
Towards podio v1.0 - A first stable release of the EDM

toolkit

Juan Miguel Carceller1, Frank Gaede2, Gerardo Ganis1, Benedikt Hegner1, Clement

Helsens1,3, Thomas Madlener2,∗, André Sailer1, Graeme A Stewart1, and Valentin Volkl1

1CERN, Switzerland
2Deutsches Elektronen-Synchrotron, Germany
3KIT, Germany

Abstract. A performant and easy-to-use event data model (EDM) is a key com-

ponent of any HEP software stack. The podio EDM toolkit provides a user

friendly way of generating such a performant implementation in C++ from a

high level description in yaml format. Finalizing a few important developments,

we are in the final stretches for release v1.0 of podio, a stable release with back-

ward compatibility for datafiles written with podio from then on. We present an

overview of the podio basics, and go into slighty more technical detail on the

most important topics and developments. These include: schema evolution for

generated EDMs, multithreading with podio generated EDMs, the implemen-

tation of them as well as the basics of I/O. Using EDM4hep, the common and

shared EDM of the Key4hep project, we highlight a few of the smaller features

in action as well as some lessons learned during the development of EDM4hep

and podio. Finally, we show how podio has been integrated into the Gaudi based

event processing framework that is used by Key4hep, before we conclude with

a brief outlook on potential developments after v1.0.

1 Introduction

A typical high energy physics (HEP) analysis workflow comprises many steps, where each

is usually in charge of producing a specific result or of linking these results into a more

comprehensive picture of the underlying physics event. A core part of such a software stack

is the so called event data model (EDM) that enables the flow of information between the

different components and also defines the language of this communication. Crucially, it is

also the language in which users express their ideas. Defining the contents of such an EDM

is one aspect, the other one is the efficient implementation of the schema that users come up

with. The podio EDM toolkit [1–3] addresses the latter part, while EDM4hep [4, 5] defines

the common EDM of the Key4hep project [6, 7] using podio.

In these proceedings we focus on recent developments in podio towards a first stable

release, which we plan to announce in the near future after finishing the necessary develop-

ments. We will discuss these final missing pieces in the text where appropriate.

The structure of these proceedings is as follows: After a brief recap of the basics of podio

in Section 2 we describe the Frame concept and how it relates to the multithreading concept

∗e-mail: thomas.madlener@desy.de

EPJ Web of Conferences 295, 06018 (2024) https://doi.org/10.1051/epjconf/202429506018

CHEP 2023

 © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative

Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

Data persistency in podio generated EDMs is based on collections of objects. Collections

can be created from or grant access to their data in the form of CollectionBuffers. These

hold all the necessary data to (de)serialize a collection and they are comprised solely of

contiguous arrays of PODs (in array-of-struct (AoS) layout) as shown in Figure 1b. The

necessary functionality to (un)pack these buffers into the in-memory representation of the

stored objects is part of the generated EDM code. Hence, new I/O backends effectively only

need to be able to read and write contiguous arrays of memory.

3 The Frame concept and multithreading

The basic ideas of the Frame concept have already been introduced previously [5]. In short;

the Frame is a thread-safe container that aggregates all relevant EDM data of a given category

or interval of validity, e.g. an event or a run. Data stored in a Frame is accessible read-only

and the hand-over of the ownership of data is clearly expressed in the API. In order to stay

in line with the overall approach of offering value semantics in the interfaces the Frame is

implemented using type erasure. This also allows the Frame to be constructed from almost

arbitrary Frame data, which in turn decouples I/O operations entirely from Frame construc-

tion. As Frame data only have to provide access to the CollectionBuffers once queried

for them by the Frame that owns them, they are free to defer actual work, e.g. decompressing

data, as long as possible.

This potential deferral of work is in line with the general design philosophy of multi-

threading surrounding I/O of podio. The core components of podio, e.g. readers and writers

for different I/O backends, can be used to implement more sophisticated functionality in event

processing frameworks. Since these usually tackle their multithreading needs in different

ways, we have deliberately kept the readers and writers free of any internal synchronization

and we assume that they operate on their respective input and output files exclusively and in

a single threaded fashion. All potentially necessary synchronization, e.g. if a writer receives

multiple Frames from different threads or if a reader should supply Frame data to a multi-

threaded queue, has to be done externally by the framework. For more details on how this is

done for Key4hep we refer to Section 5.4.

4 Schema evolution

Schema evolution, i.e. the possibility of an EDM schema to adapt to changing requirements,

e.g. from new detector technologies or from novel reconstruction algorithms, is a crucial

feature. It is crucial for data preservation efforts and long term usability of any EDM. In order

to avoid having to solve schema evolution in all generality, we have chosen to implement the

necessary evolutions as they arise in EDMs that are generated by podio. This still leaves a

huge task to tackle, and was undoubtedly the most challenging development in podio so far.

The main considerations for schema evolution for podio were

• being able to leverage existing capabilities of the backend, e.g. ROOT,

• having schema evolution work for all backends, and

• automating the generation of the necessary evolution code, while still allowing for user

overrides if necessary.

As of the writing of these proceedings not all of these goals have yet been fully achieved.

Nevertheless, many of the necessary building blocks are in place, and schema evolution is

working for the default ROOT backend.

EPJ Web of Conferences 295, 06018 (2024) https://doi.org/10.1051/epjconf/202429506018

CHEP 2023

3

In our current design of schema evolution all the necessary evolutions are applied to the

CollectionBuffers directly, before collections are even constructed from them. Hence,

users will only ever see the latest version of the EDM in memory. The evolution of the

buffers will also always happen in one evolution step, going directly from the schema version

on file to the current schema version of the EDM.

4.1 Building blocks for schema evolution

The first step in schema evolution is to detect changes between two EDM schemas. To this

end we have implemented a tool that reads two versions of the schema in the high level

YAML format and compares them. It checks all detected evolutions against a pre-defined

list of supported evolutions. Currently, this list very closely follows the schema evolution

capabilities of ROOT. A major advantage of having this check very early in the process of

generating code is that we can inform users about a potentially unsupported schema evolution

before they are able to write data that is not backwards compatible with previously written

data.

The second step is to read back the CollectionBuffers in the schema version they have

been written. We achieve this via a central CollectionBufferFactory that is able to create

empty CollectionBuffers for all known datatypes and schema versions. It is populated

during dynamic library loading of a generated EDM and is effectively implemented as a map

of a pair of datatype name and schema version to a buffer creation function. These creation

functions as well as the necessary call to register them into the CollectionBufferFactory

are all done via automatic code generation. Since the factory is immutable during the runtime

of a program it is accessible concurrently from multiple readers that might live on several

threads.

After reading the data buffers in an old schema version the final step is to evolve these

buffers to the current schema version so that a collection can be constructed from them. We

follow a very similar approach here as we did for buffer creation by employing another central

SchemaEvolution instance that keeps track of evolution functions for all datatypes and

schema versions. The major difference with respect to the CollectionBufferFactory is

that here we allow the user to override automatically generated evolution functions if desired

or necessary.

The hooks to execute the evolution function are placed inside the Frame directly after

obtaining the CollectionBuffers from the Frame data. This is the earliest place where

CollectionBuffers for a collection are actually guaranteed to exist, and also the latest

place where we want to deal with older schema versions. It also makes it very easy for back-

ends that have builtin schema evolution to simply provide already evolved buffers in which

case the schema evolution will be a no-op. A schematic control flow with some details about

the Frame internals are shown in Figure 2. As evident from there the CollectionBuffers

also carry enough information about the collection type and the schema version to be able to

identify the correct evolution function.

4.2 Current status

As of the writing of these proceedings, schema evolution is working for the ROOT backend,

mainly because it’s the ROOT backend who does most of the heavy lifting. The only feature

which is not natively supported is the renaming of data members, for which we implemented

the necessary evolution code. For technical reasons this evolution path actually foregoes

most of the building blocks described above. It does not make use of the SchemaEvolution

function registry for example, and always requests buffers in the current schema version from

EPJ Web of Conferences 295, 06018 (2024) https://doi.org/10.1051/epjconf/202429506018

CHEP 2023

4

need to increase the size of the ObjectIDs by 50%1 to go to 64 bits. On the other hand we also

checked that there are no collisions in the collection names that are currently in use inside

the Key4hep project. We are confident that at least for the foreseeable future there should be

no collisions in the collection IDs. However, even if there are, a switch to 64 bits would be

completely backwards compatible.

5.2 Persistency of the datamodel definition

Although podio now provides a schema evolution mechanism, sometimes it might be useful

or necessary to read the data of a file back with the original schema version, or to simply

compile an EDM library to read the data back in the first place. In order to make it possible

to retrieve the original version of the datamodel definition in YAML format we have started to

embed it into the shared EDM library itself, but also to store it as meta data into all data files

that are written by podio. In both cases the datamodel definition is converted into the JSON

format as that allows for a more compact string representation. This string is embedded as a

raw string literal into the shared EDM library, which can be retrieved with various tools that

allow one to read binary files, e.g. via readelf. For the retrieval of the datamodel definition

from datafiles we have integrated the necessary functionality into the podio-dump utility.

5.3 Adding an RNTuple I/O backend

RNTuple is the designated successor of ROOTs TTree data format [8, 9] and will address

future needs for I/O in HEP. Since podio is used for future collider studies it is natural to

strive to also support this feature as an additional I/O backend. Given the nice separation

of I/O concerns and operating on the data introduced with Frame based I/O, there were no

real technical challanges to overcome from the podio side. The major issues that we faced

had to do with trying to persist data types that were not yet supported by RNTuple, e.g.

uint16_t, but these were promptly resolved by the ROOT developers, so that the RNTuple

based backend in the end just requires a slightly more recent version of ROOT. Given that the

RNTuple interface is still in experimental state, also the RNTuple backend of podio should

be considered experimental and not used for production.

5.4 Frame integration into k4FWCore

One of the core motivations for developing the Frame concept was the support of mul-

tithreaded frameworks and to facilitate the integration of podio based EDMs, specifically

EDM4hep, into the core, Gaudi [11] based, framework of Key4hep, k4FWCore [10]. Among

the core services this packages offers are the following:

• DataHandles that give access to podio based EDM collections inside an algorithm,

• a PodioDataSvc that manages the I/O of these collection as well as the creation of the

necessary DataHandles.

Both of these were previously implemented partially in terms of functionality from stan-

dalone podio and some additional custom implementions of readers and writers for podio

data files. The integration of Frame based I/O into k4FWCore also allowed us to clean up

some of the differences in implementation that have grown over time w.r.t. standalone podio.

Here we have simply replaced the custom readers and writers for podio files in k4FWCore

with the ones that standalone podio offers.

1The ObjectID consists of two 32 bit integers, a CollectionID and an ObjectIndex.

EPJ Web of Conferences 295, 06018 (2024) https://doi.org/10.1051/epjconf/202429506018

CHEP 2023

6

For users of the Gaudi based framework the Frame is not visible and is instead just used

behind the scenes to implement the DataHandles and the PodioDataSvc. For most existing

algorithms this was a completely transparent change. However, if an algorithm made use

of the PodioDataSvc directly some interface changes were unavoidable and required inter-

vention. In order to allow for a gradual migration to the new functionality we have kept the

pre-existing functionality in the PodioLegacyDataSvc. This will be deprecated and then

removed in the midterm future.

To facilitate access to file level meta data we also introduced a MetaDataHandle that

works similar to the DataHandle with the major difference being that it can only be accessed

for writing during algorithm initialization or finalization, i.e. when Gaudi is running on

a single thread. It is backed by another Frame and makes use of the standard podio I/O

functionality. The switch to the MetaDataHandle had the biggest impact on algorithms that

made use of collection parameters, e.g. encoding strings for interpreting bit field values in the

data. Although these parameters never changed in practice, it would have still been possible

to change them from a technical perspective. Applying the now more restrictive, but thread

safe, scheme for meta data access required some work in those algorithms that need to write

meta data. A particular challenge, for which we do not yet have a fully satisfactory solution,

is algorithms for which these meta data only become available during event processing. Here

we have resorted back to requiring execution on a single thread, which then also allows us to

slightly relax the conditions for meta data write access.

6 Conclusion & Outlook

The podio EDM toolkit has been and is currently used by several communities to do physics

studies. The file format that is written by podio has been stable since the introduction of

Frame based I/O, and we try to keep backwards compatibility for these files even before a

v1.0 release. Having finished a first version of schema evolution capabilities for the default

ROOT backend it is now also possible to actually evolve datamodels that make use of podio.

Nevertheless, there are still some developments that we want to finalize before we announce

a first stable version of podio.

The most important of these developments are related to schema evolution. The most

important part that is not yet implemented here is the handling of multiple older schema

versions. We expect this to be solvable with reasonable effort since the main work will be

related to handling multiple input YAML files, whereas all the complicated issues in code

generation are already solved. We plan to defer the support for schema evolution for non-

ROOT backends until after the release of v1.0, as this should be fairly independent and does

not have an impact on the file format written by the ROOT backend.

Another important aspect is documentation. Here we have to integrate the latest devel-

opments and features and overall organize the existing documentation into a coherent set of

pages and text. We have setup basic automation for the generation of documentation from the

source code as well as from existing text documents and we plan to extend this to also cover

the deployment of documentation onto a webpage.

A potential development that we plan to investigate after the release of v1.0 of podio is

related to the in-memory layout of the data in podio. Currently the data in the Data Layer, see

Figure 1a, are stored in AoS layout. However, there might be some performance gains to be

made by switching to a different layout, e.g. struct-of-array (SoA). This layout can be more

cache friendly or allow for better optimiziations if operations are only necessary on a subset

of members of a given data type. It would potentially also allow for a more easy hand-off to

GPUs or other heterogeneous resources. Since podio is already generating code that features

EPJ Web of Conferences 295, 06018 (2024) https://doi.org/10.1051/epjconf/202429506018

CHEP 2023

7

the three implementation layers, described in Section 2, we think that we can implement this

transparently for users. However, we have not yet started any developments in this direction.

To summarize and finish these proceedings, we want to again highlight the fact that podio

is in use by several communities in production already. The introduction of schema evolu-

tion and the Frame concept should make podio future proof. After having resolved the few

remaining issues mentioned in the text, we plan to release v1.0 of podio shortly and continue

to incorporate the feedback and feature requests from the user communities afterwards.

Acknowledgements

This work beneted from support by the CERN Strategic R&D Programme on Technologies

for Future Experiments (CERN-OPEN-2018-006).

This project has received funding from the European Union’s Horizon 2020 Research and

Innovation programme under Grant Agreement no. 101004761.

References

[1] F. Gaede, B. Hegner, G.A. Stewart, EPJ Web Conf. 245, 05024 (2020)

[2] F. Gaede, B. Hegner, P. Mato, J. Phys. Conf. Ser. 898, 072039 (2017)

[3] podio github repository, https://github.com/AIDASoft/podio (2021), accessed: 2021-

02-12

[4] F. Gaede, G. Ganis, B. Hegner, C. Helsens, T. Madlener, A. Sailer, G.A. Stewart,

V. Volkl, J. Wang, EPJ Web Conf. 251, 03026 (2021)

[5] F. Gaede, T. Madlener, P. Declara Fernandez, G. Ganis, B. Hegner, C. Helsens, A. Sailer,

G. A. Stewart, V. Voelkl, PoS ICHEP2022, 1237 (2022)

[6] P. Fernandez Declara et al., PoS EPS-HEP2021, 844 (2022)

[7] P. Fernandez Declara et al., EPJ Web Conf. 251, 03025 (2021)

[8] J. Blomer, P. Canal, A. Naumann, D. Piparo, EPJ Web Conf. 245, 02030 (2020),

2003.07669

[9] J. Lopez-Gomez, J. Blomer, J. Phys. Conf. Ser. 2438, 012118 (2023), 2204.09043

[10] V. Volkl, J. Pöttgen, B. Hegner, A. Zaborowska, J. Cervantes, C. Helsens, B. Francois,

Z. Jiaheng, A. Sailer, A. Stano et al., key4hep/k4fwcore: (2021), https://doi.org/

10.5281/zenodo.5109722

[11] G. Barrand et al., Comput. Phys. Commun. 140, 45 (2001)

EPJ Web of Conferences 295, 06018 (2024) https://doi.org/10.1051/epjconf/202429506018

CHEP 2023

8

