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Abstract: We develop a new approach to estimate the uncertainty due to missing higher

orders in perturbative predictions (the perturbative “theory uncertainty”), which overcomes

many inherent limitations of the currently prevalent methods based on varying unphysical

renormalization scales. In our approach, the true underlying sources of the theory uncertainty,

namely the missing higher-order terms, are identified and parameterized in terms of mutually

independent theory nuisance parameters (TNPs). The TNPs are true parameters of the

calculation, i.e., they have a well-defined true value that is not or only imprecisely known.

This approach affords the theory uncertainty all benefits of a truly parametric uncertainty: it

provides correct correlations and allows for consistent error propagation and combination.

Furthermore, the TNPs can be profiled in fits, allowing the data to reduce the theory

uncertainties. On the theory side, it allows maximally exploiting all available higher-order

information to reduce the theory uncertainty, such as partial higher-order results or any

nontrivial knowledge of the higher-order or all-order structure.

We first discuss the method in general as it can be applied across the board of perturbative

calculations, including the various choices it requires and corresponding strategies for making

them. As a concrete application, we then discuss the resummed transverse momentum (qT )

spectrum in Drell-Yan production, and how TNP-based uncertainties can correctly capture

the correlations across the qT spectrum and between Z and W production. This application

is the basis of the theory model enabling the recent precise measurement of the W -boson mass

by the CMS experiment. In a forthcoming paper, we use it to study the theory uncertainties

in extracting the strong coupling constant αs from the Z qT spectrum.
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1 Introduction

The interpretation of precision measurements requires equally precise theoretical predictions.

Just as for experimental measurements, theoretical predictions are ultimately only as useful
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as their uncertainties are meaningful. We are specifically interested in theory predictions

based on perturbation theory and their uncertainty due to missing higher-order corrections,

which we will refer to as the perturbative “theory uncertainty”. For a theory uncertainty

to be meaningful it must realistically reflect our degree of knowledge. This not only means

that it has a realistic size but also that it provides correct correlations and allows for some

form of statistical interpretation.

The prevalent traditional approach for estimating perturbative theory uncertainties based

on scale variations is neither particularly reliable nor does it provide correlations let alone a

meaningful statistical interpretation. These limitations are in principle well known. They have

been a long-standing bottleneck in our ability to interpret experimental measurements using

theoretical predictions, which is only becoming more severe as experimental measurements

become ever more precise. The approach put forward in this paper allows us to address this

issue by equipping perturbative predictions with meaningful theory uncertainties.

When designing measurement and interpretation strategies we optimize the total uncer-

tainty budget, and the theory uncertainty is part of this budget. Currently, this optimization

often gets skewed toward reducing as much as possible the impact of unreliable theory

uncertainties. This inevitably leads to sacrificing experimental precision. Reliable, meaningful

theory uncertainties make such sacrifices unnecessary and thus allow improving the overall

uncertainty budget beyond just the immediate effect of improving the theory prediction itself.

They can also enable entirely new measurement strategies that would otherwise be unfeasible.

An example is the recent precision measurement of the W -boson mass by CMS [1]. Thus,

meaningful theory uncertainties greatly facilitate our ability to fully exploit the potential

of existing and future precision measurements.

The above requirements for a meaningful theory uncertainty are elaborated on in sec-

tion 2.1. The key points are: first, the theory uncertainty is a property of the current

prediction that should reflect its intrinsic precision. In particular, it is not meant or defined

to be the unknown difference to the all-order result (or some formally more accurate result

standing in for the all-order one). Second, “theory correlations” — the correlations in the

theory uncertainties of different predictions — are required as soon as more than a single

theory prediction is used at a time. An important example is considering a differential spec-

trum, as each of its bins has a priori its own theory prediction. The bin-by-bin correlations

are essential when one is interested in shape effects, since a shape uncertainty is basically

a statement about how the uncertainties at different points in the spectrum are correlated.

Theory correlations are thus critical if one wants to distinguish the shape effect induced by a

to-be-determined parameter of interest from that caused by theory uncertainties. Third, a

theory prediction simply cannot be used for interpreting experimental measurements without

any quantitative statistical meaning for its uncertainty.

The limitations of scale variations are discussed in more detail in section 2.3. In short,

their lack of correlations basically stems from the fact that their variation cannot be interpreted

like that of a normal parameter whose uncertainty is being propagated. Hence, they are

notoriously unreliable for estimating shape uncertainties, which unfortunately is exactly what

they are often used for (primarily due to the lack of alternatives). This is becoming a severe

limitation in many precision studies. Presently, to be on the safe side we like to avoid attaching
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any statistical meaning to theory uncertainties derived from scale variations. However, this is

not helpful at all. It just skirts the issue and puts the burden on the users of our predictions

since they are now forced to attach some ad hoc quantitative statistical meaning to them.

This state of affairs is clearly unsatisfactory and frankly speaking rather embarrassing.

Some frequentist statistical models attached to theory uncertainties are discussed for

example in refs. [2, 3]. There have been various proposals to obtain theory uncertainty

estimates with a more meaningful statistical interpretation via a Bayesian model [4–7], or

series acceleration [8], or based on a set of reference processes [9]. These methods go in the

right direction by trying to more directly estimate the size of missing higher-order corrections

and by more explicitly exposing the assumptions made. However, like scale variations they

base the uncertainty estimate on the known lower-order terms without parameterizing the

actual underlying source of uncertainty and as a result share many of the limitations of

scale variations. They have a similar level of arbitrariness and reliability, and in particular

they also lack theory correlations.

A theory uncertainty is a form of systematic (epistemic) uncertainty and as such we

cannot hope to render it as robust as a purely statistical (aleatoric) uncertainty. However,

the same requirements to be meaningful are shared by experimental systematic uncertainties.

Our approach thus treats theory uncertainties following the same logic that is routinely

applied for experimental systematic uncertainties to cast them into parametric uncertainties.

This is the key to render them meaningful and is discussed in section 2.2 and section 3. In

a nutshell, we identify the underlying sources of uncertainty, namely the relevant missing

perturbative ingredients, and parameterize them in terms of unknown parameters, which

are the “theory nuisance parameters” (TNPs). Predictions for different cross sections that

depend on the same perturbative ingredient will share a common TNP and the associated

uncertainty will be 100% correlated among them. The TNPs have true values, which can

in principle be determined from a higher-order calculation, but which are a priori unknown

(or treated as such). Without explicit knowledge of their true value, we can use auxiliary

information at our disposal to constrain their allowed ranges. The TNPs are then explicitly

varied or floated in fits within their allowed ranges to account for the theory uncertainties

and propagate them with correct correlations to subsequent interpretations.

Whilst constraining the TNPs based on auxiliary theoretical information necessarily

involves making some educated choices, this can be thought of as an imagined auxiliary

measurement. Furthermore, depending on the context, such theoretical constraints can be

supplemented or even replaced by constraining the TNPs with real auxiliary measurements

or in situ in the interpretation of the nominal measurement itself. As a result, the TNP-

based theory uncertainties admit an analogous statistical treatment and interpretation as

experimental systematics based on nuisance parameters constrained by (real or imagined)

auxiliary control measurements (see e.g. refs. [10, 11]). Finally, even if individual TNPs

may not necessarily have a precisely known probability distribution, since the total theory

uncertainty will typically arise as the combination of a number of TNPs, the central-limit

theorem ensures that it will be asymptotically Gaussian distributed.

Another key advantage of our approach is that it overcomes the paradigm of only being

able to systematically improve theory predictions in large discrete steps based on completely
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known formal orders. The desire to utilize available higher-order information for actual

phenomenological benefit, i.e. to reduce theory uncertainties, without having to wait until

the formally complete next order eventually becomes available is more than obvious. In

fact, likely sooner than later this is going to become an actual requirement for making

progress, because as we push to higher and higher orders, formally complete orders for final

predictions are increasingly difficult to achieve and might eventually become out of reach.

For this reason, more and more predictions are appearing that are formally “approximate”

in some way ranging from very unjustified to very well justified. The underlying issue is

of course that at present we lack meaningful theory uncertainties, so the primary guiding

principle are formally complete orders.

We believe that in the long run an essential benefit of our approach will be to allow

our community to break out of this rigid paradigm. Meaningful theory uncertainties are

by construction a much better judge of the actual precision than the formal accuracy. Our

approach naturally allows for predictions that are formally incomplete in a fully justified,

systematic, and formally consistent manner. It ultimately allows for an (almost) continuous

integration of newly available higher-order results into final theory predictions, taking full

and immediate advantage of them for reducing theory uncertainties and thereby for maximal

and immediate phenomenological impact. Moreover, our approach makes it very transparent

which missing perturbative ingredients are causing the largest uncertainties at any given

stage, allowing one to anticipate already beforehand the impact of explicitly calculating a

certain higher-order ingredient. This can greatly help to guide efforts and to provide clear

and tangible justification for allocating resources.

The approach of this paper was first advocated in ref. [12], and has already been used

since in several instances [13–15]. In these cases, the TNPs serve to estimate the uncertainty

due to still missing ingredients at the nominal, approximate working order. The application

of our approach to the resummed transverse momentum (qT ) spectrum of W and Z bosons

produced in hadronic collisions as discussed in section 6 forms the basis of the theoretical

modelling that has enabled a high-precision measurement of the W -boson mass by the

CMS experiment [1]. In a forthcoming paper [16], we use it to study the expected theory

uncertainties in the extraction of the strong coupling constant αs from the Z pT spectrum.

A promising first application of our approach to a variety of fixed-order single-differential

distributions has been carried out in ref. [17].

At a basic level, it is of course not a new idea to estimate a missing higher-order coefficient

and the uncertainty caused by it. For example, in the past resummed calculations at N3LL

and beyond (see e.g. refs. [18–23]) have used Padé approximations for varying the 4-loop cusp

anomalous dimension and other 3-loop ingredients missing at the time. In high-precision QED

and electroweak calculations, scale variations are less prevalent than for QCD calculations,

and theory uncertainties are more commonly estimated by explicit, more-or-less ad hoc

estimates of the expected size of missing higher-order terms (see e.g. ref. [24]) including

attempts to constrain them from measurements (see e.g. ref. [25]). The methods of refs. [4–8]

amount to modelling the size of missing terms based on the size of the known terms.

While the main focus of our discussion is on perturbative predictions in QCD, our

approach in principle applies to any other systematic, truncated expansion and its truncation
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uncertainty, such as the power expansions performed in effective field theories. For example,

a similar strategy can be followed to account for the truncation uncertainty in the SMEFT,

see e.g. refs. [26–28].

This paper is organized as follows. As already mentioned, in section 2 we discuss general

aspects of perturbative theory uncertainties. Section 3 gives a general discussion of the

approach of theory nuisance parameters and is intended for all audiences. Section 3.1 gives a

general overview of the approach, while the remaining subsections discuss several specific

aspects. Readers interested in an executive 5-page summary of our approach can just read

sections 2.2 and 3.1. Section 4 provides a guide for how to derive suitable parameterizations

in terms of TNPs. It is intended for readers who wish to implement TNP-based uncertainties

into their predictions, providing principles and strategies to follow as well as several examples

for illustration. In section 5 we then focus on TNPs for scalar series in QCD and discuss

how we can obtain robust theory constraints on them based on our theoretical knowledge

and available information from existing higher-order calculations. In section 6, we present

an explicit full-fledged example application of our approach for the case of qT resummation

for pp → Z/γ∗ and pp → W production. We conclude in section 7.

2 Perturbative theory uncertainties

In section 2.1 we elaborate on the criteria for meaningful theory uncertainties. Readers who

find them self-evident or are happy to accept them can skip this subsection. In section 2.2

we derive our basic approach to estimate theory uncertainties as parametric uncertainties.

In section 2.3 we discuss the limitations of scale variations and why uncertainties derived

from them cannot be regarded as parametric uncertainties.

2.1 Philosophy

As mentioned in the introduction, for a theory (or really any) uncertainty to be mean-

ingful, it must

1. have a size that reflects our level of knowledge,

2. provide correct correlations, and

3. allow for some form of statistical interpretation.

Before elaborating further on these criteria, we stress that despite the title of this subsection,

having meaningful theory uncertainties is not just a philosophical or academic issue — quite

the opposite. As discussed in the introduction, it has important implications for interpreting

experimental measurements.

2.1.1 Size and statistical interpretation

A theory uncertainty is a systematic uncertainty, and as such will always require some element

of human judgement. Nevertheless, like for any systematic uncertainty, its size must reflect

our level of knowledge or lack thereof. With faithfully estimated theory uncertainties, the

precision of a perturbative prediction should be judged primarily by its uncertainty and not
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so much by its formal perturbative accuracy. Of course, for a given quantity, we expect a

formally higher-order prediction to be more precise than a formally lower-order one. The

key point is that this should be the outcome of the uncertainty estimation procedure rather

than an input to it. This essentially precludes estimating the theory uncertainty (solely)

based on the size of the last known perturbative correction.

To see this, consider the experimental analog of two measurements A and B of the same

quantity, where B is more precise than A due to increased statistics or improved systematics

or both. These “formal” improvements may make us more confident in measurement B,

but in the end what really counts is their respective uncertainty. Assuming both have

faithfully estimated uncertainties, we expect B’s uncertainty to be smaller than A’s. For

simplicity, imagine that B’s uncertainty is so much smaller than A’s (and uncorrelated) that

only A’s uncertainty matters for comparing A and B. Consider the case that A does not

agree with B: since B is deemed to be more reliable (formally “better”), we would conclude

that A’s uncertainty was underestimated, i.e., in this case we can invalidate A’s uncertainty.

Crucially, the reverse conclusion is not allowed: if A does agree with B within its uncertainty,

this does not validate A’s uncertainty, i.e., we cannot conclude that A’s uncertainty is not

underestimated. If that was allowed, then taken to its logical conclusion, if A’s central value

would agree perfectly with B, we would have to conclude that A has a vanishingly small

uncertainty, which is clearly nonsense.

The above discussion applies identically when A is a lower-order and B a higher-order

calculation of the same quantity. For A to agree with B within its uncertainty is only a

necessary but not sufficient condition for A’s uncertainty to be correctly estimated. In

particular, we cannot estimate the uncertainty of A by comparing its central value to B. In

other words, the difference in central values, i.e. the true size of the higher-order correction,

is at best a (rough) lower limit on A’s uncertainty.

Unfortunately, this is exactly what happens frequently in perturbative predictions: we

are mistakenly led to think of the theory uncertainty as the difference of our result to the

all-order result (or a formally more accurate higher-order one). This inevitably leads to

the conclusion that we fundamentally cannot know the theory uncertainty because we will

never know the true all-order result. Or perhaps less dramatically, that we will only really

know the uncertainty at the present perturbative order once we have calculated the next

order(s). The experimental analog would be to say that we can never know the uncertainty

of a measurement because we will never know the true value in nature.

To summarize the above discussion: the theory uncertainty is not defined as the difference

to the all-order (or the next-order) result. Instead, it must be a property of our present

result reflecting its intrinsic precision. When estimating it, we are meant to estimate a

possible range that contains the all-order result. Of course, we cannot estimate this range

with absolute certainty. We can only hope to be able to estimate a range that contains

the all-order result with some probability or some level of confidence. This leads us to the

third criterium above, which basically means that we must have some way to quantify this

probability or level of confidence. Otherwise, we cannot actually utilize the prediction for

an interpretation, because to do so one must be able to interpret its uncertainty in terms

of some quantitative statistical meaning.
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ρ 99.5% 98% 95.5% 87.5%

δf/g/δ 0.1 0.2 0.3 0.5

Table 1. Reduction of the relative uncertainty in the ratio f/g for different correlations ρ, see text

for details.

2.1.2 Correlations

In practice theory predictions are almost never utilized in isolation but almost always in

combination with one another, at which point the correlation in their uncertainties becomes

relevant. This is the case whenever one considers more than a single process or phase-space

region. Consider the following prototype of a data-driven method,

f =
[

g
]

measured
×

[

f

g

]

theory

, (2.1)

where a desired quantity f (the “signal” region/process) is obtained from a precisely measured

quantity g (the “control” region/process) by multiplying it with their ratio predicted from

theory. Loosely speaking, if f and g are different but closely related, their perturbative

corrections should be very similar and largely cancel in the ratio, such that eq. (2.1) yields

an improved description of f compared to its direct prediction from theory alone. More

precisely, the theory uncertainties of f and g should be strongly correlated in order to cancel

in the ratio. This cancellation is often implicitly assumed or relied on, but in reality it is

very sensitive to the exact correlation.

To appreciate this, consider f and g having relative uncertainty δ with correlation ρ.

The relative uncertainty of their ratio, δf/g, as a function of ρ is given by

δf/g = δ
√

2(1 − ρ) . (2.2)

We are interested in the limit of strong correlation and large cancellation, i.e., ρ close to 1. In

this limit, δf/g is very sensitive to the precise value of ρ, as illustrated in tables 1, because the

square root becomes infinitely steep for ρ → 1. For example, δf/g is 10 times smaller than δ

for ρ = 99.5%, while already for ρ = 98% it doubles in size to only 5 times smaller than δ. The

same correlation information is required whenever one performs a simultaneous interpretation

of two or more measurements. A prime example is the interpretation of a differential spectrum,

which requires bin-by-bin (or point-by-point) theory correlations, as already discussed in

the introduction. The specific example of the transverse-momentum spectrum of W and Z

bosons at the LHC is discussed in section 6. The importance of theory correlations in the

context of modern machine learning methods was also stressed e.g. in ref. [29].

It is important to keep in mind that different quantities we want to predict, such as cross

sections for different processes or at different points in phase space, do not by themselves

have a notion of being correlated to each other. A priori, they are only more or less related

to each other by the extent to which their theory descriptions depend on common ingredients.

What is correlated is the uncertainty in their prediction due to the limited knowledge of those

common ingredients. If two quantities share a common source of uncertainty, the impact
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of that uncertainty on both is 100% correlated between them, and this is fundamentally

the only way a correlation can arise.

The simplest example is a common input parameter. Its imprecise knowledge represents

a common source of uncertainty and its resulting uncertainty in all quantities that depend on

it is 100% correlated. When expressed as a covariance matrix, it yields a 100% correlated

covariance matrix for all quantities. A standard way to evaluate the correlated impact on all

quantities is to use a common nuisance parameter, which can be explicitly varied or floated

in a fit and whose variation is equivalent to varying the input parameter itself.

When several quantities depend on multiple independent sources of uncertainty, the

final correlation depends on the relative impact of the various 100% correlated contributions

from each source. Expressed with covariance matrices, the total covariance matrix is given

by a sum of several 100% correlated ones, which is in general not 100% correlated any

longer. Of course, different (nuisance) parameters can themselves have (partially) correlated

uncertainties, which can be propagated using standard error propagation.

More generally, the standard procedure to treat experimental systematic uncertainties is

to cast them into parametric uncertainties by parameterizing the underlying source or effect

in terms of one or more nuisance parameters, which have true but a priori unknown values.

Their values are then constrained by auxiliary (real or imagined) control measurements. The

resulting best-estimate but imprecise values of the nuisance parameters are then propagated

to the nominal measurement and its interpretation. Without any auxiliary constraint on a

nuisance parameter, its uncertainty is a priori infinite and its value will only be constrained

by the nominal measurement itself, reducing the power of the measurement for constraining

the parameters of interest.

To correctly quantify and account for theory correlations we simply follow the same

procedure: we identify and parameterize the common and mutually independent sources of

theory uncertainty and treat them respectively as 100% correlated and uncorrelated among

all quantities of interest. This is exactly what the theory nuisance parameters will do.

2.2 Parametric perturbative uncertainties

Consider the formal perturbative expansion of a quantity f in a small parameter α,

f(α) = f0 + f1 α + f2 α2 + f3 α3 + O(α4) . (2.3)

By calculating the values of the first few coefficients of the series, we obtain a prediction for f

at leading order (LO), next-to-leading order (NLO), next-to-next-to-leading order (NNLO),

LO: f(α) = f̂0 ,

NLO: f(α) = f̂0 + f̂1 α ,

NNLO: f(α) = f̂0 + f̂1 α + f̂2 α2 , (2.4)

and so on. We always denote the true value of a quantity by a hat, so f̂n are the true values

of the series coefficient fn. When applying perturbation theory in this way, we always work

under the general assumption that the series in eq. (2.3) converges.1

1When α is a coupling constant, it is well know that the series coefficients fn can grow factorially, fn ∼ n!,

which for sufficiently high n overcomes the power suppression by αn, so the series is only asymptotic. In
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The predictions for f(α) in eq. (2.4) are not exact but approximations of its all-order

result. The theory uncertainty we consider here is due to this intrinsic inexactness.2 Its

fundamental sources are the higher-order terms in eq. (2.3) that are missing in eq. (2.4).

Our assumption of convergence implies that the predictions get increasingly better, i.e. more

precise, by including more and more terms in the series. This is equivalent to saying that the

dominant source of theory uncertainty for the prediction at a given order is the next missing

term, i.e, that the sum of all missing higher orders is dominated by the first missing one.

(One might then consider treating the second missing one as the “error on the error” [3, 30].)

Strictly speaking, the actual source of uncertainty is not so much the missing term as

a whole; it is rather the unknown series coefficient fn, as we do know the exact power αn

it comes with. At NNLO, if we knew f̂3, we could add the next term f̂3 α3 to increase the

precision. Hence, very strictly speaking, what is unknown is not the series coefficient per se

but rather its true value f̂n. We do know fn in the sense that we know its exact definition,

we know it has a well-defined true value, and we know how to calculate it in principle (even

if we may not have the means to compute it in practice). Importantly, these distinctions

are not just semantics, but are relevant in what follows.3

Let us stress another important logical distinction: the unknown f̂n is not the theory

uncertainty itself (as discussed in section 2.1.1); it is only the source of the uncertainty. The

theory uncertainty is the impact on the prediction of not knowing f̂n, which also depends

for example on the size of αn. Therefore, to estimate the theory uncertainty we do not need

a precise estimate of f̂n. We rather need to quantify our limited (or lack of) knowledge of

fn. We will discuss further how to do so in section 3. For now, it is sufficient to think of fn

as an unknown (or imprecisely known) parameter (not necessarily a scalar) which is going

to be varied in some way. To estimate the theory uncertainty we have to propagate this

variation into the prediction. For this purpose, fn has to actually appear in our prediction,

which means we have to include the next term that contains the dependence on fn. For

practice, by using perturbation theory to obtain predictions we implicitly assume (and confirm empirically)

that the series is still converging at the orders we are working, i.e., that the asymptotic behaviour only becomes

relevant at much higher orders than we are working at. This can fail when the series is affected by (leading)

renormalons, which essentially spoil the convergence of the series already at low orders. This can be remedied

by working in an appropriate renormalon-free scheme in which the nonconverging pieces of the series are

absorbed into the definitions of suitable (nonperturbative) parameters. Therefore, our general assumption

is that f is expanded in a suitable perturbative scheme that is free of (leading) renormalons, such that the

factorial growth of the coefficients does not yet affect the convergence of the series.
2To be crystal clear, it is not the uncertainty due to the imprecisely known value of α or any other input

parameter.
3We can draw the following contrast for illustration: it could be the case that we do not know the structure

of the series itself but only how to obtain f in some well-defined limit α → 0. In this case, the missing

higher-order terms as a whole are the source of the theory uncertainty, which clearly makes it more difficult

to estimate. An example would be a theory where we only know the free theory but not the interacting

one. A phenomenologically important example is the kinematic limit in which parton showers are formulated,

where we do not even in principle know the structure of the expansion around this limit. Similarly, resummed

predictions are performed in a kinematic power expansion for which we know the leading-power limit, but we

do not necessarily know the structure of the associated power series (although there has been a lot of progress

in recent years to better understand it).
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example, the NLO and NNLO predictions in eq. (2.4) turn into

N1+1LO: f(α, f2) = f̂0 + f̂1 α + f2 α2 ,

N1+2LO: f(α, f2, f3) = f̂0 + f̂1 α + f2 α2 + f3 α3 ,

N2+1LO: f(α, f3) = f̂0 + f̂1 α + f̂2 α2 + f3 α3 . (2.5)

The notation Nm+kLO is meant to indicate that in addition to the first m fully known terms

we include k further terms with unknown coefficients for estimating the theory uncertainty.4

We have now derived the essence of our approach: the missing series coefficients are the

sources of the theory uncertainty. They are well-defined parameters of the perturbative series

with a true but unknown value, and we simply treat them accordingly: we include them in

the prediction and vary them to account for the theory uncertainty they cause. In this way,

the theory uncertainty becomes a truly parametric uncertainty, which is the basis for making

it meaningful. Note also that its source is actually different at each order, which also implies

that the theory correlations depend on the order of the prediction.

As discussed further in section 3, in reality, the series coefficients have internal structure

(e.g. color, partonic channels, etc.). They can also be functions of additional parameters

(e.g. quark masses) as well as kinematic variables. Hence, instead of varying them directly,

it will be more convenient to parameterize them as fn(θn) in terms of one or more theory

nuisance parameters θn that are the unknown parameters to be varied.

The actual range of variation for fn (really the θn) is something we have to decide,

which we also discuss further in section 3. By default it will be a sufficiently large range

covering the generic, natural size of fn without knowing the true value f̂n or as if we had

no knowledge of f̂n. In addition (or instead) we can also constrain fn (really the θn) from

experimental measurements.

If we are able to obtain a more precise estimate of f̂n, that is of course even better.

We can include this information to reduce the theory uncertainty due to fn. At this point,

however, we have to remember the uncertainty due to fn+1, which so far we were only able

to neglect because it was subdominant compared to fn. It has to be included now as soon as

it becomes relevant compared to the reduced uncertainty from fn. In this way, a lower-order

prediction can gradually turn into a higher-order one. For example, when f2 is still unknown,

we would start at N1+1LO. As f2 becomes better known, e.g., due to partial or approximate

calculations and/or experimental constraints, we switch at some point to N1+2LO, which

eventually turns into N2+1LO when f̂2 has been fully calculated. Our approach thus allows

continuously improving theory predictions instead of being tied to large discrete steps from

demanding complete formal orders.

2.3 Limitations of scale variations

A well-known limitation of scale variations is that they only have information from the known

lower-order terms but no information about the genuine higher-order terms or structure,

which makes them not very reliable and prone to underestimation due to accidentally small

lower-order terms or due to important new structures appearing at higher order (e.g. new

4This notation implies a small departure from conventional wisdom in that 1 + 1 6= 2 and 1 + 2 6= 2 + 1.
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partonic channels or new functional dependences on kinematic invariants). Since the amount

of variation is largely arbitrary, one also runs the risk of overestimating the uncertainties,

which is of course also undesirable.

Even if with sufficient experience and appropriate care one is able to mitigate these

dangers of misestimation, scale variations suffer from an even more severe and fundamental

limitation: the scales that are being varied are unphysical: they are not actual parameters

of the calculation that have a true but only imprecisely known value. There can easily be

no value of the scale that actually captures the higher-order result. This immediately tells

us that it makes very little sense to try and constrain them from data. Since the scales

have no notion of a true value or an uncertainty that is being propagated, their variation

also cannot be interpreted as such. This implies that they are fundamentally incapable of

correctly determining theory correlations.

There is of course a more fundamental reason for the scales to appear, i.e. the renormal-

ization of the theory, which however has a priori nothing to do with theory uncertainties. To

all orders, the calculation does not depend on the scales. By truncating the perturbative

series at a finite order, a residual scale dependence remains, i.e., it is an artifact of the

calculation. Since this residual dependence must be cancelled by the truncated higher-order

terms, it can be exploited to get a sense for the potential size of those missing higher-order

terms, but no more than that.

We can capture the essence of the scale-variation approach and expose its limitations

already at the level of the generic expansion in eq. (2.3). The key point is that the series

coefficients fn depend on the perturbative scheme by which we mean the exact way of

performing the perturbative expansion. In our case here, it corresponds to the exact choice

of the expansion parameter α. We can define a new scheme by introducing a new expansion

parameter α̃ that differs from α by higher-order terms,

α̃(α) = α
[

1 + b0 α + b1 α2 + b2 α3 + O(α4)
]

. (2.6)

The new scheme is uniquely determined by the coefficients bk appearing in eq. (2.6). Since

α and α̃ are the same at lowest order, α̃ = α + O(α2), they are equally good expansion

parameters as long as we choose bk ∼ O(1). Apart from this condition, we can choose the bk

freely, so eq. (2.6) actually represents infinitely many possible expansion parameters.

To be concrete, for QCD scale variations we have α ≡ αs(µ0) and α̃ ≡ αs(µ), where µ0

is the central scale and µ is the varied scale. Expanding αs(µ) in terms of αs(µ0), we can

easily determine the explicit bk in eq. (2.6) that are implied by scale variations,

b0 =
β0

2π
ln

µ0

µ
= 0.85 L ,

b1 =
β2

0

4π2
ln2 µ0

µ
+

β1

8π2
ln

µ0

µ
= 0.72 L2 + 0.34 L ,

b2 =
β3

0

8π3
ln3 µ0

µ
+

5β0β1

32π2
ln2 µ0

µ
+

β2

32π3
ln

µ0

µ
= 0.61 L3 + 0.72 L2 + 0.13 L . (2.7)

They are (k + 1)th-order polynomials in ln(µ0/µ), and βk are the (k + 1)-loop QCD β

function coefficients governing the µ dependence of αs(µ). In the second expressions we used

– 11 –



J
H
E
P
0
8
(
2
0
2
5
)
0
9
8

nf = 5 and defined L ≡ ln(µ0/µ)/ ln 2 to give explicit numerical results for illustration. By

convention, we vary µ by a factor of two around µ0 so L varies between ±1. Note that scale

variations do not actually provide us with the freedom to choose all bk freely. Instead, they

are all determined by choosing a single value for µ or equivalently L.

Continuing our discussion, we now have two (or really infinitely many) equally good

ways to perform the perturbative expansion for f , using either α or α̃,

f(α) = f0 + f1 α + f2 α2 + f3 α3 + O(α4) ,

f̃(α̃) = f̃0 + f̃1 α̃ + f̃2 α̃2 + f̃3 α̃3 + O(α̃4) . (2.8)

Since they are expansions of the same f , to all orders they are identical: f(α) = f̃(α̃) = f .

Plugging eq. (2.6) back into f̃(α̃) and demanding that f(α) = f̃(α̃(α)) at each order in α, we

can easily derive the scheme translation that relates the f̃n to the original fn,

f̃0 = f0 , f̃1 = f1 , f̃2 = f2 − b0f1 , f̃3 = f3 − 2b0(f2 − b0f1) − b1f1 . (2.9)

Hence, the scheme choice essentially amounts to shuffling around terms between orders

in the series.

Although f(α) = f̃(α̃) to all orders, when we truncate f̃(α̃) at a finite order to obtain

predictions in our new scheme, they will differ by higher-order terms from our original

predictions truncating f(α) in eq. (2.4). For example, up to NNLO we have

LO: f̃(α̃) = ˆ̃f0 = f̂0 ,

NLO: f̃(α̃) = ˆ̃f0 + ˆ̃f1 α̃ = f̂0 + f̂1 α + b0f̂1 α2 + b1f̂1 α3 + O(α4) , (2.10)

NNLO: f̃(α̃) = ˆ̃f0 + ˆ̃f1 α̃ + ˆ̃f2 α̃2 = f̂0 + f̂1 α + f̂2 α2 +
[

2b0(f̂2 − b0f̂1) + b1f̂1
]

α3+ O(α4).

In the second expressions we used eqs. (2.6) and (2.9) to rewrite the prediction in terms

of the original f̂n and α to explicitly expose the differences highlighted in red. In general,

the NnLO predictions in the two schemes agree up to O(αn) but differ by O(αn+1) and

higher terms (except for the LO predictions, which happen to agree exactly because there

is no scheme dependence yet at this order).

In the scale-variation approach, this higher-order scheme dependence is now exploited by

taking the difference between the two schemes as an estimate ∆f of the theory uncertainty,

LO: ∆f(α) = 0 ,

NLO: ∆f(α) = b0f̂1 α2 + b1f̂1 α3 + O(α4) ,

NNLO: ∆f(α) =
[

2b0(f̂2 − b0f̂1) + b1f̂1
]

α3 + O(α4) . (2.11)

The limitations of the scale-variation approach should be clear from the above discussion.

They are fundamentally caused by the fact that the scalar parameter L (or µ) that is being

varied is not a true parameter of the prediction, i.e., it has no notion of having a true value

L̂ that reproduces the true missing f̂n. This is because the coefficients of αn in eq. (2.11) are

in general not a valid parameterization of the missing higher-order coefficients fn. As soon

as the fn have some nontrivial internal structure, they will not just be given by fixed linear
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combinations of lower-order coefficients.5 The fact that ∆f(α) is proportional to the true

values of the lower-order coefficients causes the common pitfall of underestimation already

mentioned at the beginning of this subsection. For example at NLO, if f̂1 happens to be

smaller than its natural size, or lacks relevant internal structures of f2, b0f̂1 will underestimate

the natural size of f2 and thus the uncertainty due to it. This is made even more severe

by the fact that we practically always use the same conventional value for b0 regardless of

the actual properties of f̂1 and f2.

Besides these dangers of misestimation, as L is not a true parameter of the prediction, its

variation fundamentally cannot yield a meaningful theory uncertainty to begin with. That is,

it cannot imply correlations or be constrained by measurements, and the resulting uncertainty

estimates do not admit a meaningful statistical interpretation.

These limitations of scale variations have been known for a long time. A common method

to alleviate the possible underestimation is to perform a variety of scale variations. The

individual differences are then combined into a total uncertainty estimate ∆f by taking their

envelope because the different variations just probe the potential size of the same missing

higher-order terms in different ways and are not individually meaningful. To mitigate the lack

of correlations, the best we can do is to impose a context-specific correlation model on the

total ∆f . Dedicated correlation models have been discussed in the context of both fixed-order

predictions (see e.g. refs. [31–38]) as well as resummed predictions (see e.g. refs. [32, 39–44]).

Deciding whether or how to correlate or uncorrelate scale variations for different predictions

also just amounts to choosing some ad hoc correlation model. While such correlation models

can be theoretically motivated, they are still ad hoc assumptions, so they are only bandaids

and do not cure the underlying problem.

In practice, the scale-variation based uncertainties are often propagated by introducing

ad hoc nuisance parameters θf by writing the predictions at a given order as f + θf ∆f

with θf = 0 ± 1. Although this may be done to simplify the technical implementation,

we cannot stress enough that doing so obviously does not turn ∆f automagically into an

actual parametric uncertainty. Such ad hoc nuisance parameters are not genuine nuisance

parameters and must not be treated or misinterpreted as such. In particular, despite the fact

that this has become a common mispractice, they may not be profiled.

3 Theory nuisance parameters

This section gives a general and largely self-contained discussion of theory nuisance parameters

(TNPs) and TNP-based theory predictions and uncertainties. It is intended for all audiences.

Readers should have read section 2.2, but not necessarily other subsections of section 2.

Section 3.1 gives an introduction and general overview of the TNP approach picking

up where we left off in section 2.2. It is a prerequisite for the subsequent subsections and

the rest of the paper. In the subsequent subsections we further discuss several aspects of

5The attentive reader might have noticed that in the special case where the fn are pure scalars, we would

in principle have enough degrees of freedom to correctly reproduce each f̂n if we were to choose each bk

separately. However, apart from the fact that scale variations do not actually provide this freedom, as we

will see in sections 3 and 4, the cases where we could parameterize fn correctly as a single scalar are rare.

Furthermore, this essentially precludes accounting for any correlations.
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the TNP approach. They are largely independent of each other, so readers not concerned

with any one of these aspects can freely skip the respective subsection: section 3.2 discusses

some implementation aspects. Section 3.3 discusses constraining the TNPs based on theory

considerations and measurements. Section 3.4 discusses how scale and perturbative scheme

choices figure into our approach.

3.1 General overview

We consider the expansion of a quantity f in the small parameter α,

f(α) = f0 + f1 α + f2 α2 + f3 α3 + O(α4) . (3.1)

As before, we use a hat to distinguish a parameter (fn, θn, . . . ) from its true value (f̂n,

θ̂n, . . . ). To obtain a perturbative prediction for f at order Nm+kLO in our approach, we

include the true values of the first m series coefficients and in addition the next k terms whose

coefficients are (considered to be) unknown parameters, which account for the (dominant)

theory uncertainty. For example,

N1+1LO: f(α, θ2) = f̂0 + f̂1 α + f2(θ2) α2 ,

N1+2LO: f(α, θ2, θ3) = f̂0 + f̂1 α + f2(θ2) α2 + f3(θ3) α3 ,

N2+1LO: f(α, θ3) = f̂0 + f̂1 α + f̂2 α2 + f3(θ3) α3 . (3.2)

In addition to eq. (2.5), we have now parameterized the unknown series coefficients fn(θn)

in terms of theory nuisance parameters θn for n = m + 1, . . . , m + k.

In general, fn has a nontrivial internal structure involving various discrete and continuous

variables. In principle, some of this structure needs to be accounted for in the “TNP

parameterization” fn(θn), which therefore depends in general on multiple TNPs θn,i. For

example, when fn depends on different flavor or color channels, we might need a θn,i for each.

When fn depends on a continuous kinematic variable, we might need to parameterize this

dependence in terms of several θn,i. The required number of TNPs thus depends on how

fn’s internal structure is parameterized. For notational simplicity we always let θn ≡ {θn,i}
stand for the full set of θn,i.

Different quantities can depend on a common θn,i when their coefficients internally

depend on the same perturbative ingredient parameterized by θn,i. Some obvious examples

are universal objects in QCD which appear in many places, such as the beta function,

splitting functions, or the cusp anomalous dimension. In this case, a given θn,i is always

varied simultaneously everywhere it appears and the resulting uncertainty is treated as 100%

correlated. This is how theory correlations among different quantities are correctly accounted

for. In fact, as we will discuss in section 4, which parts of the internal structure we need

to parameterize is directly determined by the theory correlations we need to account for.

On the other hand, different θn,i should a priori be mutually independent and correspond

to independent sources of uncertainties. They can then be varied independently and their

resulting uncertainties can be treated as a priori uncorrelated.

An essential requirement on the TNP parameterization is that it must be able to

reproduce the coefficient’s true value f̂n. That is, the TNPs must have true values θ̂n ≡ {θ̂n,i}
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corresponding to f̂n,

f̂n = fn(θ̂n) . (3.3)

This is what makes the TNPs themselves true parameters of the perturbative series, and

what allows us to obtain meaningful constraints on their (a priori unknown) values. That is,

as for any physical parameter whose true value is unknown, we can obtain a best estimate

for the θn with some uncertainty, which we denote as

θn = un ± ∆un . (3.4)

This estimate could come from theory considerations or experimental measurements or both.

It should be accompanied with a quantitative statistical interpretation of the uncertainty,

which may be more or less rigorous depending on where it comes from. Statistically speaking,

we want to treat eq. (3.4) as coming from a real or imagined auxiliary measurement, as for

any other systematic uncertainty. Normally, eq. (3.4) will only provide a loose constraint for

the θn to have their natural size but not a precise estimate of θ̂n. To emphasize this point, we

mostly talk about constraints on the θn rather than estimates of them. When we have several

constraints for the same θn,i, we combine them appropriately. The central theory prediction

is then obtained by setting the θn to their central value un, while the theory uncertainty is

evaluated by appropriately propagating or incorporating the uncertainties ∆un, including

their statistical interpretation, into the final results. In this way, TNPs provide us with

parametric, meaningful theory uncertainties. They can (and should) always be propagated,

combined, and interpreted like standard parameter uncertainties.

To summarize, there are two main steps to obtain a theory prediction with TNP-based

uncertainties:

1. Derive an appropriate TNP parameterization fn(θn) that satisfies all requirements for

all quantities of interest and implement it into the predictions.

2. Obtain suitable auxiliary constraints on all relevant TNPs θn and propagate them into

the final results.

It is important to separate these two steps both logically and practically, because they depend

on different levels of approximations and assumptions.

The TNP parameterization in step 1 is determined by the internal structure of fn, which

is what it is and not really debatable. As we will see in section 4, all choices we can make here

are based on external requirements and can be framed as making approximations that are

systematically improvable if needed. Hence, the theory uncertainty and correlation structure

encoded by a given TNP parameterization is always correct to some formal accuracy. Deriving

it requires expert domain knowledge. It must thus be provided as part of the prediction and

cannot be left to users. This also means that we cannot provide a generic parameterization

that is going to work in all cases. Instead, in section 4 we discuss the general principles

and strategies for constructing suitable parameterizations, and in section 6 we discuss a

full-fledged example application.

On the other hand, in step 2 we can debate to what extent a specific constraint (theoretical

or experimental) is deemed sufficiently reliable or not and informed users can choose to include
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it or not based on their preferences or requirements. We will see in section 5 that it is indeed

possible to obtain robust theory constraints. Furthermore, users can choose their preferred

method of propagating the TNP uncertainties. One could either vary the TNPs explicitly or

derive a theory covariance matrix for all predictions by performing a standard Gaussian error

propagation. When fitting to data one could repeat the fit for each variation (sometimes

called scanning or offset method), or use the derived theory covariance matrix, or profile the

TNPs as genuine nuisance parameters with eq. (3.4) imposed as an auxiliary constraint. The

option to profile the TNPs is of course a key advantage, and where their name comes from,

as it directly constrains the TNPs by the data. We will come back to this in section 3.3.

3.2 Approximate implementation

In practice, to upgrade an existing NmLO prediction to a full-fledged Nm+kLO prediction

with TNP uncertainties, one has to implement the correct structure of the next k orders

in terms of the parameterized fn(θn). Depending on the complexity of the prediction and

parameterization this can be a challenging task in itself. Therefore, as an approximation to

the Nm+1LO implementation one can also consider using the structure of the existing NmLO

prediction and absorb the uncertainty term into the highest known order, for example,

N1+0LO: f(α, θ2) = f̂0 +
[

f̂1 + α0f2(θ2)
]

α ,

N2+0LO: f(α, θ3) = f̂0 + f̂1 α +
[

f̂2 + α0f3(θ3)
]

α2 . (3.5)

Here, α0 denotes a fixed value of α, which is not part of the formal series structure, e.g.,

it is does not participate in counting orders of α. In extension to our notation, we denote

this as Nm+0LO.6

This approximation makes little difference for our simple illustrative series, but it can

make more of a difference for real-life series. For example, it might require approximating

or dropping parts of the internal structure of fn(θn) that cannot be absorbed into the

existing structure of fn−1. Furthermore, when the full series involves a product of several

individual series (as e.g. in resummed predictions), one correctly accounts for all O(αm+1)

cross terms of lower-order pieces at Nm+1LO, while they are neglected at Nm+0LO. So whilst

this approximation still provides parametric uncertainties, the impact of the parameters is

only approximately correct because one effectively uses the O(αm+1) uncertainty parameters

with the lower O(αm) uncertainty structure. We might expect this to have only a limited

effect on the overall size of the theory uncertainty, while it might have a bigger effect on

the theory correlations. We generally recommend using the Nm+1LO prediction. If this is

unfeasible for practical reasons, one can still resort to Nm+0LO, but one should ideally check

with available orders how much of a difference this approximation makes.

As discussed at the end of section 2.2, when the θn,i become strongly constrained, we

have to include at some point the θn+1,i, which means upgrading the prediction from Nm+1LO

to Nm+2LO. A convenient way to test if this is already warranted or not is to include the

θn+1,i in this approximate fashion, i.e, approximate Nm+2LO by Nm+1+0LO. Another possible

scenario is a mixed case where some θn,i are well estimated or exactly known such that their

6This approximation thus comes at the minor cost of further breaking basic arithmetic: m + 0 6= m.
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corresponding θn+1,i should be included, while most others are still largely unconstrained.

In this case, it would be premature to upgrade to Nm+2LO but one can already include

the few required θn+1,i approximately.

3.3 Constraining the TNPs

As already mentioned, since the TNPs are proper parameters with true values, it is perfectly

consistent to profile them in fits to data, in stark contrast to scale-variation based approaches.

We discuss several aspects of this in section 3.3.2 below.

Nevertheless, we still need a theory uncertainty estimate for the “pre-fit” theory pre-

dictions, i.e., before confronting them with experimental measurements. This is obviously

necessary for any theoretical studies where we do not (yet) fit to data. Even when fitting to

data, it might be unfeasible or undesirable to always constrain all TNPs entirely from data

alone. Another reason is to be able to judge or test whether the data constrains some θn,i too

strongly. Therefore, we need some constraint on the TNPs based on theory considerations,

which we briefly discuss next and in much more detail in section 5.

3.3.1 Theory constraints

As our default theory constraint, without any further information, we will have un = 0

and ∆un given by the “natural size” of θn, by which we mean we would generically expect

|θ̂n| . ∆un. To be more concrete, if we knew with 68% confidence level that |θ̂n| ≤ Nn

we would take ∆un = Nn. The default theory constraint thus requires us to estimate the

natural size of θn and then allows θn to vary within it. Without loss of generality, we assume

that θn is normalized to have a natural size of O(1), i.e., such that we generically expect

|θ̂n| . 1 and thus ∆un ≃ 1.

Estimating the natural size of θn is basically equivalent to estimating the natural size of

fn, which is usually possible by considering its known higher-order structure. For example,

just pulling out the known leading color and loop factors is usually sufficient to normalize

θn to have O(1) natural size. As this estimate directly determines the eventual size of the

theory uncertainty we would of course like to narrow it down better than just a generic

O(1) factor, ideally to within a factor of 2 or better. This can then be tested extensively

on many known series coefficients. As we will see in section 5, doing so we are able to

obtain a (almost surprisingly) robust estimate for ∆un, well within a factor of 2, and with

a well-defined statistical interpretation.

In some cases we have further theoretical information that relates a priori independent

structures in fn (or different coefficients or quantities), which have to satisfy certain relations.

An example are consistency relations between different anomalous dimensions, which they

must satisfy exactly. We have different options to incorporate such information. If the

relations are exact and simple enough, one option is to solve them explicitly and eliminate

some θn,i by expressing them in terms of others. This amounts to incorporating the constraint

directly at the level of the parameterization. Otherwise, especially in cases with inexact

relations, we can keep all a priori independent θn,i and account for each relation by imposing

a corresponding auxiliary theory constraint, which can then lead to nontrivial a posteriori

correlations between some θn,i.
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3.3.2 Measurement constraints

Theory-based constraints, unless they are exact constraints, inevitably involve some theoretical

prejudice in the size of the uncertainty. (They can also induce a potential bias due to scheme

and parameterization dependences, as discussed in sections 3.4 and 4.4.) However, when the

theory predictions are used to interpret experimental measurements, which is when the theory

uncertainties arguably matter the most, the TNPs can be constrained by the measurements

themselves by including them in the fit as actual nuisance parameters. Hence, we have the

choice to avoid (or at least minimize) the dependence on some undesired theoretical prejudice

by not imposing (or reducing) some theory-based constraint and thereby rely more on the

measurements. Of course, this comes at the expense of some experimental sensitivity. A

key advantage of our approach is that it actually gives us this choice. Thus, profiling the

TNPs in fits to data has many important benefits:

• It allows constraining the theory uncertainties by data.

• It avoids or reduces the susceptibility to possible theory prejudice or biases.

• It allows taking into account possibly important correlations between the TNPs and

the parameters of interest.

The last point is because by profiling the TNPs we let the fit decide between moving a

parameter of interest vs. moving the theory predictions.

One might be worried that when the TNPs are constrained by the data, they also

absorb the effects of all yet higher-order corrections that have not been included in the

theory uncertainty estimate, or more generally, the effect of any type of missing contribution

or deficiency in our description. However, this problem is always there: any such effect

is always collectively absorbed into all fitted parameters (both nuisance parameters and

parameters of interest). The inclusion of TNPs in the fit does not make this any worse. In

fact, it is likely to reduce this problem as far as missing theory contributions are concerned,

because it is not unlikely that they are structurally similar to the theory uncertainty terms

we now include. This means, they get absorbed more likely into the fitted TNPs than into

the parameters of interest, thus reducing the contamination of the parameters of interest,

which is exactly what we want.

We should of course not blindly let the TNPs get misused for unintended purposes.

Formally, any unaccounted theory effect is really just an unaccounted source of theory

uncertainty. By neglecting it we assume that it is small enough to be neglected against other

uncertainties, which is equivalent to accepting that it will be effectively absorbed somewhere

(hopefully mostly into the TNPs). However, this is exactly equivalent to the conditions under

which we are allowed to neglect fn+1 compared to fn as discussed in section 2.2. The same

discussion obviously applies to any other source of theory uncertainty as well. In particular, if

with sufficiently precise data we want to actually determine θn, then we effectively elevate it

to a parameter of interest. We then have to at least include θn+1 to account for the remaining

leading theory uncertainty, as discussed at the end of section 2.2, and more generally also

any other source of theory uncertainty of similar size.
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3.4 Scheme dependence

In our approach, we still have to choose a specific scale or scheme to perform the perturbative

expansion. For our purposes, the perturbative scheme includes all choices of renormalization

and factorization schemes as well as the choices of all associated scales we have to make.

One might wonder how the dependence on this scheme figures into our approach now. In

general, the scheme dependence is not a problem. The scheme just has to be well defined

so we can translate from one scheme to another, and the scheme dependence has to be

treated consistently.

We already discussed the scheme dependence at the level of our example series in

section 2.3. To briefly recap, by choosing different expansion parameters α or α̃, we have

different ways to perform the perturbative expansion for the same quantity f ,

f(α) = f0 + f1 α + f2 α2 + f3 α3 + O(α4) ,

f̃(α̃) = f̃0 + f̃1 α̃ + f̃2 α̃2 + f̃3 α̃3 + O(α̃4) . (3.6)

To all orders, the two series give identical results, f(α) = f̃(α̃) = f , but at any truncated

order they differ by higher-order terms [see eq. (2.10)]. The two schemes are uniquely defined

relative to each other by the relation between α and α̃,

α̃(α) = α
[

1 + b0 α + b1 α2 + b2 α3 + O(α4)
]

, (3.7)

from which the relation between the series coefficients fn and f̃n follows [see eq. (2.9)],

f̃0 = f0 , f̃1 = f1 , f̃2 = f2 − b0f1 , f̃3 = f3 − 2b0(f2 − b0f1) − b1f1 . (3.8)

To discuss the scheme dependence or ambiguity in the context of our TNP-based

predictions, it is important to distinguish two places where the scheme choice enters: first,

the scheme dependence of fn is inherited by θn. We thus pick a common “reference scheme”

in which the θn are defined via the TNP parameterization fn(θn). We will come back to the

question of how to pick the reference scheme below. For notational simplicity, we continue

using fn, θn, α to denote the parameters in the reference scheme, while we add tildes, f̃n,

θ̃n, α̃ for the parameters in some other scheme.

Second, as always we need to pick a scheme in which to evaluate the prediction itself.

An obvious and natural choice is to use the same scheme for both, i.e., we would just use the

reference scheme f(α), but in principle they could also be different. To obtain the prediction

in a different scheme, f̃(α̃), in terms of the reference parameters fn(θn), we simply translate

from the reference scheme by using eq. (3.8) for the series coefficients of f̃(α̃). For example,

translating the predictions in eq. (3.2), we get

N1+1LO: f̃(α̃, θ2) = f̂0 + f̂1 α̃ +
[

f2(θ2) − b0f̂1
]

α̃2 , (3.9)

N2+1LO: f̃(α̃, θ3) = f̂0 + f̂1 α̃ + [f̂2 − b0f̂1] α̃2 + [f3(θ3) − 2b0(f̂2 − b0f̂1) − b1f̂1] α̃3 .

This makes it clear that the θn are always the same parameters and are independent of

the scheme of the prediction.

To discuss the residual scheme dependence of the prediction, first consider the N1+1LO

prediction in eq. (3.9): its residual scheme dependence is of O(α̃3), because the O(α̃2) term
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includes by construction the correct scheme-dependent term −b0f̂1 α̃2 that cancels the scheme

dependence of α̃ in the previous term. Similarly, at N2+1LO (and also N1+2LO which is not

shown), the O(α̃3) term includes all necessary terms to cancel the O(α̃3) scheme dependence

of the lower-order terms, so the residual scheme dependence is pushed to O(α̃4). In general,

the residual scheme dependence of the Nm+kLO prediction is by construction of O(αm+k+1)

and formally beyond the smallest included theory uncertainty of O(αm+k). We can thus ignore

it for the same reason we can drop the O(αm+k+1) theory uncertainty caused by fm+k+1.7

We now come back to the question of how to pick the reference scheme for θn. Since

θn plays the role of an input parameter, defining it in a different scheme merely defines a

different (but related) input parameter θ̃n with a different but related true value ˆ̃θn. Their

relation follows from the relation between fn and f̃n in eq. (3.8).8 Since this relation is exact,

it a priori does not matter which parameter we use; we can always translate exactly from one

to the other. Hence, choosing a common reference scheme for θn is akin to our conventional

choice of αs(mZ) (defined in a certain reference scheme namely MS at µ = mZ) as the

common input parameter for αs. We could have just as well chosen αs(mW ) or αs(42 GeV).

Since the relation between them is known very precisely, it makes practically no difference

which one we decide to extract from data.9

The key difference to a purely data-determined parameter like αs(mZ) is that for θn we

also want to be able to obtain constraints based on theory considerations. For this purpose,

some reference schemes are better than others. A good reference scheme is one where the

fn are bounded by their natural size, i.e., they don’t contain large scheme-induced artifacts,

such that the corresponding θn are of natural size. We stress that this does not mean that

the best reference scheme is necessarily the one where f̂n is the smallest, as this might just

be accidental. Instead, the best reference scheme is the one for which we are most confident

that the fn, and thereby the θn, are of natural size, because this maximizes the confidence

we can ascribe to theory constraints that estimate the natural size of θn.

For the scale dependence, this is basically how we would usually choose (or at least

should be choosing) the central scale. We choose one for which we are most confident that

the fn do not contain large logarithms of the scale. We usually do not (or at least should

not) choose the central scale by minimizing the highest-order f̂n. Hence, by default we can

just recycle our “best” conventional or canonical central scales as reference scales.

To discuss the effect of choosing different reference schemes in more detail, let us compare

for concreteness the N1+1LO predictions with TNPs defined in different reference schemes,

N1+1LO: f(α, θ2) = f̂0 + f̂1 α + f2(θ2) α2 ,

N1+1LO: f(α, θ̃2) = f̂0 + f̂1 α +
[

f̃2(θ̃2) + b0f̂1
]

α2 , (3.10)

7More precisely, it causes a bias in the central value of our predictions, which is small compared to the

nominal theory uncertainty.
8Depending on the complexity of fn(θn), the exact relation between the individual θn,i and θ̃n,i can be

more nontrivial than suggested by eq. (3.8), as it may not be immediately obvious how to distribute the

scheme difference between them. There can also be some θn,i that are scheme independent, namely those that

parameterize new structures in fn that cannot be generated by the scheme change and are not captured by

scale variations.
9In contrast, for quark masses the scheme translation can induce a sizeable uncertainty, so the optimal

reference scheme for the mass parameter is the scheme of the prediction that is used for its extraction.
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where the two TNP parameterizations have to satisfy the scheme relation from eq. (3.8),

f̃2(θ̃2) = f2(θ2) − b0f̂1 , (3.11)

which determines the exact relation between the two parameters θ2 and θ̃2. As long as

they satisfy eq. (3.11), the predictions in eq. (3.10) are literally identical and it does not

matter at all which parameter we use.

A dependence on the reference scheme enters when the constraints we put on θn vs. θ̃n

violate the scheme relation between them. As already discussed above, real measurement

constraints always respect this relation, simply because they always constrain the quantity

f itself, which is scheme independent. We can see this immediately from eq. (3.10): any

constraint we get on f , from data or elsewhere, yields exactly the same constraint on either

f2(θ2) or f̃2(θ̃2) + b0f̂1, and thus respects eq. (3.11).

On the other hand, our default theory constraints are scheme dependent because we

constrain θn directly. It clearly makes a difference whether we decide to constrain θn = 0 ± 1

or θ̃n = 0±1. They yield the same constraint for fn(θn) or f̃n(θ̃n), which means the (absolute)

uncertainty on f(α, θn) and f(α, θ̃n) is the same but their central value is shifted by the

scheme-dependent terms. Thus, the choice of reference scheme causes a bias (or prior) in

the central value of our theory constraint, but also nothing more.

At this point, we need to take a slight detour, as this type of bias is actually not specific

to the theory uncertainty but can be the case for any systematic uncertainty. It amounts

to the inherent ambiguity that is always present when we have an unknown parameter that

lacks any constraints and for which we are therefore forced to pick a reasonable value. In the

absence of any external information, there is simply no unbiased way of doing so.

This is where the difference between a “real” vs. “imagined” auxiliary measurement

comes in. More precisely, this is how we can define this distinction: a real measurement or

constraint imposes an unambiguous central value. An imagined one, while also imposing

a central value, leaves open the choice on which parameter to impose it. Note that not

all theory-based constraints are necessarily of the latter type, e.g., an actual approximate

calculation of θn will usually apply in a specific scheme and thus resolve the scheme ambiguity.

The equivalent constraint for θ̃n would then follow from their scheme relation.

There are standard ways to deal with such biases in practice: first, the bias from choosing

a parameter’s central value is not an additional source of uncertainty. It is a bias that may or

may not be covered by the parameter’s uncertainty. If it is not, we might decide to enlarge

the uncertainty or explicitly state the choice that causes the bias as a precondition or both.

We then have several options for treating the bias:

1. If the parameter’s bias is small compared to the parameter’s uncertainty, we can formally

neglect it and move on.

2. Otherwise, if the final analysis or interpretation is insensitive to the bias, i.e., the

resulting bias induced in the final result is small compared to its other uncertainties,

we can ignore it for practical purposes and move on.

3. Otherwise, the final result is sensitive to the bias. In this case,
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(a) if possible, we leave the parameter unconstrained and let the data itself constrain

it. This removes any bias at the potential cost of reducing the power of the data

for determining other parameters.

(b) Otherwise, if possible and still useful, we quote the final result explicitly stating

the preconditions under which it is valid.

(c) Otherwise, we have to accept the fact that the analysis or interpretation is not

possible or useful with current knowledge.

In cases 1 and 2, we always have the option to further constrain the parameter’s uncertainty

by the data. Note that these cases require us to be able to quantify the bias, otherwise

we are automatically in case 3.

We now return to our discussion at hand. First, the exact scheme choice for the prediction

itself is actually an example of case 1. It also causes a small bias in the prediction’s central

value, but as discussed above, this ambiguity is formally at least one order higher than

the theory uncertainty.

The bias caused by the choice of reference scheme of θn in our default theory constraint

should be covered by its uncertainty on θn as long as we are comparing two equally good

schemes and the uncertainty is not underestimated. In other words, if the bias is not covered

by the uncertainty, the scheme difference |θn − θ̃n| exceeds what we estimated to be θn’s

natural size. This means one of the schemes is not a good one. If we cannot figure out

which one, then the uncertainty estimate, i.e., our estimate of θn’s natural size, is too small.

Often however, we really do have a theoretically preferred reference scheme, for instance

when there is an obvious canonical scale choice, which effectively reduces the bias to be

smaller than the uncertainty.10

We should also stress that at the end of the day this bias is not a major issue. For the

pre-fit theory predictions we are effectively in case 3b, unless we can argue for case 1. However,

at this stage the exact central value is not actually that useful or interesting, what matters

more are the uncertainties. We just have to keep in mind when discussing pre-fit predictions

that we had to make an explicit choice for the exact central value and we could have made a

slightly different one within the uncertainties. The central value actually becomes relevant

when the predictions are confronted with data, but at this point the bias can be reduced or

even eliminated by the data itself. To be prudent, we can in addition weaken any biased

theory constraint, e.g. by taking twice its uncertainty, to reduce its constraining power and

put more emphasis on the data as much as desired.

Finally, the above discussion provides another way to highlight the key limitation of scale

variations. They can at best provide an estimate of the scheme-induced bias but not of the

actual uncertainty, because they cannot actually probe the underlying unknown parameter

(the missing fn) whose central value is implicitly chosen to be zero.

10Evaluating the bias is of course subjective, but we should only consider alternative schemes for which we

really are as confident as for our reference scheme that the f̃n are of natural size. In other words, the bias is

not automatically given now by varying the scale by a factor of 2. When we (used to) do scale variations by a

factor of 2, it was not to estimate the scheme bias, we just exploited the scheme dependence to guess the

theory uncertainty.
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4 Parameterization guide

This section discusses how the series coefficients fn can be parameterized in terms of theory

nuisance parameters θn. It is intended for readers wishing to implement TNPs into their

predictions as well as curious readers wishing to use such predictions. It assumes readers

are familiar with section 3.1.

As already mentioned in section 3.1, deriving an optimal TNP parameterization fn(θn)

amounts to deriving the correct and relevant theory uncertainty and correlation structure

for the prediction at hand. It must thus be regarded as an integral part of performing and

providing the prediction itself.11 This is in general a nontrivial task and requires expert

knowledge on the structure of the underlying perturbative series. It is clearly not as easy

or convenient as performing scale variations; there is no free lunch.

The particular parameterization strategy or combination of strategies to follow will

depend on the case at hand. We hope our discussion here will serve as a useful guideline

and starting point for future investigations.

In the next subsection we setup the basic problem and along the way give an outline

of the rest of this section. We also provide a brief executive summary for the impatient

reader at the beginning of each subsequent subsection.

4.1 Overview and outline

The internal structure of fn is determined by various dependences on both discrete and

continuous parameters, variables, or labels. Typical discrete dependencies are partonic

channels, color channels, or any type of discrete quantum numbers. Examples of continuous

dependencies are kinematic variables or particle masses. In some cases, fn is mathematically

a continuous function of a parameter which in practice only takes discrete (typically integer)

values. Examples are the number of fermions, nf , or the number of colors, Nc. In section 4.6,

we will discuss these and other examples to illustrate our general discussion.

For now, let us denote any one of these variables (discrete or continuous) by x. For

the sake of simplicity and without much loss of generality we focus on the case of fn(x)

being a function of a single variable x at a time. The true value of fn(x) is again denoted

by f̂n(x). The dependence on multiple variables can be treated as a direct generalization

as discussed in section 4.5.

Our goal is to construct a TNP parameterization fn(x, θn) that satisfies the key require-

ment in eq. (3.3), which now reads

f̂n(x) = fn(x, θ̂n) . (4.1)

Another goal is that the θn,i should be mutually independent, i.e., they should correspond

to mutually independent sources of theory uncertainties. As a minimal (but not sufficient)

requirement, they must parameterize fn(x) in a mathematically independent way, so all θ̂n,i

are uniquely determined by eq. (4.1). We will come back to this distinction in section 4.4,

where we discuss the parameterization dependence. In section 4.3 we discuss various strategies

11To put it more bluntly: it must not be left to users to figure out for themselves what to do as it happens

too often right now with scale variations.
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for deriving suitable parameterizations satisfying these requirements. Before doing so, we

first discuss which dependencies we actually need to parameterize in section 4.2 next.

4.2 Correlation requirements

The first question we have to ask ourselves is which parts of the internal structure of fn we

actually need to account for, i.e., which of its internal x dependencies we need to explicitly

parameterize. The answer is that it depends on our usage requirements: the dependencies we

have to parameterize are in one-to-one correspondence with the correlations we are required

to take into account. To see this, we will discuss three different cases:

1. Predictions not requiring x dependence

2. Predictions requiring x dependence without correlations

3. Predictions requiring x dependence with correlations

4.2.1 Predictions not requiring x dependence

In this case 1), we only require predictions for which the x dependence is effectively not

needed. There are two basic scenarios for this:

(a) We only require predictions at a given fixed value x0. For example, we always work

in QCD at fixed Nc = 3 or fixed nf = 5. Or we only require cross sections at a fixed

center-of-mass energy.

In this case, we can consider fn(x0) as a scalar coefficient parameterized by a single

TNP θn,

fn(x0, θn) = Nn(x0) θn , (4.2)

where Nn(x0) is a normalization factor and the true value of θn is given by

θ̂n =
f̂n(x0)

Nn(x0)
. (4.3)

(b) We only require predictions summed or integrated over a fixed range [xa, xb] in x. For

example, we only require a total cross section summed over all partonic channels and

integrated over phase space.

In this case, we can consider the integral of fn(x) (or the sum for discrete x),

Fn(xa, xb) =

∫ xb

xa

dx fn(x) , (4.4)

as a scalar coefficient parameterized by a single TNP θn,

Fn(xa, xb, θn) = Nn(xa, xb) θn . (4.5)

Here, Nn(xa, xb) is again a normalization factor and the true value of θn is given by

θ̂n =
F̂n(xa, xb)

Nn(xa, xb)
. (4.6)

If one of the integration limits is always fixed, say xa = 0, this is the same as case (a)

applied to the cumulant function Fn(x) =
∫ x

0 dx fn(x).
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In either case, we can choose the normalization factor Nn such that θn has O(1) natural

size. It may or may not have to depend on the value x0 or the integration limits (xa, xb),

depending to what extent the value of x determines the natural size of fn(x).

4.2.2 Predictions requiring x dependence without correlations

In this case 2), we require predictions at several discrete values of x (e.g. at different nf ), or

several bins in x or as a function of x (e.g. a binned or unbinned differential spectrum), but

we do not need to have correct correlations in x. Even so, being differential in x forces us

to assume some correlations in x, for which we have different options:

(a) We assume the uncertainties to be fully correlated for all x, which means we are happy

to neglect any shape uncertainties in x and only care about some overall uncertainty

in fn(x). We can then parameterize fn(x) in terms of the same single θn appearing in

case 1) above, so

1(a) fn(x, θn) = Nn(x0) θn φn(x) with φn(x0) = 1 , (4.7)

1(b) fn(x, θn) = Nn(xa, xb) θn φn(x) with

∫ xb

xa

dx φn(x) = 1 .

The normalization factors Nn are the same as in eqs. (4.2) and (4.5). The function

φn(x) determines how the uncertainty is distributed over x. Its normalization condition

is chosen such that θn parameterizes the exact same uncertainty as in cases 1(a) or 1(b)

and we assume there are no shape uncertainties in x, i.e., we assume to know the shape

perfectly given by φn(x). This also means we are explicitly giving up that eq. (4.1)

holds point-by-point in x. Instead, we only require that it holds as in case 1) either at

x0 or integrated over [xa, xb].

There are various choices we might consider for φn(x). For example, a constant absolute

uncertainty in x is achieved by taking φn(x) to be a constant, φn(x) = a. A constant

relative uncertainty in x is achieved by taking φn(x) = a[f̂0(x) + · · · + f̂n−1(x)αn−1].

Another typical choice would be to take φn(x) proportional to the lowest-order x

dependence, φn(x) = a f̂0(x). In either case, the proportionality constant a is fixed by

the normalization condition for φn(x).

(b) We assume the uncertainties for some set of x values {xi} are fully uncorrelated. This

amounts to using case 1) for each xi with its own independent TNP θn,i,

fn(xi, θn) = Nn(xi) θn,i , (4.8)

where Nn(xi) are again normalization factors, and θn ≡ {θn,i} now stands for the set of

θn,i. The true values of the θn,i are

θ̂n,i =
f̂n(xi)

Nn(xi)
, (4.9)

and eq. (4.1) is now satisfied at each xi.
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We can now extend this to all x by generalizing case (a) above as follows,

fn(x, θn) =
∑

i

Nn(xi) θn,i φn,i(x) with φn,i(xj) = δij . (4.10)

The functions φn,i(x) now determine how the uncertainty due to θn,i is distributed away

from xi. Their form is more complicated now due to the additional requirement that

they must vanish at all but one xi. An analogous construction can be used for a set of

bins instead of x values.

We stress again, that the above options do not provide correct correlations in x. They

should only be used if it is known that correlations in x do not matter or in order to test

whether or not this is the case.

4.2.3 Predictions requiring x dependence with correlations

In this case 3), we require x-dependent predictions as in case 2) but now with correct

correlations in the uncertainties at different x. In other words, we require predictions with

correct shape uncertainties in x.

In this case, we have to explicitly parameterize the correct x dependence of fn(x). In

other words, fn(x, θn) must parameterize the true functional form of f̂n(x) such that there

are true values θ̂n for which it reproduces f̂n(x) exactly, i.e., eq. (4.1) is satisfied at any x.

Clearly, this requires us to have some knowledge of the true functional form of fn(x).

When x is a discrete label, knowing the functional form in x simply means knowing the

complete set of possible values {xi}, which is basically always the case. We can then assign

an independent θn,i for each fn(xi) as in case 2(b) above.

It gets more complicated when fn(x) is a continuous function of x, which has in principle

infinitely many degrees of freedom. We will discuss several strategies to deal with this

situation in section 4.3 next. For the sake of our discussion here, let us consider a simple

example: say we know on theoretical grounds that fn(x) is a polynomial of degree k (as

is the case e.g. for x = nf ),

fn(x) = fn,0 + fn,1 x + · · · + fn,k xk . (4.11)

The scalar coefficients fn,i are parameters of fn(x) with true but possibly unknown values f̂n,i.

Without further information, we have to treat them as independent unknown parameters

and thus parameterize each with its own TNP, fn,i = Nn,i θn,i, such that

fn(x, θn) =
k

∑

i=0

Nn,i θn,i xi , (4.12)

where Nn,i are normalization factors of our choice, and the true values of the θn,i are

θ̂n,i =
f̂n,i

Nn,i
. (4.13)

The key point is that in contrast to case 2), the θn,i are now defined to be the actual parameters

of the true functional form of fn(x) and therefore encode the correct correlation structure in x.
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4.3 Parameterization strategies

As we have seen, to account for the correct correlations in x we have to parameterize the

series coefficient fn(x) in terms of its correct underlying x dependence. There are different

basic strategies for doing so, depending on how much or little we know about the true

functional form of fn(x):

1. We know it well enough to be able to parameterize it explicitly in terms of a small

number of parameters.

2. We know it well enough to apply strategy 1) in some well-defined limit and can perform

a systematic expansion around that limit.

3. Having insufficient information for strategies 1) or 2), we can still perform an expansion

in a suitable complete functional basis.

We now discuss each of these in turn.

4.3.1 Known functional form

If we know the true functional form of fn(x) well enough, we can parameterize it explicitly.

In general, we can imagine f̂n(x) to be some functional φ̂n of x-dependent building blocks

φ̂n,i(x) and scalar coefficients fn,i,

f̂n(x) = φ̂n
[{φ̂n,i(x)}, {f̂n,i}

]

. (4.14)

Knowing the true functional form of fn(x) but not the true f̂n(x) itself means we know the

true φ̂n and φ̂n,i(x) but we do not know the true values f̂n,i. We can then parameterize each

coefficient fn,i = Nn,i θn,i in terms of its own θn,i to obtain the TNP parameterization

fn(x, θn) = φ̂n
[{φ̂n,i(x)}, {Nn,i θn,i}

]

, (4.15)

where as before Nn,i are normalization factors of our choice, and the true values are θ̂n,i =

f̂n,i/Nn,i. A common case is that φ̂n is a linear functional, such that

fn(x, θn) =
k

∑

i=0

Nn,i θn,i φ̂n,i(x) . (4.16)

Common special cases are φ̂n,i(x) = xi or φ̂n,i(x) = lni x corresponding to polynomials in

x or ln x of degree k.

The key point here is that we have to know the true functional form well enough to

be able to write eq. (4.14) with a finite number of unknown parameters fn,i. This is where

we need expert knowledge on the structure of the perturbative series of the quantity f .

Furthermore, we want to have a “minimal parameterization” in the following sense: we

want to choose φ̂n and φ̂n,i(x) such that we have the minimal possible number of a priori

unknown parameters fn,i. Firstly, this means we should not introduce additional a priori

known parameters. For example, we should not needlessly split the φ̂n,i(x) into smaller pieces

at the expense (or for the purpose) of introducing additional fake parameters that would
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effectively always be known and which we then pretend to be unknown. Vice versa, we also

should not eliminate parameters whose true values we happen to know already but which

could a priori be unknown. Instead, we should leave the decision for later whether to use

our knowledge of the true value to reduce the uncertainty or not.12 Note that even if we

know in principle the allowed φ̂n,i(x), this strategy can fail because the number of φ̂n,i(x)

might simply be too large to be practical.

Even a minimal parameterization is not unique. This is easily seen from the linear example

in eq. (4.16). We can always choose a different independent combination of the φ̂n,i(x) and

correspondingly use a different combination of the θn,i as the independent parameters. This

parameterization ambiguity is conceptually analogous to the scheme dependence of the

perturbative series discussed in section 3.4 and we will come back to it in section 4.4.

Finally, let us point out that there are cases for which the functional form in x is simple

and known, particularly when x is a discrete label (e.g. the partonic channel), and for which

it can be of advantage to parameterize the x dependence explicitly even if correlations in

x are not required. For example, when the x dependence strongly affects the size of fn(x),

it can be much easier to figure out the natural size of the individual x-independent θn,i

than of some single overall θn.

4.3.2 Supplementary power expansion

If we can identify a suitable small parameter ε, we can perform a supplementary power

expansion of fn(x) in ε,

fn(x) = fn0(x) + fn1(x) ε + fn2(x) ε2 + O(ε3) . (4.17)

Whilst we might not know the functional form of fn(x) well enough to apply strategy 1), we

might know the functional form of its fnl(x) series coefficients well enough to apply strategy

1) for each of them. This is clear when the expansion parameter ε is related to x itself, e.g.,

ε = x or ε = 1 − x. If fnl is independent of x then this is simply the Taylor expansion of fn(x)

around x = 0 or x = 1, but it can also be more general. A primary example is the small-pT

expansion we will employ in section 6 in which case fnl(x) are known to be polynomials in ln x.

Expanding around some point in x of course only helps us when we are actually close to that

point. However, ε does not necessarily have to be x itself in order to simplify the x dependence.

It may also be related to another variable y. When fn(x, y) has a nontrivial two-dimensional

structure, expanding in y can simplify not just the y dependence but also the x dependence

significantly, and expanding in y can be justified even when expanding in x is not.

The ε series in eq. (4.17) is conceptually completely equivalent to our perturbative series

in α and we can apply exactly the same logic for treating its uncertainties. The coefficients

fnl are parameters of the series with true but possibly unknown values. As long as the

expansion converges, we can keep the first m known coefficients, include the next k terms

to parameterize the dominant uncertainties, and truncate the remaining terms since their

12Even with this definition of “minimal” there might be corner cases where we might debate whether a

parameter is a priori known or unknown. To decide these, we just have to remember that the uncertainties

not only reflect our knowledge but also our common sense.
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uncertainties are formally small compared to the ones we keep. For example,

N0+1LPε: fn(x, θn0) = fn0(x, θn0) ,

N0+2LPε: fn(x, θn0, θn1) = fn0(x, θn0) + fn1(x, θn1) ε ,

N1+1LPε: fn(x, θn1) = f̂n0(x) + fn1(x, θn1) ε . (4.18)

where the notation refers to the next-(m + k)-leading-power expansion in ε.

We stress that the primary reason for using this expansion is to provide us the formal

justification and practical ability to only parameterize the leading-in-ε dependence on x

for the purpose of correctly parameterizing the uncertainties in x. Doing so does not force

us in any way to perform this expansion also for the known series coefficients, for which

we may not want to do so.

In case we happen to know the true value of f̂n0(x) we can include it exactly as in the

N1+1LPε result in eq. (4.18). In this case, the ε expansion even allows us to include further

information and thus reduce the uncertainties, which we would not be able to do otherwise. In

fact, this is exactly a case where thanks to our approach we are able to reduce the uncertainty

due to fn(x) by including partial higher-order information. Consequently, we then also have

to consider whether or not to include the uncertainty due to f(n+1)0(x).

4.3.3 Generic basis expansion

When we do not have sufficient information to parameterize fn(x) directly or in some limit,

we face the basic mathematical problem of how to best parameterize an unknown function

such that we can guarantee that the θn,i have true values. We start by expanding fn(x)

in a suitable complete basis φn,i(x),

fn(x) =
∞

∑

i=0

fn,i φn,i(x) . (4.19)

Thanks to the Weierstrass approximation theorem this expansion converges for polynomial

bases on any bounded interval in x as long as fn(x) is continuous. This means that formally

the fn,i are proper parameters with true values f̂n,i. This expansion is not particularly useful

yet, because it has infinitely many parameters. To make it useful for our purposes, we have

to truncate the series after a few terms to limit the number of parameters.

The key question then is how to justify truncating the series. In principle, we like to

apply the same argument as for our perturbative series in α or the ε expansion in strategy 2,

namely that the uncertainties due to the truncated terms can be neglected as small compared

to the uncertainties from the terms we keep. However, this argument is harder to make

now because we lack a parameter like α or ε which would allow us to control the size of the

truncated terms and decide where to truncate it without knowing f̂n(x). Instead, we have to

rely more on experience and being able to test it on known coefficients.

Therefore, the most suitable basis we can choose is not necessarily the one which yields

the best approximation for f̂n(x) for a given number of terms, but rather the one for which

we are most confident that it yields a sufficient approximation for a given number of terms.

In other words, we want a basis for which we are confident that it convergences quickly with
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the first couple of terms to a point where we can safely neglect the remainder. Beyond that

point, the remaining series may converge as slowly as it likes. The region of quick convergence

should include some safety margin to allow including additional terms in case the first few

terms we would keep by default get constrained too strongly.

For simplicity and without loss of generality, let us assume the relevant x range to be

x ∈ [−1, 1]. Standard polynomial bases on this interval which are known to converge very fast

for sufficiently smooth functions are Legendre and Chebyshev polynomials.13 An advantage

of Legendre polynomials is that they are orthogonal with respect to the unit weight function.

An advantage of Chebyshev polynomials is their equioscillation property, which means that

all their minima and maxima in the interval [−1, 1] are at ±1. Even if we do not know

the full functional form of fn(x) we rarely know nothing about it. We can improve the

convergence of the series by starting from some ansatz φn(x) and expanding the ratio to

fn(x) to obtain the TNP parameterization,

fn(x)

φn(x)
=

∞
∑

i=0

fn,i φn,i(x) ,

fn(x, θn) = φn(x)
k

∑

i=0

Nn,i θn,i φn,i(x) . (4.20)

Alternatively, we can expand the difference to obtain

fn(x) − φn(x) =
∞

∑

i=0

fn,i φn,i(x) ,

fn(x, θn) = φn(x) +
k

∑

i=0

Nn,i θn,i φn,i(x) . (4.21)

Note that φn(x) and φn,i(x) should be normalized suitably such that the overall size of the

uncertainty and the natural size of θn,i is determined by their normalization factors Nn,i.

Another general method to accelerate the convergence is to use a variable transformation

to account for some known general behaviour of fn(x). For example, if fn(x) is known to

have poles or branch cuts in the complex plane, using a variable transformation that maps

these to infinity can significantly improve the rate of convergence. One particular option if

φn(x) is square-integrable and positive definite, φn(x) = |φn(x)|, is to construct a custom

orthonormal basis on top of it, as was done in ref. [46] in a different context. The idea

is to use the cumulant of φn(x) as a variable transformation as follows. Let us normalize

φn(x) such that
∫ 1

−1 dx [φn(x)]2 = 1 and define

y(x) = −1 + 2

∫ x

−1
dx′ [φn(x′)]2 ,

φn,i(x) =
√

y′(x) pi[y(x)] , pi(y) =

√

2n + 1

2

1

2nn!

dn

dyn
(y2 − 1)n , (4.22)

13Roughly speaking, for differentiable functions that have p − 1 continuous derivatives and a pth derivative

of bounded variation, Legendre, Chebyshev, and similar polynomial expansions converge algebraically ∼ 1/kp.

For analytic functions they converge geometrically ∼ 1/ρk where the constant ρ depends on how far the

function can be analytically continued into the complex plane. The corresponding precise mathematically

theorems can be found e.g. in ref. [45].
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Here, pi(y) are normalized Legendre polynomials, which are orthonormal on y ∈ [−1, 1],

and thus φn,i(x) are orthonormal on x ∈ [−1, 1]. Since
√

y′(x) =
√

2φn(x), the 0th basis

function φn,0(x) = φn(x) itself, while the higher basis functions are orthogonal polynomial

modulations on top of it. As a result, if φn(x) captures the overall shape of fn(x), the series

is expected to converge much more rapidly than expanding in pi(x) directly, at least for the

first few terms until the detailed shape starts to matter, which is all we really want.

Hence, the key to finding a suitable basis in the above sense is to start from a suitable

approximation φn(x). Importantly, the goodness of this approximation is not a fundamental

limitation, as it only serves in one or another way as a starting point for a complete expansion.

There are various ways we can imagine choosing φn(x):

• Pick φn(x) = φ̂n(x), or more generally φn(x) = φ̂n(x, θn), where φ̂n(x) encodes some

known aspect of the true functional form of fn(x), e.g., it has (or parameterizes) the

correct asymptotic behaviour or the correct poles. This essentially supplements strategy

1) in case the information we have is not sufficient for using it standalone.

• Pick φn(x) = fn0(x, θn0) or φn(x) = f̂n0(x), where fn0(x) is the leading-power limit

from strategy 2) which either has a simpler known x dependence or is fully known. This

essentially supplements strategy 2) in case it cannot be used standalone, e.g., when the

ε → 0 limit is known but the expansion itself is not or does not apply to all x.

• Use the known lower-order shape φn(x) = af̂0(x) or φn(x) = a[f̂0(x)+· · ·+f̂n−1(x) αn−1],

with a determined by the appropriate normalization condition on φn(x). This essentially

supplements case 2) in section 4.2.2. For the multiplicative case it effectively expands

the K factor, which makes sense whenever we are confident that fn(x)/f̂0(x) is much

flatter in x than fn(x) itself.

• Use some approximation φn(x) ≈ f̂n(x), which is known to work in similar cases, e.g. a

Padé approximation. This supplements any ad hoc approximation method, extending

it into a formally complete parameterization.

Before concluding, let us comment that one might naively think that having to know

or parameterize the functional form of fn(x) is a drawback of our approach. It is not. It is

simply a necessity for obtaining the correct correlation structure in x. In practice, we almost

always have some, even if limited, information about the functional form and it is in fact a key

advantage of our approach that all information we have can be systematically incorporated.

In contrast, with uncertainties derived from scale variations fn(x) is silently modelled by

some linear combination of lower-order coefficients, see eq. (2.11). If this is indeed believed to

be a sufficient correlation model, one can always use the lower-order coefficients to construct

the ansatz φn(x) as mentioned in the third bullet point above. This is still much better

than scale variations, because it provides explicit control over the assumptions made and

furthermore provides a systematic extension to a formally complete parameterization.

4.4 Parameterization dependence

Regardless of the strategy used to derive the TNP parameterization, a given parameterization

is never unique. For example, we can always choose some linearly independent combination of
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the θn,i as new independent parameters. The ambiguity in the choice of the parameterization

is conceptually analogous to the scheme dependence of the perturbative series, and our

discussion here will resemble much of the discussion in section 3.4.

Let us therefore start with an executive summary: it is important to distinguish the

uncertainty and correlation structure, which is unique and correctly encoded by any valid

parameterization, from the actual values of the uncertainties and correlations, which are

determined by whatever constraints we choose to impose on the parameters. Before any

constraints they are simply unknown, which means their uncertainties are infinite and their

correlations do not matter, which is a parameterization independent statement. When the

parameters are solely constrained by data or other parameterization-independent constraints,

the uncertainties and correlations reflect the combined uncertainties and correlations due to

all constraints in a parameterization-independent way. A parameterization-dependent bias is

only induced when we impose parameterization-dependent constraints.

To discuss the possible parameterization dependence in more detail, let us denote by

fn(x, θn) our default parameterization and by f ′
n(x, θ′

n) some alternative parameterization.

For the sake of discussion let us also consider them to still be exact, so before truncating

the ε series in strategy 2) or the basis expansion in strategy 3). Different parameterizations

must then be equal by definition,

fn(x, θn) = f ′

n(x, θ′

n) , (4.23)

as they both parameterize the same function fn(x) and reproduce the same true value f̂n(x).

It follows that from eq. (4.23) the θ′
n are uniquely determined in terms of the θn (and vice

versa) in exactly the same way the true θ̂n and θ̂′
n are uniquely determined by eq. (4.1).

Note that in principle there could be more θ′
n,i than θn,i parameters. If so, it would imply

that fn(x, θn) contains more information on the true functional form in x than f ′
n(x, θ′

n). So

from the point of view of fn(x, θn) some of the θ′
n,i are either known or not independent.

Let us therefore assume that both parameterizations are based on the same information

and thus have the same number of parameters.

Any valid parameterization, meaning it satisfies eq. (4.1), encodes the correct theory

uncertainty and correlation structure. The θn and θ′
n play the role of different but related

input parameters. If we treat them as unknown parameters to be determined from data,

it does not matter at all which one we choose, since there is an exact relation between

them. Any constraints imposed by the data are parameterization independent as they always

constrain fn(x), so they respect the relation between θn and θ′
n implied by eq. (4.23).

A dependence on the parameterization (only) appears when we make parameterization

dependent assumptions, i.e., by imposing theory constraints on the θn of a specific param-

eterization. This also includes the assumption of their mutual independence, which only

enters when we choose to impose independent (uncorrelated) theory constraints on them.

Doing so for the θn,i implies in general some nontrivial correlated uncertainties for θ′
n,i (and

vice versa). The point is that the condition for some parameters to be mathematically

independent is only a necessary but not sufficient condition for them to be conceptually

independent, i.e. to correspond to independent sources of uncertainties, and thus to be a

– 32 –



J
H
E
P
0
8
(
2
0
2
5
)
0
9
8

priori uncorrelated. Whenever we talk about the θn,i being mutually independent we really

refer to their conceptual independence.

To illustrate this with a simple example, say we know fn(x) to be a kth-order polynomial.

Consider the two equivalent parameterizations

fn(x, θn) = θn,0 + θn,1 x + · · · + θn,k xk ,

f ′

n(x, θ′

n) = θ′

n,0 + θ′

n,1 (1 − x) + · · · + θ′

n,k (1 − x)k . (4.24)

By setting them equal, we can easily derive the exact relation between θ′
n and θn, e.g.,

θ′

n,0 = θn,0 + θn,1 + · · · + θn,k , θ′

n,1 = −θn,1 − 2 θn,2 − · · · − k θn,k , (4.25)

and so on. A fit to data always chooses the kth-order polynomial that best fits the data,

regardless of the specific parameterization, with the post-fit uncertainties and correlations

of the parameters reflecting the uncertainties and correlations of the fitted measurements

in a parameterization independent way. On the other hand, imposing a theory constraint

that the θn,i have mutually uncorrelated uncertainties of ∆un,i = 1 yields an uncertainty for

fn(x = 0) of 1 and for fn(x = 1) of
√

k. On the other hand, imposing the same constraint

on the θ′
n,i yields an uncertainty for fn(x = 0) of

√
k and for fn(x = 1) of 1.

Hence, the choice of parameterization in principle induces a bias in the uncertainties

and correlations if we let it determine which parameters to impose independent theory

constraints on. Therefore, we should not choose the independent parameters based on the

parameterization, but rather the other way around. We should choose a parameterization for

which we are most confident that its θn,i can be considered to correspond to independent

sources of uncertainty. Furthermore, we can avoid a parameterization bias by imposing theory

constraints at the level of fn(x) itself. For example, we should always choose the central

value directly for fn(x), which by default can just be fn(x) = 0. This is a parameterization-

independent condition on the central values of θn or θ′
n and thus avoids any parameterization

bias in the central value. Similarly, we can impose for example an uncertainty based on the

natural size of the integral of fn(x) or its value at special points. Ultimately, however, this is

just another way of choosing what we consider to be the independent sources of uncertainty.

The TNPs can only help us to parameterize the independent sources of uncertainty once

we have identified them. They cannot decide for us what they are. As soon as we want or

need to impose theory constraints we cannot avoid making this decision. This is another

place where clearly domain knowledge is required. What we can avoid though is to make an

implicit or uninformed decision. If we do not have enough information to decide, we have

to limit ourselves to unambiguous parameterization-independent constraints.

Our above discussion implies for strategy 3) that the choice between different linearly

related bases (polynomial or otherwise) is actually irrelevant when fitting to data (apart

from effects due to numerical stability etc.) or imposing other parameterization-independent

constraints. It is only relevant for arguing where we are allowed to truncate and perhaps

for arguing which parameters we should consider to be independent. The truncation itself

does induce a parameterization-dependent bias, which however can be phrased in terms

of the above discussion: we can always think of it as imposing a theory constraint on the

parameters of the truncated terms that their central value vanishes with an uncertainty

whose net effect we can neglect.
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4.5 Multiple dependencies

So far, we have assumed that the x-independent coefficients fn,i are scalars so we can

parameterize them by a scalar nuisance parameter. This is no longer the case when fn

depends on multiple internal variables whose dependence we are required to parameterize, i.e.,

which fall into cases 2) or 3) in section 4.2. To generalize our discussion to this situation, it is

sufficient to discuss how to extend from the one-dimensional case fn(x) to the two-dimensional

case fn(x, y). The generalization to further variables then proceeds in exactly the same way.

When we assemble the final prediction from its ingredients there is typically a natural

progression of the dependencies from the inner layers to the outer layers, which we can also

follow here. For example, the innermost layer could be the color and nf dependence, then

comes the kinematic dependence, next we sum over partonic channels, and eventually at

the outermost layer we sum or combine different processes.

To be concrete, let us denote the innermost relevant variable by x and the next outer

variable by y. To parameterize the y dependence, we can follow the same strategies discussed

in the previous subsections. The only difference is that once the y dependence is stripped

away, the y-independent coefficients fn,j ≡ fn,j(x) are not scalars but still functions of x.

Each of them we can then parameterize in x in terms of scalar parameters as we have

discussed so far for fn(x). For example, if y is a discrete variable or only needed at fixed

values we simply have fn,j(x) = fn(x, yj).

The only more complicated case is when x and y are both continuous and appear at the

same layer, e.g., when considering a double-differential spectrum in two kinematic variables. If

their dependence is separable, fn(x, y) = fn(x)gn(y), we can treat each one-dimensional factor

as before. Finally, when we have a genuinely two-dimensional function fn(x, y) and require

correlations in both x and y, we need to parameterize the x and y dependencies simultaneously,

for which we can follow the two-dimensional generalization of the strategies in section 4.3.

For strategy 1), we have to consider two-dimensional basic building blocks φ̂n,ij(x, y).

Clearly, finding a minimal parameterization of the true functional form is going to be more

difficult now, but it can still be possible if the x and y dependence is separable or if it can

be reduced to several one-dimensional functions which only depend on certain combinations

of x and y.

For strategy 2), the ε expansion coefficients fnl(x, y) are in general two-dimensional

now. This strategy can be quite powerful to make the two-dimensional case more tractable.

By expanding in ε, we might be able to simplify one or both dependencies or make them

separable or otherwise reduce the problem to the one-dimensional case.

For strategy 3), we have to consider two-dimensional functional bases φn,ij(x, y). The

approximation of multivariate functions is surprisingly more difficult than the univariate case,

and an active area of mathematical research. Finding suitable multivariate parameterizations

for an unknown multivariate function is a similarly difficult problem. However, it is ultimately

necessary to correctly account for a genuinely multidimensional correlation structure if we

lack the ability to apply strategies 1) or 2). The most straightforward is to consider a product

basis φn,ij(x, y) = φn,i(x)φn,j(y), which simply amounts to expanding fn(x, y) in φn,j(y) for

fixed x and then further expanding the resulting x-dependent series coefficients in φn,i(x).

Unfortunately, the number of terms quickly proliferates — the curse of dimensionality.
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However, we can often identify a primary variable x and a secondary variable y, whose

correlations might matter less or which is going to be integrated over first. In this case we

can mitigate the curse of dimensionality by optimizing the basis in favor of x.

4.6 Examples

In this subsection, we discuss various dependencies to illustrate the general discussion of

the previous subsections.

4.6.1 Nc dependence and color structure

When we are only interested in QCD corrections, the dependence on the number of colors,

Nc, is an example of case 1) in section 4.2: we always have fixed Nc = 3 and do not require

correlations between different values of Nc. This means we do not need separate θn,i for

individual color coefficients but only a single overall one for fn(Nc = 3).

Nevertheless, if we were to parameterize the Nc dependence, it is a good example

for strategy 1) where the functional form is fully known, as we know exactly which color

coefficients composed of CA, CF , TF , as well as higher invariants, appear for a given fn.

When considering QCD and QED corrections, we still do not need the full Nc-dependent

structure but effectively two pieces of it. The abelian parts of the QCD coefficients are clearly

correlated with the QED coefficients. To correctly account for this correlation we have to

separate the abelian and nonabelian parts of the QCD color structure and parameterize each

with a separate TNP. The abelian one will then be shared by the QCD and QED coefficients,

whereas the nonabelian one only appears in the QCD coefficients. In this way, the partial

correlation between QCD and QED coefficients is correctly accounted for.

An analogous discussion applies to QCD and electroweak corrections at sufficiently high

energies where the masses mV of the electroweak gauge bosons can be neglected. When the

gauge boson masses cannot be neglected it requires a more detailed investigation to identify

the possibly common parts. Effectively one has to consider in addition the dependence on

mV at two fixed points, namely at the physical value of mV and in the mV → 0 limit.

4.6.2 nf dependence

When the number of flavors, nf , is the same in all considered predictions, as is often the

case with nf = 5, we are in case 1) and do not require correlations in nf and only a single

TNP for fn(nf = 5). When we do cross flavor thresholds and require fn(nf ) at different nf

values, we do need to parameterize the nf dependence to account for the (de)correlation

between say nf = 5 and nf = 4.

The nf dependence is another example where strategy 1) is easily applicable, since fn(nf )

is a polynomial in nf of known degree. This actually poses an interesting theoretical question,

namely which parts of the nf dependence are conceptually independent. Neither the naive

choice to consider the coefficients of ni
f as independent nor rewriting nf in terms of β0(nf )

and considering the coefficients of β0(nf )i as independent seem to be supported by empirical

evidence. Instead, empirical evidence suggests that the coefficients of (CA − TF nf )i are

independent. This can likely be attributed to the screening effect of quarks, see section 5.2

for some further discussion.
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4.6.3 Partonic channels

The dependence on different partonic channels is a primary example of a genuinely discrete

dependence. Here, strategy 1) is immediately applicable, as we know exactly which partonic

channels appear at a given order, and it amounts to separately parameterizing each partonic

channel.

One might ask the question when we are actually required to separate the partonic

channels. One reason is when we require hadron-collider predictions at different center-of-

mass energies, Ecm, since the Ecm dependence enters via the different parton luminosities for

each channel, which can have very different scaling with Ecm. Another reason is to capture

correlations between different processes that share common partonic channels, see below.

Another important reason to separately parameterize partonic channels is to anticipate

new channels that only open up at higher orders but can have sizeable contributions, which is

a classic case where scale variations can fail badly. This is an example where parameterizing

the dependence, even if not required for correlations, can be of advantage for figuring out

the natural size of the TNPs.

4.6.4 Process dependence

Another type of correlation is that between different processes. This tends to be a more

complicated dependence to take into account as it requires detailed knowledge of the internal

structure. To correctly correlate the process dependence we basically have to map it into

the dependence on some internal variables x. Luckily, the most relevant cases, namely

closely related processes expected to be strongly correlated, are also the most straightforward.

For example, for W vs. Z production, the process dependence essentially maps into the

dependence on partonic channels and electroweak gauge couplings and boson masses. We

will see an explicit example in section 6.

4.6.5 Continuous dependencies

A typical example of a genuinely continuous dependence is that of a differential spectrum. We

will discuss the example of the qT spectrum in detail in section 6, which is going to involve a

repeated application of strategies 1 and 2. Another generic example is the dependence on the

partonic momentum fractions za,b of partonic cross sections in hadronic collisions. Here, if we

are only asking about a total cross section, the za and zb dependence is effectively projected

onto a single number. If we consider a kinematic distribution that effectively measures the

total invariant mass Q of the hard process, then we need the one-dimensional dependence

on z = zazb. Finally, if we are sensitive to both the total invariant mass and rapidity of

the hard process we need the full dependence on za and zb. Suitably parameterizing this

dependence is in general nontrivial. Often though, the cross section tends to be dominated

by the z → 1 limit, which can be a good starting point by applying strategy 2 with ε = 1 − z.

This strategy has already proven very useful in other cases where the dependence on partonic

momentum fractions arises, namely to parameterize the unknown parts of beam function

matching kernels [47] or QCD splitting functions [13] in terms of TNPs.
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5 Theory constraints for scalar series

In this section, we discuss TNPs for perturbative series with scalar coefficients fn and how

to obtain robust theory constraints on them, which belongs to the second step of applying

the TNP approach as discussed in section 3.1.

We assume that the parameterization of any relevant outer levels of x dependences as

discussed in section 4 has happened and has reduced the remaining perturbative series to have

scalar coefficients fn, as will be relevant for the application in section 6. We limit ourselves

to QCD corrections at fixed nf = 5. Further investigations beyond this case are of course

warranted but are well beyond our scope here and are left to future work.

Hence, the starting point for our discussion in this section is that we have a QCD series in

αs with scalar coefficients fn that can be parameterized by a single theory nuisance parameter,

fn(nf = 5, θn) = Nn(nf = 5) θn . (5.1)

To simplify the notation, we will suppress the nf = 5 argument from here on. The normaliza-

tion factor Nn accounts for the expected natural size of fn, i.e., it should be chosen such that

we generically expect |f̂n| . Nn. Consequently, the expected natural size of θn is |θ̂n| . 1.

5.1 Overview

Not knowing the true value θ̂n of θn, our goal is to obtain an estimate as in eq. (3.4),

θn = un ± ∆un , (5.2)

based on theoretical arguments. This will be our baseline theory constraint on θn, which

we use to evaluate the theory uncertainty in the absence of any additional constraint from

other sources of information.

Without additional information we will usually just take un = 0 as our best-guess central

value. We then need to assign an uncertainty ∆un to this choice, which determines the amount

by which we vary θn and thus the size of the resulting theory uncertainty. When we need a

statistical treatment of eq. (5.2), we also need the probability distribution P (un|θn) of un. For

this purpose, we treat un as if it came from a measurement with a Gaussian 1σ uncertainty

of ∆un. More precisely, we model our estimator un for θn as a Gaussian-distributed random

variable with mean µ = θn and standard deviation σ = ∆un. This is a standard assumption

also used for nuisance parameters of experimental systematic uncertainties, whose justification

basically stems from the central-limit theorem. In section 5.3, we will find strong empirical

evidence that un can indeed be considered as a Gaussian-distributed random variable. We

will thus refer to the theory uncertainties that result from varying a theory constraint by

±∆un as one “theory-σ” uncertainty or 68% “theory CL”. Similarly, 95% theory CL refers

to varying by ±2∆un.

Following our discussion in section 2.1, ∆un is not given by the distance |θ̂n − un| of our

estimate un to the true value θ̂n. Thus, to estimate ∆un we do not need to estimate a precise

value of θ̂n. (Our best guess for θ̂n is already represented by un). Rather, ∆un must reflect

our limited knowledge. With the above statistical interpretation this means we need to choose

∆un such that |θ̂n − un| ≤ ∆un with 68% confidence. For un = 0, ∆un is thus determined by

the natural size of θn, |θ̂n| . ∆un, and so with our choice of normalization we have ∆un ≃ 1.
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If we believe to know absolutely nothing about fn, it would imply to take ∆un = ∞ so

θn would be left to vary unconstrained within [−∞, ∞]. In other words, we would treat θn as

a truly unknown parameter to be determined from data. In many cases, this is of course too

pessimistic as we do have some expectations and plenty of experience of the typical size of

higher-order corrections. Therefore, to choose an appropriate ∆un we proceed in two steps:

in the first step in section 5.2, we use theoretical arguments to estimate the expected natural

size of fn. That is, we determine the normalization Nn for which we expect |f̂n| . Nn so

|θ̂n| . 1 and ∆un ≃ 1. Based purely on theoretical expectations we can only hope to narrow

∆un down to an O(1) factor, perhaps a factor of two at best. Therefore, in the second step in

section 5.3 we study the true values θ̂n of many known series of a common category. This will

provide us with the empirical evidence to verify and further narrow down the value of ∆un and

also to confirm its statistical interpretation in terms of the probability distribution P (un|θn).

5.2 Normalization and estimate of natural size

We consider two general categories of perturbative quantities. The first are quantities

corresponding to the finite constant terms of matrix elements, which we refer to as matrix-

element “constants” and for which we continue to use the generic notation f(αs). This includes

total cross sections and decay rates as well as the constant (nonlogarithmic) terms (RG

boundary conditions) of matching coefficients and matrix elements of renormalized operators.

The second type are anomalous dimensions, denoted generically as γ(αs), which correspond

to the coefficients of 1/ε poles in the bare perturbative series. We distinguish these two

categories because we expect and find their perturbative series to behave somewhat differently.

5.2.1 Matrix-element constants

We write the perturbative series for matrix-element constants as

f(αs) = 1 +
∑

n=1

fn

( αs

4π

)n
, (5.3)

which defines their perturbative coefficients fn. We normalize all quantities such that their

leading-order result is f0 = 1, since it only contains overall couplings and prefactors, which

are always known, and so does not yet contain nontrivial information about the perturbative

series. We choose the normalization Nf
n to parameterize fn in terms of θf

n as

fn(θf
n) = Nf

n θf
n with Nf

n = 4nCn(n − 1)! . (5.4)

Here, Cn = CrCn−1
A is the leading color factor of fn with Cr the one-loop color factor, which

depends on the color representation of the external particles, i.e., Cr = CF for external

quarks and Cr = CA for external gluons. Note that we merely use the leading-color limit

to determine the normalization. We do not make a leading-color approximation anywhere.

As discussed in section 4.6, we do not need to parameterize the full color structure of the

coefficients because here we are only interested in QCD and fixed values of Nc. We will

explain the other factors in a moment.

The above discussion applies to tree-level quantities. Considering quantities that are

inherently loop induced, their overall normalization is defined to be consistent with that
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of an associated tree-level quantity. Typical examples would be an off-diagonal partonic

channel that has an associated diagonal partonic channel, or a singlet coefficient that has an

associated nonsinglet coefficient. Their leading n-loop color factor is then given by the color

factor of the first appearing loop order times one power of CA for each additional loop order.

As an instructive example to understand this choice of Nf
n , let us consider the qq̄ vector, qq̄

scalar, and gg matching coefficients, corresponding to the infrared-finite parts of the respective

QCD form factors, which are known to four loops [48, 49]. The perturbative series of their

respective constant terms are denoted as cqq̄V (αs), cqq̄S(αs), and cgg(αs). (The cqq̄V (αs)

coefficient is defined in more detail in section 6.2.) In tables 2, we show the true values f̂n/Nn

for all three matching coefficients successively dividing out the normalization factor Nf
n :

• The first line in each block shows the raw values for f̂n, which grow very large for

increasing n. Naively, there would be little hope to directly estimate the correct expected

size of these numbers.

• In the second lines, we divide out a factor of 4n, which basically removes the 1/4n in

eq. (5.3). It is clear that the conventional 1/(4π)n loop factor is artificial in this regard

and a main reason for the quickly increasing magnitude of the coefficients. We could of

course have directly expanded eq. (5.3) in terms of αs/π, which is actually known to be

a more appropriate expansion parameter. The reason we did not do so is for the sake

of illustration here and because defining the series coefficients with respect to αs/(4π)

is the most commonly used convention. Nevertheless, the resulting numbers are still far

from O(1).

• In the third lines, we further divide out the leading color factor CrCn
A appearing at

n-loop order, which brings the numbers to O(1) as we might expect.

• Finally, in the fourth and last line, we further divide out a factor of (n − 1)!, which

amounts to {1, 1, 2, 6} for n = {1, 2, 3, 4} and which is clearly still present in f̂3/N3 and

f̂4/N4 in the previous line. The appearance of this factor also matches our expectation

of the factorial growth of the series coefficients.

The last line in each block in tables 2 corresponds to the nominal Nf
n in eq. (5.4) with the

numbers in bold corresponding to the true values θ̂f
n, which indeed satisfy |θ̂f

n| . 1 to well

within a factor of two as desired. The above arguments leading to this choice of Nf
n are

generic and not specific to the given examples. Hence, we consider it as a very plausible

generic expectation for the natural size of fn, and consequently we can consider ∆un ≃ 1

as a plausible uncertainty.

This exercise already teaches us several interesting things and dispels some common lore.

First, gluonic quantities do not necessarily have genuinely larger perturbative corrections

than quark ones. Once the different overall color factor of Cr = CA vs. Cr = CF is accounted

for, the remaining normalized coefficients for Cgg have the same generic size as those for Cqq̄V

and Cqq̄S . In fact, one of the latter is always larger than Cgg at each order. Secondly, once

normalized to their natural size, the specific size of the coefficient(s) of previous order(s) is

not a good indicator for the size of the coefficient(s) at the following order(s). In other words,
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f(αs) Nn f̂1/N1 f̂2/N2 f̂3/N3 f̂4/N4

cqq̄V (αs) 1 −8.47 −48.6 −1387 −42015

4n −2.12 −3.04 −21.7 −164

4nCF Cn−1
A −1.59 −0.76 −1.81 −4.56

4nCF Cn−1
A (n − 1)! −1.59 −0.76 −0.90 −0.76

cqq̄S(αs) 1 −0.47 +87.1 +2309 +76100

4n −0.12 +5.44 +36.1 +297

4nCF Cn−1
A −0.09 +1.36 +3.01 +8.26

4nCF Cn−1
A (n − 1)! −0.09 +1.36 +1.50 +1.38

cgg(αs) 1 +4.93 −24.0 −4066 −123979

4n +1.23 −1.50 −63.5 −484

4nCACn−1
A +0.41 −0.17 −2.35 −5.98

4nCACn−1
A (n − 1)! +0.41 −0.17 −1.18 −1.00

Table 2. True values of the series coefficients f̂n divided by various normalization factors Nn for the

quark vector (top block), quark scalar (middle block), and gluon (bottom block) matching coefficients.

The numbers in bold in the last line of each block are the θ̂f
n.

one should not look at this table from left to right but only from top to bottom. Thirdly, the

coefficients are not always or mostly positive and may change sign at different orders.

The convention to have f0 = 1 does not yet uniquely fix the overall convention for f(αs),

as we could still raise f(αs) to some power, which keeps f0 = 1, but changes the fn. For

example, by squaring a series with all fn = 1 we get

[

1 +
∑

n=1

αn
]2

= 1 +
∑

n=1

(n + 1) αn . (5.5)

Therefore, by taking the square or square root of f(αs), the natural size of fn can change

by an O(n) factor, which we clearly have to account for if we aim for an estimate to within

a factor of two or better. We find the normalization in eq. (5.4) to be appropriate for the

convention that f(αs) is raised to an appropriate power such that it effectively scales as a

matrix element with two (resolved or Born-level) external QCD partons, as is the case for

the matching coefficients considered above, or equivalently a squared matrix element with a

single (resolved or Born-level) external QCD parton. This means we consider jet and beam

functions as they are, since they can be regarded either as forward 1 → 1 matrix elements

or 1-parton squared matrix elements. On the other hand, we consider the square root of

0 → 2 cross sections and decay rates and also of soft functions with two Wilson lines. We

might argue that this is also natural from the point of view of identifying the conceptually

independent perturbative corrections, since they fundamentally appear for the matrix element

and not its square. A typical example is a large correction to the NLO matrix element whose

square then also causes a large NNLO correction to the cross section. By considering the

square root of the cross section, this is effectively accounted for.14

14In the future, instead of just taking the square root for cross-section-like quantities, it might be worth to
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Finally, there is one more subtlety to consider. The attentive reader might have wondered

that the factorial factor in eq. (5.4) is (n − 1)! and not just n!. As it turns out, an n! factor

is indeed appropriate in the pure gauge theory with nf = 0. The factorial growth can be

attributed to bubble chains inserted into gluon propagators. Including fermions, the leading

nf dependence comes from replacing a gluon bubble by a fermion loop and generically appears

as CA − TF nf , which vanishes for nf = 6 (for QCD with CA = Nc = 3 and TF = 1/2).

Empirically, we find that this quark screening effect reduces the size of the corrections by

1/n turning the n! behaviour for nf = 0 into (n − 1)! for nf ≃ 6. This applies when the

nf dependence starts at n = 2. In some (but not all) cases with external gluons, the nf

dependence starts at n = 1, in which case n must be increased by one in the factorial factor,

so we would use n! in eq. (5.4) for nf = 5.

5.2.2 Anomalous dimensions

We write the perturbative series for anomalous dimensions as

γ(αs) =
∑

n=0

γn

( αs

4π

)n+1
, (5.6)

which defines their coefficients γn. Their overall normalization is less obvious than for f(αs)

since they start at loop-level, so γ0 appears at the same order as f1 and already contains

nontrivial perturbative information. The anomalous dimensions correspond to logarithmic µ

derivatives of matrix elements so the ambiguity of raising f(αs) to some power corresponds

to multiplying γ(αs) by some overall factor. We therefore decide to fix the normalization

convention for γ(αs), including its overall sign, analogous to that of f(αs) so it corresponds

to the anomalous dimension of some f(αs), i.e., the derivative with respect to ln µ of a matrix

element with two external QCD partons.

We then choose the normalization Nγ
n to parameterize γn in terms of θγ

n as

γn(θγ
n) = Nγ

n θγ
n with Nγ

n = 4n+1Cn+1 , (5.7)

where Cn+1 is again the leading (n + 1)-loop color factor, typically given by Cn+1 = CrCn
A

with Cr the one-loop color factor determined by the color representation of the external

legs. To motivate this normalization, we show the known true values for a few anomalous

dimensions in tables 3 successively dividing out the normalization factor Nγ
n . We find a

quite similar pattern as before for the constants fn:

• The first line in each block shows the raw values for γ̂n, which quickly grow large as

n increases. There would again be little hope to directly estimate the size of these

numbers.

• In the second lines, we divide out a factor of 4n+1, which removes the 1/4n+1 in eq. (5.6).

We see again that the conventional 1/(4π)n+1 loop factor artificially enlarges the size

of the coefficients.

investigate the option of directly parameterizing and estimating the real and imaginary parts of the underlying

complex amplitude. This is clearly more challenging due to the presence of IR divergences and also because in

the literature perturbative results are often provided only for the cross section.
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γ(αs) Nn γ̂0/N0 γ̂1/N1 γ̂2/N2 γ̂3/N3 γ̂4/N4

β 1 −15.3 −77.3 −362 −9652 −30941

4n+1 −3.83 −4.83 −5.65 −37.7 −30.2

4n+1CF Cn
A −1.28 −0.54 −0.21 −0.47 −0.12

γm 1 −8.00 −112 −950 −5650 −85648

4n+1 −2.00 −7.028 −14.8 −22.1 −83.6

4n+1CF Cn
A −1.50 −1.76 −1.24 −0.61 −0.77

2Γq
cusp 1 +10.7 +73.7 +478 +282 (+140000)

4n+1 +2.67 +4.61 +7.48 +1.10 (+137)

4n+1CF Cn
A +2.00 +1.15 +0.62 +0.03 (+1.27)

Table 3. True values of the series coefficients γ̂n divided by various normalization factors Nn for the

QCD β function [50–56], the quark-mass anomalous dimension [57–62], and the quark cusp anomalous

dimension [63–66]. The numbers in bold in the last line of each block are the θ̂γ
n. The 5-loop result

for the quark cusp anomalous dimension [67] in brackets is only known approximately.

• In the third lines, we further divide out the leading n-loop color factor, which yields

numbers that are . 1 within a factor of two.

In contrast to the matrix-element constants, no factorial factor appears for the anomalous

dimensions, which is not entirely unexpected. However, we still find that for nf = 0 the

coefficients are enhanced by a factor of n due to the absence of the quark screening compared

to nf ≃ 6. Also, the sign of the higher-order coefficients now tends to be determined by the

sign of γ0 for nf ≤ 5, while for nf = 6 the coefficients do change sign at different orders. We

leave a more detailed investigation and parameterization of the nf dependence to the future.

5.3 Validation and statistical interpretation

5.3.1 Statistical model and interpretation

For a real measurement, performing a single measurement corresponds to drawing a value

un from P (un|θ̂n) with the measurement’s uncertainty ∆un corresponding to the standard

deviation of P (un|θ̂n). To verify the assigned ∆un and shape of P (un|θ̂n) we would repeat

the measurement many times, i.e., we would draw a sample of many un values from P (un|θ̂n)

for fixed θ̂n and study its sample distribution.

With our idealized measurement we do not have the option to repeat the measurement, so

we cannot sample P (un|θ̂n) in un for fixed θ̂n. However, P (un|θn) models our entire estimation

procedure, which we can apply to all perturbative series f that we consider to belong to a

common category. We can thus sample P (un|θ̂n) over θ̂n by applying our estimation procedure

to many different parameters θf
n of the same category whose true values θ̂f

n are known.

Given our estimator un for the parameter θn with estimated uncertainty ∆un, we can

consider the pull

tn =
θ̂n − un

∆un
, (5.8)
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which is invariant under a linear transformation θn → aθn + b, un → aun + b, ∆un → a∆un.

Since P (un|θn) should be invariant under such a rescaling, we can consider it to be a function

of the pull only,

P (un|θn) = p
(θn − un

∆un

)

. (5.9)

In particular, if we model un as a Gaussian random variable with mean θn and standard

deviation ∆un, then tn is normally distributed, i.e., p(tn) is a Gaussian with zero mean

and unit variance.

As long as our estimation procedure is deterministic and involves choosing specific values

for un and ∆un, we can always perform a linear rescaling and redefine θn to have un = 0

and ∆un = 1 so tn = θ̂n. In fact, we already did so by choosing our common normalization

conventions as discussed in section 5.2, which are thus an integral part of the estimation

procedure. The likelihood for θn is then given by

L(θn) = P (un = 0|θn) = p(θn) , (5.10)

and so we like to learn about the distribution p(θn).

Let us denote the collection of perturbative series f of a given category by F and the

corresponding collection of their series coefficients fn as Fn. In principle, the distribution

p(θn) could be specific to each parameter θf
n, so to be clear for the moment let us label it and

use a generic argument, p
θf

n
(x). However, since it is primarily a property of our estimation

procedure, which is common to all fn ∈ Fn, we can assume it to be the same for all of their

respective θf
n. Furthermore, we can naturally identify this common distribution with the

distribution of true values θ̂f
n of all fn ∈ Fn, which we denote as p̂Fn(x), so

p
θf

n
(x) ≡ p̂Fn(x) ∀θf

n whose fn ∈ Fn . (5.11)

Although this identification comes natural it is an assumption we make. Intuitively, we can

think of it as follows: the collection of series coefficients in Fn is a QCD bag of balls. Each

ball has a visible label fn on it and a not visible number θ̂f
n inside it. We now consider a

specific coefficient fn of interest for which we need an estimate. With the identification in

eq. (5.11), we think of this situation as having just taken the ball labelled fn out of the bag,

which is not random. But we are not allowed (or able) to look at its number inside it, so we

have effectively drawn a random member from the population of hidden θ̂f
n numbers in the

bag. Knowing that it came out of this bag (and nothing else about it), our best estimate of

its value is simply the population mean and its uncertainty the population variance.15

For the rest of our discussion, we will work under the premise of this identification.

Without it, we would have to live with a stronger assumption of assuming a certain shape for

p
θf

n
(x). We could also be somewhere in the middle and consider the form of p̂Fn(x) only as a

motivation for the assumed shape of p
θf

n
(x) but without making the explicit identification.

Ultimately, the precise interpretation is a choice the user of our theory constraint can make.

15More precisely, we can obtain an estimate for θn based on the likelihood L(θn) = p̂Fn
(θn). For a Gaussian

(or similar) distribution the maximum likelihood estimate coincides with the mean of the distribution.
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5.3.2 Distribution of known perturbative series

We now discuss the distribution p̂Fn(x) of the population of true values θ̂f
n of all fn ∈ Fn.

We consider two collections of perturbative series belonging to the two broad categories

of matrix-element constants (Ff ) and anomalous dimensions (Fγ) defined at the beginning

of section 5.2.

The true distribution p̂Fn(x) is obviously not known to us, as we would have to know

all possible θ̂f
n. Instead, we can follow the standard procedure of estimating an unknown

population distribution by drawing a random sample from the population and using the

resulting sample distribution as an approximation of the true population distribution. In

our case, we can use the sample {θ̂f
n} belonging to a subset of known series coefficients

{f̂n} ⊂ Fn, which is indeed random because we choose it without having a prior look at

the actual values θ̂f
n. In terms of our QCD bag of balls, by default all balls are locked and

we cannot look inside them. While taking out a specific (not random) set of balls which

someone has graciously unlocked for us, we are not yet looking at their numbers inside.

Hence, just like when we are asking about a specific fn, this amounts to drawing a random

sample of θ̂f
n from the population inside the bag.

We might still worry that the sample distribution could be biased by the fact that the

perturbative series that are known to high order are naturally simpler to calculate than

the ones we do not yet know. Whilst this makes the quantities themselves special in some

sense, the only relevant question is whether this also makes their values θ̂f
n somehow special

and not representative of the full population, which is not necessarily the case. The sample

distribution not being representative (yet) can indeed be a valid concern when only a handful

and perhaps even closely related series are available. To alleviate this concern and ensure

a sample as representative as possible, we have made an effort to include a large variety of

different QCD quantities. Furthermore, from our repeated experience of adding new results

to the existing samples over time, we do not believe this to be a concern any longer.

A detailed list of the quantities included in our sample is given in appendix A. We have

included all four-loop results for matrix-element constants and all four-loop and five-loop

results for anomalous dimensions we are aware of (without any claim of completeness), as well

as all known three-loop matrix-element constants relevant for qT and thrust resummation to

N4LL. To include a quantity in our sample, we have to be sure that it actually belongs to

one of our common categories and roughly obeys our natural size estimate. For this reason

we focus on series that are known to at least third order including their nf dependence,

which allows for sufficient sanity checks.

The lower-order coefficients of some quantities are directly related to each other by

naive Casimir scaling. Some anomalous dimensions are equivalent due to trivial consistency

relations of the form γa + γb = 0. In these cases, we only include the coefficients once. On

the other hand, some anomalous dimensions are related by consistency relations of the form

γa + γb + γc = 0. For these cases we do include all three series for several reasons. First, each

of the γi is an actual anomalous dimension of some quantity and should in principle obey

our estimate. Second, there is no obvious choice which one of the three to eliminate and

we rather introduce a minor correlation into the sample by keeping all three than making

an arbitrary selection which might cause some bias.
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surprising after all that the resulting population of θ̂n can be well described by a Gaussian

distribution. We might think of it as the central-limit theorem of Feynman diagrams.16

It is also instructive to think about how we would notice if there was something going

wrong in our estimation procedure. If we find a Gaussian with different mean or variance,

then our estimation procedure itself is sound but our final choice of un or ∆un is off, which we

can easily adjust for if necessary. If the resulting distribution is irregular, e.g., with large tails

or other undesired features, then this signals that our estimation procedure is suboptimal

or missing some important aspect. A long tail would be indicative of underestimating the

natural size for some coefficients in Fn. To illustrate this with a simple example, imagine we

had not accounted for the overall Cr color factor. As long as our collection Fn contains only

quark-like or only gluonic quantities, this would not be much of a problem, we would simply

find an uncertainty of CF or CA instead of one. However, when Fn contains both, we would

end up with a superposition of two Gaussians of different variance. We could still work with

this distribution, but it would be suboptimal because it would lead to overestimating the

uncertainty for quark-like quantities and underestimating it for gluonic quantities.

This is also why it is prudent to consider separate collections Fn for each n at first, as

this allows us to test and identify the appropriate n-dependent normalization. For example,

without the (n − 1)! in Nf
n in eq. (5.4) we would find distributions of correspondingly larger

variance for n ≥ 3, which is in fact how we became aware of this factor during the course

of our investigations.

We conclude this subsection with two more comments. First, when applying our estima-

tion procedure to a known θn we should not use our knowledge of its true value θ̂n, but by

including it in the sample of known θ̂n we do indirectly use it. However, this is acceptable

since the impact of any one coefficient on the sample distribution is minor. Second, when

applying our estimation procedure to a new and still unknown θn, we still have to make a

judgement whether or not it belongs to a particular category. There is a priori no guarantee

for that. It might well be the case that there are genuinely different types of quantities than

those considered so far that cannot be reduced to fit into an existing category but instead

require defining and studying a new category.

5.4 Designing theory estimators

An interesting question to consider is whether it is possible to improve upon our estimator or

design alternative estimators, which could be tested using the same procedure as above. We

leave this for future investigation and only give some general remarks here. An improved

estimator should on average yield a tighter estimate of the natural size but without underes-

timating it for some subset of series either. In other words, it should yield a reduced variance

and ideally still produce a roughly Gaussian distribution.

For example, one could imagine devising an estimator based on the actual leading-color

approximation of a series coefficient, i.e., using the large-Nc expansion as a supplementary

expansion following strategy 2 in section 4.3. This of course requires performing an actual

calculation, but typically the calculation in the large-Nc limit is easier to perform than the

16The credit for coining this term goes to Glen Cowan.
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full calculation. Having a robust estimator based on this limit would allow one to robustly

use such approximate results.

Another natural question that arises is whether one could utilize the information from

the known lower orders f̂k<n of a given quantity f to improve the estimate for fn. This

effectively amounts to devising alternative parameterizations for fn involving the information

of the known f̂k<n in some way. In our initial attempts we found that this overall leads to

less reliable estimates. For example, Padé approximations can work extremely well in some

cases and utterly fail in others. The basic problem of relying on lower-order information

is that this introduces the same generic pitfall also present for scale variations: it can lead

to random significant underestimations when the lower-order coefficient(s) happen to be

randomly smaller than their own natural size. This is in fact not unlikely to happen since as

we have seen the mean of the distribution of true values is around 0. Examples of this are

already present in tables 2 and 3, namely f̂1 of cqq̄S , f̂2 of cgg, and notably γ̂3 of Γq
cusp.

One might also consider applying the Bayesian inference models of refs. [4–7] to estimate

a given θn based on its known lower-order θ̂k<n, as was mentioned already in ref. [6]. In this

case, similar care has to be exercised to avoid the above pitfall. Another general option would

be to utilize series transformations or series acceleration methods as in ref. [8]. In fact, taking

the square root of a quantity can be considered a simple form of a series transformation.

From our experience so far, the most useful way to utilize the known lower-order

information is as an important cross check of the estimation procedure rather than as a direct

input to it. If a quantity consistently violates its estimated natural size at lower orders, it

might indicate that we are not estimating its natural size correctly, which can have various

reasons. We might be using the wrong normalization factor or a suboptimal reference scheme,

or we might be associating it incorrectly with a given category. The latter can happen when

not using the appropriate conventions, e.g. we should be parameterizing
√

f or f2 instead of

f . It can also happen when we are using a suboptimal parameterization, for example when

the scalar series has important internal structures (e.g. new color or partonic channels) which

affect its natural size but which we have not explicitly parameterized.

More generally, the question is to what extent the higher-order coefficients are correlated

with the lower-order ones and how to best exploit this correlation to our advantage. Such

correlations could arise for example from cross terms of lower-order coefficients appearing

as part of the higher-order coefficient (an obvious example is again using f2 instead of

f), or we believe the higher-order correction to be a genuinely multiplicative correction

on top of the lower-order result (in which case we would parameterize their ratio). In

general, such information is specific to a given quantity f . Therefore, all genuine lower-order

information that we believe to be relevant should be accounted for explicitly by the specific

parameterization of fn(θn) itself. An optimal parameterization would then be one for which

the θn are uncorrelated for different n. In this limit, no more information can be gained

from the lower-order θ̂k<n and the easiest and safest approach is to estimate the natural

size of θn without further reference to θ̂k<n. The boundary between parameterization and

estimation is of course somewhat blurry, since as we have seen, the final step of parameterizing

the remaining scalar coefficients in terms of scalar TNPs is in fact an important part of

the estimation procedure itself.
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6 Application to transverse-momentum resummation

The qT spectrum of Z and W bosons produced in hadronic collisions, where qT ≡ pZ,W
T

is the transverse momentum of the produced vector boson, is a benchmark observable of

the LHC precision physics program and has been measured to incredible precision by the

ATLAS [68–71], CMS [72–74], and LHCb collaborations [75, 76]. In this section, we discuss

the application of our approach to precision predictions for the qT spectrum using resummed

perturbation theory.

Correlations within the pW
T and pℓ

T spectra, and depending on the analysis strategy also

between pW
T and pZ

T , are critical for a precise measurement of the W -boson mass at hadron

colliders [1, 77–80]. As shown in ref. [16], the theory correlations in pZ
T are also critical if one

wants to perform fits to the precisely measured small-pZ
T spectrum to extract nonperturbative

parameters [81–83] or the strong coupling constant [84, 85].

In section 6.1 we give a brief account of the aspects of qT factorization and resummation

that are relevant to our discussion. In section 6.2 we identify and discuss the necessary TNPs,

and in section 6.3 we present numerical results that illustrate the power of the TNP approach

to obtain predictions with proper theory correlations. Finally in section 6.4, we briefly discuss

the treatment of subleading effects, which we neglect here for simplicity.

6.1 Aspects of qT resummation

We denote the four-momentum of the vector boson by qµ, its invariant mass and rapidity by

Q ≡
√

q2 and Y , and its transverse momentum by qT = |~qT |. The quantity of our interest is

the cross section fully differential in Q, Y , and qT , which we write for brevity as dσ/d4q.

We start by applying strategy 2 of section 4.3 and expand the cross section in a power

series in ε ≡ q2
T /Q2,

dσ

d4q
=

dσ(0)

d4q

[

1 + O
( q2

T

Q2

)]

. (6.1)

Compared to our discussion in section 4.3, where we expanded the series coefficient in ε, here

it is much more useful to first perform the expansion in ε and only later the perturbative

expansion in αs. The reason is that we actually know the functional form in qT (and Q) of

the leading-power term dσ(0) to all orders in αs, allowing us to apply strategy 1 and obtain

the exact correlations in qT and Q. Furthermore, we will also resum certain parts of the

perturbative series to all orders in αs, although the precise way of doing so is not of immediate

concern to us here, so we will not discuss it but refer the interested reader to refs. [42, 44].

The power expansion in eq. (6.1) converges very well, even better than the q2
T /Q2 scaling

suggests, such that the power corrections remain below . 5% even up to moderately large

qT . Q/3 and even Q/2. As a result, the leading-power term dσ(0) dominates and effectively

determines the spectrum over this entire small-qT region, and thus also causes the dominant

perturbative uncertainties. We can therefore focus our discussion on dσ(0). In particular, it

will serve us to demonstrate a nontrivial example application of the TNP approach. We will

comment further on the treatment of the O(q2
T /Q2) power corrections and other subleading

effects in section 6.4.
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The leading-power term dσ(0) is the subject of the qT factorization and resummation

program. We do not intend to provide a detailed review of qT resummation here. Rather,

our focus is on the kinematic and process dependence, which we wish to break down and

parameterize in terms of theory nuisance parameters. We use the SCET resummation

framework of refs. [42, 44]. We closely follow the notation of those references and refer there

for more details and further references. The leading-power cross section can be written as

dσ(0)

d4q
=

1

2E2
cm

LV V ′(q2)
∑

a,b

HV V ′ ab(q
2, µ) (6.2)

×
∫

d2~bT

(2π)2
ei~bT ·~qT B̃a(xa, bT , µ, ν/Q) B̃b(xb, bT , µ, ν/Q)S̃(bT , µ, ν) .

Here, V V ′ = {γγ, γZ, Zγ, ZZ, W +W +, W −W −} labels the produced vector boson including

possible interferences. The leptonic tensor LV V ′(q2) contains the vector-boson propagator

and decay and receives no QCD corrections, so its q2 dependence is known. The hard function

HV V ′ ab(Q
2, µ) encodes the production of the vector boson in the underlying hard interaction

ab → V , with the sum over a, b running over all relevant combinations of quark and antiquark

flavors. The functional form of its q2 and process dependence is known to all orders. The

second line in eq. (6.2) contains all soft and collinear physics at the low scale µ ∼ qT encoded

respectively in the soft function S̃ and beam function B̃a,b. The qT dependence arises entirely

from the second line, and its functional form is fully determined by the functional dependence

on its Fourier-conjugate variable bT = |~bT |. The functional form of the bT dependence of

the beam and soft functions is in turn known to all orders in αs. The beam function also

depends on the flavor of the (anti)quark participating in the hard interaction and on Q.

The functional form of these dependencies is also known to all orders. Finally, the variables

xa,b = (Q/Ecm)e±Y encode the dependence on the rapidity Y and center-of-mass energy

Ecm. The functional form of the xa,b dependence of the beam function is not known to all

orders but depends on their perturbative order.

The factorization in eq. (6.2) is very powerful for our purposes as it predicts the complete

functional form in qT and also in Q for given xa,b. Furthermore, it fully parameterizes the

exact dependence on the process and partonic channels. We are therefore able to apply

strategy 1 and obtain exact correlations in all these dependencies. Although it does not

predict the complete functional form in xa,b it still reduces it from a generic two-dimensional

dependence to a product of common, universal one-dimensional beam functions.

For simplicity we have limited ourselves to the inclusive qT spectrum in eq. (6.2). Including

the full kinematics of the vector-boson decay products is also possible. Importantly, at leading

power doing so only increases the complexity of the leptonic tensor but does not induce any

additional sources of QCD uncertainties [42].17 We can therefore also capture the correlations

in leptonic kinematic variables, most notably the lepton transverse momentum pℓ
T , or between

the qT spectrum and the qT -dependent forward-backward asymmetry.

17More precisely, leptonic observables can give rise to enhanced power corrections, which for azimuthally

symmetric observables can be taken into account in terms of the leading-power QCD contributions, and thus

without inducing additional sources of QCD uncertainties. Starting at O(q2
T /Q2) also genuinely new QCD

structures can contribute, see ref. [42] for a detailed discussion.
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In principle, eq. (6.2) could be applied to each coefficient of the perturbative series of

dσ(0). However, at each order in αs, (double) logarithms of qT /Q appear, which render

a fixed-order expansion of dσ(0) unstable. Instead, eq. (6.2) also provides the basis for

systematically resumming the unstable logarithmic contributions to all orders in αs, leading

to precise and perturbatively stable predictions. We will not discuss how the resummation is

carried out in practice but refer to refs. [42, 44] for details. The key point for us is that a

given perturbative resummation order, NnLL, is uniquely defined by including all underlying

scalar perturbative series discussed below to a specific order in αs. We then define our

generalized counting including TNPs, Nn+kLL, to include the true values for all coefficients

relevant for NnLL and in addition for each series the TNP parameterization of the next k

terms. In analogy to section 3.2, we also define the approximate Nn+0LL implementation

by absorbing the TNPs appearing at Nn+1LL as an additive correction to the respective

highest coefficients appearing at NnLL.

6.2 TNPs for qT resummation

The perturbative ingredients required in eq. (6.2) are the hard, beam, and soft functions.

Their functional dependence on the kinematic variables, except x, is fully predicted to all

orders in αs by their renormalization group equations, which we now discuss in turn. At

the end we will be left with a set of (mostly) scalar perturbative series that fully determine

the (fixed-order and/or resummed) perturbative series of dσ(0). We will give a summary in

section 6.2.4, so readers not interested in the detailed definitions can directly skip there.

6.2.1 Hard function

The leptonic tensors for inclusive Z → ℓℓ and W → ℓν in eq. (6.2) are given by

LZZ(q2) =
2

3

αem

q2
(v2

ℓ + a2
ℓ)

∣

∣

∣

∣

q2

q2 − m2
Z + iΓZmZ

∣

∣

∣

∣

2

,

LW +W +(q2) =
1

6

αem

q2

1

sin2 θw

∣

∣

∣

∣

q2

q2 − m2
W + iΓW mZ

∣

∣

∣

∣

2

. (6.3)

Their q2 dependence is known exactly in QCD. The corresponding hard functions have the form

HZZ qq̄′(q2, µ) =
8παem

Nc
δqq′

{

(v2
q + a2

q)|Cq(q2, µ)|2

+ 2ℜ
∑

f

[

vqvf C∗

q (q2, µ)Cvf (q2, µ) + aqaf C∗

q (q2, µ)Caf (q2, µ)
]

+ · · ·
}

,

HW +W + qq̄′(q2, µ) =
2παem

Nc

|Vqq′ |2
sin2 θw

|Cq(q2, µ)|2 . (6.4)

The expressions for the remaining V V ′ combinations can be found in appendix A of ref. [42].

The vi and ai are the usual axial and vector couplings of the Z boson, Qq is the electromagnetic

charge of quark q, and Vqq′ are the CKM-matrix elements.

The q2 dependence of the hard function is determined by that of the matching coefficients

Ci(q
2, µ), which correspond to the infrared-finite parts of the respective QCD form factors.

Here, Cq = 1 + O(α2
s) is the dominant vector nonsinglet coefficient corresponding to diagrams
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where the vector boson couples to the external quark line. The Caf and Cvf in eq. (6.4)

are axial-singlet and vector-singlet coefficients corresponding to diagrams where the vector

boson couples to a closed fermion loop, which only contribute to Z production but not to W

production. They have separate perturbative series starting at O(α2
s) and O(α3

s), respectively,

and have to be parameterized separately. In practice, their contributions are very small even

at the order they contribute [44], so we can neglect them here for simplicity. In principle they

would have to be included (starting at N3LL) to fully account for the correct (de)correlation

between W and Z production. The ellipses in HZZ qq̄′ denote terms proportional to the

square of Caf and Cvf , which only contribute starting at O(α4
s).

The functional form of the q2 dependence of Cq(q2, µ) is known because by dimensional

analysis it can only depend on the ratio q2/µ2. The q2 dependence is therefore fully predicted

by the µ dependence, which in turn is governed by Cq’s renormalization group evolution

(RGE) equation,

µ
d

dµ
ln Cq(q2, µ) = Γq

cusp[αs(µ)] ln
−q2 − i0

µ2
+ 2γq

C [αs(µ)] . (6.5)

The full q2 and µ dependence of Cq can be reconstructed by solving eq. (6.5) (either order

by order in αs or to all orders to obtain its resummed expression).

The cusp and noncusp anomalous dimensions Γq
cusp(αs) and γq

C(αs) in eq. (6.5) are

already scalar series. Following our conventions for anomalous dimensions in section 5.2,

we parameterize

Γ(αs) ≡ 2Γq
cusp(αs) , γµ(αs) ≡ 2γq

C(αs) , (6.6)

in terms of corresponding TNPs θΓ
n and θ

γµ
n .

The remaining nontrivial part of Cq we need to parameterize is the q2 and µ-independent

constant term, which is not predicted by eq. (6.5) and effectively acts as the boundary

condition for solving the differential equation. We can formally define it as the matching

coefficient evaluated at the canonical scale µ2 = −q2,

cq(αs) ≡ Cq(q2, µ2 = −q2) . (6.7)

By choosing the canonical scale proportional to q2, the perturbative series for cq(αs) becomes

a scalar series with q2 and µ independent coefficients. Here, cq(αs) is equal to cqq̄V (αs) in

section 5.2, so we parameterize it directly in terms of TNPs θH
n , where the label is meant

to remind us that they come from the hard function.

Note that the matching coefficient is defined in a certain renormalization scheme, for

which we use the standard MS scheme here. Together with the canonical scale choice, which

also determines the form of the logarithm in eq. (6.5), this defines the reference scheme for

the anomalous dimensions and constant term and their TNPs.

6.2.2 Soft function

The TNP parameterization of the soft function S̃(bT , µ, ν) proceeds analogously to that of

the matching coefficient Cq(q2, µ) above. A new element is the soft function’s dependence on

the additional rapidity renormalization scale ν, which has dimension one. By dimensional
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analysis, the soft function can only depend on two ratios bT /µ and µ/ν, so its full bT

dependence is determined by its dependence on µ and ν, which is now governed by a system

of RGE equations,

µ
d

dµ
ln S̃(bT , µ, ν) = 4Γq

cusp[αs(µ)] ln
µ

ν
+ γ̃S [αs(µ)] ,

ν
d

dν
ln S̃(bT , µ, ν) = γ̃ν(bT , µ) ,

µ
d

dµ
γ̃ν(bT , µ) = −4Γq

cusp[αs(µ)] . (6.8)

Here, the rapidity anomalous dimensions γ̃ν(bT , µ) has a more nontrivial dependence on

bT , which is in turn determined by its own µ dependence governed by its own µ RGE in

the last line.

Solving eq. (6.8) now requires two independent boundary conditions, one for γν(bT , µ)

and one for S̃(bT , µ, ν) itself. The canonical scale in bT space is µ = b0/bT with b0 = 2e−γE ≈
1.12291, which corresponds to µ = qT in momentum space. The soft function scales like

a squared 2 → 0 matrix element. Following our conventions in section 5.2, we therefore

define the relevant scalar series as

γν(αs) ≡ 1

2
γ̃ν(bT , µ = b0/bT ) ,

s̃(αs) ≡
√

S̃(bT , µ = b0/bT , ν = b0/bT ) , (6.9)

which we parameterize in terms of corresponding TNPs θγν
n and θS

n . Note that the reference

scheme for the TNPs here corresponds to our choices of using bT space and its canonical scale,

MS renormalization, and rapidity renormalization [86] with the exponential regulator [87].

The other perturbative ingredients we need for the soft function are the cusp and noncusp

anomalous dimensions in the first line of eq. (6.8). Following our conventions we would

again parameterize Γ(αs) ≡ 2Γq
cusp(αs), consistent with eq. (6.6), and γS(αs) = γ̃S(αs)/2. In

practice, we do not need TNPs for γS(αs), for reasons we will explain in a moment.

6.2.3 Beam functions

The beam function B̃i(x, bT , µ, ν/Q) only depends on the combination ν/Q, as indicated

by its argument, and thus by dimensional analysis only on bT /µ. Its bT and explicit Q

dependence is thus governed by its RGE system, which is closely analogous to that of the

soft function in eq. (6.8),

µ
d

dµ
ln B̃q(x, bT , µ, ν/Q) = 2Γq

cusp[αs(µ)] ln
ν

Q
+ γ̃B[αs(µ)] ,

ν
d

dν
ln B̃q(x, bT , µ, ν/ω) = −1

2
γ̃ν(bT , µ) ,

µ
d

dµ
γ̃ν(bT , µ) = −4Γq

cusp[αs(µ)] . (6.10)

We need again the cusp and rapidity anomalous dimensions, which are the same as before in

eq. (6.8), the noncusp beam anomalous dimension γB(αs) ≡ γ̃B(αs), and the beam function

boundary condition.
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We do not need TNPs for the beam and soft noncusp anomalous dimensions for the

following reason. When using the beam and soft function’s RGEs to reconstruct their

full fixed-order expressions, we only need the known anomalous dimension coefficients (for

our considered resummation orders). Their TNPs would only enter in the evolution itself.

However, since the beam and soft functions start their evolution at the same canonical scale

µ = b0/bT , only their total µ anomalous dimension actually enters in the resummation, which

by consistency is equal to minus that of the hard function. We therefore only need the single

noncusp µ anomalous dimension in eq. (6.6).

Importantly, the RGEs do not depend on x, which implies that the additional x depen-

dence factorizes from the bT and Q dependencies and only enters via the beam boundary

condition, which is now defined at the canonical scales µ = b0/bT and ν = Q,

b̃i(x, αs) ≡ B̃i(x, bT , µ = b0/bT , ν/Q = 1) . (6.11)

The additional complication for the beam function arises because its x dependence is not

predicted by its RGE, so the beam boundary condition is a general one-dimensional function

of x. To further break down this dependence, we calculate its series coefficients b̃i,n(x) in

terms of collinear PDFs fj(x),

b̃i,n(x) =
∑

j

∫

dz

z
Ĩij,n(z) fj

(x

z

)

, (6.12)

where Ĩij,n(z) are perturbatively calculable matching kernels. The x dependence of the beam

function is thus determined via the Mellin convolution of the x dependence of the PDFs and

the z dependence of the matching kernels. Since the x dependence of the PDFs tends to

be quite strong, the mix of contributing PDFs determines the overall size of b̃i,n(x) as well

as playing an important role in determining its shape in x. The Iij,n(z) are perturbative

coefficients, so we can in principle estimate their natural size as in section 5.2. (In fact, their

moments in x enter into our sample of matrix-element constants). In contrast, it would be

quite difficult to estimate the natural size of b̃i,n(x) directly. eq. (6.12) is thus an example

where parameterizing a dependence (here the channel dependence) is beneficial or even

necessary for obtaining a natural-size estimate.

Following our discussion in section 4, if we do not require precise correlations in x, one

option would be to only parameterize the integral of Iij,n(z), with e.g. a trivial z dependence

∼ δ(1 − z). If we do require proper correlations in x, i.e. in Y and/or Ecm, we need to

properly parameterize the z dependence. At the orders we are working their true expressions

are actually known [88, 89]. Therefore, as a starting point we parameterize them using their

known functional form in z multiplied by an overall scalar coefficient

Ĩij,n(z, θ
Bij
n ) =

3

2
θ

Bij
n

ˆ̃Iij,n(z) , (6.13)

where we include a factor of 3/2 to be conservative and account for the fact that their true

values are typically somewhat below their natural size. Another option would be to explicitly

normalize the ˆ̃Iij,n(z) in some way.

With the TNP parameterization in eq. (6.13), we effectively treat the shape as exactly

known, while the overall normalization is unknown. We prefer this option to using δ(1 − z),
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because it means we have the exact correlations for the overall normalization uncertainty we

do consider. Of course, at the highest known order we cannot do that, and strictly speaking

at lower orders we should not be allowed to use the known shape but include some shape

uncertainties. In the future, the z dependence of the matching kernels can be explicitly

parameterized, for example by using strategy 2 and expanding them in ε = 1 − z, since

their z → 1 limit is actually well understood [47].

The dominant partonic channels are ij = {qqV, qg}, which start at O(1) and O(αs). At

higher orders, further singlet channels ij = {qq̄V, qqS, qq∆S} appear, whose precise definition

is given in ref. [47]. Since they only give small corrections even at the order they appear,

for our numerical results in section 6.3 we only consider two TNPs for the beam boundary

condition, namely a single effective θ
Bqq
n ,

θBqq
n ≡ θ

BqqV
n ≡ θ

Bqq̄V
n ≡ θ

BqqS
n ≡ θ

Bqq∆S
n , (6.14)

which collectively varies all qq channels together with θ
Bqg
n for the qg channel.

In principle, we also have to include the QCD splitting functions, which govern the

evolution of the PDFs, in our counting. In the resummed cross section, the PDFs enter through

the beam functions where they are evaluated at the scale of the beam function, which means

their evolution contributes to the qT resummation by resumming single logarithms of bT . That

is, they count as a noncusp anomalous dimension. Constructing TNP parameterizations for the

splitting functions can be done similarly to the beam function matching kernels by considering

their z → 1 and also z → 0 limits. In fact, in this way TNPs for the four-loop splitting

functions have already been considered in ref. [13] including constraints from their known

moments. Since varying the splitting functions is rather involved technically, as it requires

re-evolving the PDFs, we refrain from doing so here, and leave this for future work. Instead,

if needed, this source of uncertainty can be probed for now by conventional µF variations.

6.2.4 Summary of TNPs

To summarize, we have a minimum of seven TNPs, corresponding to seven independent

perturbative ingredients and thus sources of uncertainty: three anomalous dimensions and

four boundary conditions, which belong to the category of matrix-element constants,

θγ
n : γ ∈ {Γ, γµ, γν} , θf

n : f ∈ {H, S, Bqq, Bqg} . (6.15)

There is actually one piece of perturbative information that we have silently taken for

granted so far: the solution of the RGEs also requires the QCD β function, because it governs

the µ dependence of αs(µ), and its TNP would in principle enter in the resummation at the

same loop order as the TNP of the cusp anomalous dimension. In practice however, while

the overall µ evolution of αs(µ) is important, the higher-order corrections to it tend to be

numerically very small. We therefore continue to treat the β function as known to avoid

adding significant but unnecessary complexity.

In addition to the above 7 TNPs (or 6 if we are willing to count the beam function as a

single one), we have 3 (or 4) more once we account for the full set of partonic channels of

the beam function (still without accounting for its functional dependence). In addition, we
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impacts are 100% correlated between the processes, and as a result cancel in the ratio to very

large extent, roughly by a factor of 10. We stress that whilst a large degree of cancellation

is expected and has been encountered many times before, we can now correctly quantify it

for the first time, and in particular also its dependence on qT .

In figures 6 we show the same results using the approximate implementation of the theory

nuisance parameters at N3+0LL. This is the setup utilized for the resummed component of

the qT spectrum in the analysis of ref. [1], where it is also further matched to the fixed-

order NLO1 result for the V +1-parton process. At N3+0LL, formally the same θn enter

as at N3+1LL but their impacts are only approximately correct. Namely, their shape is

approximated by the corresponding one at N2+1LL, while their overall impact is similar to

that at N3+1LL. Whilst the precise shapes of the components differ between N3+1LL and

N3+0LL their overall qualitative behaviour is similar. The total uncertainties at N3+0LL

are similar to but somewhat larger than at full N3+1LL. Notably, the uncertainties on the

W/Z ratio, which strongly depend on the detailed correlations, are very similar to those at

N3+1LL. Therefore, we can conclude that the N3+0LL result provides a clear improvement

over N2+1LL and a reasonable approximation to the more correct N3+1LL result. Although

the N3+1LL result should be preferred, the approximate N3+0LL result can serve as a viable

compromise if the former cannot be utilized for some reason. One such reason could be the

availability of the required fixed-order matching at large qT . Since N3+0LL implements the

N3LL structure it can be consistently matched to NLO1, whereas N3+1LL implements the

full N4LL structure and therefore requires matching to NNLO1.

In figures 7 we show the ratios of the qT spectra for Z production at Q = 1 TeV vs.

Q = mZ and Y = 1.6 vs. Y = 0. Figures 8 shows the ratios of the qT spectra for W + vs.

W − and for W + at 13 TeV vs. 7 TeV. The cancellation of uncertainties is expectedly most

pronounced for W +/W −. It is weakest but still present for the case of Q = 1 TeV vs. Q = mZ .

This is also not unexpected, since the spectrum mostly depends on qT /Q, so for different

Q the qT spectra are shifted against each other.

We stress that the primary purpose of the various ratios we show is to easily visualize

the effect of correlations and the resulting degree of cancellations. When correctly accounting

for the theory correlations there is no difference as far as theory uncertainties are concerned

in using the ratio or the quantities separately. In a real analysis, one would typically not use

ratios but simply perform a combined analysis of all relevant processes, which constrains the

TNPs among all of them accounting for all correlations and resulting cancellations. In the limit

where one particular process is much more precisely measured than the others, one can think

of it as effectively acting as a control process to obtain improved predictions for the others.

An important observation is that the dominant uncertainties that remain in the ratios

and tend to cancel the least are those due to the beam functions, in particular for W/Z

but also in many cases for the other ratios in figures 7 and 8. This is because the main

difference between the processes, which is due to the different combinations of flavor channels,

precisely enters via a different relative mix of different beam functions. This motivates a

more detailed study of the beam function TNPs.

To conclude this section, we stress again that here we only consider the leading-power

contributions. This is warranted as these are by far the dominant contributions to the spectrum
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• Effects due to finite quark masses of O(m2
q/q2

T ).

• QED and electroweak effects.

• Nonperturbative corrections of O(Λ2
QCD/q2

T ).

The nonperturbative corrections already have a parametric nature. In the future, our approach

can also be applied systematically to the first three effects following the methodology developed

in the previous sections. In the absence of their complete TNP-based treatment, they can

still be included from existing results based on conventional methods. In other words, a TNP

treatment of even just the leading-power resummed component is already extremely valuable,

simply because it contributes by far the dominant uncertainties.

7 Conclusions

The theory nuisance parameter approach developed in this paper holds enormous potential

to make perturbative predictions more robust and also more precise:

• It allows for the first time to correctly account for theory correlations, which are

important whenever one simultaneously interprets multiple measurements (including

different bins in a spectrum).

• The theory uncertainties and correlations are straightforward to propagate, like any

other nuisance parameters, into fits, Monte-Carlo generators, multivariate analyses,

neural networks, etc.

• In fits to experimental measurements, it is possible and consistent to profile the

theory nuisance parameters and thereby constrain them, effectively reducing the theory

uncertainties by the measurements, which is not possible with existing methods.

• New structures (e.g. partonic channels or additional logarithmic powers) appearing at

higher order are explicitly anticipated and accounted for by the theory uncertainties.

• All new, even partial, higher-order information can have immediate phenomenological

impact in reducing theory uncertainties, even if the complete next order is not yet

available.

• The theory uncertainties have a well-defined and meaningful statistical interpretation.

Any estimate of a systematic (epistemic) uncertainty will have some level of arbitrariness

arising from choices one has to make. An important goal and feature of the TNP approach is

to systematically manage this arbitrariness and to minimize its impact on the final uncertainty

estimate. In the TNP approach, there are roughly three types of choices involved:

• The perturbative scheme choices used to define the perturbative series. This scheme

dependence has been discussed in section 3.4.
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• The choices required in deriving a suitable TNP parameterization in step 1. This includes

which internal dependencies are parameterized, possible required approximations, and

given these the actual choice of parameterization. These aspects have been discussed in

section 4.

• How to normalize the TNPs and how to constrain their numerical values in step 2.

These aspects have been discussed in section 3.3 and section 5.

When applied to color-singlet transverse-momentum (pT ) resummation, the theory

nuisance parameters allow one to correctly and fully account for the theory correlations in

the shape of the small-pT spectrum, between different Q values, partonic channels, hard

processes (e.g. W and Z production), collider energies, and different resummation-sensitive

variables (e.g. pV
T , pℓ

T near the Jacobian peak, or φ∗). In this context, our approach opens

the door to reaching sub-percent level theoretical precision, which will be able to match the

incredible precision already achieved by experimental measurements. To fully reach this

level of theoretical precision, a variety of subleading effects must still be accounted for. We

thus hope that our results also provide strong motivation for future work in this direction.

For expedience, they can at first be included using conventional methods, which does not

invalidate the TNP-based treatment of the dominant uncertainties. More importantly, our

approach is also not limited to the dominant resummed contribution. It can be systematically

and incrementally applied also to subleading effects as they become relevant at any given

level of theory precision.

More generally, it will obviously be impossible to equip existing predictions with TNP-

based uncertainties all at once. We should stress that this is also not required by the TNP

approach. To the contrary, a more practical, incremental adoption, focusing on the dominant

sources of uncertainties first is exactly in the spirit of our approach, namely to parameterize

and include the sources of uncertainties in the theory predictions in order of their relevance.
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A Sample of known perturbative series

The QCD matrix-element constants and anomalous dimensions included in the samples of

known perturbative series in section 5.3 are listed in tables 4 and 5. For definiteness, we
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give the explicit 1-loop results in the 3rd column. The 4th column shows the included loop

orders and the last column gives the original references (starting at 3 loops for brevity). As

already mentioned in section 5.3.2, we have made an effort to include all matrix-element

constants known to four loops and anomalous dimensions known to four and five loops in

QCD. The included quantities that are known at lower orders are certainly not exhaustive,

and more can be added in the future.

Following the normalization conventions discussed in sections 5.2.1 and 5.2.2, we consider

matching coefficients and jet and beam functions directly, while we consider the square root

for decay rates and soft functions, and also include corresponding factors of 2 and 1/2 for

the associated anomalous dimensions. For the beam function matching kernels, Ĩij(z), we

reduce their z dependence by considering their z1 moment (2nd Mellin moment). For Ĩqq(z)

we also consider its total integral (1st Mellin moment), which exists since this kernel does not

have a 1/z singularity. Similarly, for the QCD splitting functions we consider their lowest

moments in z, which in some cases are known to five loops.

For scheme-dependent quantities (decoupling constants, Wilson coefficients, beam, jet,

and soft functions) we always use the MS scheme and canonical logarithms to define their

scalar series for the constant terms or boundary conditions. That is, the constant terms are

defined as the remaining nonlogarithmic terms when all logarithmic terms are written in

terms of the respective canonical (possibly distributional) logarithms. These choices define

the reference scheme for their corresponding TNPs. Some explicit examples with more details

can be found in section 6.2. For the soft functions we only consider the quark functions, since

the gluon ones are closely related to the quark ones by Casimir scaling. For the threshold

and thrust soft functions we consider them both in position and momentum space, since the

translation between spaces causes a significant reshuffling of the constant terms with the

logarithmic terms such that the constants in either space become largely uncorrelated. On

the other hand, for the qT or bT soft function we only consider the bT -space result because

the constant terms in qT and bT space appear very strongly correlated.

Concerning the anomalous dimensions, the QCD β function is defined as

µ
dαs(µ)

dµ
= −2αs β(αs) with β0 =

11

3
CA − 4

3
TF nf . (A.1)

Since it is the anomalous dimension of the coupling itself, it clearly plays a special role. For

example, it is the only anomalous dimension whose nf dependence starts at one loop. Despite

its special role, we include it in our collection for completeness. A closely related anomalous

dimension, which fits more naturally into our collection, is the anomalous dimension γt(αs)

of the ggH Wilson coefficient that arises from integrating out the top quark, which is given

to all orders by

γt(αs) = −2α2
s

d

dαs

β(αs)

αs
, γt n = −2nβn . (A.2)

Note that there are several gluonic anomalous dimensions, whose nf dependence also starts at

one loop. However, this dependence (and similarly the highest power of nf at higher orders)

is always that of β(αs) itself, which we therefore subtract. This can also be understood from

the fact that the corresponding quantities are always associated with an explicit power of
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Name f f1 n refs.

αs decoupling ζα 0 1, 2, 3, 4 [91–94]

quark mass decoupling ζm - 2, 3, 4 [91, 94, 95]

ggH Wilson coefficient C1 −8
3TF 1, 2, 3, 4 [91–94, 96]

qq̄H Wilson coefficient C2 - 2, 3, 4 [91, 95]

ggHH Wilson coefficient CHH −8
3TF 3, 4 [94, 97, 98]

γ∗ → qq̄ R-ratio (nonsinglet)
√

Rns
qq̄V

3
2 CF 1, 2, 3, 4 [96, 99–102]

γ∗ → qq̄ R-ratio (singlet)
√

Rs
qq̄V - 3, 4 [96, 99–102]

H → gg
√

Rgg
73
6 CA − 14

3 TF nf 1, 2, 3, 4 [96, 103, 104]

H → qq̄ (nonsinglet)
√

Rqq̄S
17
2 CF 1, 2, 3, 4 [96, 105, 106]

quark vector form factor cqqV (−8 + π2

6 ) CF 1, 2, 3, 4 [48, 107–109]

gluon scalar form factor cgg
π2

6 CA 1, 2, 3, 4 [48, 107–109]

quark scalar form factor cqqS (−2 + π2

6 ) CF 1, 2, 3, 4 [49, 110]

quark jet function jq (7 − π2) CF 1, 2, 3 [111]

gluon jet function jg (67
9 − π2) CA − 20

9 TF nf 1, 2, 3 [112]

quark EEC jet function jEEC
q (4 − 4π2

3 ) CF 1, 2, 3 [113]

gluon EEC jet function jEEC
g (65

18 − 4π2

3 ) CA − 5
9 TF nf 1, 2, 3 [113]

qq bT beam fct (integral) Ĩqq,1 CF 1, 2, 3 [88, 89]

qq bT beam fct (z1 moment) Ĩqq,2
1
3 CF 1, 2, 3 [88, 89]

qg bT beam fct (z1 moment) Ĩqg,2
1
3 TF 1, 2, 3 [88, 89]

gg bT beam fct (z1 moment) Ĩgg,2 0 1, 2, 3 [88, 89]

gq bT beam fct (z1 moment) Ĩgq,2
2
3 CF 1, 2, 3 [88, 89]

bT soft function
√

s̃q −π2

6 CF 1, 2, 3 [114]

threshold soft fct. (pos. space)
√

s̃thr
π2

6 CF 1, 2, 3 [115]

threshold soft fct. (mom. space)
√

sthr −π2

6 CF 1, 2, 3 [115]

thrust soft fct. (pos. space)
√

s̃τ −π2

2 CF 1, 2, 3 [116]

thrust soft fct. (mom. space)
√

sτ
π2

6 CF 1, 2, 3 [116]

heavy-light soft fct.
√

shl −π2

12 CF 1, 2, 3 [117]

Table 4. Quantities included in our sample of known matrix-element constants.

αs at the lowest order, or equivalently, the corresponding operators involve a gluon field

strength. It would actually be more natural to always include an appropriate power of the

coupling with the field strength, which would then automatically remove the β(αs) piece

from the anomalous dimension.

Consistency of the e+e− thrust [19, 20] and partonic beam-thrust [141] factorization

implies

4γi
C(αs) + 2γi

J(αs) + γi
S(αs) = 0 , (A.3)

where γi
S(αs) is the (noncusp) anomalous dimension of the (beam)thrust soft function, and we

have already used that the anomalous dimensions of the SCETI inclusive beam and jet function
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Name γ γ0 n refs.

QCD β function −2β −22
3 CA + 8

3TF nf 0, 1, 2, 3, 4 [50–56]

ggH Wilson coefficient γt 0 0, 1, 2, 3, 4

quark mass γm −6CF 0, 1, 2, 3, 4 [57–62]

vector correlator (nonsinglet) 2γns
V

8
3dF 0, 1, 2, 3, 4 [102]

vector correlator (singlet) 2γs
V - 3, 4 [102]

scalar correlator 2γS 4dF 0, 1, 2, 3 [105]

P +
ns(z) (z1 moment) 2γns+

2 −16
3 CF 0, 1, 2, 3, 4 [67, 118–123]

P −
ns(z) (z2 moment) 2γns−

3 −25
3 CF 0, 1, 2, 3, 4 [67, 118, 121–124]

Pgg(z) (z1 moment) 2γgg
2 + 2β −22

3 CA 0, 1, 2, 3 [125, 126]

Pqg(z) (z1 moment) 2γqg
2

8
3 TF 0, 1, 2, 3 [125–127]

quark cusp 2Γq
cusp 8 CF 0, 1, 2, 3, (4) [63–67]

gluon cusp 2Γg
cusp 8 CA 3 [63–66]

tensor current γT 2 CF 0, 1, 2, 3 [119, 128, 129]

HQET heavy-light current γHQET −3 CF 0, 1, 2, 3 [130, 131]

quark threshold PDF γq
f 6 CF 0, 1, 2, 3 [63, 122, 123, 132]

gluon threshold PDF γg
f − 2β 0 0, 1, 2, 3 [64, 133]

quark collinear 2γq
C −6 CF 0, 1, 2, 3 [66, 134, 135]

gluon collinear 2γg
C + 2β 0 0, 1, 2, 3 [66, 135, 136]

heavy-quark collinear 2γQ
C −4 CF 0, 1, 2 [117, 137]

quark jet function γq
J 6 CF 0, 1, 2, 3 [111]

gluon jet function γg
J − 2β 0 0, 1, 2, 3

quark soft function γq
S/2 0 0, 1, 2, 3 [115, 122, 132]

gluon soft function γg
S/2 0 3 [115, 133]

heavy-light soft function γQ
S /2 2 CF 0, 1, 2 [117]

quark rapidity γ̃q
ν/2 0 0, 1, 2, 3 [114, 138–140]

gluon rapidity γ̃g
ν/2 0 3 [114, 138–140]

Table 5. Quantities included in our sample of known anomalous dimensions.

are equal, γB = γJ [142]. Consistency of color-singlet threshold factorization [143, 144] implies

4γi
C(αs) + 2γi

f (αs) + γi
thr(αs) = 0 . (A.4)

Consistency of the generalized threshold factorization [145] implies

4γi
C(αs) + γi

f (αs) + γi
J(αs) = 0 . (A.5)

We thus have 3 relations for 5 anomalous dimensions, which means only 2 are independent.

In particular, we have

γi
S(αs) = −γi

thr(αs) = γi
f (αs) − γi

J(αs) . (A.6)

At three loops, γi
C and γi

f have been known first [63, 64, 134, 136], with γi
J , γi

B, γi
S , γi

thr

determined from consistency. Subsequently, γi
thr and γq

J have been confirmed by independent
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explicit calculations [111, 115]. At four loops, γi
C and γi

thr are fully known [66, 122, 132, 135],

where for the latter the coefficients of some color structures are only known numerically but

with sufficient precision for practical purposes. We use these to obtain γi
f , γi

J , γi
S at four

loops. In particular, doing so determines the remaining color coefficients in γi
f that were

only available approximately in refs. [132, 133], see also ref. [146]. To our knowledge, the

four-loop γg
J had not been considered in the literature so far.

For the cusp, soft, and rapidity anomalous dimensions, we do not include the gluon

coefficients up to 3-loop order as they are trivially related to the quark ones by a simple

overall Casimir scaling, γg
n = CA/CF γq

n for n ≤ 2. At 4-loop order, n = 3, the quark and

gluon coefficients are still related by generalized Casimir scaling, which however no longer

relates the coefficients as a whole, so we include both.
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