuous form. Focusing on this approach, we also address
the algorithmic efficiency related to the developed estimations.

2. Stochastic physical model

This section briefly discusses a three-dimensional (3D) math-
ematical model of the QPR governed by the weakly coupled
electro-stress-heat (E-S-H) problem in a deterministic and
stochastic setting.

2.1. A deterministic model of QPRs

Suppose our weakly coupled E-S-H BVP is defined on D⊂
Rd, d= 3, a bounded and simply connected physical domain
with sufficiently smooth boundary ∂D. In essence, the bound-
ary can be decomposed into two parts: a Neumann part ΓN

3
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Figure 4. RF mode scans for three distinct measurements with varying samples. The resonant frequency of the third QPR mode exhibits a
notable shift of up to 9.2MHz, while neighboring modes remain in a relatively narrow range of 400 kHz, as highlighted by the yellow areas,
see [11, 12]. Reproduced from [11]. CC BY 3.0.

and a Dirichlet part ΓD such that ∂D= ΓN ∪ΓD, which res-
ults directly from a multiphysics QPRmodel, that is, the struc-
ture’s fixed point, the influence of the helium, and the vacuum
pressure and gravitation. In addition, a loss-free material is
assumed for modeling the outer cavity, which implies impos-
ing the perfect conducting boundary condition (PEC) on these
walls. In fact, we aim to find the eigenpair (λ,h) comprised
of eigenvalue λ ∈ R+ and the magnetic field phasor h ∈ Cd,
the vector-valued mechanical displacement u ∈ Rd, and the
temperature T ∈ R, which satisfy the coupled system of PDEs
consisting of MEVP, the linearized elasticity value problem
(EVP), and the heat value problem (HVP). For this reason, let
p= (p1, . . . ,pP)⊤ ∈Π ⊂ RP denote a vector of geometrical
parameters with a multidimensional parameter domain given
by Π. For example, let us consider these variables, shown in
figure 1. Next, define a set of admissible shapes such that

Ω(p) =
{
p ∈Π

∣∣0⩽ pmin ⩽ p⩽ pmax

}
, (3)

with inequalities understood component-wisely in order to
investigate the coupled E-S-H problem.

Then, the variational form of the coupled E-S-H mul-
tiphysics problem in the steady-state is: Find (λ,h) ∈ R+ ×
[H1(D)]3 and h 6≡ 0, u,T ∈ V such that〈

µ−1
r ∇× h,∇×φ

〉
Dc
−λ〈ϵrh,φ〉Dc

= 0, (4a)

〈
ν
(
∇u+∇u⊤

)
+ η (∇· u)I,∇υ

〉
Dw

= 0, (4b)

〈κ∇T,∇ϑ〉Dw
−
〈

γ
ϵω |∇× h|2,ϑ

〉
Dw

= 0, (4c)

with the LF radiation pressure imposed on the boundary of the
rods

〈σ,n〉∂Dcw
= 1

4

〈
1
ω |∇× h|2 +µ|h|2,n

〉
∂Dcw

, (4d)

which is satisfied for all φ,υ,ϑ ∈ V with the Sobolev space
of functions with square integrable weak gradients denoted

by V= [H1(D)]n, n= {3,1}. For example, we have n= 3 in
the case of the MEVP and the elasticity equation, that is, (4a)
and (4b), while n= 1 for the heat equation of (4c). Similarly,
the subspaces Vg ⊂ V and V0 ⊂ V of functions that satisfy the
non-homogeneous or homogeneous Dirichlet boundary condi-
tion on ΓD ⊂ ∂D are given by Vg = H1

ΓD
≡ {υ ∈ V : υ = g on

ΓD}, and V0 = H1
ΓD

≡ {υ ∈ V : υ = 0 on ΓD}, respectively.
In (4a)–(4d), ω = 2π f ∈ R+ denotes the angular frequency

with f standing for the frequency, µ ∈ L∞(D) the magnetic
permeability, and ϵ ∈ L∞(D) the complex electric permittiv-
ity, respectively. The thermal conductivity κ ∈ L∞(D) and
the electric conductivity γ ∈ L∞(D) are real-valued functions.
Next, we assumeHooke’s law between the linearized Cauchy–
Green strain tensor ε(u) = 1

2

(
∇u+∇u⊤

)
and the Cauchy

stress tensor C, which in our work is modeled to be inde-
pendent of the displacement u. Thus, finally, the stress tensor
denoted by σ = C · ε(u) consists of 12 (out of 36 elements)
non-vanishing functions of the Lamé coefficients η ∈ L∞(D)
and ν ∈ L∞(D) for the considered homogeneous and isotropic
material.

Various variants and specializations of the particular PDE
associated with the coupled E-S-H problem (4a)–(4d) have
been studied for their existence in a deterministic setting. For
instance, the uniqueness and solvability of (4a) for simple and
multiple eigenvalues7 have been shown in [33–35]. Recently,
sufficient and necessary conditions to guarantee the uniform
convergence of the MEVP have been analyzed in an abstract
setting in [36, 37]. Two other elliptic PDE models of (4b)
and (4c) for the steady-state of the heat and elasticity equation
with loading terms such as the LF pressure and Jules losses,
exported from the MEVP and defined at the boundaries of
the ΓN ⊂ ∂D and conductive parts of the ΓD ⊂ ∂D flange
have been studied in [38, 39]. In particular, the existence and

7 Please note, if λ is not an eigenvalue of the homogeneous Dirichlet
value problem (homogeneous Neumann problem) with n× h= 0 (n×
(n× h) = 0) on the boundary Γ, the solution of (4a) is uniquely determined
by n× h= f ( n× (n× h) = g ), see, e.g. [32].

4
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uniqueness of their solution have been shown, for example,
in [27, 28].

Since the manufacturing tolerances and properties of the
material used for the QPR determine its functioning, we for-
mulate the stochastic coupled E-S-H problem in the steady-
state to achieve reliable simulation results.

2.2. A stochastic coupled E-S-H problem

Following the theory [40–42], let uncertainties associated
with geometrical imperfections be represented by the ran-
dom process p(ξ), defined on the complete probability space
(A,F ,P). Here, A is an outcome space, F ⊂ 2A denotes
the σ-algebra of events, and P : F → [0,1] is a probability
measure, respectively. Next, suppose the random field can be
approximated by a finite number of random variables p(ξ) =
(p1(ξ1), . . . ,pP(ξQ)) with mutually independent components
such that pi(ξ) :A→ Γi ⊆ R+. Specifically, we assume that
each random variable is characterized by a probability dens-
ity function (PDF) ρi : Γi → [0,1]. Furthermore, denote by
Γ :=

∏P
i=1Γi ⊂ RP the support of p(ξ) and by

ρ(p) :=
p∏

i=1

ρi (pi)

its joint PDF, assuming it exists. Here, the dependence of ξ
has been suppressed for better readability.

Then, given the joint PDF ρ(p) of u(p) ∈ L2(Γ) = u(p) :
E[‖u(p)‖2 ]<∞}, see, [43], the expected value of u(p)
reads

E [u(p) ] :=
ˆ
Γ

u(p) ρ(p) dp, (5)

with the probability measure ρ(p)dp on Γ.
Similarly, an inner product for two random processes

u(p),υ(p) ∈ L2(Γ) is given by

(u(p) ,υ (p))L2ρ(Γ) :=
ˆ
Γ

u(p) ·υ (p)ρ(p) dp, (6)

where υ(p) denotes the complex conjugate. The associated
norm is then defined as

‖u(p) ‖ :=
(ˆ

Γ

‖u(p) ‖2ρ(p) dp
) 1

2

. (7)

Subsequently, using (5) yields the variance definition of a ran-
dom complex function u(p) ∈ L2(Γ)

Var [u(p)] := E
[
‖u(p) ‖2

]
−‖E [u(p) ] ‖2, (8)

which is always real and positive.
Additionally, with regards to a spatial domain D⊂ Rd, we

define a set of random processes f(·,p) : D→ Cd, for which a
norm on the tensor space Vρ = L2(Γ)⊗H1

0(D) reads as

E
[∥∥ f(x,p)∥∥2

L2(D)

]
:=

(
E
[ˆ

Ω

‖ f‖2 dx
]) 1

2

, (9)

which is induced by the corresponding tensor inner product(
·, ·
)
Vρ
, see, for example, [44, 45].

Let us consider now the tensor product Hilbert space Vρ

endowed with the inner product (u,υ)Vρ
≡ E

[
〈u,υ〉V

]
with

respect to the stochastic coupled E-S-H problem of (4a)–(4d).
Thus, the weak form includes now expectations of the vari-
ational form defined in the physical space and it is defined as
follows: Find (λ,h) ∈ R+ ×Vρ and h 6≡ 0, u,T ∈ Vρ such that

E
[〈
µ−1
r ∇× h,∇×φ

〉
Dc
−λ〈ϵrh,φ〉Dc

]
= 0, (10a)

E
[〈
ν
(
∇u+∇u⊤

)
+ η (∇· u)I,∇υ

〉
Dw

]
= 0, (10b)

E
[
〈κ∇T,∇ϑ〉Dw

−
〈

γ
ϵω |∇× h|2,ϑ

〉
Dw

]
= 0, (10c)

equipped with the LF pressure on the boundary of the rods

E
[
〈σ,n〉γ

]
= E

[
1
4

〈
1
ω |∇× h|2 +µ|h|2,n

〉
γ

]
(10d)

with γ = ∂Dcw for all test functions φ,υ,ϑ ∈ Vρ.
In our work, we employ the non-intrusive approach by

Xiu [46] for the solution of (10a)–(10d) to be exploited on a
finite-dimensional stochastic subspace P(Γ)⊂ L2(Γ). For the
construction of the approximating P(Γ), we adopt a general-
ized polynomial chaos technique [47–49].

2.3. UQ via polynomial chaos expansion

Given a square-integrable, random function with finite vari-
ance f ∈ L2(Γ), let us consider a truncated series of PC
expansion [46, 47, 50] in the following form

f(p) .=
∑
i∈IQ,P

f̃iΦi (p) , f̃i ∈ C, (11)

where i is a multi-index i= (i1, . . . , iQ) ∈ IQ,P with the total
polynomial order denoted by P and the set of multi-indices
defined as

IQ,P =
{
i= (i1, . . . , iQ) ∈ NQ

0 : |i|⩽ P
}

with l1 norm denoted by | · | := i1 + . . .+ iQ and Q related to
the number of random variables in the problem. In particular,
in (11), the multivariate PC basis functions Φi(p) : RQ → R
are generated via [20, 51]

Φi (p) =
Q∏
k=1

Φik (pk) , i ∈ IQ,P (12)

with univariate polynomials of degree ik ∈ N0 to be orthonor-
mal with respect to the L2ρ inner product given by (6) and

a priori unknown coefficient functions f̃i to be determined.

5
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Correspondingly, we have that the numberK of PC basis func-
tions of total order P in dimension Q satisfies

K= |IQ,P|=
(P+Q)!
P!Q!

.

Apopular choice for the functionsΦik are orthonormal polyno-
mials8, whose distribution is determined by the description of
random variables in stochastic settings. For example, the uni-
form distribution results in using the Legendre polynomials,
whereas the Hermite polynomials correspond to the Gaussian-
type PDF, respectively.

In essence, it can be proved that the truncated series of PC
expansion given in (11) is convergent in themean-square sense
under the following conditions [40, 41, 50]:

• The variance of f(p) ∈ L2(Γ) is finite,
• The coefficients of the PC expansion f̃i can be computed
through the so-called projection equation

f̃i := ( f(p) ,Φi (p))L2ρ(Γ) = E [f(p)Φi (p)]. (13)

The projection equation constitutes the origin of two main UQ
methods: the spectral Galerkin method [48] and the PC-based
stochastic collocation method (PC-SCM) [46] (also called
pseudo-spectral approach). In our work, the latter (PC-SCM)
is preferable due to the possibility of reusing existing determ-
inistic solvers.

2.4. Pseudo-spectral approach

The PC-SCM [46] applies the projection equation only to
output interest quantities and yields exponential convergence
under certain assumptions on smoothness [47]. In fact, as a
typical non-intrusive method, it requires only repetitive simu-
lations of a deterministic model of (10a)–(10d) at a collection
of collocation points (cubature nodes) p(k) ∈ Γ,k= 1, . . . ,K.
Consequently, the discrete projection of resulting solutions
f(pk) on the basis of polynomials Φi can be performed
using the multi-dimensional quadrature with associated
weights wk

f̃i
.
=

K∑
k=1

wk f
(
p(k)
)
Φi

(
p(k)
)
, (14)

which permits an evaluation of the probabilistic integrals (13).
Likewise, a global approximation of (5), and (8) can be dir-

ectly carried out when the order of the cubature rule is suffi-
ciently high [52]:

E [f(p)] =
K∑
k=1

wkf
(
p(k)
)
, (15a)

Var [f(·)] =
K∑
k=1

wk f 2
(
p(k)

)
−
(

K∑
k=1

wkf
(
p(k)
))2

, (15b)

8 For an orthogonal system of basis polynomials, normalization can be con-
ducted straightforwardly, see, for example, [50].

where wk and p(k) denote the weights and quadrature nodes,
respectively.

Once the polynomial coefficients are found, the polynomial
representation in the form of the response surface model (11)
allows for estimating

E [f(p)] = f̃0, Var [f(p)] =
∑
i∈IQ,P
i̸=0

∣∣ f̃i ∣∣2, (16)

where Φ0 = 1. Moreover, given the PC expansion (11) of ran-
dom variable p, other statistical information such as the PDF,
the cumulative PDF, or quantities like the local sensitivity and
the variance-based global sensitivity can be computed directly;
see, for example, [50]. For instance, the local sensitivity (a par-
tial derivative) is defined by

E
[
∂f
∂pq

]
.
=
∑
i∈IQ,P
i̸=0

(̃
fi

ˆ
∂Φi (p)
∂pq

ρdp
)
, (17)

for q= 1, . . . ,Q.
The Sobol decomposition of (11), in turn, allows for eval-

uating the first-order variance-based sensitivity (VBS) coeffi-
cients [53]

S= (s)l,q ∈ RL,Q, sl,q =
1

Var( fl (p))

∑
i∈Iq

| f̃l,i |2, (18)

where sets are given by Iq = {i ∈ N0 : iq > 0, im ̸=q = 0} and
Var( fl) denotes the total variance of particular objective func-
tions, l= 1, . . . ,L. Thus, to calculate the first-order VBS sl.q,
it is required that all random inputs except pq have to be fixed.
Within this concept, a large contribution to the variance is
denoted by a value close to 1. In contrast, a value close to 0
indicates a small contribution, which in practice means that the
influence of that variable can be neglected either in optimiza-
tion or in stochastic modeling [6]. The calculation of the total
or mixed/fractional VBS coefficients is also possible [54].

The main computational cost of the PC-SCM is associated
with using the multi-dimensional quadrature, which determ-
ines the number of deterministic solver evaluations at colloc-
ation points. Therefore, to overcome the so-called curse of
dimensionality caused by employing the Gauss–Hermite (GH)
quadrature, typically, the Smolyak approach [55] is recom-
mended, which exploits smooth directions of the random space
very robustly [20]. Alternatively, the efficient Stroud formulas
can be used [18, 56, 57], which yields a very small number
of quadrature points, but they have also a fixed accuracy and
cannot be nested. In contrast to the GH rules, other approaches
provide nestedness, such as the Newton–Cotes formulas, the
Gauss–Patterson or the Clenshaw–Curtis quadrature, and the
Hermite Genz–Keister Sparse Grids [45, 57].

3. Shape and material derivative for worst-case
approach

A shape derivative is a tool that allows for analyzing the
shape variations of domain-dependent quantitiesF(Ω(p)), see

6
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[58, 59]. Its broad application varies from shape optimization,
through the problems of front tracking and image segmenta-
tion to a posteriori error estimation; see, for example, [60–62].

In particular, given that we are dealing with the third
eigenvalue, it is assumed to be simple, and, therefore, shape-
differentiable [58, 61].

3.1. Cost functionals

In general, the accuracy of the calorimetric RF-DC-
compensation method is affected by (i) manufacturing imper-
fections, including the roughness of the superconducting sur-
faces, (ii) a lack of parallelism of the sample surface and the
quadrupole pole, (iii) and finally, an insufficient concentric
alignment of the coaxial structure [3, 6, 12]. Some of them
are clearly design-dependent and can be quantified using the
functional

ψ (Ω(p)) = F [Ω(p) ,u(Ω(p))] ,∀Ω(p) ∈Π, (19)

assuming that F( ·) depends on the parametric shape Ω(p)
implicitly through the solution u(Ω(p)) or explicitly by Ω.

For this reason, to assess the operation of the QPR for
the third frequency mode, we consider the following random-
dependent cost functionals with hΩ ≡ h(p) and Ω(p)≡ Ω:

- The nominal frequency of the third QPR operating mode9:

E [f0 (Ω)] := 1.311≡ F0 (Ω) [GHz], (20a)

- The focusing factor for investigating the focus of the mag-
netic field onto the surface of sample ΩS:

E [f1 (Ω)] := E
[

1
2U

ˆ
ΩS

‖h(p)‖2 dx
]
≡ F1 (Ω,h) (20b)

with resulting unit [MA2 J−1].
- The homogeneity factor for measuring the homogeneity of
the magnetic field on ΩS:

E [f2 (Ω)] := E

[´
ΩS

‖h(p)‖2 dx∣∣ĥΩS (p)
∣∣2

]
≡ F2 (Ω,h) [1/1] .

(20c)
- The measure of the field penetrating into the coaxial gap
around the sample, which might lead to a measurement bias:

E [f3 (Ω)] := E

[´
ΩS

‖h(p)‖2 dx´
ΩF

‖h(p)‖2 dx

]
≡ F3 (Ω,h) [1/1] .

(20d)

9 The difference between the simulated and measured frequencies of HZB-
QPR operating modes might be attributed to the frequency tuning of geomet-
rical parameters (ltrans1, ltrans2) to accommodate existing narrow bandwidth
RF systems of 400MHz and 1300MHz [3, 12]. Indeed, our simulation results
align with those reported by other studies on HZB-QPR, see, e.g. [13, 16].

- The ratio of the maximummagnetic field on the sample (ΩS)
over the maximum magnetic field on the rods, which affects
the maximum attainable field on ΩS:

E [f4 (Ω)] := E

[
ĥΩS (p)

ĥΩR (p)

]
≡ F4 (Ω,h) [1/1] . (20e)

- The ratio of the maximum magnetic field on ΩS over the
maximum electric field on the rods to lower the risk of field
emission caused by high electric fields:

E [f5 (Ω)] := E

[
ωµ0 ĥΩS (p)

∇× ĥΩR (p)

]
≡ F5 (Ω,h) (20f )

with resulting unit [mT(MV/m−1
)],

- The maximum temperature at the adapter flange:

E [f6 (Ω)] := E
[
T̂ΩF (p)

]
≡ F6 (Ω,h,T) [T] , (20g)

where ĥ= |ĥ| denotes the peak magnetic field that is calcu-
lated either in the area of the sample ΩS or in the domain
of the rods ΩR. Here, ΩF refers to the region of the flange,
while U denotes the stored energy in the QPR.

3.2. Shape derivative for quantifying LF influence

In the presence of small deformations of the QPR shape under
geometric uncertainties caused by the LF detuning, we can
employ a shape perturbation analysis around the nominal para-
metric shape Ω(p0) to estimate the change of functions (19)

∆F [Ω(p)] = sup
Ω(p)∈Π

E [ψ (Ω(p))−ψ (Ω(p0))] , (21)

which might be understood here as the worst-case average of
the objective functional [29].

Furthermore, let us assume that for the fixed realization
of quadrature nodes p(k), merit functions, bilinear and lin-
ear forms of (4a)–(4d) are regular functions of the parametric
shape Ω(k) := Ω

(
p(k)
)
. Next, suppose v,w ∈W= Ck(Rd,Rd)

are sufficiently smooth vector (Lipschitz continuous) fields,
whereW denotes the Banach subspace. Then, the shape deriv-
ative dψ of the functionalψ (Ω) evaluated atΩ(k) is introduced
in a weak sense [58]〈

dψ
(
Ω(k)

)
,v ·n

〉
= lim

τ→0+

ψ
[
T v
τ

(
Ω(k)

)]
−ψ

(
Ω(k)

)
τ

, (22)

for all v ∈W, where T v
τ (Ω) represents the transformed domain

that is obtained by perturbing the original domain Ω with a
certain distance τ in the direction of the vector field v and n is
the unit outward normal toΩ. Similarly, we can define a shape
Hessian of ψ calculated at p(k); see, for example, [63, 64]

7
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⟨
d2ψ

(
Ω(k)

)
,v⊗ (w · n)

⟩
= lim

τ→0+

dψ
[
Tw

τ

(
Ω(k)

)
,v
]
− dψ

(
Ω(k),v

)
τ

, (23)

for all v,w ∈W.
Then, for all parametric shapes Ω(p) = Ω(p0 + δp) ∈Π

and θ ∈ (0,1), the following expansion holds

ψ
[
Ω
(
p(k)
)]

−ψ
[
Ω
(
p(k)0

)]
=
〈
dψ
[
Ω
(
p(k)0

)]
,v
〉

+
1
2

〈
d2ψ

[
Ω(p0 + θp)(k)

]
,

v⊗ (v ·n)
〉
. (24)

Finally, considering (24), we can propose the estimation of the
upper bound of the worst-case uncertainty introduced in (19)
for the fixed quadrature node p(k)

∆F⩽ sup
δp∈Π

∣∣∣〈dψ(k) (p0) , δp
〉∣∣∣

+
1
2
sup
δp∈Π

sup
δθ∈(0,1)

∣∣∣〈d2ψ(k) (p0 + θp) , δp, δp
〉∣∣∣. (25)

Next, we can use the shape and material derivative to find
the variations of the merit functions caused by the LF radiation
and hydrostatic pressure in the continuous framework for the
stochastic coupled E-S-H problem in the steady state.

3.3. Material derivative concept

Here, we employ the material derivative concept from con-
tinuum mechanics to represent the deformation process as the
mapping within the time interval τ ⩾ 0 defined as

Tτ : Ω⊂ Rd 7→ Ωτ ⊂ Rd,

where Ω⊂ D and Ωτ ⊂ D denote the (fixed) domain and
the perturbed domain, respectively. Furthermore, in the case
of sufficiently small τ , let Ωτ ≡ Tτ (Ω, τ) be the image of
the fixed domain Ω, which implies xτ ≡ Tτ (x, τ), x ∈ Ω. For
example, when the first-order shape derivative is considered,
we get

Tτ (x) = x+ τv(x) , (26)

with v ∈ [C1(R)d]d and v= 0 on ∂D. Next, for h ∈ [H1(Ω)]d

and hτ ∈ [H1(Ωτ )]
d define the composition hτ = hτ ◦Tτ .

Then, if the pointwise material derivative ḣ exists at x ∈ Ω,
it is defined as

ḣ(x)≡ d
dτ

hτ (x+ τv(x))
∣∣∣
τ=0

= h ′ (x)+ v(x) ·∇h(x) ,

(27)

assuming that u τ (x) has a regular extension to a neighborhood
of Ωτ . Here, h

′ is the partial derivative and v(x) ·∇h(x) =
vj[∂hi/∂xj], as in [58]. In fact, ḣ defined this way only makes
sense for a strong formulation. On contrast, the weak solutions
require its consideration in the Sobolev norm sense [59].

Furthermore, denote by DTτ = Id+ τ∇v(x) the Jacobian
of (26) and by Iτ := det(DTτ ) its determinant, where Id= [δij]
and ∇v(x) denote the identity and Jacobian matrix. Other
basic material derivative formulas can be found, for example,
in [60, 65, 66]. Next, consider the domain-dependent func-
tional as follows

J1 (Ωτ ) =

ˆ
Ωτ

ft (xτ ) dxτ ,

with a regular function f τ defined in Ωτ . Then, based on (27)
and the definition of Iτ , the material derivative of J1(Ωτ ) can
be derived [58] using first the transformation of the integral
domain Ωτ to Ω and next the divergence theorem:

dJ1 =
d
dτ

ˆ
Ωt

ft (x)dx
∣∣∣
t=0

=
d
dτ

ˆ
Ω

fτ (x+ τv (x)) It dx
∣∣∣
τ=0

(28)

=

ˆ
Ω

[
f ′ (x)+∇f(x)⊤ v(x)+ f(x)∇· v(x)

]
dx

=

ˆ
Ω

f ′ (x) dx+
ˆ
∂Ω

f(x)vn dx. (29)

Here, vn = v ·n denotes the normal component of the velocity
field on the boundary ∂Ω.

Likewise, thematerial derivative of the boundary functional

J2 (Γτ ) =

ˆ
Γτ

g(xτ ) dxτ

is expressed as

dJ2 =

ˆ
Γ

[g ′ (x)+ (∇gτn+κg(x)vn)]dx, (30)

with κ=∇· n under assumption that gτ is a regular function
defined on Γτ and the mapping v 7→ ġ is linear and continu-
ous [59].

4. Shape sensitivity analysis for stochastic E-S-H
problem

In this section, we aim at quantifying the influence of themulti-
physics shape deformation caused by the LF radiation pressure
on QPR operations. Thus, we employ the material and shape
derivative to characterize uncertainty on suitable merit func-
tions in the worst-case average sense of functional outputs.

4.1. Continuous shape derivative for the SMEVP

Without loss of generality, let us consider the robust formula-
tion of merit functions (20) as the weighted sum of (15), that
is,

𝟋r (fi) = ηE(fi)+ (1− η)
√

Var(fi ), i = 1, . . . ,N, (31)

which enables equivalently the study of the hydrostatic and
LF radiation pressure impact in the L2-norm with respect to

8
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the ellipsoidal uncertainty set [67]. Here, fi =
(
f(1)i , . . . , f(K)i

)
is the collection of the merit functions evaluated at quadrature
nodes while η= 1 permits to retrieve the expectation form as
the performance measure.

Furthermore, suppose the expectation/robust function
𝟋r (fi) is well-defined, finite-valued, continuous, and con-
vex. Then, it is subdifferentiable, which results in commuting
the differential with the expectation operator [29]. This yields
the weighted shape derivative in the form [68]

d𝟋r (fi) =
K∑
k=1

αk,idFi
[
Ω
(
p(k)
)]
, (32)

where dFi
[
Ω
(
p(k)
)]

denotes a shape derivative with coeffi-
cients

αk,i = ηwk+(1− η)wk
f (k)i −E(fi)√

Var(fi)
, (33)

with quadrature weights denoted by w as in formulas (15).
In the following, we use (u,v)L2(Γ)⊗L2(Y) = E [〈u,v〉Y] to

indicate the physical domain Y, which might be a bit ambigu-
ous. Then, following [69, 70], we define the Lagrangians that
augment the self-adjoint function (20a) and others (20b)–
(20g) by inner products

(
·, ·
)
Vρ

of (ζτ ,φτ ) ∈ R×Vρ with the
stochastic MEVP (10a), the normalization and the Neumann
boundary condition

L0 (hτ ,λτ ,φτ , ζτ ) =−E [f0τ ]

+E
[〈
ϵ−1
r ∇× hτ ,∇×φτ

〉
Ωτ

]
−E

[
λ 〈µrhτ ,φτ 〉Ωτ

]
+E

[
ζτ
2

(
〈µrhτ ,hτ 〉Ωτ

− 1
)]

+E
[〈
ϵ−1
r n×hτ ,n×φτ

〉
∂Ωτ

]
, (34)

and

L2 (hτ ,λτ ,φτ , ζτ ) =−1
2
E
[
〈χ1fiτ , fiτ 〉γ

]
+E

[〈
ϵ−1
r ∇× hτ ,∇×φτ

〉
Ωτ

]
−E

[
λτ 〈µrhτ ,φτ 〉Ωτ

]
+E

[
ζτ
2

(
〈µrhτ ,hτ 〉Ωτ

− 1
)]

+E
[〈
ϵ−1
r n×hτ ,n×φτ

〉
∂Ωτ

]
, (35)

for i = 1, . . . , I, I= 5 to indicate any functional in the range
of {f1, . . . , fI} from (20b)–(20f ). Here, χ10 is a characteristic
function, defined as a positive and constant value on ∂Ω,
and zero otherwise. The existence of Lagrange multipliers for
deterministic/stochastic optimal control problems via shape
derivatives is proved, e.g. in [71, 72].

10 If the functional is defined as a pointwise quantity, then ⟨χ1fiτ , fiτ ⟩γ shall
involve a Dirac function [58].

Then, to find stationary points of the Lagrangians and,
finally, a shape derivative of functionals, we consider vari-
ations ofL0 andL2 with respect to adjoint and state eigenpairs
by using the material derivative given by (28) and (30). This
leads to

dJ0 [f0 (p)] =
K∑
k=1

αk,0dF
(k)
i (p) (36a)

with

dF(k)
i =

〈
ϵ−1
r ∇× u(k),∇×φ(k) v(k)n

〉
γ

−λ
〈
µru(k),φ(k) v(k)n

〉
γ

(36b)

where the coefficients ak,i are defined by (33). For η= 1, a
multi-dimensional quadrature rule can be replaced by E [·].
Note that the calculation of dJ0[f0(p)] does not require solv-
ing the dual problem since the eigenvalue is a self-adjoint
quantity [69].

In the case of other functionals, first, we have to formulate
the dual problem, which in the weak sense is defined as: For
ϕ ∈ Vρ find (ζ,φ) ∈ R×Vρ

E
[〈
ϵ−1
r ∇×φ,∇×ϕ

〉
−λ〈µrφ,ϕ〉+ ζ 〈h,µrϕ〉

]
=−E

[〈
ϵ−1
r n×φ,n×ϕ

〉
γ

]
+

K∑
k=1

〈
χαk,iDh,∇× h f(k)i ,ϕ

〉
γ
, (37a)

with Dhf1 ≡ ∂f1/∂h, λ ′ = 1 and D∇×hf1 ≡ ∂f1/∂(∇× h) for
i = 1, . . . , I, with the orthogonality condition given by

E [〈µrh,φ〉] = 0. (37b)

Since variations of the Langragian (35) with respect to eigen-
frequency λ have been taken into account.

Finally, we conclude that the shape derivative for other
functionals from (20b)–(20f ) is given by

dJi [fi (p)] =
K∑
k=1

αk,0dF
(k)
i (p) , (38a)

where

dF(k)
i (p) =

〈
ϵ−1
r ∇× u(k),∇×φ(k) v(k)n

〉
γ

−λ
〈
µru(k),φ(k) v(k)n

〉
γ

+
ζ

2

〈
µru(k),u(k) v(k)n

〉
γ

−
〈
χ1f

(k)
i , f(k)i κv(k)n

〉
γ

+
〈
ϵ−1
r n×u(k),

(
n×φ(k)

)
κv(k)n

〉
γ
. (38b)

Again, for η= 1, we can recover the expectation measure.
The derivation details are given in appendix.
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In conclusion, we want to point out that shape derivatives
defined by (34) and (35) require either the generation of a velo-
city field or expressing their form as boundary functionals. In
principle, there are various approaches to automatically com-
pute v, each with its pros and cons; see, e.g. [73–75]. However,
we aim to explicitly find the relation between variations of
the merit functions and changes of the QPR shape due to the
LF radiation pressure as in (10a)–(10d). Therefore, inspired
by [15], we explicitly associate the velocity field with the dis-
placement v(k) = g(u(k)) provided by the stochastic EVP (10b)
solution11.

5. Numerical experiments and discussion

The algorithm developed for estimating variations of function-
als due to deformations caused by the static LF detuning, as
well as atmospheric and helium pressure, has been verified
using two test cases, which include an academic benchmark
and the design of the QPR under uncertainties.

5.1. Analytical and numerical academic benchmark

As a test case #1, we consider a circular pill-box cavity with
PEC boundary and with thin beryllium foils inside as in [76],
displayed in figure 5. This example may also be relevant to
the QPR design due to the availability of analytical formu-
las for electromagnetic fields and stresses produced by various
sources of pressure or temperature fluctuations [77–79]. The
analysis aims to verify the sensitivity formula thanks to exist-
ing analytically derived solutions and the fact that geometric
uncertainties can be easily included. In addition, we intend
to study the effect of the applied quadrature on the resulting
solutions. Specifically, the fundamental transverse magnetic
mode TM010 is of particular interest in accelerator physics
since it provides a maximum electric field along the particles’
trajectory in the center of the structure. For this mode, the elec-
tromagnetic field components are defined as [78]

ez (r, t) = e0J0 (kr)eiωt, (39a)

hϕ (r, t) = i
√

ϵ0
µ0
E0 (kr)eiωt, (39b)

with the zth component of the electric field strength denoted
by ez(r, t) and the operational frequency of the TM010 mode of
the pill-box cavity given by

f010 =
1

2π
√
ϵ0µ0

k010, (39c)

where the wave number k010 = (ω/c) = (p01/a) = 2.405/a,
with the mth root of zero-order Bessel function J0 denoted by
p0m and a the inner radius of the cavity. Here, e0 is the max-
imum attainable electric field.

11 In the same way, the HVP can be considered. However, in our analysis, the
effect of thermal expansion is neglected. Instead, we export the Joule losses
to solve the stochastic HVP (10c) for the T distribution in the flange.

Figure 5. Model of a pill-box cavity with a beryllium window.

Furthermore, the average power loss over one RF period is
given by [76]

P(r) =
µ0ω

2γ

ˆ r

0
hthtdr, (40)

assuming that only the TM010 mode has been excited, which
depends only on r due to the circular symmetry. Here, ht is
the tangential component of the magnetic field with the com-
plex conjugate operator denoted by h. Then, the temperature
distribution in the cylindrical model can be expressed as

dT(r)
dr

=
1
κa

[
1
r
µ0ω

2γ

ˆ r

0
hthtdr

]
, (41)

where κ denotes the coefficient of thermal conductivity.
Moreover, considering the thin-walled cylinder (a/(b−

a)⩽ 10), we can find the stress components due to the uni-
form internal pLF and external pressure p0 [80]

σr =
a2b2(p0−pLF)
(b2−a2)r2 + pLF a

2−p0b
2

b2−a2 , (42)

σθ = − a2b2(p0−pLF)
(b2−a2)r2 + pLF a

2−p0b
2

b2−a2 . (43)

Then, the radial displacement is simply given by

ur =
r
E
(σθ − ησr) , (44)

with the Young’s modulus denoted by E. Likewise, dis-
placements due to the heating of the pill-box cavity can be
found [77]. Thus, our benchmark considers the expectation
of frequency shift, and average power loss as the quantities
of interest. Analogously, the maximum temperature can be
analyzed.

Since a cylindrical resonator with PEC boundary represents
a simple BVP, the analytical solutions are available to the fre-
quency of TM010 mode (39c) and the power losses in the beryl-
lium foils (40) when using (39b). Therefore, the first/second
shape derivative can be straightforwardly expressed as the
partial derivatives. Then, the shape variation (44) due to the

10
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stresses caused by hydrostatic and LF radiation pressure (42)–
(43) and those resulting from geometric uncertainties can be
easily involved. Finally, the worst-case upper bound for each
quadrature node and then ∆E[ψ] (in L∞) can be quantified
using (25), while an ellipsoidal uncertainty set (in L2) can
be approximated by variance (15a) or (16) for a perturbed
shape or provided by the first order shape derivative frame-
work, respectively. In the second case, we can calculate a (first
order) shape derivative using (36a) or (38), which allows us to
find the resulting variations of performance functionals.

For UQ analysis, we have considered three normally
distributed random variables p(ξ) such as the inner radius
of the pillbox cavity p1(ξ1) = µ̃1(a)+ σ̃1(a), the ambi-
ent pressure p2(ξ1) = µ̃2(p0)+ σ̃2(p0), and the LF radi-
ation pressure p3(ξ1) = µ̃3(pLF)+ σ̃3(pLF) with µ̃(p) =
(0.1426 [m],E[σLF(h)],1.6 [mbar]) and σ̃i(pi) = δi · µ̃i(pi),
where the magnitude of perturbation is specified as δi =
0.01, i = 1,2,3 for all the random variables. Furthermore,
we employ Hermite polynomials as the basis functions (11) in
the PC-SCM, since they form the optimal basis correspond-
ing to Gaussian distribution [50]. Next, to study the influence
of the quadrature rule on the resulting approximation of the
quantities of interest (13), we have applied the GH quadrature
rule and compared the obtained results with those provided
by Stroud formulas [56, 57, 81]. More specifically, we have
considered Stroud’s formulas with the following cubature
degree: K(Q) = Q2 +Q+ 2 (Stroud-5), K= 2 ·Q (Stroud-3),
K(Q) = Q+ 1 (Stroud-2). The results are listed in tables 1 and
2, respectively.

Finally, it can be summarized that the Stroud-3 cubature
rule with relatively low algorithmic complexity but the fixed
accuracy (K= 6) compared to the complexity of the GH quad-
rature rule (K(Q)≈ Q3,K= 27) provides accurate enough res-
ults for estimating the functional variations due to the shape
deviation.

5.2. Multiphysics QPR model

In this example, we analyze the physical model of the QPR
shown in figure 1 with the geometric design parameters lis-
ted in Table 3. It is described by a set of PDEs with suitable
boundary conditions specified by (10a)–(10d). TheQPR’s per-
formance is very sensitive to mechanical disturbances due to
its design consisting of a cylindrical cavity with long rods
attached solely to the top of the top cover. Thus, microphon-
ics and LF detuning are critical issues for the operation of the
QPR since, according to Slater’s theorem, the deformed cavity
shape detunes the resonance frequency of a cavity. To be more
specific, the influence of air and static LF radiation pressure is
estimated based on measurements as

∂f
∂p

= 2.6 (kHzmbar−1),
∂f
∂B

= 0.96 (HzmT−2),

with B= |µh |. These values are about three orders of mag-
nitude above typical values for elliptical cavities [3]. In order
to assess the contribution of each sensitivity to explaining the
total frequency variation, however, the Taylor-based global

Table 1. Means and f 010 upper bounds in Ω0(p) and Ω∗(p) pill-box
modela.

Quantity of interest F(Ω0) F(Ω∗) δ[%]

Analytical solution

GH quadrature, K= 27
E[f010] (frequency) [MHz] 805.08 794.77 1.280 ↓
∆E[f010] [MHz] in L2 8.053 8.072 0.238 ↑
∆E[f010] [MHz] in L∞ 11.736 11.76 1.93 ↑

Stroud-5 cubature, K= 14
E[f010] (frequency) [MHz] 805.08 794.77 1.280 ↓
∆E[f010] [MHz] in L2 8.053 8.072 0.238 ↑
∆E[f010] [MHz] in L∞ 10.818 11.128 4.78 ↑

Stroud-3 cubature, K= 6
E[f010] (frequency) [MHz] 805.08 794.77 1.280 ↓
∆E[f010] [MHz] in L2 8.053 8.072 0.238 ↑
∆E[f010] [MHz] in L∞ 10.709 10.748 1.93 ↑

Stroud-2 cubature, K= 4
E[f010] (frequency) [MHz] 805.08 794.77 1.280 ↓
∆E[f010] [MHz] in L2 8.051 8.070 0.24 ↑
∆E[f010] [MHz] in L∞ 10.876 10.831 1.06 ↑

First-order shape
derivative

GH quadrature,K= 27
E[f010] (frequency) [MHz] 805.08 794.63 1.298 ↓
∆E[f010] [MHz] in L2 8.053 8.068 0.186 ↑
∆E[f010] [MHz] in L∞ 11.736 11.94 1.7479 ↑

Stroud-5 cubature, K= 14
E[f010] (frequency) [MHz] 805.08 794.633 1.298 ↓
∆E[f010] [MHz] in L2 8.053 8.068 0.1865 ↑
∆E[f010] [MHz] in L∞ 10.818 11.28 4.2322 ↑

Stroud-3 cubature, K= 6
E[f010] (frequency) [MHz] 805.08 794.63 1.298 ↓
∆E[f010] [MHz] in L2 8.053 8.068 0.1862 ↑
∆E[f010] [MHz] in L∞ 10.709 10.896 1.7477 ↑

Stroud-2 cubature, K= 4
E[f010] (frequency) [MHz] 805.08 794.63 1.298 ↓
∆E[f010] [MHz] in L2 8.053 8.068 0.1866 ↑
∆E[f010] [MHz] in L∞ 10.876 10.982 0.9771 ↑
a ∆E[f(Ω0)] in L∞ is approximated using df and d2f for analytical solution.
a∆E[f(Ω∗)] in L2 is approximated using df for first-order shape derivative.

sensitivity analysis has to be explored [21]

Var [fi (p)] :=
J∑

j=1

(
∂fi (p)
∂pj

)2

σ2
j , (45a)

with the normalized sensitivity coefficients given by

ηi =
Var [fi (p)]∑
iVar [fi (p)]

∈ 〈0,1〉 . (45b)

As in the case of variance-based sensitivity analysis (18),
a large contribution to the frequency variance is if ηi ≈ 1

11
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Table 2. Means and P upper bounds in Ω0(p) and Ω∗(p) pill-box
modelb.

Quantity of interest F(Ω0) F(Ω∗) δ[%]

Analytical solution

GH quadrature, K= 27
E[P(r)] (power loss) [W] 121.152 124.319 2.610 ↑
∆E[P(r)] [W] in L2 2.4229 2.5245 4.1941 ↑
∆E[P(r)] [W] in L∞ 3.7575 3.7612 0.8610 ↑

Stroud-5 cubature, K= 14
E[P(r)] (power loss) [W] 121.152 124.319 2.610 ↑
∆E[P(r)] [W] in L2 2.4229 2.5245 4.1941 ↑
∆E[P(r)] [W] in L∞ 3.7428 3.7843 1.85 ↑

Stroud-3 cubature, K= 6
E[P(r)] (power loss) [W] 121.152 124.319 2.610 ↑
∆E[P(r)] [W] in L2 2.4229 2.5245 4.1934 ↑
∆E[P(r)] [W] in L∞ 3.4287 3.4343 0.8590 ↑

Stroud-2 cubature, K= 4
E[P(r)] (power loss) [W] 121.152 124.319 2.610 ↑
∆E[P(r)] [W] in L2 2.4228 2.5243 4.1886 ↑
∆E[P(r)] [W] in L∞ 3.3910 3.3843 0.4980 ↑

First-order shape
derivative

GH quadrature, K= 27
E[P(r)]] (power loss) [W] 121.152 124.298 2.5962 ↑
∆E[P(r)]] [W] in L2 2.4229 2.5215 4.07 ↑
∆E[P(r)]] [W] in L∞ 3.7575 3.7856 0.7489 ↑

Stroud-5 cubature, K= 14
E[P(r)] (power loss) [W] 121.152 124.298 2.5962 ↑
∆E[P(r)] [W] in L2 2.4229 2.5215 4.070 ↑
∆E[P(r)] [W] in L∞ 3.7428 3.8030 1.6079 ↑

Stroud-3 cubature, K= 6
E[P(r)] (power loss) [W] 121.152 124.298 2.5962 ↑
∆E[P(r)] [W] in L2 2.4229 2.5215 4.069 ↑
∆E[P(r)] [W] in L∞ 3.4287 3.4544 0.7484 ↑
Stroud-2 cubature, K= 4

E[P(r)] (power loss) [W] 121.152 124.298 2.5962 ↑
∆E[P(r)] [W] in L2 2.4228 2.5213 4.065 ↑
∆E[P(r)] [W] in L∞ 3.3910 3.4057 0.4327 ↑
b ∆E[P(Ω0)] in L∞ is approximated using df and d2f for analytical solution.
b∆E[P(Ω∗)] in L2 is approximated using df for first-order shape derivative.

holds. Otherwise, if ηi ≈ 0, there exists only a small contri-
bution, which is negligible. Typically, during the RS measure-
ments, the range of the peak magnetic field is assumed to be
B0 = (10, . . . ,120) [mT] with σB = (0.096 . . . ,0.11) ·B0 [mT]
and the ambient pressure of p0 = 1.6 [mbar] with σp = 0.05 ·
p0 [mbar], see, e.g. [8, 12]. Thus, depending on the scenario,
the contribution of the static LF and air pressure to explain-
ing the frequency variation when using (45a)–(45a) can vary
between

ηLF = (0.03,30.64,87,6) [%] , ηp = (99.97,69.36,12,40) [%]

for B0 = (10,60,120)[mT]. Analogous results can be obtained
for the simulation of the pressure fluctuations during the com-
missioning of the QPR. An exhaustive analysis of the static
LF detuning for the QPR operation is given in [8]. Besides
the static LF and microphonics, the dynamic LF detuning
is also very prominent. In fact, under certain conditions of
the dynamic LF or cavity deformation, mechanical oscilla-
tions can be triggered, which could lead to the simultaneous
excitation of a dipole mode due to the breaking of the res-
onator’s quadrupole symmetry [3, 6, 12]. Thus, to reflect the
importance of both critical factors, especially the influence of
dynamic LF detuning, in the steady-state stochastic coupled
E-S-H model, we introduced:

– The scaling coefficient ι=
maxx∈ΩR |uAP|
maxx∈ΩR |uLF|

≈ 10 for all the ana-
lyzedQPR’s configurations, which permits statically to sim-
ulate the impact of both the ambient and (static/dynamic)
LF radiation pressure into merit functions variations, which
can mathematically be justified by the Cauchy–Schwarz
inequality [82],

– The value of bent angles are assumed to be α= 0.15 [deg],
which corresponds to the deviation of the rods in x and
y directions by [1mm], since the simulation of the break-
ing of the quadrupole symmetry allows for quantifying the
observed measurement bias of the surface resistance for the
third quadrupole mode [11, 18].

The deterministic material parameters used in the coupled
simulations are summarized in table 4. Whereby, the Lamé
coefficients of the materials can be calculated using

v=
E

2(1+ υ)
, η =

Eυ
(1+ υ)(1− 2υ)

.

For the solution of the deterministic E-S-H problem, we have
to simulate a full model of the QPR using tetrahedral finite
elements within the range of 1 million for the MEVP and
around 0.5million in the case of the EVP and theHVP, respect-
ively, using CST Studio Suite®. We used the built-in adapt-
ive mesh refinement method to meet a tolerance of less than
δn = 1 · 10−6 in the computation of the quantities of interests.

Furthermore, we have considered the homogenized PC
expansion with the Hermite polynomial bases for the UQ stud-
ies since the geometrical variations are modeled by Gaussian
distribution. Correspondingly, the magnitude of the perturba-
tion δq regarding the production imperfections has been selec-
ted such that σq = δq · pq[mm] for q= 1 . . . ,8. In the case of
parameters related to the bent angles p9/10, the variation has
been assumed to be around 0.15 [deg]. For better readabil-
ity, means and standard deviations of Gaussian design para-
meters are listed in table 3, while other deterministic mater-
ial parameters used for solving the stochastic coupled E-S-
H problem are summarized in table 4. The example results
of the stress analysis of the HZB-QPR due to the static LF
and the pressure of 1 bar when considering the mean geo-
metrical and material parameters are depicted in figure 6 and
7, respectively. Specifically, the aforementioned figures illus-
trate the particular components of the displacement vector

12
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Table 3. Means pq and std. dev. σq of uncertain geometric parameters for QPR configurations.

Parameter name ΩHZB(p) [3] ΩCERN(p) [19] ΩSol.A(p) [6] Ω(σ) [3, 6]

p1 (gap) (mm) 0.50 0.70 0.58 0.05
p2 (rrods) (mm) 13.00 15.00 9.76 0.05
p3 (hloop) (mm) 10.00 10.00 9.72 0.05
p4 (rloop) (mm) 5.00 8.00 5.92 0.05
p5 (wloop) (mm) 44.00 40.93 43.79 0.05
p6 (dloop) (mm) 6.00 5.00 4.00 0.05
p7 (rcoil) (mm) 22.408 23.00 25.00 0.15
p8 (rsample) (mm) 37.50 37.50 35.00 0.15

p9 (angleBentRight) (deg) 0.0 0.0 0.0 0.15
p10 (angleBentLeft) (deg) 0.0 0.0 0.0 0.15

Table 4. Structural and thermal properties of materials used in simulations [83].

Material Nb Fe1010 Cu

Density ρ (kg m−3) 5700 7870 8930
Poisson’s ratio υ[1/1] 0.38 0.29 0.33
Young’s modulus
E (GPa)

62.1 205 120

Th. conduct.
κWK−1m)

0.1 65.2 401

Specific heat
Cv J−1K−1 kg−1

0.89 450 390

Electr. conduct.
γ MSm−1

8.1013 6.993 59.6

Figure 6. The components of the displacement u due to static LF radiation pressure with max u at the bottom of the pole shoes.

resulting from two distinct types of pressure, which were
considered in the simulation. It is evident that the deform-
ation of the rods and pole shoes due to the static LF radi-
ation pressure is less pronounced than that resulting from the
hydrostatic pressure. Nevertheless, as Slater’s theorem indic-
ates, even static detuning may result in a frequency shift,
given the QPR’s high susceptibility to mechanical perturba-
tions. The aforementioned effect, in addition to the dynamic

LF and microphonics impact, can be observed in figure 4.
Furthermore, the presented sensitivity analysis using (45a)
serves to confirm this result. Moreover, as the sample tem-
perature is dependent on a number of factors, including the
applied RF field and the selected geometries and materials,
the simulated temperature distribution due to power dissipa-
tion on stainless steel in the vicinity of the simplified flange
is presented in figure 8. To conduct the UQ-based worst-case
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Figure 7. The components of the displacement u due to a vacuum pressure of 1 [bar] with max u at the bottom of the pole shoes.

Figure 8. Simulated temperature distribution due to the power dissipation on the stainless steel flanges in the calorimetric chamber of the
QPR.

expectation deformation analysis, we have used the procedure
described in section 4, the flow of which has been described
in pseudo-code and shown as Algorithm 112 for clarity. The
effect of atmospheric pressure and scaled LF radiation pres-
sure by a factor of ι= 10, along with UQ analysis of the quad-
rupole symmetry breaking of the resonator, has been taken into
account, resulting in the average maximal deformation in the
range of max[|(uAP + ι ·uLF)/2|]. In essence, this approach is
aligned with [11, 18] and allows us to reflect the impact of the
LF detuning and hydrostatic pressure reported in [3, 8, 12].

The results of the deformation analysis with estimated per-
formance objective variations due to the atmospheric and LF
radiation pressure are summarized in Table 5. The configura-
tions of the HZB-, CERN and Sol. A-types of QPR, optimized
in [6], are analyzed in terms of design variations. Regarding
the first three merit functions F1(Ω

∗),F2(Ω
∗), and F3(Ω

∗),
which were of key importance to achieve an improved design
of the QPR, we can conclude that shape variations have the
least impact on the Sol. A configuration. It is particularly evid-
ent in the increased value of the dimensionless factor F3(Ω

∗),
which quantifies the penetration of the magnetic field into the
coaxial gap. This effect is also confirmed by the smallest tem-
perature deviations (see F6(Ω

∗)). As for the next two merit

12 In the case of the used Stroud-3 formula, the complexity of the developed
algorithm is slightly improved by a factor of 2 · (I− 1) compared to the stand-
ard algorithm [23], and it equalsK, whereK= 2 ·Q and I refers to the number
of objective functions.

Algorithm 1. UQ-based worst-case-expectation analysis.

1: Initialization :
2: Π= (p1, . . . ,pQ), ρ(p), PCtype,PCorder, w,p(k),
3: ▷ (11), PCE param. & gener. weights & points
4: for k= 1 . . . ,K do ▷ Quadrature points loop
5: solve MVP(p(k)), (10a) ▷ for eigenpairs E & f
6: solve EVP(p(k)), (10b) ▷ with (10d) for u & σ

7: solve HVP(p(k)), (10c) ▷ for T in deformed D
8: for i= {1, . . . ,N} do ▷ discrete projection loop
9: αi← ⟨yn(p),Φi(p)⟩ ▷ scalar product
10: for q= {1, . . . ,Q} do ▷ worst-case shape deformation
11: ỹn← ỹn+

∂yn
∂pq
·Sq,n ·max[|uq|] ▷ upper bound

12: Post-processing :
13: for i= {1, . . . ,N} do ▷ discrete projection loop for ỹn
14: α̃i← ⟨ỹn(p),Φi(p)⟩ ▷ scalar product for updated ỹn
15: eval. E [ỹn (p)] ,Var [ỹn (p)] ▷ statistical moments
16: for q= 1 . . . ,Q do

17: eval. E
[

∂ỹn
∂pq

]
,Sq ▷ local & global sensitivity

functions F4(Ω
∗) and F5(Ω

∗), which are related to the ratio of
the magnetic and electric peak values, the influence of shape
variations caused by hydrostatic fluctuations and LF detuning
is also the smallest. In addition, the performed estimation
of merit function variations achieves the smallest uncertainty
quantified by the mean worst-case upper bound error for the
Sol. A configuration. Although the uncertainties in the mean
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Figure 9. The frequency distribution in the studied QPR designs,
including the deformation due to the scaled static LF.

Figure 10. The maximum temperature distribution in the studied
QPR designs, including the deformation due to the scaled static LF.

worst-case scenarios and the standard deviations cannot be dir-
ectly compared, it can be observed that the former is about
two times smaller than the ellipsoidal uncertainty set (stand-
ard deviations). Finally, the results of the worst-case deforma-
tion analysis can be compared qualitatively by examining the
probabilistic density functions calculated before and after the
design deformations, shown in figures 9–12, respectively.

6. Conclusion

To mitigate the influence of re-meshing errors in FEA on the
estimation of merit function variations due to relatively small
shape deviations, we have successfully developed an efficient
tool to evaluate QPR designs under simulated harsh operat-
ing conditions. The developed coupled QPR model is a key
of importance since the LF detuning might lead to the excita-
tion of a dipole mode instead of a quadrupole mode [11]. Also,
the hydrostatic fluctuation could have a significant impact on

Figure 11. The distribution of the homogeneity factor in the studied
QPR designs, including the deformation due to the scaled static LF.

Figure 12. The distribution of the ratio of the maximum magnetic
field vs. the maximum electric field in the studied QPR designs,
including the deformation due to the scaled static LF.

the measurement procedures [8, 12]. The proposed procedure
is based on the shape derivative framework combined with the
UQ analysis. It enables finding not only the frequency shift due
to the shape deviations as in the Slater formula [84], but also
to employ user-defined merit function variations under geo-
metric uncertainties, which broadens the CST Studio Suite®
functionality in this respect.

The developed coupled E-S-H model is robust and yet
adequately reflects the physical phenomena in a worst-case
sense. On the one hand, it can be used to compare the exist-
ing QPR configurations to quantitatively explain the revealed
biased surface resistance for the third operating mode. On the
other hand, it is suitable forMO optimization since it takes into
account the LF detuning and the influence of industrial imper-
fections. Its further application to design optimization under
E-S-H coupling is considered to be the subject of the ongoing
work.
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The developed methodology can be successfully applied
to the deformation analysis and optimization of various
devices in accelerator physics, such as multi-cell cavities and
couplers [1, 15, 23]. This includes consideration of different
merit functions, such as those related to higher-order modes.
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Appendix. Shape derivatives

This section details the derivation of the shape sensitivity for
the stochastic MEVP of (10a). We distinguish between self-
adjoint operators like eigenfrequency, λ= 1.3 [GHz], and oth-
ers, which result in formulae (36a) and (38), respectively. In
both cases, the starting points are the Lagrangians defined
by (34) and (35), similar to optimal control problems con-
strained by stochastic PDE’s [45, 85].

Typically, finding the shape derivative for a nonlinear PDE
requires the analysis of the convergence of wτ = (uτ − u)/τ
to the material derivative ẇ of (27) in the weak or the strong
sense [60, 65, 66]. However, for a problem described by (34)
and (35) with constant material coefficients ϵ and µ, follow-
ing the procedure proposed in [58], we can directly use (28)
and (30) to find the stationarity of the Lagrangians, thus
providing the optimality conditions.

Due to physics principles, the eigenpair of the third opera-
tional QPRmode is assumed to be simple and therefore shape-
differentiable [58, 61]. Next, suppose the material derivat-
ive and the expectation operator commute with each other
under some regularity assumptions [71]. Then, by applying
the material derivative from (28) and using the commutat-
ive property of partial derivatives with respect to τ and x
for L0(hτ ,λτ ,φτ , ζτ ) yields its variation with respect to the
design

[L0 ( ·) ] ′ =+E
[〈
ϵ−1
r ∇× h,∇×φ ′〉

Ω

]
+E

[〈
ϵ−1∇× h ′,∇×φ

〉
Ω

]
+E [λ〈µrh,φ ′〉Ω]
−E

[
λ
〈
µrh

′,φ
〉
Ω

]
−E

[
ζ
〈
µrh,h

′〉
Ω

]
+E

[〈
ϵ−1
r n×h,n×φ ′〉

γ

]

+E
[〈
ϵ−1
r n×h ′,n×φ

〉
γ

]
+E

[〈
ϵ−1
r ∇× h,∇× h

〉
∂Ω

]
−E [λ〈µrh,φ〉∂Ω]

+E [ζ 〈µrh,h〉∂Ω]

+E
[〈
ϵ−1
r n×h,(n×φ)κvn

〉
γ

]
−E [f ′0] +E [λ ′ 〈µrh,φ〉Ω] , (A.1)

where the null terms related to partial derivatives of the coef-
ficients have already been omitted and f ′0 = 1, λ ′ = 1, φ ′ ≡
φ̇−∇φ, h ′ ≡ ḣ−∇h. In fact, since φ̇ ∈ Vρ the integral
terms involving it in (A.1) vanish [58]. Furthermore, setting
[L0( ·) ] ′ = 0 and collecting all the integral terms related to ḣ
allows to deduct the adjoint eigenvalue problem

∇×
(
ϵ−1
r ∇×φ

)
−λµrφ+µrζh= 0 in D a.e. p ∈ Γ,

n×φ= 0 on ∂D a.e. p ∈ Γ,

n× ϵ−1
r ∇φ= 0 on ∂D a.e. p ∈ Γ,

E [〈µrφ.h〉Ω] =−E [f ′0] , (A.2)

where a.e is the abbreviation for almost everywhere.
Here, for better readability the dependence of eigen-
pair {h(x,p),λ(p)}= {h,λ} and adjoint eigenpair
{φ(x,p),λ(p)}= {φ,λ} have been suppressed. Finally, this
special structure of the adjoint problem allows us to rewrite the
solution to the shape derivative directly in the form of (36a)
by proving φ=−h, as shown in [58, 69], and then using the
normalization condition and the formula (32)–(33).

The optimality system related to L2(hτ ,λτ ,φτ , ζτ ) can be
derived in the same fashion as for L0. Here, it is assumed that

f1 (h),∇× h)
∣∣∣
∂Ω

is a scalar well-defined, finite valued, con-

tinuous, convex and differentiable function with respect to h
and∇× h. Moreover, since thematerial derivative is the direc-
tional derivative, the subdifferential and expectation operators
can be interchanged [29]. Thus, taking the material derivative
of L2 with respect to the design leads to the variation

[L2 ( ·) ] ′ =+E
[⟨
ϵ−1
r ∇× h,∇×φ ′⟩

Ω

]
+E

[⟨
ϵ−1∇× h ′,∇×φ

⟩
Ω

]
+E

[
λ
⟨
µrh,φ ′⟩

Ω

]
−E

[
λ
⟨
µrh ′,φ

⟩
Ω

]
−E

[
ζ
⟨
µrh,h ′⟩

Ω

]
+E

[⟨
ϵ−1
r n× h,n×φ ′⟩

γ

]
+E

[⟨
ϵ−1
r n× h ′,n×φ

⟩
γ

]
+E

[⟨
ϵ−1
r ∇× h,∇× h

⟩
∂Ω

]
−E

[
λ⟨µrh,φ⟩∂Ω

]
+E

[
ζ ⟨µrh,h⟩∂Ω

]
+E

[⟨
ϵ−1
r n× h,(n×φ)κvn

⟩
γ

]
−

⟨
χ1Dhf1,h ′⟩

γ
−⟨χ1f1, f1κv · n⟩γ

−
⟨
χ1D∇×hf1,∇× h ′⟩

γ
+E

[
λ ′ ⟨µrh,φ⟩Ω

]
, (A.3)

where Dhf1 ≡ ∂f1/∂h, λ ′ = 1 and D∇×hf1 ≡ ∂f1/∂(∇× h),
and φ ′ ≡ φ̇−∇φ, h ′ ≡ ḣ−∇h. Then, the weak form of the
adjoint system formulated by selecting the integral terms with
ḣ is defined by (37) with the orthogonality condition between
φ and u given by (37b). Ultimately, the shape derivative of f 2
functionals of (20b)–(20g) is expressed by (38).
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Alternatively, one can apply the methodology proposed
by [61] in deterministic settings, which leads to the same res-
ults for the frequency shift estimation.
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[34] Babuška I and Osborn J E 1989 Math. Comput. 52 275–97
[35] Arbenz P, Geus R and Adam S 2001 Phys. Rev. Spec.

Top.-Accel. 4 022001
[36] Boffi D, Brezzi F and Gastaldi L 1997 Ann. Sc. Norm. Super.

Pisa - Cl. Sci. 25 131–54
[37] Hiptmair R 2002 Acta Numer. 11 237–339
[38] Brenner S C 2008 The Mathematical Theory of Finite Element

Methods (Springer)
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