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ABSTRACT: We develop a new approach to estimate the uncertainty due to missing higher
orders in perturbative predictions (the perturbative “theory uncertainty”), which overcomes
many inherent limitations of the currently prevalent methods based on varying unphysical
renormalization scales. In our approach, the true underlying sources of the theory uncertainty,
namely the missing higher-order terms, are identified and parameterized in terms of mutually
independent theory nuisance parameters (TNPs). The TNPs are true parameters of the
calculation, i.e., they have a well-defined true value that is not or only imprecisely known.
This approach affords the theory uncertainty all benefits of a truly parametric uncertainty: it
provides correct correlations and allows for consistent error propagation and combination.
Furthermore, the TNPs can be profiled in fits, allowing the data to reduce the theory
uncertainties. On the theory side, it allows maximally exploiting all available higher-order
information to reduce the theory uncertainty, such as partial higher-order results or any
nontrivial knowledge of the higher-order or all-order structure.

We first discuss the method in general as it can be applied across the board of perturbative
calculations, including the various choices it requires and corresponding strategies for making
them. As a concrete application, we then discuss the resummed transverse momentum (gr)
spectrum in Drell-Yan production, and how TNP-based uncertainties can correctly capture
the correlations across the gr spectrum and between Z and W production. This application
is the basis of the theory model enabling the recent precise measurement of the W-boson mass
by the CMS experiment. In a forthcoming paper, we use it to study the theory uncertainties
in extracting the strong coupling constant a, from the Z ¢p spectrum.
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1 Introduction

The interpretation of precision measurements requires equally precise theoretical predictions.
Just as for experimental measurements, theoretical predictions are ultimately only as useful



as their uncertainties are meaningful. We are specifically interested in theory predictions
based on perturbation theory and their uncertainty due to missing higher-order corrections,
which we will refer to as the perturbative “theory uncertainty”. For a theory uncertainty
to be meaningful it must realistically reflect our degree of knowledge. This not only means
that it has a realistic size but also that it provides correct correlations and allows for some
form of statistical interpretation.

The prevalent traditional approach for estimating perturbative theory uncertainties based
on scale variations is neither particularly reliable nor does it provide correlations let alone a
meaningful statistical interpretation. These limitations are in principle well known. They have
been a long-standing bottleneck in our ability to interpret experimental measurements using
theoretical predictions, which is only becoming more severe as experimental measurements
become ever more precise. The approach put forward in this paper allows us to address this
issue by equipping perturbative predictions with meaningful theory uncertainties.

When designing measurement and interpretation strategies we optimize the total uncer-
tainty budget, and the theory uncertainty is part of this budget. Currently, this optimization
often gets skewed toward reducing as much as possible the impact of unreliable theory
uncertainties. This inevitably leads to sacrificing experimental precision. Reliable, meaningful
theory uncertainties make such sacrifices unnecessary and thus allow improving the overall
uncertainty budget beyond just the immediate effect of improving the theory prediction itself.
They can also enable entirely new measurement strategies that would otherwise be unfeasible.
An example is the recent precision measurement of the W-boson mass by CMS [1]. Thus,
meaningful theory uncertainties greatly facilitate our ability to fully exploit the potential
of existing and future precision measurements.

The above requirements for a meaningful theory uncertainty are elaborated on in sec-
tion 2.1. The key points are: first, the theory uncertainty is a property of the current
prediction that should reflect its intrinsic precision. In particular, it is not meant or defined
to be the unknown difference to the all-order result (or some formally more accurate result
standing in for the all-order one). Second, “theory correlations” — the correlations in the
theory uncertainties of different predictions — are required as soon as more than a single
theory prediction is used at a time. An important example is considering a differential spec-
trum, as each of its bins has a priori its own theory prediction. The bin-by-bin correlations
are essential when one is interested in shape effects, since a shape uncertainty is basically
a statement about how the uncertainties at different points in the spectrum are correlated.
Theory correlations are thus critical if one wants to distinguish the shape effect induced by a
to-be-determined parameter of interest from that caused by theory uncertainties. Third, a
theory prediction simply cannot be used for interpreting experimental measurements without
any quantitative statistical meaning for its uncertainty.

The limitations of scale variations are discussed in more detail in section 2.3. In short,
their lack of correlations basically stems from the fact that their variation cannot be interpreted
like that of a normal parameter whose uncertainty is being propagated. Hence, they are
notoriously unreliable for estimating shape uncertainties, which unfortunately is exactly what
they are often used for (primarily due to the lack of alternatives). This is becoming a severe
limitation in many precision studies. Presently, to be on the safe side we like to avoid attaching



any statistical meaning to theory uncertainties derived from scale variations. However, this is
not helpful at all. It just skirts the issue and puts the burden on the users of our predictions
since they are now forced to attach some ad hoc quantitative statistical meaning to them.
This state of affairs is clearly unsatisfactory and frankly speaking rather embarrassing.

Some frequentist statistical models attached to theory uncertainties are discussed for
example in refs. [2, 3]. There have been various proposals to obtain theory uncertainty
estimates with a more meaningful statistical interpretation via a Bayesian model [4-7], or
series acceleration [8], or based on a set of reference processes [9]. These methods go in the
right direction by trying to more directly estimate the size of missing higher-order corrections
and by more explicitly exposing the assumptions made. However, like scale variations they
base the uncertainty estimate on the known lower-order terms without parameterizing the
actual underlying source of uncertainty and as a result share many of the limitations of
scale variations. They have a similar level of arbitrariness and reliability, and in particular
they also lack theory correlations.

A theory uncertainty is a form of systematic (epistemic) uncertainty and as such we
cannot hope to render it as robust as a purely statistical (aleatoric) uncertainty. However,
the same requirements to be meaningful are shared by experimental systematic uncertainties.
Our approach thus treats theory uncertainties following the same logic that is routinely
applied for experimental systematic uncertainties to cast them into parametric uncertainties.
This is the key to render them meaningful and is discussed in section 2.2 and section 3. In
a nutshell, we identify the underlying sources of uncertainty, namely the relevant missing
perturbative ingredients, and parameterize them in terms of unknown parameters, which
are the “theory nuisance parameters” (TNPs). Predictions for different cross sections that
depend on the same perturbative ingredient will share a common TNP and the associated
uncertainty will be 100% correlated among them. The TNPs have true values, which can
in principle be determined from a higher-order calculation, but which are a priori unknown
(or treated as such). Without explicit knowledge of their true value, we can use auxiliary
information at our disposal to constrain their allowed ranges. The TNPs are then explicitly
varied or floated in fits within their allowed ranges to account for the theory uncertainties
and propagate them with correct correlations to subsequent interpretations.

Whilst constraining the TNPs based on auxiliary theoretical information necessarily
involves making some educated choices, this can be thought of as an imagined auxiliary
measurement. Furthermore, depending on the context, such theoretical constraints can be
supplemented or even replaced by constraining the TNPs with real auxiliary measurements
or in situ in the interpretation of the nominal measurement itself. As a result, the TNP-
based theory uncertainties admit an analogous statistical treatment and interpretation as
experimental systematics based on nuisance parameters constrained by (real or imagined)
auxiliary control measurements (see e.g. refs. [10, 11]). Finally, even if individual TNPs
may not necessarily have a precisely known probability distribution, since the total theory
uncertainty will typically arise as the combination of a number of TNPs, the central-limit
theorem ensures that it will be asymptotically Gaussian distributed.

Another key advantage of our approach is that it overcomes the paradigm of only being
able to systematically improve theory predictions in large discrete steps based on completely



known formal orders. The desire to utilize available higher-order information for actual
phenomenological benefit, i.e. to reduce theory uncertainties, without having to wait until
the formally complete next order eventually becomes available is more than obvious. In
fact, likely sooner than later this is going to become an actual requirement for making
progress, because as we push to higher and higher orders, formally complete orders for final
predictions are increasingly difficult to achieve and might eventually become out of reach.
For this reason, more and more predictions are appearing that are formally “approximate”
in some way ranging from very unjustified to very well justified. The underlying issue is
of course that at present we lack meaningful theory uncertainties, so the primary guiding
principle are formally complete orders.

We believe that in the long run an essential benefit of our approach will be to allow
our community to break out of this rigid paradigm. Meaningful theory uncertainties are
by construction a much better judge of the actual precision than the formal accuracy. Our
approach naturally allows for predictions that are formally incomplete in a fully justified,
systematic, and formally consistent manner. It ultimately allows for an (almost) continuous
integration of newly available higher-order results into final theory predictions, taking full
and immediate advantage of them for reducing theory uncertainties and thereby for maximal
and immediate phenomenological impact. Moreover, our approach makes it very transparent
which missing perturbative ingredients are causing the largest uncertainties at any given
stage, allowing one to anticipate already beforehand the impact of explicitly calculating a
certain higher-order ingredient. This can greatly help to guide efforts and to provide clear
and tangible justification for allocating resources.

The approach of this paper was first advocated in ref. [12], and has already been used
since in several instances [13—-15]. In these cases, the TNPs serve to estimate the uncertainty
due to still missing ingredients at the nominal, approximate working order. The application
of our approach to the resummed transverse momentum (g7) spectrum of W and Z bosons
produced in hadronic collisions as discussed in section 6 forms the basis of the theoretical
modelling that has enabled a high-precision measurement of the W-boson mass by the
CMS experiment [1]. In a forthcoming paper [16], we use it to study the expected theory
uncertainties in the extraction of the strong coupling constant oy from the Z pp spectrum.
A promising first application of our approach to a variety of fixed-order single-differential
distributions has been carried out in ref. [17].

At a basic level, it is of course not a new idea to estimate a missing higher-order coefficient
and the uncertainty caused by it. For example, in the past resummed calculations at N3LL
and beyond (see e.g. refs. [18-23]) have used Padé approximations for varying the 4-loop cusp
anomalous dimension and other 3-loop ingredients missing at the time. In high-precision QED
and electroweak calculations, scale variations are less prevalent than for QCD calculations,
and theory uncertainties are more commonly estimated by explicit, more-or-less ad hoc
estimates of the expected size of missing higher-order terms (see e.g. ref. [24]) including
attempts to constrain them from measurements (see e.g. ref. [25]). The methods of refs. [4-§]
amount to modelling the size of missing terms based on the size of the known terms.

While the main focus of our discussion is on perturbative predictions in QCD, our
approach in principle applies to any other systematic, truncated expansion and its truncation



uncertainty, such as the power expansions performed in effective field theories. For example,
a similar strategy can be followed to account for the truncation uncertainty in the SMEFT,
see e.g. refs. [26-28].

This paper is organized as follows. As already mentioned, in section 2 we discuss general
aspects of perturbative theory uncertainties. Section 3 gives a general discussion of the
approach of theory nuisance parameters and is intended for all audiences. Section 3.1 gives a
general overview of the approach, while the remaining subsections discuss several specific
aspects. Readers interested in an executive 5-page summary of our approach can just read
sections 2.2 and 3.1. Section 4 provides a guide for how to derive suitable parameterizations
in terms of TNPs. It is intended for readers who wish to implement TNP-based uncertainties
into their predictions, providing principles and strategies to follow as well as several examples
for illustration. In section 5 we then focus on TNPs for scalar series in QCD and discuss
how we can obtain robust theory constraints on them based on our theoretical knowledge
and available information from existing higher-order calculations. In section 6, we present
an explicit full-fledged example application of our approach for the case of ¢r resummation
for pp — Z/v* and pp — W production. We conclude in section 7.

2 Perturbative theory uncertainties

In section 2.1 we elaborate on the criteria for meaningful theory uncertainties. Readers who
find them self-evident or are happy to accept them can skip this subsection. In section 2.2
we derive our basic approach to estimate theory uncertainties as parametric uncertainties.
In section 2.3 we discuss the limitations of scale variations and why uncertainties derived
from them cannot be regarded as parametric uncertainties.

2.1 Philosophy
As mentioned in the introduction, for a theory (or really any) uncertainty to be mean-
ingful, it must

1. have a size that reflects our level of knowledge,

2. provide correct correlations, and

3. allow for some form of statistical interpretation.

Before elaborating further on these criteria, we stress that despite the title of this subsection,
having meaningful theory uncertainties is not just a philosophical or academic issue — quite
the opposite. As discussed in the introduction, it has important implications for interpreting
experimental measurements.

2.1.1 Size and statistical interpretation

A theory uncertainty is a systematic uncertainty, and as such will always require some element
of human judgement. Nevertheless, like for any systematic uncertainty, its size must reflect
our level of knowledge or lack thereof. With faithfully estimated theory uncertainties, the
precision of a perturbative prediction should be judged primarily by its uncertainty and not



so much by its formal perturbative accuracy. Of course, for a given quantity, we expect a
formally higher-order prediction to be more precise than a formally lower-order one. The
key point is that this should be the outcome of the uncertainty estimation procedure rather
than an input to it. This essentially precludes estimating the theory uncertainty (solely)
based on the size of the last known perturbative correction.

To see this, consider the experimental analog of two measurements A and B of the same
quantity, where B is more precise than A due to increased statistics or improved systematics
or both. These “formal” improvements may make us more confident in measurement B,
but in the end what really counts is their respective uncertainty. Assuming both have
faithfully estimated uncertainties, we expect B’s uncertainty to be smaller than A’s. For
simplicity, imagine that B’s uncertainty is so much smaller than A’s (and uncorrelated) that
only A’s uncertainty matters for comparing A and B. Consider the case that A does not
agree with B: since B is deemed to be more reliable (formally “better”), we would conclude
that A’s uncertainty was underestimated, i.e., in this case we can invalidate A’s uncertainty.
Crucially, the reverse conclusion is not allowed: if A does agree with B within its uncertainty,
this does not validate A’s uncertainty, i.e., we cannot conclude that A’s uncertainty is not
underestimated. If that was allowed, then taken to its logical conclusion, if A’s central value
would agree perfectly with B, we would have to conclude that A has a vanishingly small
uncertainty, which is clearly nonsense.

The above discussion applies identically when A is a lower-order and B a higher-order
calculation of the same quantity. For A to agree with B within its uncertainty is only a
necessary but not sufficient condition for A’s uncertainty to be correctly estimated. In
particular, we cannot estimate the uncertainty of A by comparing its central value to B. In
other words, the difference in central values, i.e. the true size of the higher-order correction,
is at best a (rough) lower limit on A’s uncertainty.

Unfortunately, this is exactly what happens frequently in perturbative predictions: we
are mistakenly led to think of the theory uncertainty as the difference of our result to the
all-order result (or a formally more accurate higher-order one). This inevitably leads to
the conclusion that we fundamentally cannot know the theory uncertainty because we will
never know the true all-order result. Or perhaps less dramatically, that we will only really
know the uncertainty at the present perturbative order once we have calculated the next
order(s). The experimental analog would be to say that we can never know the uncertainty
of a measurement because we will never know the true value in nature.

To summarize the above discussion: the theory uncertainty is not defined as the difference
to the all-order (or the next-order) result. Instead, it must be a property of our present
result reflecting its intrinsic precision. When estimating it, we are meant to estimate a
possible range that contains the all-order result. Of course, we cannot estimate this range
with absolute certainty. We can only hope to be able to estimate a range that contains
the all-order result with some probability or some level of confidence. This leads us to the
third criterium above, which basically means that we must have some way to quantify this
probability or level of confidence. Otherwise, we cannot actually utilize the prediction for
an interpretation, because to do so one must be able to interpret its uncertainty in terms
of some quantitative statistical meaning.



p | 995% 98% 95.5% 87.5%
r/6 | 01 02 03 05

Table 1. Reduction of the relative uncertainty in the ratio f/g for different correlations p, see text
for details.

2.1.2 Correlations

In practice theory predictions are almost never utilized in isolation but almost always in
combination with one another, at which point the correlation in their uncertainties becomes
relevant. This is the case whenever one considers more than a single process or phase-space
region. Consider the following prototype of a data-driven method,

f

£ = 9 easrea * |

: (2.1)
g:| theory

where a desired quantity f (the “signal” region/process) is obtained from a precisely measured
quantity g (the “control” region/process) by multiplying it with their ratio predicted from
theory. Loosely speaking, if f and g are different but closely related, their perturbative
corrections should be very similar and largely cancel in the ratio, such that eq. (2.1) yields
an improved description of f compared to its direct prediction from theory alone. More
precisely, the theory uncertainties of f and g should be strongly correlated in order to cancel
in the ratio. This cancellation is often implicitly assumed or relied on, but in reality it is
very sensitive to the exact correlation.

To appreciate this, consider f and g having relative uncertainty § with correlation p.
The relative uncertainty of their ratio, d;/4, as a function of p is given by

379 = 01/2(1—p). (2.2)

We are interested in the limit of strong correlation and large cancellation, i.e., p close to 1. In
this limit, d;/, is very sensitive to the precise value of p, as illustrated in tables 1, because the
square root becomes infinitely steep for p — 1. For example, 0/, is 10 times smaller than §
for p = 99.5%, while already for p = 98% it doubles in size to only 5 times smaller than §. The
same correlation information is required whenever one performs a simultaneous interpretation
of two or more measurements. A prime example is the interpretation of a differential spectrum,
which requires bin-by-bin (or point-by-point) theory correlations, as already discussed in
the introduction. The specific example of the transverse-momentum spectrum of W and Z
bosons at the LHC is discussed in section 6. The importance of theory correlations in the
context of modern machine learning methods was also stressed e.g. in ref. [29].

It is important to keep in mind that different quantities we want to predict, such as cross
sections for different processes or at different points in phase space, do not by themselves
have a notion of being correlated to each other. A priori, they are only more or less related
to each other by the extent to which their theory descriptions depend on common ingredients.
What is correlated is the uncertainty in their prediction due to the limited knowledge of those
common ingredients. If two quantities share a common source of uncertainty, the impact



of that uncertainty on both is 100% correlated between them, and this is fundamentally
the only way a correlation can arise.

The simplest example is a common input parameter. Its imprecise knowledge represents
a common source of uncertainty and its resulting uncertainty in all quantities that depend on
it is 100% correlated. When expressed as a covariance matrix, it yields a 100% correlated
covariance matrix for all quantities. A standard way to evaluate the correlated impact on all
quantities is to use a common nuisance parameter, which can be explicitly varied or floated
in a fit and whose variation is equivalent to varying the input parameter itself.

When several quantities depend on multiple independent sources of uncertainty, the
final correlation depends on the relative impact of the various 100% correlated contributions
from each source. Expressed with covariance matrices, the total covariance matrix is given
by a sum of several 100% correlated ones, which is in general not 100% correlated any
longer. Of course, different (nuisance) parameters can themselves have (partially) correlated
uncertainties, which can be propagated using standard error propagation.

More generally, the standard procedure to treat experimental systematic uncertainties is
to cast them into parametric uncertainties by parameterizing the underlying source or effect
in terms of one or more nuisance parameters, which have true but a priori unknown values.
Their values are then constrained by auxiliary (real or imagined) control measurements. The
resulting best-estimate but imprecise values of the nuisance parameters are then propagated
to the nominal measurement and its interpretation. Without any auxiliary constraint on a
nuisance parameter, its uncertainty is a priori infinite and its value will only be constrained
by the nominal measurement itself, reducing the power of the measurement for constraining
the parameters of interest.

To correctly quantify and account for theory correlations we simply follow the same
procedure: we identify and parameterize the common and mutually independent sources of
theory uncertainty and treat them respectively as 100% correlated and uncorrelated among
all quantities of interest. This is exactly what the theory nuisance parameters will do.

2.2 Parametric perturbative uncertainties
Consider the formal perturbative expansion of a quantity f in a small parameter «,
fla)=fo+ fia+ fa® + fsa® + O(a?). (2.3)

By calculating the values of the first few coefficients of the series, we obtain a prediction for f
at leading order (LO), next-to-leading order (NLO), next-to-next-to-leading order (NNLO),

LO:  f(a)= fo,
NLO:  f(a) = fo+ fia,
NNLO:  f(a) = fo+ fia+ f2a?, (2.4)

and so on. We always denote the true value of a quantity by a hat, so fn are the true values
of the series coefficient f,,. When applying perturbation theory in this way, we always work
under the general assumption that the series in eq. (2.3) converges.!

'When « is a coupling constant, it is well know that the series coefficients f, can grow factorially, f, ~ n!,
which for sufficiently high n overcomes the power suppression by a™, so the series is only asymptotic. In



The predictions for f(«) in eq. (2.4) are not exact but approximations of its all-order
result. The theory uncertainty we consider here is due to this intrinsic inexactness.? Its
fundamental sources are the higher-order terms in eq. (2.3) that are missing in eq. (2.4).
Our assumption of convergence implies that the predictions get increasingly better, i.e. more
precise, by including more and more terms in the series. This is equivalent to saying that the
dominant source of theory uncertainty for the prediction at a given order is the next missing
term, i.e, that the sum of all missing higher orders is dominated by the first missing one.
(One might then consider treating the second missing one as the “error on the error” [3, 30].)

Strictly speaking, the actual source of uncertainty is not so much the missing term as
a whole; it is rather the unknown series coefficient f,, as we do know the exact power o
it comes with. At NNLO, if we knew fg, we could add the next term fg a? to increase the
precision. Hence, very strictly speaking, what is unknown is not the series coefficient per se
but rather its true value fn We do know f,, in the sense that we know its exact definition,
we know it has a well-defined true value, and we know how to calculate it in principle (even
if we may not have the means to compute it in practice). Importantly, these distinctions

are not just semantics, but are relevant in what follows.?

Let us stress another important logical distinction: the unknown fn is not the theory
uncertainty itself (as discussed in section 2.1.1); it is only the source of the uncertainty. The
theory uncertainty is the impact on the prediction of not knowing fn, which also depends
for example on the size of a™. Therefore, to estimate the theory uncertainty we do not need
a precise estimate of f,. We rather need to quantify our limited (or lack of) knowledge of
fn. We will discuss further how to do so in section 3. For now, it is sufficient to think of f;,
as an unknown (or imprecisely known) parameter (not necessarily a scalar) which is going
to be varied in some way. To estimate the theory uncertainty we have to propagate this
variation into the prediction. For this purpose, f,, has to actually appear in our prediction,
which means we have to include the next term that contains the dependence on f,,. For

practice, by using perturbation theory to obtain predictions we implicitly assume (and confirm empirically)
that the series is still converging at the orders we are working, i.e., that the asymptotic behaviour only becomes
relevant at much higher orders than we are working at. This can fail when the series is affected by (leading)
renormalons, which essentially spoil the convergence of the series already at low orders. This can be remedied
by working in an appropriate renormalon-free scheme in which the nonconverging pieces of the series are
absorbed into the definitions of suitable (nonperturbative) parameters. Therefore, our general assumption
is that f is expanded in a suitable perturbative scheme that is free of (leading) renormalons, such that the
factorial growth of the coefficients does not yet affect the convergence of the series.

2To be crystal clear, it is not the uncertainty due to the imprecisely known value of a or any other input
parameter.

3We can draw the following contrast for illustration: it could be the case that we do not know the structure
of the series itself but only how to obtain f in some well-defined limit & — 0. In this case, the missing
higher-order terms as a whole are the source of the theory uncertainty, which clearly makes it more difficult
to estimate. An example would be a theory where we only know the free theory but not the interacting
one. A phenomenologically important example is the kinematic limit in which parton showers are formulated,
where we do not even in principle know the structure of the expansion around this limit. Similarly, resummed
predictions are performed in a kinematic power expansion for which we know the leading-power limit, but we
do not necessarily know the structure of the associated power series (although there has been a lot of progress
in recent years to better understand it).



example, the NLO and NNLO predictions in eq. (2.4) turn into

N'FILO: fla, fo) = fo+ fia+ fra?,
N*+21,0: flay, fa, f3) :fo+f104+f2042+f3a37
N2H1,0: fla, f3) = fo + fl o+ f2 o+ fza®. (2.5)

The notation N™**LO is meant to indicate that in addition to the first m fully known terms
we include k further terms with unknown coefficients for estimating the theory uncertainty.*

We have now derived the essence of our approach: the missing series coefficients are the
sources of the theory uncertainty. They are well-defined parameters of the perturbative series
with a true but unknown value, and we simply treat them accordingly: we include them in
the prediction and vary them to account for the theory uncertainty they cause. In this way,
the theory uncertainty becomes a truly parametric uncertainty, which is the basis for making
it meaningful. Note also that its source is actually different at each order, which also implies
that the theory correlations depend on the order of the prediction.

As discussed further in section 3, in reality, the series coefficients have internal structure
(e.g. color, partonic channels, etc.). They can also be functions of additional parameters
(e.g. quark masses) as well as kinematic variables. Hence, instead of varying them directly,
it will be more convenient to parameterize them as f,,(6,) in terms of one or more theory
nuisance parameters ¢, that are the unknown parameters to be varied.

The actual range of variation for f,, (really the 6,,) is something we have to decide,
which we also discuss further in section 3. By default it will be a sufficiently large range
covering the generic, natural size of f,, without knowing the true value fn or as if we had
no knowledge of f,. In addition (or instead) we can also constrain f,, (really the 6,,) from
experimental measurements.

If we are able to obtain a more precise estimate of fn, that is of course even better.
We can include this information to reduce the theory uncertainty due to f,. At this point,
however, we have to remember the uncertainty due to f,y1, which so far we were only able
to neglect because it was subdominant compared to f,. It has to be included now as soon as
it becomes relevant compared to the reduced uncertainty from f,. In this way, a lower-order
prediction can gradually turn into a higher-order one. For example, when fs is still unknown,
we would start at N'T'LO. As f, becomes better known, e.g., due to partial or approximate
calculations and/or experimental constraints, we switch at some point to N'*2LO, which
eventually turns into N>T'LO when fg has been fully calculated. Our approach thus allows
continuously improving theory predictions instead of being tied to large discrete steps from
demanding complete formal orders.

2.3 Limitations of scale variations

A well-known limitation of scale variations is that they only have information from the known
lower-order terms but no information about the genuine higher-order terms or structure,
which makes them not very reliable and prone to underestimation due to accidentally small
lower-order terms or due to important new structures appearing at higher order (e.g. new

4This notation implies a small departure from conventional wisdom in that 1 +1# 2 and 14+2 # 2+ 1.

~10 -



partonic channels or new functional dependences on kinematic invariants). Since the amount
of variation is largely arbitrary, one also runs the risk of overestimating the uncertainties,
which is of course also undesirable.

Even if with sufficient experience and appropriate care one is able to mitigate these
dangers of misestimation, scale variations suffer from an even more severe and fundamental
limitation: the scales that are being varied are unphysical: they are not actual parameters
of the calculation that have a true but only imprecisely known value. There can easily be
no value of the scale that actually captures the higher-order result. This immediately tells
us that it makes very little sense to try and constrain them from data. Since the scales
have no notion of a true value or an uncertainty that is being propagated, their variation
also cannot be interpreted as such. This implies that they are fundamentally incapable of
correctly determining theory correlations.

There is of course a more fundamental reason for the scales to appear, i.e. the renormal-
ization of the theory, which however has a priori nothing to do with theory uncertainties. To
all orders, the calculation does not depend on the scales. By truncating the perturbative
series at a finite order, a residual scale dependence remains, i.e., it is an artifact of the
calculation. Since this residual dependence must be cancelled by the truncated higher-order
terms, it can be exploited to get a sense for the potential size of those missing higher-order
terms, but no more than that.

We can capture the essence of the scale-variation approach and expose its limitations
already at the level of the generic expansion in eq. (2.3). The key point is that the series
coefficients f,, depend on the perturbative scheme by which we mean the exact way of
performing the perturbative expansion. In our case here, it corresponds to the exact choice
of the expansion parameter . We can define a new scheme by introducing a new expansion
parameter & that differs from « by higher-order terms,

a(a) =afl +bpa+bra? +ba’+ 0. (2.6)

The new scheme is uniquely determined by the coefficients by appearing in eq. (2.6). Since
a and @ are the same at lowest order, @ = a + O(a?), they are equally good expansion
parameters as long as we choose by, ~ O(1). Apart from this condition, we can choose the by
freely, so eq. (2.6) actually represents infinitely many possible expansion parameters.

To be concrete, for QCD scale variations we have oo = as(p) and & = as(p), where pg
is the central scale and p is the varied scale. Expanding a(p) in terms of as(pg), we can
easily determine the explicit by in eq. (2.6) that are implied by scale variations,

by = 0 1 0 —0.851L,
2
2
by = 0 2 k0 O1g b =0.72L% +0.34L,

L) p o 8w o

3
_ B0 s BBy apo By B0 61 rs 079240130, (27)

bo =
278 4 U322 4 T3 g

They are (k + 1)th-order polynomials in In(uo/p), and Sy are the (k + 1)-loop QCD g
function coefficients governing the p dependence of ag(u). In the second expressions we used
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ng =5 and defined L = In(po/p)/In2 to give explicit numerical results for illustration. By
convention, we vary u by a factor of two around pg so L varies between +1. Note that scale
variations do not actually provide us with the freedom to choose all by freely. Instead, they
are all determined by choosing a single value for p or equivalently L.

Continuing our discussion, we now have two (or really infinitely many) equally good
ways to perform the perturbative expansion for f, using either a or &,

fla)=fo+ fia+ f20%+ f30° + O(a?),
f@)=fo+ fia+ &+ f3a° +0(a?). (2.8)

Since they are expansions of the same f, to all orders they are identical: f(a) = f(@) = f.
Plugging eq. (2.6) back into f(&) and demanding that f(a) = f(@(c)) at each order in «a, we
can easily derive the scheme translation that relates the f, to the original f,,

fo=fo, fi=fi, fo=fo—bof1, f3=f3—200(fo —bof1) —bifi. (2.9)

Hence, the scheme choice essentially amounts to shuffling around terms between orders
in the series.

Although f(a) = f(@) to all orders, when we truncate f(@) at a finite order to obtain
predictions in our new scheme, they will differ by higher-order terms from our original
predictions truncating f(«) in eq. (2.4). For example, up to NNLO we have

LO:  f(a) = fo = fo,
NLO: f(a) :fo-i-fl@ =fo+ fra+bofia® +bifia® +O(at), (2.10)
NNLO: f(a) = 20+ Q1o~z+ 22072: fo+ fra+ faa® +[2b0(fo — bof1) + b1 fi]a®+ O(a?)

In the second expressions we used eqs. (2.6) and (2.9) to rewrite the prediction in terms
of the original fn and « to explicitly expose the differences highlighted in red. In general,
the N"LO predictions in the two schemes agree up to O(a™) but differ by O(a"*!) and
higher terms (except for the LO predictions, which happen to agree exactly because there
is no scheme dependence yet at this order).

In the scale-variation approach, this higher-order scheme dependence is now exploited by
taking the difference between the two schemes as an estimate A f of the theory uncertainty,

LO:  Af(a) =0,
NLO:  Af(a) =bofia® +bifia+O(a?),
NNLO:  Af(a) = [2bo(f2 — bof1) + bifi]e® + O(a?). (2.11)

The limitations of the scale-variation approach should be clear from the above discussion.
They are fundamentally caused by the fact that the scalar parameter L (or p) that is being
varied is not a true parameter of the prediction, i.e., it has no notion of having a true value
L that reproduces the true missing fn This is because the coefficients of o in eq. (2.11) are
in general not a valid parameterization of the missing higher-order coefficients f,,. As soon
as the f, have some nontrivial internal structure, they will not just be given by fixed linear
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combinations of lower-order coefficients.> The fact that Af(«a) is proportional to the true
values of the lower-order coefficients causes the common pitfall of underestimation already
mentioned at the beginning of this subsection. For example at NLO, if fl happens to be
smaller than its natural size, or lacks relevant internal structures of fo, bg fl will underestimate
the natural size of fo and thus the uncertainty due to it. This is made even more severe
by the fact that we practically always use the same conventional value for by regardless of
the actual properties of fl and fa.

Besides these dangers of misestimation, as L is not a true parameter of the prediction, its
variation fundamentally cannot yield a meaningful theory uncertainty to begin with. That is,
it cannot imply correlations or be constrained by measurements, and the resulting uncertainty
estimates do not admit a meaningful statistical interpretation.

These limitations of scale variations have been known for a long time. A common method
to alleviate the possible underestimation is to perform a variety of scale variations. The
individual differences are then combined into a total uncertainty estimate A f by taking their
envelope because the different variations just probe the potential size of the same missing
higher-order terms in different ways and are not individually meaningful. To mitigate the lack
of correlations, the best we can do is to impose a context-specific correlation model on the
total A f. Dedicated correlation models have been discussed in the context of both fixed-order
predictions (see e.g. refs. [31-38]) as well as resummed predictions (see e.g. refs. [32, 39-44]).
Deciding whether or how to correlate or uncorrelate scale variations for different predictions
also just amounts to choosing some ad hoc correlation model. While such correlation models
can be theoretically motivated, they are still ad hoc assumptions, so they are only bandaids
and do not cure the underlying problem.

In practice, the scale-variation based uncertainties are often propagated by introducing
ad hoc nuisance parameters 6y by writing the predictions at a given order as f + 0;Af
with 6y = 0 & 1. Although this may be done to simplify the technical implementation,
we cannot stress enough that doing so obviously does not turn Af automagically into an
actual parametric uncertainty. Such ad hoc nuisance parameters are not genuine nuisance
parameters and must not be treated or misinterpreted as such. In particular, despite the fact
that this has become a common mispractice, they may not be profiled.

3 Theory nuisance parameters

This section gives a general and largely self-contained discussion of theory nuisance parameters
(TNPs) and TNP-based theory predictions and uncertainties. It is intended for all audiences.
Readers should have read section 2.2, but not necessarily other subsections of section 2.
Section 3.1 gives an introduction and general overview of the TNP approach picking
up where we left off in section 2.2. It is a prerequisite for the subsequent subsections and
the rest of the paper. In the subsequent subsections we further discuss several aspects of

5The attentive reader might have noticed that in the special case where the f,, are pure scalars, we would
in principle have enough degrees of freedom to correctly reproduce each fn if we were to choose each by
separately. However, apart from the fact that scale variations do not actually provide this freedom, as we
will see in sections 3 and 4, the cases where we could parameterize f, correctly as a single scalar are rare.
Furthermore, this essentially precludes accounting for any correlations.
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the TNP approach. They are largely independent of each other, so readers not concerned
with any one of these aspects can freely skip the respective subsection: section 3.2 discusses
some implementation aspects. Section 3.3 discusses constraining the TNPs based on theory
considerations and measurements. Section 3.4 discusses how scale and perturbative scheme
choices figure into our approach.

3.1 General overview

We consider the expansion of a quantity f in the small parameter «,

fla)=fo+ fia+ fad®+ fsa® + O(a?). (3.1)
As before, we use a hat to distinguish a parameter (f,, 6,, ...) from its true value ( fos
én, ...). To obtain a perturbative prediction for f at order N™**LO in our approach, we

include the true values of the first m series coefficients and in addition the next k terms whose
coefficients are (considered to be) unknown parameters, which account for the (dominant)
theory uncertainty. For example,

N'"'LO: flo,02) = fo+ fra+ fa(62) 07,
N!*+21,0: fla,02,03) = fg + f1 a+ fa(62) o? + f3(03) a?,
N**'LO: fla,03) = fo+ fra+ faa® + f3(05) o®. (3.2)

In addition to eq. (2.5), we have now parameterized the unknown series coefficients f,,(6,)
in terms of theory nuisance parameters 6, forn =m+1,...,m + k.

In general, f,, has a nontrivial internal structure involving various discrete and continuous
variables. In principle, some of this structure needs to be accounted for in the “TNP
parameterization” f,(6,), which therefore depends in general on multiple TNPs 6, ;. For
example, when f,, depends on different flavor or color channels, we might need a 6,, ; for each.
When f,, depends on a continuous kinematic variable, we might need to parameterize this
dependence in terms of several 6, ;. The required number of TNPs thus depends on how
fn’s internal structure is parameterized. For notational simplicity we always let 6,, = {0,,;}
stand for the full set of 6, ;.

Different quantities can depend on a common 6, ; when their coefficients internally
depend on the same perturbative ingredient parameterized by 6, ;. Some obvious examples
are universal objects in QCD which appear in many places, such as the beta function,
splitting functions, or the cusp anomalous dimension. In this case, a given 6, ; is always
varied simultaneously everywhere it appears and the resulting uncertainty is treated as 100%
correlated. This is how theory correlations among different quantities are correctly accounted
for. In fact, as we will discuss in section 4, which parts of the internal structure we need
to parameterize is directly determined by the theory correlations we need to account for.
On the other hand, different 6, ; should a priori be mutually independent and correspond
to independent sources of uncertainties. They can then be varied independently and their
resulting uncertainties can be treated as a priori uncorrelated.

An essential requirement on the TNP parameterization is that it must be able to
reproduce the coefficient’s true value fn That is, the TNPs must have true values én = {ém}
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corresponding to fn,
fn = fn(én) . (33)

This is what makes the TNPs themselves true parameters of the perturbative series, and
what allows us to obtain meaningful constraints on their (a priori unknown) values. That is,
as for any physical parameter whose true value is unknown, we can obtain a best estimate
for the 6,, with some uncertainty, which we denote as

0, = u, £ Au, . (3.4)

This estimate could come from theory considerations or experimental measurements or both.
It should be accompanied with a quantitative statistical interpretation of the uncertainty,
which may be more or less rigorous depending on where it comes from. Statistically speaking,
we want to treat eq. (3.4) as coming from a real or imagined auxiliary measurement, as for
any other systematic uncertainty. Normally, eq. (3.4) will only provide a loose constraint for
the 6,, to have their natural size but not a precise estimate of 0,,. To emphasize this point, we
mostly talk about constraints on the 6, rather than estimates of them. When we have several
constraints for the same 6, ;, we combine them appropriately. The central theory prediction
is then obtained by setting the 6, to their central value u,, while the theory uncertainty is
evaluated by appropriately propagating or incorporating the uncertainties Au,, including
their statistical interpretation, into the final results. In this way, TNPs provide us with
parametric, meaningful theory uncertainties. They can (and should) always be propagated,
combined, and interpreted like standard parameter uncertainties.

To summarize, there are two main steps to obtain a theory prediction with TNP-based
uncertainties:

1. Derive an appropriate TNP parameterization f,,(6,) that satisfies all requirements for

all quantities of interest and implement it into the predictions.

2. Obtain suitable auxiliary constraints on all relevant TNPs 6,, and propagate them into
the final results.

It is important to separate these two steps both logically and practically, because they depend
on different levels of approximations and assumptions.

The TNP parameterization in step 1 is determined by the internal structure of f,,, which
is what it is and not really debatable. As we will see in section 4, all choices we can make here
are based on external requirements and can be framed as making approximations that are
systematically improvable if needed. Hence, the theory uncertainty and correlation structure
encoded by a given TNP parameterization is always correct to some formal accuracy. Deriving
it requires expert domain knowledge. It must thus be provided as part of the prediction and
cannot be left to users. This also means that we cannot provide a generic parameterization
that is going to work in all cases. Instead, in section 4 we discuss the general principles
and strategies for constructing suitable parameterizations, and in section 6 we discuss a
full-fledged example application.

On the other hand, in step 2 we can debate to what extent a specific constraint (theoretical
or experimental) is deemed sufficiently reliable or not and informed users can choose to include
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it or not based on their preferences or requirements. We will see in section 5 that it is indeed
possible to obtain robust theory constraints. Furthermore, users can choose their preferred
method of propagating the TNP uncertainties. One could either vary the TNPs explicitly or
derive a theory covariance matrix for all predictions by performing a standard Gaussian error
propagation. When fitting to data one could repeat the fit for each variation (sometimes
called scanning or offset method), or use the derived theory covariance matrix, or profile the
TNPs as genuine nuisance parameters with eq. (3.4) imposed as an auxiliary constraint. The
option to profile the TNPs is of course a key advantage, and where their name comes from,
as it directly constrains the TNPs by the data. We will come back to this in section 3.3.

3.2 Approximate implementation

In practice, to upgrade an existing N™LO prediction to a full-fledged N™**LO prediction
with TNP uncertainties, one has to implement the correct structure of the next & orders
in terms of the parameterized f,(6,). Depending on the complexity of the prediction and
parameterization this can be a challenging task in itself. Therefore, as an approximation to
the N *1LO implementation one can also consider using the structure of the existing N™LO
prediction and absorb the uncertainty term into the highest known order, for example,

NYOLO:  f(a,02) = fo+ [fi + aofa(fa)] e,
N2OLO:  f(e,63) = fo+ fra+ [fa+ aofs(83)] 2. (3.5)

Here, ag denotes a fixed value of «, which is not part of the formal series structure, e.g.,
it is does not participate in counting orders of a. In extension to our notation, we denote
this as N™+0LO.6

This approximation makes little difference for our simple illustrative series, but it can
make more of a difference for real-life series. For example, it might require approximating
or dropping parts of the internal structure of f,(6,) that cannot be absorbed into the
existing structure of f,_1. Furthermore, when the full series involves a product of several
individual series (as e.g. in resummed predictions), one correctly accounts for all O(a™*1)
cross terms of lower-order pieces at N *1LO, while they are neglected at N *t°LO. So whilst
this approximation still provides parametric uncertainties, the impact of the parameters is
only approximately correct because one effectively uses the O(a™*!) uncertainty parameters
with the lower O(a) uncertainty structure. We might expect this to have only a limited
effect on the overall size of the theory uncertainty, while it might have a bigger effect on
the theory correlations. We generally recommend using the N +!LO prediction. If this is
unfeasible for practical reasons, one can still resort to N**°LO, but one should ideally check
with available orders how much of a difference this approximation makes.

As discussed at the end of section 2.2, when the 6,,; become strongly constrained, we
have to include at some point the 6,41 ;, which means upgrading the prediction from N *1LO
to N™+2LO. A convenient way to test if this is already warranted or not is to include the
0541, in this approximate fashion, i.e, approximate N™+2L0O by N™*10L0. Another possible
scenario is a mixed case where some 0, ; are well estimated or exactly known such that their

5This approximation thus comes at the minor cost of further breaking basic arithmetic: m + 0 # m.

~16 -



corresponding 0,41,; should be included, while most others are still largely unconstrained.
In this case, it would be premature to upgrade to N+ 2LO but one can already include
the few required 0,11, approximately.

3.3 Constraining the TNPs

As already mentioned, since the TNPs are proper parameters with true values, it is perfectly
consistent to profile them in fits to data, in stark contrast to scale-variation based approaches.
We discuss several aspects of this in section 3.3.2 below.

Nevertheless, we still need a theory uncertainty estimate for the “pre-fit” theory pre-
dictions, i.e., before confronting them with experimental measurements. This is obviously
necessary for any theoretical studies where we do not (yet) fit to data. Even when fitting to
data, it might be unfeasible or undesirable to always constrain all TNPs entirely from data
alone. Another reason is to be able to judge or test whether the data constrains some 6, ; too
strongly. Therefore, we need some constraint on the TNNPs based on theory considerations,
which we briefly discuss next and in much more detail in section 5.

3.3.1 Theory constraints

As our default theory constraint, without any further information, we will have u, = 0
and Awu, given by the “natural size” of 6,,, by which we mean we would generically expect
0,] < Au,. To be more concrete, if we knew with 68% confidence level that |0, < N,
we would take Au, = N,. The default theory constraint thus requires us to estimate the
natural size of 8,, and then allows 6, to vary within it. Without loss of generality, we assume
that 6, is normalized to have a natural size of O(1), i.e., such that we generically expect
0,] < 1 and thus Au, ~ 1.

Estimating the natural size of 6, is basically equivalent to estimating the natural size of
fn, which is usually possible by considering its known higher-order structure. For example,
just pulling out the known leading color and loop factors is usually sufficient to normalize
0y, to have O(1) natural size. As this estimate directly determines the eventual size of the
theory uncertainty we would of course like to narrow it down better than just a generic
O(1) factor, ideally to within a factor of 2 or better. This can then be tested extensively
on many known series coefficients. As we will see in section 5, doing so we are able to
obtain a (almost surprisingly) robust estimate for Aw,, well within a factor of 2, and with
a well-defined statistical interpretation.

In some cases we have further theoretical information that relates a priori independent
structures in f,, (or different coefficients or quantities), which have to satisfy certain relations.
An example are consistency relations between different anomalous dimensions, which they
must satisfy exactly. We have different options to incorporate such information. If the
relations are exact and simple enough, one option is to solve them explicitly and eliminate
some 0, ; by expressing them in terms of others. This amounts to incorporating the constraint
directly at the level of the parameterization. Otherwise, especially in cases with inexact
relations, we can keep all a priori independent 0, ; and account for each relation by imposing
a corresponding auxiliary theory constraint, which can then lead to nontrivial a posteriori
correlations between some 0, ;.
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3.3.2 Measurement constraints

Theory-based constraints, unless they are exact constraints, inevitably involve some theoretical
prejudice in the size of the uncertainty. (They can also induce a potential bias due to scheme
and parameterization dependences, as discussed in sections 3.4 and 4.4.) However, when the
theory predictions are used to interpret experimental measurements, which is when the theory
uncertainties arguably matter the most, the TNPs can be constrained by the measurements
themselves by including them in the fit as actual nuisance parameters. Hence, we have the
choice to avoid (or at least minimize) the dependence on some undesired theoretical prejudice
by not imposing (or reducing) some theory-based constraint and thereby rely more on the
measurements. Of course, this comes at the expense of some experimental sensitivity. A
key advantage of our approach is that it actually gives us this choice. Thus, profiling the
TNPs in fits to data has many important benefits:

o It allows constraining the theory uncertainties by data.
o It avoids or reduces the susceptibility to possible theory prejudice or biases.

o It allows taking into account possibly important correlations between the TNPs and
the parameters of interest.

The last point is because by profiling the TNPs we let the fit decide between moving a
parameter of interest vs. moving the theory predictions.

One might be worried that when the TNPs are constrained by the data, they also
absorb the effects of all yet higher-order corrections that have not been included in the
theory uncertainty estimate, or more generally, the effect of any type of missing contribution
or deficiency in our description. However, this problem is always there: any such effect
is always collectively absorbed into all fitted parameters (both nuisance parameters and
parameters of interest). The inclusion of TNPs in the fit does not make this any worse. In
fact, it is likely to reduce this problem as far as missing theory contributions are concerned,
because it is not unlikely that they are structurally similar to the theory uncertainty terms
we now include. This means, they get absorbed more likely into the fitted TNPs than into
the parameters of interest, thus reducing the contamination of the parameters of interest,
which is exactly what we want.

We should of course not blindly let the TNPs get misused for unintended purposes.
Formally, any unaccounted theory effect is really just an unaccounted source of theory
uncertainty. By neglecting it we assume that it is small enough to be neglected against other
uncertainties, which is equivalent to accepting that it will be effectively absorbed somewhere
(hopefully mostly into the TNPs). However, this is exactly equivalent to the conditions under
which we are allowed to neglect f,,+1 compared to f, as discussed in section 2.2. The same
discussion obviously applies to any other source of theory uncertainty as well. In particular, if
with sufficiently precise data we want to actually determine 6,,, then we effectively elevate it
to a parameter of interest. We then have to at least include 6,41 to account for the remaining
leading theory uncertainty, as discussed at the end of section 2.2, and more generally also
any other source of theory uncertainty of similar size.
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3.4 Scheme dependence

In our approach, we still have to choose a specific scale or scheme to perform the perturbative
expansion. For our purposes, the perturbative scheme includes all choices of renormalization
and factorization schemes as well as the choices of all associated scales we have to make.
One might wonder how the dependence on this scheme figures into our approach now. In
general, the scheme dependence is not a problem. The scheme just has to be well defined
so we can translate from one scheme to another, and the scheme dependence has to be
treated consistently.

We already discussed the scheme dependence at the level of our example series in
section 2.3. To briefly recap, by choosing different expansion parameters o or &, we have
different ways to perform the perturbative expansion for the same quantity f,

fl@)=fo+ fia+t oo+ f30° +0(at),
fla)y=fo+ fia+ fa®+ fza°+0@E"Y. (3.6)

To all orders, the two series give identical results, f(a) = f(&@) = f, but at any truncated
order they differ by higher-order terms [see eq. (2.10)]. The two schemes are uniquely defined
relative to each other by the relation between « and &,

a(a) =afl +bpa+bra? +bya’ + 0], (3.7)
from which the relation between the series coefficients f, and f, follows [see eq. (2.9)],

fo= fo, fi=fi, fo=fo—bof1, f3=f3—2b0(f2 —bof1) —bifi. (3.8)

To discuss the scheme dependence or ambiguity in the context of our TNP-based
predictions, it is important to distinguish two places where the scheme choice enters: first,
the scheme dependence of f, is inherited by 6,,. We thus pick a common “reference scheme”
in which the 6,, are defined via the TNP parameterization f,,(6,). We will come back to the
question of how to pick the reference scheme below. For notational simplicity, we continue
using fi, 0,, a to denote the parameters in the reference scheme, while we add tildes, fn,
0,,, & for the parameters in some other scheme.

Second, as always we need to pick a scheme in which to evaluate the prediction itself.
An obvious and natural choice is to use the same scheme for both, i.e., we would just use the
reference scheme f(«), but in principle they could also be different. To obtain the prediction
in a different scheme, f(@), in terms of the reference parameters f,(6,), we simply translate
from the reference scheme by using eq. (3.8) for the series coefficients of f(@&). For example,
translating the predictions in eq. (3.2), we get

N'"MLO:  f(a,02) = fo+ fra+ [f2(62) — bofi] &2, (3.9)
NZLO: f(@,03) = fo + fra+ [f2 — bofi] 62 + [f3(03) — 2bo(fo — bof1) — bifi] &2
This makes it clear that the 6,, are always the same parameters and are independent of

the scheme of the prediction.

To discuss the residual scheme dependence of the prediction, first consider the N+1LO
prediction in eq. (3.9): its residual scheme dependence is of O(&?%), because the O(a?) term
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includes by construction the correct scheme-dependent term —bg fl &? that cancels the scheme
dependence of @ in the previous term. Similarly, at N>*!'LO (and also N'*2LO which is not
shown), the O(a3) term includes all necessary terms to cancel the O(&®) scheme dependence

of the lower-order terms, so the residual scheme dependence is pushed to O(&*). In general,

the residual scheme dependence of the N™**LO prediction is by construction of O(a™*+1)

and formally beyond the smallest included theory uncertainty of O(a™+¥)

m+k+1)

. We can thus ignore
it for the same reason we can drop the O(« theory uncertainty caused by fynyri1.’

We now come back to the question of how to pick the reference scheme for 6,,. Since
0, plays the role of an input parameter, defining it in a different scheme merely defines a
different (but related) input parameter 8, with a different but related true value 6,,. Their
relation follows from the relation between f, and f, in eq. (3.8).% Since this relation is exact,
it a priori does not matter which parameter we use; we can always translate exactly from one
to the other. Hence, choosing a common reference scheme for 6,, is akin to our conventional
choice of as(myz) (defined in a certain reference scheme namely MS at u = my) as the
common input parameter for ais. We could have just as well chosen as(my) or as(42 GeV).
Since the relation between them is known very precisely, it makes practically no difference
which one we decide to extract from data.”

The key difference to a purely data-determined parameter like as(my) is that for 6,, we
also want to be able to obtain constraints based on theory considerations. For this purpose,
some reference schemes are better than others. A good reference scheme is one where the
frn are bounded by their natural size, i.e., they don’t contain large scheme-induced artifacts,
such that the corresponding 6,, are of natural size. We stress that this does not mean that
the best reference scheme is necessarily the one where fn is the smallest, as this might just
be accidental. Instead, the best reference scheme is the one for which we are most confident
that the f,, and thereby the 6,,, are of natural size, because this maximizes the confidence
we can ascribe to theory constraints that estimate the natural size of 6,,.

For the scale dependence, this is basically how we would usually choose (or at least
should be choosing) the central scale. We choose one for which we are most confident that
the f,, do not contain large logarithms of the scale. We usually do not (or at least should
not) choose the central scale by minimizing the highest-order fn Hence, by default we can
just recycle our “best” conventional or canonical central scales as reference scales.

To discuss the effect of choosing different reference schemes in more detail, let us compare
for concreteness the N'T'LO predictions with TNPs defined in different reference schemes,

NYILO:  f(a,6y) = fo+ fia+ fa(02) &*,
NYLO:  fon82) = fo + fra+ [fa(B2) + bofi] o2, (3.10)

"More precisely, it causes a bias in the central value of our predictions, which is small compared to the
nominal theory uncertainty.

8Depending on the complexity of f(0,), the exact relation between the individual 6, ; and ényi can be
more nontrivial than suggested by eq. (3.8), as it may not be immediately obvious how to distribute the
scheme difference between them. There can also be some 6, ; that are scheme independent, namely those that
parameterize new structures in f,, that cannot be generated by the scheme change and are not captured by
scale variations.

9In contrast, for quark masses the scheme translation can induce a sizeable uncertainty, so the optimal
reference scheme for the mass parameter is the scheme of the prediction that is used for its extraction.
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where the two TNP parameterizations have to satisfy the scheme relation from eq. (3.8),

f2(02) = fa(62) — o, (3.11)

which determines the exact relation between the two parameters 65 and . As long as
they satisfy eq. (3.11), the predictions in eq. (3.10) are literally identical and it does not
matter at all which parameter we use.

A dependence on the reference scheme enters when the constraints we put on 6,, vs. én
violate the scheme relation between them. As already discussed above, real measurement
constraints always respect this relation, simply because they always constrain the quantity
f itself, which is scheme independent. We can see this immediately from eq. (3.10): any
constraint we get on f, from data or elsewhere, yields exactly the same constraint on either
f2(62) or fo(f3) + bof1, and thus respects eq. (3.11).

On the other hand, our default theory constraints are scheme dependent because we
constrain 6, directly. It clearly makes a difference whether we decide to constrain 6, =0+ 1
or 6, = 04 1. They yield the same constraint for f,(6,) or f,(#,), which means the (absolute)
uncertainty on f(a,6,) and f(a,6,) is the same but their central value is shifted by the
scheme-dependent terms. Thus, the choice of reference scheme causes a bias (or prior) in
the central value of our theory constraint, but also nothing more.

At this point, we need to take a slight detour, as this type of bias is actually not specific
to the theory uncertainty but can be the case for any systematic uncertainty. It amounts
to the inherent ambiguity that is always present when we have an unknown parameter that
lacks any constraints and for which we are therefore forced to pick a reasonable value. In the
absence of any external information, there is simply no unbiased way of doing so.

This is where the difference between a *

‘real” vs. “imagined” auxiliary measurement
comes in. More precisely, this is how we can define this distinction: a real measurement or
constraint imposes an unambiguous central value. An imagined one, while also imposing
a central value, leaves open the choice on which parameter to impose it. Note that not
all theory-based constraints are necessarily of the latter type, e.g., an actual approximate
calculation of 6,, will usually apply in a specific scheme and thus resolve the scheme ambiguity.
The equivalent constraint for 6,, would then follow from their scheme relation.

There are standard ways to deal with such biases in practice: first, the bias from choosing
a parameter’s central value is not an additional source of uncertainty. It is a bias that may or
may not be covered by the parameter’s uncertainty. If it is not, we might decide to enlarge
the uncertainty or explicitly state the choice that causes the bias as a precondition or both.
We then have several options for treating the bias:

1. If the parameter’s bias is small compared to the parameter’s uncertainty, we can formally
neglect it and move on.

2. Otherwise, if the final analysis or interpretation is insensitive to the bias, i.e., the
resulting bias induced in the final result is small compared to its other uncertainties,
we can ignore it for practical purposes and move on.

3. Otherwise, the final result is sensitive to the bias. In this case,
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(a) if possible, we leave the parameter unconstrained and let the data itself constrain
it. This removes any bias at the potential cost of reducing the power of the data
for determining other parameters.

(b) Otherwise, if possible and still useful, we quote the final result explicitly stating
the preconditions under which it is valid.

(¢) Otherwise, we have to accept the fact that the analysis or interpretation is not
possible or useful with current knowledge.

In cases 1 and 2, we always have the option to further constrain the parameter’s uncertainty
by the data. Note that these cases require us to be able to quantify the bias, otherwise
we are automatically in case 3.

We now return to our discussion at hand. First, the exact scheme choice for the prediction
itself is actually an example of case 1. It also causes a small bias in the prediction’s central
value, but as discussed above, this ambiguity is formally at least one order higher than
the theory uncertainty.

The bias caused by the choice of reference scheme of 6,, in our default theory constraint
should be covered by its uncertainty on 6,, as long as we are comparing two equally good
schemes and the uncertainty is not underestimated. In other words, if the bias is not covered
by the uncertainty, the scheme difference |60,, — §n| exceeds what we estimated to be 6,,’s
natural size. This means one of the schemes is not a good one. If we cannot figure out
which one, then the uncertainty estimate, i.e., our estimate of #,,’s natural size, is too small.
Often however, we really do have a theoretically preferred reference scheme, for instance
when there is an obvious canonical scale choice, which effectively reduces the bias to be
smaller than the uncertainty.!”

We should also stress that at the end of the day this bias is not a major issue. For the
pre-fit theory predictions we are effectively in case 3b, unless we can argue for case 1. However,
at this stage the exact central value is not actually that useful or interesting, what matters
more are the uncertainties. We just have to keep in mind when discussing pre-fit predictions
that we had to make an explicit choice for the exact central value and we could have made a
slightly different one within the uncertainties. The central value actually becomes relevant
when the predictions are confronted with data, but at this point the bias can be reduced or
even eliminated by the data itself. To be prudent, we can in addition weaken any biased
theory constraint, e.g. by taking twice its uncertainty, to reduce its constraining power and
put more emphasis on the data as much as desired.

Finally, the above discussion provides another way to highlight the key limitation of scale
variations. They can at best provide an estimate of the scheme-induced bias but not of the
actual uncertainty, because they cannot actually probe the underlying unknown parameter
(the missing f,) whose central value is implicitly chosen to be zero.

OEvaluating the bias is of course subjective, but we should only consider alternative schemes for which we
really are as confident as for our reference scheme that the f,, are of natural size. In other words, the bias is
not automatically given now by varying the scale by a factor of 2. When we (used to) do scale variations by a
factor of 2, it was not to estimate the scheme bias, we just exploited the scheme dependence to guess the
theory uncertainty.
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4 Parameterization guide

This section discusses how the series coefficients f,, can be parameterized in terms of theory
nuisance parameters 6,. It is intended for readers wishing to implement TNPs into their
predictions as well as curious readers wishing to use such predictions. It assumes readers
are familiar with section 3.1.

As already mentioned in section 3.1, deriving an optimal TNP parameterization f,,(6,)
amounts to deriving the correct and relevant theory uncertainty and correlation structure
for the prediction at hand. It must thus be regarded as an integral part of performing and
providing the prediction itself.!! This is in general a nontrivial task and requires expert
knowledge on the structure of the underlying perturbative series. It is clearly not as easy
or convenient as performing scale variations; there is no free lunch.

The particular parameterization strategy or combination of strategies to follow will
depend on the case at hand. We hope our discussion here will serve as a useful guideline
and starting point for future investigations.

In the next subsection we setup the basic problem and along the way give an outline
of the rest of this section. We also provide a brief executive summary for the impatient
reader at the beginning of each subsequent subsection.

4.1 Overview and outline

The internal structure of f,, is determined by various dependences on both discrete and
continuous parameters, variables, or labels. Typical discrete dependencies are partonic
channels, color channels, or any type of discrete quantum numbers. Examples of continuous
dependencies are kinematic variables or particle masses. In some cases, f,, is mathematically
a continuous function of a parameter which in practice only takes discrete (typically integer)
values. Examples are the number of fermions, ny, or the number of colors, N.. In section 4.6,
we will discuss these and other examples to illustrate our general discussion.

For now, let us denote any one of these variables (discrete or continuous) by x. For
the sake of simplicity and without much loss of generality we focus on the case of f,(x)
being a function of a single variable z at a time. The true value of f,(z) is again denoted
by fn(:c) The dependence on multiple variables can be treated as a direct generalization
as discussed in section 4.5.

Our goal is to construct a TNP parameterization f,(z,0,) that satisfies the key require-
ment in eq. (3.3), which now reads

fa(@) = fal@,0n) . (4.1)

Another goal is that the 6, ; should be mutually independent, i.e., they should correspond
to mutually independent sources of theory uncertainties. As a minimal (but not sufficient)
requirement, they must parameterize f,,(z) in a mathematically independent way, so all HAM-
are uniquely determined by eq. (4.1). We will come back to this distinction in section 4.4,
where we discuss the parameterization dependence. In section 4.3 we discuss various strategies

HTo put it more bluntly: it must not be left to users to figure out for themselves what to do as it happens
too often right now with scale variations.
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for deriving suitable parameterizations satisfying these requirements. Before doing so, we
first discuss which dependencies we actually need to parameterize in section 4.2 next.
4.2 Correlation requirements

The first question we have to ask ourselves is which parts of the internal structure of f,, we
actually need to account for, i.e., which of its internal z dependencies we need to explicitly
parameterize. The answer is that it depends on our usage requirements: the dependencies we
have to parameterize are in one-to-one correspondence with the correlations we are required
to take into account. To see this, we will discuss three different cases:

1. Predictions not requiring x dependence
2. Predictions requiring = dependence without correlations

3. Predictions requiring = dependence with correlations

4.2.1 Predictions not requiring * dependence

In this case 1), we only require predictions for which the = dependence is effectively not
needed. There are two basic scenarios for this:

(a) We only require predictions at a given fixed value zy. For example, we always work
in QCD at fixed N, = 3 or fixed ny = 5. Or we only require cross sections at a fixed
center-of-mass energy.

In this case, we can consider f,(zo) as a scalar coefficient parameterized by a single

TNP 6,
fn(moaen) = Nn(xO) O, (42)
where N, (zp) is a normalization factor and the true value of 6,, is given by
A fn(fb”o)
On = : 4.3
N, (o) (4.3)

(b) We only require predictions summed or integrated over a fixed range [z, xp] in . For
example, we only require a total cross section summed over all partonic channels and
integrated over phase space.

In this case, we can consider the integral of f,(x) (or the sum for discrete x),

Tp
Fn(xa; $b) = / dz fn(x> ; (44>
Ta
as a scalar coefficient parameterized by a single TNP 6,,,
Fo.(zq,2p,0pn) = Np(xa,xp) 0y - (4.5)

Here, N, (z4,xp) is again a normalization factor and the true value of 6, is given by

A Fn (xaa $b)
Op = ———m. 4.6
" Nn(xm xb) ( )
If one of the integration limits is always fixed, say z, = 0, this is the same as case (a)

applied to the cumulant function F,(z) = [y dz f(z).
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In either case, we can choose the normalization factor N, such that 6, has O(1) natural

size.

It may or may not have to depend on the value xg or the integration limits (x4, xp),

depending to what extent the value of x determines the natural size of f,(x).

4.2.2 Predictions requiring * dependence without correlations

In this case 2), we require predictions at several discrete values of x (e.g. at different ny), or

several bins in z or as a function of z (e.g. a binned or unbinned differential spectrum), but

we do not need to have correct correlations in x. Even so, being differential in = forces us

to assume some correlations in x, for which we have different options:

(a)

We assume the uncertainties to be fully correlated for all x, which means we are happy
to neglect any shape uncertainties in  and only care about some overall uncertainty
in f,(x). We can then parameterize f,(z) in terms of the same single 6,, appearing in
case 1) above, so

1(3) fn(xv Qn) = Nn(-rO) On ¢n(x) with d)n(xO) =1, (47)
1(b) fn(l'aen) = Nn(l'aal'b) On Cbn(l') with gjbdl' ¢n(l’) =1.

The normalization factors N, are the same as in eqgs. (4.2) and (4.5). The function
¢n(z) determines how the uncertainty is distributed over z. Its normalization condition
is chosen such that 6,, parameterizes the exact same uncertainty as in cases 1(a) or 1(b)
and we assume there are no shape uncertainties in z, i.e., we assume to know the shape
perfectly given by ¢, (x). This also means we are explicitly giving up that eq. (4.1)
holds point-by-point in z. Instead, we only require that it holds as in case 1) either at
xo or integrated over [z, zp)].

There are various choices we might consider for ¢, (z). For example, a constant absolute
uncertainty in x is achieved by taking ¢, (x) to be a constant, ¢,(x) = a. A constant
relative uncertainty in z is achieved by taking ¢, (z) = al[fo(z) + - - + fa_1(z)a 1.
Another typical choice would be to take ¢,(x) proportional to the lowest-order z
dependence, ¢, () =a fo(as). In either case, the proportionality constant a is fixed by

the normalization condition for ¢, (z).

We assume the uncertainties for some set of x values {z;} are fully uncorrelated. This
amounts to using case 1) for each z; with its own independent TNP 6, ,,

fn(@i, 0p) = N (@i) bnyi , (4.8)

where N, (x;) are again normalization factors, and 6,, = {6, ;} now stands for the set of
0r,i- The true values of the 0,,; are

and eq. (4.1) is now satisfied at each x;.
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We can now extend this to all by generalizing case (a) above as follows,
fn(ac, Gn) = Z Nn({L'Z) Hnﬂ' qﬁm(yc) With qﬁn,i(acj) = (Sij . (4.10)

The functions ¢, ;(z) now determine how the uncertainty due to 6, ; is distributed away
from z;. Their form is more complicated now due to the additional requirement that
they must vanish at all but one z;. An analogous construction can be used for a set of
bins instead of x values.

We stress again, that the above options do not provide correct correlations in . They
should only be used if it is known that correlations in x do not matter or in order to test
whether or not this is the case.

4.2.3 Predictions requiring x dependence with correlations

In this case 3), we require z-dependent predictions as in case 2) but now with correct
correlations in the uncertainties at different x. In other words, we require predictions with
correct shape uncertainties in z.

In this case, we have to explicitly parameterize the correct x dependence of f,(x). In
other words, f,(x,0,) must parameterize the true functional form of f,(z) such that there
are true values 6, for which it reproduces f, (z) exactly, i.e., eq. (4.1) is satisfied at any x.
Clearly, this requires us to have some knowledge of the true functional form of f,(x).

When x is a discrete label, knowing the functional form in x simply means knowing the
complete set of possible values {x;}, which is basically always the case. We can then assign
an independent 6, ; for each f,(x;) as in case 2(b) above.

It gets more complicated when f,(z) is a continuous function of x, which has in principle
infinitely many degrees of freedom. We will discuss several strategies to deal with this
situation in section 4.3 next. For the sake of our discussion here, let us consider a simple
example: say we know on theoretical grounds that f,,(x) is a polynomial of degree k (as
is the case e.g. for x = ny),

fn(x) an,0+fn,1$+“'+fn,k$k- (4.11)

The scalar coefficients f,; are parameters of f,,(x) with true but possibly unknown values fm
Without further information, we have to treat them as independent unknown parameters
and thus parameterize each with its own TNP, f,; = N, ; 0, ;, such that

k
fn(xagn) = ZNn,i gn,i l'iv (4.12)
i=0

where NN, ; are normalization factors of our choice, and the true values of the 6,,; are

A fnz
O = -2 4.13
= (413

The key point is that in contrast to case 2), the 6, ; are now defined to be the actual parameters
of the true functional form of f,,(z) and therefore encode the correct correlation structure in z.

— 96 —



4.3 Parameterization strategies

As we have seen, to account for the correct correlations in & we have to parameterize the
series coefficient f,(x) in terms of its correct underlying x dependence. There are different
basic strategies for doing so, depending on how much or little we know about the true
functional form of f,(z):

1. We know it well enough to be able to parameterize it explicitly in terms of a small
number of parameters.

2. We know it well enough to apply strategy 1) in some well-defined limit and can perform
a systematic expansion around that limit.

3. Having insufficient information for strategies 1) or 2), we can still perform an expansion
in a suitable complete functional basis.

We now discuss each of these in turn.

4.3.1 Known functional form

If we know the true functional form of f,,(x) well enough, we can parameterize it explicitly.
In general, we can imagine fn () to be some functional qgn of z-dependent building blocks
$nz(x) and scalar coefficients f, ;,

fn(x) = 9571 [{an,z(x)}a {fn,z}} . (4.14)

Knowing the true functional form of f, () but not the true f,(x) itself means we know the
true ¢, and ¢, ;(z) but we do not know the true values f,,;. We can then parameterize each
coefficient f,, ; = N, ; 6y in terms of its own 6,,; to obtain the TNP parameterization

fn(xa en) = én[{én,z(x)}v {Nn,i gn,i}] ) (4~15>

where as before NV, ; are normalization factors of our choice, and the true values are 0,,; =
fn,i/Nni. A common case is that ¢, is a linear functional, such that

k
fo(@,0,) = Npi O bni(x). (4.16)

=0

Common special cases are qgm(x) =2’ or qASm(x) = In’ z corresponding to polynomials in
x or Inz of degree k.

The key point here is that we have to know the true functional form well enough to
be able to write eq. (4.14) with a finite number of unknown parameters f,;. This is where
we need expert knowledge on the structure of the perturbative series of the quantity f.
Furthermore, we want to have a “minimal parameterization” in the following sense: we
want to choose g%n and &n,(x) such that we have the minimal possible number of a priori
unknown parameters f, ;. Firstly, this means we should not introduce additional a priori
known parameters. For example, we should not needlessly split the d;m(q:) into smaller pieces
at the expense (or for the purpose) of introducing additional fake parameters that would
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effectively always be known and which we then pretend to be unknown. Vice versa, we also
should not eliminate parameters whose true values we happen to know already but which
could a priori be unknown. Instead, we should leave the decision for later whether to use
our knowledge of the true value to reduce the uncertainty or not.'> Note that even if we
know in principle the allowed ¢, ;(z), this strategy can fail because the number of ¢, ;(z)
might simply be too large to be practical.

Even a minimal parameterization is not unique. This is easily seen from the linear example
in eq. (4.16). We can always choose a different independent combination of the ¢, ;(x) and
correspondingly use a different combination of the 6, ; as the independent parameters. This
parameterization ambiguity is conceptually analogous to the scheme dependence of the
perturbative series discussed in section 3.4 and we will come back to it in section 4.4.

Finally, let us point out that there are cases for which the functional form in z is simple
and known, particularly when z is a discrete label (e.g. the partonic channel), and for which
it can be of advantage to parameterize the x dependence explicitly even if correlations in
x are not required. For example, when the x dependence strongly affects the size of f,(x),
it can be much easier to figure out the natural size of the individual z-independent 6, ;
than of some single overall 6,,.

4.3.2 Supplementary power expansion

If we can identify a suitable small parameter £, we can perform a supplementary power
expansion of f,(z) in ¢,

fa(z) = fro(z) + fr1(z) e+ fra(z)e? + O(?). (4.17)

Whilst we might not know the functional form of f,,(x) well enough to apply strategy 1), we
might know the functional form of its f,;(x) series coefficients well enough to apply strategy
1) for each of them. This is clear when the expansion parameter ¢ is related to x itself, e.g.,
e=xore=1—uz If f,; is independent of = then this is simply the Taylor expansion of f, ()
around x = 0 or z = 1, but it can also be more general. A primary example is the small-pr
expansion we will employ in section 6 in which case f,;(x) are known to be polynomials in In z.
Expanding around some point in z of course only helps us when we are actually close to that
point. However, € does not necessarily have to be x itself in order to simplify the x dependence.
It may also be related to another variable y. When f,(z,y) has a nontrivial two-dimensional
structure, expanding in y can simplify not just the y dependence but also the x dependence
significantly, and expanding in y can be justified even when expanding in x is not.

The ¢ series in eq. (4.17) is conceptually completely equivalent to our perturbative series
in « and we can apply exactly the same logic for treating its uncertainties. The coefficients
fni are parameters of the series with true but possibly unknown values. As long as the
expansion converges, we can keep the first m known coefficients, include the next k terms
to parameterize the dominant uncertainties, and truncate the remaining terms since their

12FEven with this definition of “minimal” there might be corner cases where we might debate whether a
parameter is a priori known or unknown. To decide these, we just have to remember that the uncertainties
not only reflect our knowledge but also our common sense.
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uncertainties are formally small compared to the ones we keep. For example,

NOFHILP,: fn(x,0n0) = fro(z,0n0) ,
NOPZLP: fu(, 000, 0n1) = fro(,0n0) + fa1(w,0n1) €,
NH_lLPs: fn(CEa enl) - an(ZU) + fnl(xy enl) g. (418)

where the notation refers to the next-(m + k)-leading-power expansion in ¢.

We stress that the primary reason for using this expansion is to provide us the formal
justification and practical ability to only parameterize the leading-in-¢ dependence on x
for the purpose of correctly parameterizing the uncertainties in x. Doing so does not force
us in any way to perform this expansion also for the known series coefficients, for which
we may not want to do so.

In case we happen to know the true value of fng (z) we can include it exactly as in the
NP, result in eq. (4.18). In this case, the ¢ expansion even allows us to include further
information and thus reduce the uncertainties, which we would not be able to do otherwise. In
fact, this is exactly a case where thanks to our approach we are able to reduce the uncertainty
due to f,(x) by including partial higher-order information. Consequently, we then also have
to consider whether or not to include the uncertainty due to f,1y0(z).

4.3.3 Generic basis expansion

When we do not have sufficient information to parameterize f,(z) directly or in some limit,
we face the basic mathematical problem of how to best parameterize an unknown function
such that we can guarantee that the 6,; have true values. We start by expanding f,(x)
in a suitable complete basis ¢, ;(x),

Jo@) =" fribni(). (4.19)
1=0

Thanks to the Weierstrass approximation theorem this expansion converges for polynomial
bases on any bounded interval in x as long as fy,(z) is continuous. This means that formally
the fy; are proper parameters with true values fm This expansion is not particularly useful
yet, because it has infinitely many parameters. To make it useful for our purposes, we have
to truncate the series after a few terms to limit the number of parameters.

The key question then is how to justify truncating the series. In principle, we like to
apply the same argument as for our perturbative series in « or the € expansion in strategy 2,
namely that the uncertainties due to the truncated terms can be neglected as small compared
to the uncertainties from the terms we keep. However, this argument is harder to make
now because we lack a parameter like o or € which would allow us to control the size of the
truncated terms and decide where to truncate it without knowing fn(az) Instead, we have to
rely more on experience and being able to test it on known coefficients.

Therefore, the most suitable basis we can choose is not necessarily the one which yields
the best approximation for fn(:z) for a given number of terms, but rather the one for which
we are most confident that it yields a sufficient approximation for a given number of terms.
In other words, we want a basis for which we are confident that it convergences quickly with
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the first couple of terms to a point where we can safely neglect the remainder. Beyond that
point, the remaining series may converge as slowly as it likes. The region of quick convergence
should include some safety margin to allow including additional terms in case the first few
terms we would keep by default get constrained too strongly.
For simplicity and without loss of generality, let us assume the relevant = range to be
€ [-1,1]. Standard polynomial bases on this interval which are known to converge very fast
for sufficiently smooth functions are Legendre and Chebyshev polynomials.'® An advantage
of Legendre polynomials is that they are orthogonal with respect to the unit weight function.
An advantage of Chebyshev polynomials is their equioscillation property, which means that
all their minima and maxima in the interval [—1,1] are at +£1. Even if we do not know
the full functional form of f,(x) we rarely know nothing about it. We can improve the
convergence of the series by starting from some ansatz ¢,(x) and expanding the ratio to
fn(x) to obtain the TNP parameterization,

fn(z) _ - ] (o
(z)n(x) - ;fn,z (bn,z( ) I
k
fa(@,6n) = n(2) D Npi O i bni() - (4.20)

=0

Alternatively, we can expand the difference to obtain

fn(m) - ¢n($) = Z fn,i ¢n,z($) 5
=0

k
1=0

Note that ¢, (z) and ¢, i(z) should be normalized suitably such that the overall size of the
uncertainty and the natural size of 0,,; is determined by their normalization factors IV, ;.

Another general method to accelerate the convergence is to use a variable transformation
to account for some known general behaviour of f,(z). For example, if f,(x) is known to
have poles or branch cuts in the complex plane, using a variable transformation that maps
these to infinity can significantly improve the rate of convergence. One particular option if
¢n(x) is square-integrable and positive definite, ¢, () = |¢p,(z)|, is to construct a custom
orthonormal basis on top of it, as was done in ref. [46] in a different context. The idea
is to use the cumulant of ¢, (z) as a variable transformation as follows. Let us normalize
¢n(x) such that [ dz[¢.(z)]?> = 1 and define

v@) = —1+2 [ do' ou(a),

bnse) = @l pl) =\ R (422)

3Roughly speaking, for differentiable functions that have p — 1 continuous derivatives and a pth derivative

of bounded variation, Legendre, Chebyshev, and similar polynomial expansions converge algebraically ~ 1/kP.
For analytic functions they converge geometrically ~ 1/ p* where the constant p depends on how far the
function can be analytically continued into the complex plane. The corresponding precise mathematically
theorems can be found e.g. in ref. [45].
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Here, p;(y) are normalized Legendre polynomials, which are orthonormal on y € [—1,1],
and thus ¢, ;(x) are orthonormal on x € [—1,1]. Since \/y/(x) = v2¢,(z), the Oth basis
function ¢, o(x) = ¢n(x) itself, while the higher basis functions are orthogonal polynomial
modulations on top of it. As a result, if ¢, (z) captures the overall shape of f,(z), the series
is expected to converge much more rapidly than expanding in p;(x) directly, at least for the
first few terms until the detailed shape starts to matter, which is all we really want.

Hence, the key to finding a suitable basis in the above sense is to start from a suitable
approximation ¢, (z). Importantly, the goodness of this approximation is not a fundamental
limitation, as it only serves in one or another way as a starting point for a complete expansion.
There are various ways we can imagine choosing ¢, (x):

o Pick ¢, (x) = qgn(:c), or more generally ¢, (z) = qgn(x, 0,), where qgn(:r) encodes some
known aspect of the true functional form of f,,(x), e.g., it has (or parameterizes) the
correct asymptotic behaviour or the correct poles. This essentially supplements strategy
1) in case the information we have is not sufficient for using it standalone.

o Pick ¢n(x) = fro(x,0n0) or ¢n(z) = fro(x), where fro(z) is the leading-power limit
from strategy 2) which either has a simpler known z dependence or is fully known. This
essentially supplements strategy 2) in case it cannot be used standalone, e.g., when the
€ — 0 limit is known but the expansion itself is not or does not apply to all .

« Use the known lower-order shape ¢, (z) = afo(z) or ¢n(z) = a[fo(x)+ -+ fu_1(z) 2™ 1],
with a determined by the appropriate normalization condition on ¢, (z). This essentially
supplements case 2) in section 4.2.2. For the multiplicative case it effectively expands
the K factor, which makes sense whenever we are confident that f,(z)/fo(x) is much
flatter in x than f,(z) itself.

« Use some approximation ¢y (z) ~ fn(z), which is known to work in similar cases, e.g. a
Padé approximation. This supplements any ad hoc approximation method, extending
it into a formally complete parameterization.

Before concluding, let us comment that one might naively think that having to know
or parameterize the functional form of f,(x) is a drawback of our approach. It is not. It is
simply a necessity for obtaining the correct correlation structure in x. In practice, we almost
always have some, even if limited, information about the functional form and it is in fact a key
advantage of our approach that all information we have can be systematically incorporated.
In contrast, with uncertainties derived from scale variations f,(x) is silently modelled by
some linear combination of lower-order coefficients, see eq. (2.11). If this is indeed believed to
be a sufficient correlation model, one can always use the lower-order coefficients to construct
the ansatz ¢,(z) as mentioned in the third bullet point above. This is still much better
than scale variations, because it provides explicit control over the assumptions made and
furthermore provides a systematic extension to a formally complete parameterization.

4.4 Parameterization dependence

Regardless of the strategy used to derive the TNP parameterization, a given parameterization
is never unique. For example, we can always choose some linearly independent combination of
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the 0,,; as new independent parameters. The ambiguity in the choice of the parameterization
is conceptually analogous to the scheme dependence of the perturbative series, and our
discussion here will resemble much of the discussion in section 3.4.

Let us therefore start with an executive summary: it is important to distinguish the
uncertainty and correlation structure, which is unique and correctly encoded by any valid
parameterization, from the actual values of the uncertainties and correlations, which are
determined by whatever constraints we choose to impose on the parameters. Before any
constraints they are simply unknown, which means their uncertainties are infinite and their
correlations do not matter, which is a parameterization independent statement. When the
parameters are solely constrained by data or other parameterization-independent constraints,
the uncertainties and correlations reflect the combined uncertainties and correlations due to
all constraints in a parameterization-independent way. A parameterization-dependent bias is
only induced when we impose parameterization-dependent constraints.

To discuss the possible parameterization dependence in more detail, let us denote by
fn(z,0,) our default parameterization and by f/ (x,0,) some alternative parameterization.
For the sake of discussion let us also consider them to still be exact, so before truncating
the € series in strategy 2) or the basis expansion in strategy 3). Different parameterizations
must then be equal by definition,

fn(xa en) = fr/L(xv 9;:,) ) (4'23)

as they both parameterize the same function f,(z) and reproduce the same true value f,(z).
It follows that from eq. (4.23) the 6/, are uniquely determined in terms of the 6,, (and vice
versa) in exactly the same way the true 0,, and 971 are uniquely determined by eq. (4.1).

Note that in principle there could be more G;M» than 60, ; parameters. If so, it would imply
that f,,(z,0,) contains more information on the true functional form in z than f} (z,0)). So
from the point of view of f,(z,0,) some of the 6;, ; are either known or not independent.
Let us therefore assume that both parameterizations are based on the same information
and thus have the same number of parameters.

Any valid parameterization, meaning it satisfies eq. (4.1), encodes the correct theory
uncertainty and correlation structure. The 6,, and €/, play the role of different but related
input parameters. If we treat them as unknown parameters to be determined from data,
it does not matter at all which one we choose, since there is an exact relation between
them. Any constraints imposed by the data are parameterization independent as they always
constrain f,(x), so they respect the relation between 6,, and ], implied by eq. (4.23).

A dependence on the parameterization (only) appears when we make parameterization
dependent assumptions, i.e., by imposing theory constraints on the 6, of a specific param-
eterization. This also includes the assumption of their mutual independence, which only
enters when we choose to impose independent (uncorrelated) theory constraints on them.
Doing so for the 6, ; implies in general some nontrivial correlated uncertainties for 6, ; (and
vice versa). The point is that the condition for some parameters to be mathematically
independent is only a necessary but not sufficient condition for them to be conceptually
independent, i.e. to correspond to independent sources of uncertainties, and thus to be a
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priori uncorrelated. Whenever we talk about the 0, ; being mutually independent we really
refer to their conceptual independence.

To illustrate this with a simple example, say we know f,(x) to be a kth-order polynomial.
Consider the two equivalent parameterizations

fn(xaen) = Hn,O +0n,1x + - +9n,k$k>

F(@,0,) = b0+ 0,0 (L—a) + 40, (1—a)". (4.24)
By setting them equal, we can easily derive the exact relation between 6/, and 6, e.g.,
9270 = 671,0 + en,l + -+ Hn,k ’ 9;171 - _en,l - 2971,2 - —k Hn,k s (4.25)

and so on. A fit to data always chooses the kth-order polynomial that best fits the data,
regardless of the specific parameterization, with the post-fit uncertainties and correlations
of the parameters reflecting the uncertainties and correlations of the fitted measurements
in a parameterization independent way. On the other hand, imposing a theory constraint
that the 6, ; have mutually uncorrelated uncertainties of Au,; = 1 yields an uncertainty for
fn(z =0) of 1 and for f,,(z = 1) of Vk. On the other hand, imposing the same constraint
on the 0], ; yields an uncertainty for f,(z = 0) of Vk and for f,(z = 1) of 1.

Hence, the choice of parameterization in principle induces a bias in the uncertainties
and correlations if we let it determine which parameters to impose independent theory
constraints on. Therefore, we should not choose the independent parameters based on the
parameterization, but rather the other way around. We should choose a parameterization for
which we are most confident that its 0, ; can be considered to correspond to independent
sources of uncertainty. Furthermore, we can avoid a parameterization bias by imposing theory
constraints at the level of f,(z) itself. For example, we should always choose the central
value directly for f,(x), which by default can just be f,(x) = 0. This is a parameterization-
independent condition on the central values of 6,, or 0/, and thus avoids any parameterization
bias in the central value. Similarly, we can impose for example an uncertainty based on the
natural size of the integral of f,,(x) or its value at special points. Ultimately, however, this is
just another way of choosing what we consider to be the independent sources of uncertainty.
The TNPs can only help us to parameterize the independent sources of uncertainty once
we have identified them. They cannot decide for us what they are. As soon as we want or
need to impose theory constraints we cannot avoid making this decision. This is another
place where clearly domain knowledge is required. What we can avoid though is to make an
implicit or uninformed decision. If we do not have enough information to decide, we have
to limit ourselves to unambiguous parameterization-independent constraints.

Our above discussion implies for strategy 3) that the choice between different linearly
related bases (polynomial or otherwise) is actually irrelevant when fitting to data (apart
from effects due to numerical stability etc.) or imposing other parameterization-independent
constraints. It is only relevant for arguing where we are allowed to truncate and perhaps
for arguing which parameters we should consider to be independent. The truncation itself
does induce a parameterization-dependent bias, which however can be phrased in terms
of the above discussion: we can always think of it as imposing a theory constraint on the
parameters of the truncated terms that their central value vanishes with an uncertainty
whose net effect we can neglect.
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4.5 Multiple dependencies

So far, we have assumed that the z-independent coefficients f,; are scalars so we can
parameterize them by a scalar nuisance parameter. This is no longer the case when f,
depends on multiple internal variables whose dependence we are required to parameterize, i.e.,
which fall into cases 2) or 3) in section 4.2. To generalize our discussion to this situation, it is
sufficient to discuss how to extend from the one-dimensional case f, () to the two-dimensional
case fn(x,y). The generalization to further variables then proceeds in exactly the same way.

When we assemble the final prediction from its ingredients there is typically a natural
progression of the dependencies from the inner layers to the outer layers, which we can also
follow here. For example, the innermost layer could be the color and ny dependence, then
comes the kinematic dependence, next we sum over partonic channels, and eventually at
the outermost layer we sum or combine different processes.

To be concrete, let us denote the innermost relevant variable by = and the next outer
variable by y. To parameterize the y dependence, we can follow the same strategies discussed
in the previous subsections. The only difference is that once the y dependence is stripped
away, the y-independent coefficients f, ; = f, j(z) are not scalars but still functions of x.
Each of them we can then parameterize in x in terms of scalar parameters as we have
discussed so far for f,(x). For example, if y is a discrete variable or only needed at fixed
values we simply have f, j(z) = fu(z,y;).

The only more complicated case is when x and y are both continuous and appear at the
same layer, e.g., when considering a double-differential spectrum in two kinematic variables. If
their dependence is separable, fy,(z,y) = fn(z)gn(y), we can treat each one-dimensional factor
as before. Finally, when we have a genuinely two-dimensional function f,(x,y) and require
correlations in both x and y, we need to parameterize the x and y dependencies simultaneously,
for which we can follow the two-dimensional generalization of the strategies in section 4.3.

For strategy 1), we have to consider two-dimensional basic building blocks <ZA>m] (z,y).
Clearly, finding a minimal parameterization of the true functional form is going to be more
difficult now, but it can still be possible if the = and y dependence is separable or if it can
be reduced to several one-dimensional functions which only depend on certain combinations
of x and y.

For strategy 2), the e expansion coefficients f,;(x,y) are in general two-dimensional
now. This strategy can be quite powerful to make the two-dimensional case more tractable.
By expanding in e, we might be able to simplify one or both dependencies or make them
separable or otherwise reduce the problem to the one-dimensional case.

For strategy 3), we have to consider two-dimensional functional bases ¢y ;j(x,y). The
approximation of multivariate functions is surprisingly more difficult than the univariate case,
and an active area of mathematical research. Finding suitable multivariate parameterizations
for an unknown multivariate function is a similarly difficult problem. However, it is ultimately
necessary to correctly account for a genuinely multidimensional correlation structure if we
lack the ability to apply strategies 1) or 2). The most straightforward is to consider a product
basis ¢ ij(z,y) = ¢n.i(z)Pn,;(y), which simply amounts to expanding fy,(z,y) in ¢, ;(y) for
fixed = and then further expanding the resulting z-dependent series coefficients in ¢y, ;(x).
Unfortunately, the number of terms quickly proliferates — the curse of dimensionality.
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However, we can often identify a primary variable x and a secondary variable y, whose
correlations might matter less or which is going to be integrated over first. In this case we
can mitigate the curse of dimensionality by optimizing the basis in favor of x.

4.6 Examples

In this subsection, we discuss various dependencies to illustrate the general discussion of
the previous subsections.

4.6.1 N, dependence and color structure

When we are only interested in QCD corrections, the dependence on the number of colors,
N, is an example of case 1) in section 4.2: we always have fixed N, = 3 and do not require
correlations between different values of N.. This means we do not need separate 0, ; for
individual color coefficients but only a single overall one for f, (N, = 3).

Nevertheless, if we were to parameterize the N, dependence, it is a good example
for strategy 1) where the functional form is fully known, as we know exactly which color
coefficients composed of C4, Cr, T, as well as higher invariants, appear for a given f,.

When considering QCD and QED corrections, we still do not need the full N.-dependent
structure but effectively two pieces of it. The abelian parts of the QCD coefficients are clearly
correlated with the QED coefficients. To correctly account for this correlation we have to
separate the abelian and nonabelian parts of the QCD color structure and parameterize each
with a separate TNP. The abelian one will then be shared by the QCD and QED coefficients,
whereas the nonabelian one only appears in the QCD coefficients. In this way, the partial
correlation between QCD and QED coefficients is correctly accounted for.

An analogous discussion applies to QCD and electroweak corrections at sufficiently high
energies where the masses my of the electroweak gauge bosons can be neglected. When the
gauge boson masses cannot be neglected it requires a more detailed investigation to identify
the possibly common parts. Effectively one has to consider in addition the dependence on
my at two fixed points, namely at the physical value of my and in the my — 0 limit.

4.6.2 ny dependence

When the number of flavors, ny, is the same in all considered predictions, as is often the
case with ny = 5, we are in case 1) and do not require correlations in ny and only a single
TNP for f,(ny =5). When we do cross flavor thresholds and require f,,(ny) at different n;
values, we do need to parameterize the n; dependence to account for the (de)correlation
between say ny = 5 and ny = 4.

The ny dependence is another example where strategy 1) is easily applicable, since fy,(ny)
is a polynomial in n¢ of known degree. This actually poses an interesting theoretical question,
namely which parts of the ny dependence are conceptually independent. Neither the naive
choice to consider the coefficients of nzc as independent nor rewriting ny in terms of By(ny)
and considering the coefficients of Fy(ny)" as independent seem to be supported by empirical
evidence. Instead, empirical evidence suggests that the coefficients of (C4 — Trn f)i are
independent. This can likely be attributed to the screening effect of quarks, see section 5.2
for some further discussion.
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4.6.3 Partonic channels

The dependence on different partonic channels is a primary example of a genuinely discrete
dependence. Here, strategy 1) is immediately applicable, as we know exactly which partonic
channels appear at a given order, and it amounts to separately parameterizing each partonic
channel.

One might ask the question when we are actually required to separate the partonic
channels. One reason is when we require hadron-collider predictions at different center-of-
mass energies, Fen, since the F., dependence enters via the different parton luminosities for
each channel, which can have very different scaling with F.,. Another reason is to capture
correlations between different processes that share common partonic channels, see below.

Another important reason to separately parameterize partonic channels is to anticipate
new channels that only open up at higher orders but can have sizeable contributions, which is
a classic case where scale variations can fail badly. This is an example where parameterizing
the dependence, even if not required for correlations, can be of advantage for figuring out
the natural size of the TNPs.

4.6.4 Process dependence

Another type of correlation is that between different processes. This tends to be a more
complicated dependence to take into account as it requires detailed knowledge of the internal
structure. To correctly correlate the process dependence we basically have to map it into
the dependence on some internal variables x. Luckily, the most relevant cases, namely
closely related processes expected to be strongly correlated, are also the most straightforward.
For example, for W vs. Z production, the process dependence essentially maps into the
dependence on partonic channels and electroweak gauge couplings and boson masses. We
will see an explicit example in section 6.

4.6.5 Continuous dependencies

A typical example of a genuinely continuous dependence is that of a differential spectrum. We
will discuss the example of the g7 spectrum in detail in section 6, which is going to involve a
repeated application of strategies 1 and 2. Another generic example is the dependence on the
partonic momentum fractions z,; of partonic cross sections in hadronic collisions. Here, if we
are only asking about a total cross section, the z, and z;, dependence is effectively projected
onto a single number. If we consider a kinematic distribution that effectively measures the
total invariant mass () of the hard process, then we need the one-dimensional dependence
on z = z,2p. Finally, if we are sensitive to both the total invariant mass and rapidity of
the hard process we need the full dependence on z, and z,. Suitably parameterizing this
dependence is in general nontrivial. Often though, the cross section tends to be dominated
by the z — 1 limit, which can be a good starting point by applying strategy 2 with e =1 — z.
This strategy has already proven very useful in other cases where the dependence on partonic
momentum fractions arises, namely to parameterize the unknown parts of beam function
matching kernels [47] or QCD splitting functions [13] in terms of TNPs.
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5 Theory constraints for scalar series

In this section, we discuss TNPs for perturbative series with scalar coefficients f, and how
to obtain robust theory constraints on them, which belongs to the second step of applying
the TNP approach as discussed in section 3.1.

We assume that the parameterization of any relevant outer levels of x dependences as
discussed in section 4 has happened and has reduced the remaining perturbative series to have
scalar coeflicients f,,, as will be relevant for the application in section 6. We limit ourselves
to QCD corrections at fixed ny = 5. Further investigations beyond this case are of course
warranted but are well beyond our scope here and are left to future work.

Hence, the starting point for our discussion in this section is that we have a QCD series in
as with scalar coefficients f,, that can be parameterized by a single theory nuisance parameter,

Fulng =5,0,) = Np(ny =5)0,. (5.1)

To simplify the notation, we will suppress the ny = 5 argument from here on. The normaliza-
tion factor N, accounts for the expected natural size of f,, i.e., it should be chosen such that
we generically expect |f,| < N,,. Consequently, the expected natural size of 6, is |6, < 1.

5.1 Overview

Not knowing the true value én of 6, our goal is to obtain an estimate as in eq. (3.4),
0n = uy £ Auy, , (5.2)

based on theoretical arguments. This will be our baseline theory constraint on 6,,, which
we use to evaluate the theory uncertainty in the absence of any additional constraint from
other sources of information.

Without additional information we will usually just take u,, = 0 as our best-guess central
value. We then need to assign an uncertainty Aw, to this choice, which determines the amount
by which we vary 6,, and thus the size of the resulting theory uncertainty. When we need a
statistical treatment of eq. (5.2), we also need the probability distribution P(uy|6,,) of w,. For
this purpose, we treat u, as if it came from a measurement with a Gaussian 1o uncertainty
of Au,. More precisely, we model our estimator u,, for 6, as a Gaussian-distributed random
variable with mean p = 6,, and standard deviation o = Aw,. This is a standard assumption
also used for nuisance parameters of experimental systematic uncertainties, whose justification
basically stems from the central-limit theorem. In section 5.3, we will find strong empirical
evidence that u,, can indeed be considered as a Gaussian-distributed random variable. We
will thus refer to the theory uncertainties that result from varying a theory constraint by
+Au, as one “theory-o” uncertainty or 68% “theory CL”. Similarly, 95% theory CL refers
to varying by £2Au,.

Following our discussion in section 2.1, Aw, is not given by the distance \én — Uy | of our
estimate u,, to the true value én Thus, to estimate Au,, we do not need to estimate a precise
value of én (Our best guess for én is already represented by w,). Rather, Au, must reflect
our limited knowledge. With the above statistical interpretation this means we need to choose
Au,, such that |9n — up| < Auy, with 68% confidence. For u,, = 0, Au, is thus determined by
the natural size of 6, |§n| < Auy,, and so with our choice of normalization we have Au, ~ 1.
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If we believe to know absolutely nothing about f,, it would imply to take Awu,, = oo so
6, would be left to vary unconstrained within [—o0o, 0o]. In other words, we would treat 6, as
a truly unknown parameter to be determined from data. In many cases, this is of course too
pessimistic as we do have some expectations and plenty of experience of the typical size of
higher-order corrections. Therefore, to choose an appropriate Au, we proceed in two steps:
in the first step in section 5.2, we use theoretical arguments to estimate the expected natural
< N,, so

~

size of f,. That is, we determine the normalization N,, for which we expect |f,,|
\én\ < 1 and Awu, ~ 1. Based purely on theoretical expectations we can only hope to narrow
Au,, down to an O(1) factor, perhaps a factor of two at best. Therefore, in the second step in
section 5.3 we study the true values 6,, of many known series of a common category. This will
provide us with the empirical evidence to verify and further narrow down the value of Awu,, and
also to confirm its statistical interpretation in terms of the probability distribution P(uy|6,).

5.2 Normalization and estimate of natural size

We consider two general categories of perturbative quantities. The first are quantities
corresponding to the finite constant terms of matrix elements, which we refer to as matrix-
element “constants” and for which we continue to use the generic notation f(«s). This includes
total cross sections and decay rates as well as the constant (nonlogarithmic) terms (RG
boundary conditions) of matching coefficients and matrix elements of renormalized operators.
The second type are anomalous dimensions, denoted generically as «y(as), which correspond
to the coefficients of 1/e poles in the bare perturbative series. We distinguish these two
categories because we expect and find their perturbative series to behave somewhat differently.

5.2.1 Matrix-element constants

We write the perturbative series for matrix-element constants as
Qs\"™
=1 — 5.3
flos) =14 3 fn (5) (5.3)

which defines their perturbative coefficients f,,. We normalize all quantities such that their
leading-order result is fy = 1, since it only contains overall couplings and prefactors, which
are always known, and so does not yet contain nontrivial information about the perturbative
series. We choose the normalization N/ to parameterize f, in terms of ] as

a0y =NI0/)  with NS =4"C,(n—1)!. (5.4)

Here, C,, = CrCﬁfl is the leading color factor of f,, with C). the one-loop color factor, which
depends on the color representation of the external particles, i.e., C, = Cp for external
quarks and C, = C4 for external gluons. Note that we merely use the leading-color limit
to determine the normalization. We do not make a leading-color approximation anywhere.
As discussed in section 4.6, we do not need to parameterize the full color structure of the
coefficients because here we are only interested in QCD and fixed values of N.. We will
explain the other factors in a moment.

The above discussion applies to tree-level quantities. Considering quantities that are
inherently loop induced, their overall normalization is defined to be consistent with that
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of an associated tree-level quantity. Typical examples would be an off-diagonal partonic
channel that has an associated diagonal partonic channel, or a singlet coefficient that has an
associated nonsinglet coefficient. Their leading n-loop color factor is then given by the color
factor of the first appearing loop order times one power of C4 for each additional loop order.
As an instructive example to understand this choice of N, let us consider the ¢g vector, ¢¢
scalar, and gg matching coefficients, corresponding to the infrared-finite parts of the respective
QCD form factors, which are known to four loops [48, 49]. The perturbative series of their
respective constant terms are denoted as cqgv(s), cqgs(as), and cgg(cs). (The cqqv ()
coefficient is defined in more detail in section 6.2.) In tables 2, we show the true values fn /N,
for all three matching coefficients successively dividing out the normalization factor N,{ :

e The first line in each block shows the raw values for fn, which grow very large for
increasing n. Naively, there would be little hope to directly estimate the correct expected
size of these numbers.

o In the second lines, we divide out a factor of 4", which basically removes the 1/4™ in
eq. (5.3). It is clear that the conventional 1/(4m)™ loop factor is artificial in this regard
and a main reason for the quickly increasing magnitude of the coefficients. We could of
course have directly expanded eq. (5.3) in terms of o/, which is actually known to be
a more appropriate expansion parameter. The reason we did not do so is for the sake
of illustration here and because defining the series coefficients with respect to ay/(47)

is the most commonly used convention. Nevertheless, the resulting numbers are still far
from O(1).

e In the third lines, we further divide out the leading color factor C,C"} appearing at
n-loop order, which brings the numbers to O(1) as we might expect.

 Finally, in the fourth and last line, we further divide out a factor of (n — 1)!, which
amounts to {1,1,2,6} for n = {1,2,3,4} and which is clearly still present in f3/N3 and
f4 /Ny in the previous line. The appearance of this factor also matches our expectation
of the factorial growth of the series coefficients.

The last line in each block in tables 2 corresponds to the nominal N} in eq. (5.4) with the
numbers in bold corresponding to the true values é,{, which indeed satisfy |§,{| <1 to well
within a factor of two as desired. The above arguments leading to this choice of NJ are
generic and not specific to the given examples. Hence, we consider it as a very plausible
generic expectation for the natural size of f,, and consequently we can consider Au, ~ 1
as a plausible uncertainty.

This exercise already teaches us several interesting things and dispels some common lore.
First, gluonic quantities do not necessarily have genuinely larger perturbative corrections
than quark ones. Once the different overall color factor of C,. = C'4 vs. C = Cp is accounted
for, the remaining normalized coefficients for Cy, have the same generic size as those for Cygv
and Cygs. In fact, one of the latter is always larger than Cgy4 at each order. Secondly, once
normalized to their natural size, the specific size of the coefficient(s) of previous order(s) is
not a good indicator for the size of the coefficient(s) at the following order(s). In other words,
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flow) Nn fi/Ni fa/Na  fs/Ns fa/Ny
cqqv (as) 1 ~8.47 —48.6 —1387  —42015
4n 212 -3.04 -21.7 —164

AnCrCht -1.59 —-0.76 —1.81 —4.56

ACrCT (n—1)! | =159 —0.76 —0.90  —0.76

cqqs(as) 1 —0.47 +87.1 +2309 476100
4n —0.12  +5.44  +36.1 +297

AnCrCyt —-0.09 +1.36 +3.01  +826

4"CpCh Y (n — 1)1 | —0.09 +1.36 +1.50 +1.38

Cgg(ats) 1 +4.93 —24.0 —4066 —123979
4n +1.23 -1.50 —63.5 —484

4nCyCnt +0.41 —0.17 —-235  —5.98

4"CACT M (n—1)! | 4041 —0.17 —1.18 —1.00

Table 2. True values of the series coefficients fn divided by various normalization factors N,, for the
quark vector (top block), quark scalar (middle block), and gluon (bottom block) matching coefficients.
The numbers in bold in the last line of each block are the 6.

one should not look at this table from left to right but only from top to bottom. Thirdly, the
coefficients are not always or mostly positive and may change sign at different orders.

The convention to have fy = 1 does not yet uniquely fix the overall convention for f(as),
as we could still raise f(as) to some power, which keeps fo = 1, but changes the f,. For
example, by squaring a series with all f,, = 1 we get

2
[14—204”} =1+ (n+1)a". (5.5)
n=1 n=1

Therefore, by taking the square or square root of f(«ay), the natural size of f, can change
by an O(n) factor, which we clearly have to account for if we aim for an estimate to within
a factor of two or better. We find the normalization in eq. (5.4) to be appropriate for the
convention that f(as) is raised to an appropriate power such that it effectively scales as a
matrix element with two (resolved or Born-level) external QCD partons, as is the case for
the matching coefficients considered above, or equivalently a squared matrix element with a
single (resolved or Born-level) external QCD parton. This means we consider jet and beam
functions as they are, since they can be regarded either as forward 1 — 1 matrix elements
or l-parton squared matrix elements. On the other hand, we consider the square root of
0 — 2 cross sections and decay rates and also of soft functions with two Wilson lines. We
might argue that this is also natural from the point of view of identifying the conceptually
independent perturbative corrections, since they fundamentally appear for the matrix element
and not its square. A typical example is a large correction to the NLO matrix element whose
square then also causes a large NNLO correction to the cross section. By considering the
square root of the cross section, this is effectively accounted for.'*

1n the future, instead of just taking the square root for cross-section-like quantities, it might be worth to
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Finally, there is one more subtlety to consider. The attentive reader might have wondered
that the factorial factor in eq. (5.4) is (n — 1)! and not just n!. As it turns out, an n! factor
is indeed appropriate in the pure gauge theory with ny = 0. The factorial growth can be
attributed to bubble chains inserted into gluon propagators. Including fermions, the leading
ny dependence comes from replacing a gluon bubble by a fermion loop and generically appears
as Cx — Trnyg, which vanishes for ny = 6 (for QCD with C4 = N, = 3 and Tr = 1/2).
Empirically, we find that this quark screening effect reduces the size of the corrections by
1/n turning the n! behaviour for ny = 0 into (n — 1)! for ny ~ 6. This applies when the
ny dependence starts at n = 2. In some (but not all) cases with external gluons, the ny
dependence starts at n = 1, in which case n must be increased by one in the factorial factor,
so we would use n! in eq. (5.4) for ny = 5.

5.2.2 Anomalous dimensions

We write the perturbative series for anomalous dimensions as
o n+1
Ha) =Y () (5.6)
n=0 &

which defines their coefficients ,,. Their overall normalization is less obvious than for f(as)
since they start at loop-level, so vy appears at the same order as f; and already contains
nontrivial perturbative information. The anomalous dimensions correspond to logarithmic g
derivatives of matrix elements so the ambiguity of raising f(as) to some power corresponds
to multiplying v(«s) by some overall factor. We therefore decide to fix the normalization
convention for y(ay), including its overall sign, analogous to that of f(as) so it corresponds
to the anomalous dimension of some f(ay), i.e., the derivative with respect to In u of a matrix
element with two external QCD partons.
We then choose the normalization N/ to parameterize v, in terms of 8] as

(1) = N6 with  N) =4""C,,, (5.7)

where C),11 is again the leading (n + 1)-loop color factor, typically given by Cp41 = C,.C%}
with C) the one-loop color factor determined by the color representation of the external
legs. To motivate this normalization, we show the known true values for a few anomalous
dimensions in tables 3 successively dividing out the normalization factor N;/. We find a
quite similar pattern as before for the constants f:

e The first line in each block shows the raw values for 4,,, which quickly grow large as
n increases. There would again be little hope to directly estimate the size of these
numbers.

o In the second lines, we divide out a factor of 4"*1, which removes the 1/4"*! in eq. (5.6).
We see again that the conventional 1/(47)" ! loop factor artificially enlarges the size
of the coeflicients.

investigate the option of directly parameterizing and estimating the real and imaginary parts of the underlying
complex amplitude. This is clearly more challenging due to the presence of IR divergences and also because in
the literature perturbative results are often provided only for the cross section.
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7(as) Nn 40/No  H1/N1 A42/N2  A3/N3 41/Ny
B 1 -153 -77.3 —362 —9652 —30941
gl —3.83 —4.83 —5.65 —37.7 —30.2

4"HCpCy | =128 —0.54 —0.21 —047 —0.12

Ym 1 —8.00  —112  —950 —5650 —85648
gl —-2.00 -7.028 -14.8 -—22.1 —83.6

4mICRCY | —1.50  —1.76 —1.24 —0.61 —0.77

2T, 1 +10.7  4+73.7 4478  +282 (+140000)
gl +2.67  4+4.61 +7.48 +1.10 (+137)

4"HICRCY | 42.00  4+1.15 +0.62 40.03 (+1.27)

Table 3. True values of the series coefficients 4,, divided by various normalization factors NN,, for the
QCD $ function [50-56], the quark-mass anomalous dimension [57-62], and the quark cusp anomalous
dimension [63-66]. The numbers in bold in the last line of each block are the HAZ The 5-loop result
for the quark cusp anomalous dimension [67] in brackets is only known approximately.

e In the third lines, we further divide out the leading n-loop color factor, which yields
numbers that are < 1 within a factor of two.

In contrast to the matrix-element constants, no factorial factor appears for the anomalous
dimensions, which is not entirely unexpected. However, we still find that for ny = 0 the
coefficients are enhanced by a factor of n due to the absence of the quark screening compared
to ny ~ 6. Also, the sign of the higher-order coefficients now tends to be determined by the
sign of yg for ny <5, while for ny = 6 the coefficients do change sign at different orders. We
leave a more detailed investigation and parameterization of the ny dependence to the future.

5.3 Validation and statistical interpretation
5.3.1 Statistical model and interpretation

For a real measurement, performing a single measurement corresponds to drawing a value
U, from P(un\én) with the measurement’s uncertainty Auwu, corresponding to the standard
deviation of P(uy|6y,). To verify the assigned Au, and shape of P(uy|6,) we would repeat
the measurement many times, i.e., we would draw a sample of many w,, values from P (u,|0,)
for fixed 6,, and study its sample distribution.

With our idealized measurement we do not have the option to repeat the measurement, so
we cannot sample P(uy|0,) in uy, for fixed 6,. However, P(uy|6,) models our entire estimation
procedure, which we can apply to all perturbative series f that we consider to belong to a
common category. We can thus sample P (unlén) over f,, by applying our estimation procedure
to many different parameters 64 of the same category whose true values é{ are known.

Given our estimator u, for the parameter 6,, with estimated uncertainty Au,, we can
consider the pull

ty = U (5.8)
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which is invariant under a linear transformation 6,, — a6, + b, u, — au, + b, Au, — alAu,.
Since P(uy,|0y,) should be invariant under such a rescaling, we can consider it to be a function
of the pull only,

9n—un>.

P(unl6n) = p(75.

(5.9)
In particular, if we model u, as a Gaussian random variable with mean 6,, and standard
deviation Auw,, then ¢, is normally distributed, i.e., p(t,) is a Gaussian with zero mean
and unit variance.

As long as our estimation procedure is deterministic and involves choosing specific values
for u, and Au,, we can always perform a linear rescaling and redefine 6, to have u,, = 0
and Au, =150 t, = 0,. In fact, we already did so by choosing our common normalization
conventions as discussed in section 5.2, which are thus an integral part of the estimation
procedure. The likelihood for 6,, is then given by

L(en) = P(un = 0|0n) = p(en) , (510)

and so we like to learn about the distribution p(6,,).

Let us denote the collection of perturbative series f of a given category by F' and the
corresponding collection of their series coefficients f,, as Fj,. In principle, the distribution
p(6,,) could be specific to each parameter 6/, so to be clear for the moment let us label it and
use a generic argument, % (). However, since it is primarily a property of our estimation
procedure, which is common to all f, € F},, we can assume it to be the same for all of their
respective 6. Furthermore, we can naturally identify this common distribution with the
distribution of true values 6f of all f, € F,, which we denote as pr, (), so

Pyt () = Pr, (2) V6! whose f, € F,. (5.11)

Although this identification comes natural it is an assumption we make. Intuitively, we can
think of it as follows: the collection of series coeflicients in F), is a QCD bag of balls. Each
ball has a visible label f,, on it and a not visible number ég inside it. We now consider a
specific coefficient f,, of interest for which we need an estimate. With the identification in
eq. (5.11), we think of this situation as having just taken the ball labelled f,, out of the bag,
which is not random. But we are not allowed (or able) to look at its number inside it, so we
have effectively drawn a random member from the population of hidden % numbers in the
bag. Knowing that it came out of this bag (and nothing else about it), our best estimate of
its value is simply the population mean and its uncertainty the population variance.'®
For the rest of our discussion, we will work under the premise of this identification.
Without it, we would have to live with a stronger assumption of assuming a certain shape for
Pof (x). We could also be somewhere in the middle and consider the form of pg, () only as a
motivation for the assumed shape of Dot () but without making the explicit identification.
Ultimately, the precise interpretation is a choice the user of our theory constraint can make.

5More precisely, we can obtain an estimate for 6,, based on the likelihood L(0,) = pr, (0,). For a Gaussian
(or similar) distribution the maximum likelihood estimate coincides with the mean of the distribution.
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5.3.2 Distribution of known perturbative series

We now discuss the distribution pg, (x) of the population of true values é,{ of all f,, € F,.
We consider two collections of perturbative series belonging to the two broad categories
of matrix-element constants (F) and anomalous dimensions (F) defined at the beginning
of section 5.2.

The true distribution pg, (z) is obviously not known to us, as we would have to know
all possible 07; Instead, we can follow the standard procedure of estimating an unknown
population distribution by drawing a random sample from the population and using the
resulting sample distribution as an approximation of the true population distribution. In
our case, we can use the sample {QE} belonging to a subset of known series coefficients
{f,} C F,, which is indeed random because we choose it without having a prior look at
the actual values é£ In terms of our QCD bag of balls, by default all balls are locked and
we cannot look inside them. While taking out a specific (not random) set of balls which
someone has graciously unlocked for us, we are not yet looking at their numbers inside.
Hence, just like when we are asking about a specific f;,, this amounts to drawing a random
sample of é,fb from the population inside the bag.

We might still worry that the sample distribution could be biased by the fact that the
perturbative series that are known to high order are naturally simpler to calculate than
the ones we do not yet know. Whilst this makes the quantities themselves special in some
sense, the only relevant question is whether this also makes their values (% somehow special
and not representative of the full population, which is not necessarily the case. The sample
distribution not being representative (yet) can indeed be a valid concern when only a handful
and perhaps even closely related series are available. To alleviate this concern and ensure
a sample as representative as possible, we have made an effort to include a large variety of
different QCD quantities. Furthermore, from our repeated experience of adding new results
to the existing samples over time, we do not believe this to be a concern any longer.

A detailed list of the quantities included in our sample is given in appendix A. We have
included all four-loop results for matrix-element constants and all four-loop and five-loop
results for anomalous dimensions we are aware of (without any claim of completeness), as well
as all known three-loop matrix-element constants relevant for gr and thrust resummation to
N4LL. To include a quantity in our sample, we have to be sure that it actually belongs to
one of our common categories and roughly obeys our natural size estimate. For this reason
we focus on series that are known to at least third order including their n; dependence,
which allows for sufficient sanity checks.

The lower-order coefficients of some quantities are directly related to each other by
naive Casimir scaling. Some anomalous dimensions are equivalent due to trivial consistency
relations of the form 7, 4+ 7, = 0. In these cases, we only include the coefficients once. On
the other hand, some anomalous dimensions are related by consistency relations of the form
Yo + Y + ve = 0. For these cases we do include all three series for several reasons. First, each
of the ~; is an actual anomalous dimension of some quantity and should in principle obey
our estimate. Second, there is no obvious choice which one of the three to eliminate and
we rather introduce a minor correlation into the sample by keeping all three than making
an arbitrary selection which might cause some bias.

— 44 —



0,7:I T T 7T | T T T 1T | T T T 1T T T T 1T | T T 17T I T 1T I: 0,7:I T T 7T | T T T 1T | T T T 1T T T T 1T | T T T 1T | T T 7T I:
0.63_ Tentries = 21 | fl(nf = 5) _f 0.63_ TNentries — 29 ¢_ .f2(nf = 5) _f
C opu=—0.24+0.24 ] E p=—0.120.1¢ 3
§ 050 o =112+017 7 § 050 0=093+043 E
S 0.4F 4 8 oaf /’_\ =
2 oab TN RS 3
E E | 3 E E ]
& 0.2F 4 & o2F N =
0.1F = 0.1F -
0 0: ({ 1 1 | 1 1 1 1 | L1 11 1 E 0 ()E 1 1 1 | 1 1 1 1 | 1 1 E
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

6] 6]
0,7:I T T 7T | T T T 1T | T T T 1T T T T 1T | T T 17T I T 1T I: _I T T 7T | T T T 1T | T T T 1T T T T 1T | T T T 1T | T T 7T I_
0 6:_ Tentries = 27 [ f3(nf = 5) B 0.8 — Mentries = 12 ] .f4(nf = 5) —
E u=—0.05+0.12 \ ] [ p=—-0.374+0.24 ]
£ 0.5F o = 0.64 + 00 4 ¥ [ o =0.82+0.17 ]
g E - E g 0.6_ ]
© 0.4 -] (3] L i
o F 3 o L /T .
= 0.3F 4 & 04 7]
E E 3 E L ]
2 0.2F 4 & - .
£ ] 0.2 4 7]
0.1:— 3 L i
00:... o o [ o J s 00' AP Y Y ) (P A L]
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

24 6f

Figure 1. Distribution of true values of theory nuisance parameters for QCD matrix-element constants
for ny = 5 at n-loop order for n =1 to 4.

The sample distributions are shown for the matrix-element constants in figures 1 and
for the anomalous dimensions in figures 2. The data is shown by the light blue histograms.
It is binned only for visualization purposes. For each sample, we perform an unbinned fit
to a Gaussian distribution with mean p and variance ¢? as free parameters. The result is
shown by the orange line and the fitted values for ¢ and o are quoted in each plot. The
number of entries (nentries) for each sample is also given. The computed sample variance
agrees with the fitted Gaussian variance to within a few percent in all cases except at the
highest order with few entries where it differs by at most 8%.

We first observe that the standard deviation o for all samples is consistent with unity,
which provides a clear validation of our natural-size estimate in section 5.2. (For the three-loop
constants and anomalous dimensions the variance is somewhat smaller than one, which is
not a concern.) The mean g for both matrix-element constants and anomalous dimensions
is consistent with zero. The shape of the sample distributions is generally well described
by the Gaussian fit for the given number of fitted data points. The one-loop and two-loop
anomalous dimensions show some noticeable clusterings away from zero, which we can likely
attribute to the fact that the their coefficients do not yet contain sufficient entropy.

Given that the samples for different n all show similar distributions, with in particular
the same mean and standard deviation within uncertainties, we can take a step further and
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Figure 2. Distribution of true values of theory nuisance parameters for QCD anomalous dimensions
for ny =5 at (n + 1)-loop order for n+1 =1 to 5.

assume that the populations for different n can be described by a common distribution,

P, (z) = pr(x) Vn, (5.12)

where pr(z) is the distribution of all 0, in I for any n. This allows us to combine the samples
for different n in each category. The resulting distributions of the combined samples for I
and F,, are shown in figures 3. Their approximately Gaussian shape is clearly evident. Most
importantly, their fitted o = 0.90 + 0.07 and ¢ = 1.00 4 0.07 are perfectly consistent with
unity, and also agree with the computed sample variances. The means of the distributions
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Figure 3. Distribution of true values of theory nuisance parameters for QCD matrix-element constants
(left) and anomalous dimensions (right) for ny = 5 combining all available orders.

@ = —0.16 £0.10 and y = —0.17 & 0.10 show a small shift away from zero, but they are still
consistent with zero. We could in principle account for this shift by adjusting our estimated
central value. However, given that the effect is only marginal, we do not see a good reason

for doing so in practice at this point.

In summary, we find very strong and convincing evidence for the robustness of our
estimation procedure. Based on a large sample of known series coeflicients, and with the
identification in eq. (5.11), we find the distribution p(6,) in egs. (5.9) and (5.10) to have
approximately zero mean and unit variance, confirming our original estimate of u, = 0
with Au, = 1. We further find it to be well approximated by a Gaussian in agreement
with our original assumption.

5.3.3 Further discussion

The fact that our estimation procedure yields distributions closely resembling Gaussians as
in figures 3 speaks for itself. This can be contrasted with the very long-tailed distributions
obtained from an analogous exercise using scale variations in ref. [9] or the typically very
non-Gaussian distributions produced by the methods of refs. [4-7].

It is also undeniable that the distributions are closer to a Gaussian than a flat box,
in contrast to what one might have expected, as such a box-like distribution is sometimes
advocated to be more appropriate than a Gaussian for perturbative theory uncertainties
(albeit typically in the context of scale variations). We might also ask why to expect the
distributions pg, (6,,) and pr(6,) to be sensible or useful in the first place. In fact, even though
the fn € I, all belong to some common category of perturbative series, we want this category
to be as broad as possible to be as useful as possible. This means the distribution of fn,
which is solely a property of the collection F,, might very well be quite irregular and not very
useful by itself. However, as we have stressed already, the distribution ﬁFn(én) is a property
of our estimation procedure for F,,. Its goal is precisely to strip the fn of their individuality
and reduce them to a generic bunch of numbers of a common more-or-less random origin,

namely arising as a more-or-less random sum of Feynman diagrams. It is then perhaps not
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surprising after all that the resulting population of 6,, can be well described by a Gaussian
distribution. We might think of it as the central-limit theorem of Feynman diagrams.'

It is also instructive to think about how we would notice if there was something going
wrong in our estimation procedure. If we find a Gaussian with different mean or variance,
then our estimation procedure itself is sound but our final choice of u,, or Au,, is off, which we
can easily adjust for if necessary. If the resulting distribution is irregular, e.g., with large tails
or other undesired features, then this signals that our estimation procedure is suboptimal
or missing some important aspect. A long tail would be indicative of underestimating the
natural size for some coefficients in Fj,. To illustrate this with a simple example, imagine we
had not accounted for the overall C, color factor. As long as our collection F;, contains only
quark-like or only gluonic quantities, this would not be much of a problem, we would simply
find an uncertainty of Cr or C'4 instead of one. However, when F}, contains both, we would
end up with a superposition of two Gaussians of different variance. We could still work with
this distribution, but it would be suboptimal because it would lead to overestimating the
uncertainty for quark-like quantities and underestimating it for gluonic quantities.

This is also why it is prudent to consider separate collections F;, for each n at first, as
this allows us to test and identify the appropriate n-dependent normalization. For example,
without the (n — 1)! in N} in eq. (5.4) we would find distributions of correspondingly larger
variance for n > 3, which is in fact how we became aware of this factor during the course
of our investigations.

We conclude this subsection with two more comments. First, when applying our estima-
tion procedure to a known 6,, we should not use our knowledge of its true value én, but by
including it in the sample of known 0,, we do indirectly use it. However, this is acceptable
since the impact of any one coefficient on the sample distribution is minor. Second, when
applying our estimation procedure to a new and still unknown 6,,, we still have to make a
judgement whether or not it belongs to a particular category. There is a priori no guarantee
for that. It might well be the case that there are genuinely different types of quantities than
those considered so far that cannot be reduced to fit into an existing category but instead
require defining and studying a new category.

5.4 Designing theory estimators

An interesting question to consider is whether it is possible to improve upon our estimator or
design alternative estimators, which could be tested using the same procedure as above. We
leave this for future investigation and only give some general remarks here. An improved
estimator should on average yield a tighter estimate of the natural size but without underes-
timating it for some subset of series either. In other words, it should yield a reduced variance
and ideally still produce a roughly Gaussian distribution.

For example, one could imagine devising an estimator based on the actual leading-color
approximation of a series coefficient, i.e., using the large- N, expansion as a supplementary
expansion following strategy 2 in section 4.3. This of course requires performing an actual
calculation, but typically the calculation in the large- N, limit is easier to perform than the

$The credit for coining this term goes to Glen Cowan.
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full calculation. Having a robust estimator based on this limit would allow one to robustly
use such approximate results.

Another natural question that arises is whether one could utilize the information from
the known lower orders fk<n of a given quantity f to improve the estimate for f,,. This
effectively amounts to devising alternative parameterizations for f, involving the information
of the known fk<n in some way. In our initial attempts we found that this overall leads to
less reliable estimates. For example, Padé approximations can work extremely well in some
cases and utterly fail in others. The basic problem of relying on lower-order information
is that this introduces the same generic pitfall also present for scale variations: it can lead
to random significant underestimations when the lower-order coefficient(s) happen to be
randomly smaller than their own natural size. This is in fact not unlikely to happen since as
we have seen the mean of the distribution of true values is around 0. Examples of this are

already present in tables 2 and 3, namely fl of ¢ygs, fg of ¢g4g, and notably 43 of I'l,q,.

One might also consider applying the Bayesian inference models of refs. [4-7] to estimate
a given 0, based on its known lower-order ék<n, as was mentioned already in ref. [6]. In this
case, similar care has to be exercised to avoid the above pitfall. Another general option would
be to utilize series transformations or series acceleration methods as in ref. [8]. In fact, taking
the square root of a quantity can be considered a simple form of a series transformation.

From our experience so far, the most useful way to utilize the known lower-order
information is as an important cross check of the estimation procedure rather than as a direct
input to it. If a quantity consistently violates its estimated natural size at lower orders, it
might indicate that we are not estimating its natural size correctly, which can have various
reasons. We might be using the wrong normalization factor or a suboptimal reference scheme,
or we might be associating it incorrectly with a given category. The latter can happen when
not using the appropriate conventions, e.g. we should be parameterizing /f or f? instead of
f. It can also happen when we are using a suboptimal parameterization, for example when
the scalar series has important internal structures (e.g. new color or partonic channels) which
affect its natural size but which we have not explicitly parameterized.

More generally, the question is to what extent the higher-order coefficients are correlated
with the lower-order ones and how to best exploit this correlation to our advantage. Such
correlations could arise for example from cross terms of lower-order coefficients appearing
as part of the higher-order coefficient (an obvious example is again using f? instead of
f), or we believe the higher-order correction to be a genuinely multiplicative correction
on top of the lower-order result (in which case we would parameterize their ratio). In
general, such information is specific to a given quantity f. Therefore, all genuine lower-order
information that we believe to be relevant should be accounted for explicitly by the specific
parameterization of f,(6,,) itself. An optimal parameterization would then be one for which
the 0,, are uncorrelated for different n. In this limit, no more information can be gained
from the lower-order §k<n and the easiest and safest approach is to estimate the natural
size of 0,, without further reference to §k<n. The boundary between parameterization and
estimation is of course somewhat blurry, since as we have seen, the final step of parameterizing
the remaining scalar coefficients in terms of scalar TNPs is in fact an important part of
the estimation procedure itself.
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6 Application to transverse-momentum resummation

The gr spectrum of Z and W bosons produced in hadronic collisions, where gr = p?’w

is the transverse momentum of the produced vector boson, is a benchmark observable of
the LHC precision physics program and has been measured to incredible precision by the
ATLAS [68-71], CMS [72-74], and LHCb collaborations [75, 76]. In this section, we discuss
the application of our approach to precision predictions for the ¢r spectrum using resummed
perturbation theory.

Correlations within the p7W and pfip spectra, and depending on the analysis strategy also
between pjvy and p% , are critical for a precise measurement of the W-boson mass at hadron
colliders [1, 77-80]. As shown in ref. [16], the theory correlations in p% are also critical if one
wants to perform fits to the precisely measured small—p% spectrum to extract nonperturbative
parameters [81-83] or the strong coupling constant [84, 85].

In section 6.1 we give a brief account of the aspects of g factorization and resummation
that are relevant to our discussion. In section 6.2 we identify and discuss the necessary TNPs,
and in section 6.3 we present numerical results that illustrate the power of the TNP approach
to obtain predictions with proper theory correlations. Finally in section 6.4, we briefly discuss
the treatment of subleading effects, which we neglect here for simplicity.

6.1 Aspects of gr resummation

We denote the four-momentum of the vector boson by ¢*, its invariant mass and rapidity by
Q = V/¢% and Y, and its transverse momentum by ¢r = |gr|.- The quantity of our interest is
the cross section fully differential in Q, Y, and gr, which we write for brevity as do/d%q.

We start by applying strategy 2 of section 4.3 and expand the cross section in a power
series in ¢ = ¢4/Q?,

b 8oL,

i i (6.1)
Compared to our discussion in section 4.3, where we expanded the series coefficient in ¢, here
it is much more useful to first perform the expansion in € and only later the perturbative
expansion in a,. The reason is that we actually know the functional form in ¢7 (and @) of
the leading-power term do(©) to all orders in «, allowing us to apply strategy 1 and obtain
the exact correlations in ¢y and Q). Furthermore, we will also resum certain parts of the
perturbative series to all orders in «y, although the precise way of doing so is not of immediate
concern to us here, so we will not discuss it but refer the interested reader to refs. [42, 44].

The power expansion in eq. (6.1) converges very well, even better than the ¢7/Q? scaling
suggests, such that the power corrections remain below < 5% even up to moderately large
gr < Q/3 and even Q/2. As a result, the leading-power term do(® dominates and effectively
determines the spectrum over this entire small-g region, and thus also causes the dominant
perturbative uncertainties. We can therefore focus our discussion on do(®). In particular, it
will serve us to demonstrate a nontrivial example application of the TNP approach. We will
comment further on the treatment of the O(g%/Q?) power corrections and other subleading
effects in section 6.4.
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The leading-power term do(® is the subject of the g factorization and resummation
program. We do not intend to provide a detailed review of gr resummation here. Rather,
our focus is on the kinematic and process dependence, which we wish to break down and
parameterize in terms of theory nuisance parameters. We use the SCET resummation
framework of refs. [42, 44]. We closely follow the notation of those references and refer there
for more details and further references. The leading-power cross section can be written as

do© 1
diq  2FE2,

Lyvi(¢®) > Hyvran(q® 1) (6.2)
a,b

by 5o - _
X /(27_‘_)TQ €1bT ar Ba(xa,bT,lLL,V/Q) Bb(l'b,bT,M,V/Q)S(bT,M, V) .

Here, VV' = {vy,vZ, Z~, ZZ,WTW T, W~W ™~} labels the produced vector boson including
possible interferences. The leptonic tensor Ly (g?) contains the vector-boson propagator
and decay and receives no QCD corrections, so its ¢> dependence is known. The hard function
Hyvr ap(Q?, 1) encodes the production of the vector boson in the underlying hard interaction
ab — V', with the sum over a, b running over all relevant combinations of quark and antiquark
flavors. The functional form of its ¢> and process dependence is known to all orders. The
second line in eq. (6.2) contains all soft and collinear physics at the low scale u ~ gp encoded
respectively in the soft function S and beam function Ba,b. The qr dependence arises entirely
from the second line, and its functional form is fully determined by the functional dependence
on its Fourier-conjugate variable by = |5T| The functional form of the by dependence of
the beam and soft functions is in turn known to all orders in ;. The beam function also
depends on the flavor of the (anti)quark participating in the hard interaction and on Q.
The functional form of these dependencies is also known to all orders. Finally, the variables
Tap = (Q/ Eem)etY encode the dependence on the rapidity Y and center-of-mass energy
E¢ny. The functional form of the z,; dependence of the beam function is not known to all
orders but depends on their perturbative order.

The factorization in eq. (6.2) is very powerful for our purposes as it predicts the complete
functional form in ¢r and also in @ for given x,;. Furthermore, it fully parameterizes the
exact dependence on the process and partonic channels. We are therefore able to apply
strategy 1 and obtain exact correlations in all these dependencies. Although it does not
predict the complete functional form in x, it still reduces it from a generic two-dimensional
dependence to a product of common, universal one-dimensional beam functions.

For simplicity we have limited ourselves to the inclusive g7 spectrum in eq. (6.2). Including
the full kinematics of the vector-boson decay products is also possible. Importantly, at leading
power doing so only increases the complexity of the leptonic tensor but does not induce any
additional sources of QCD uncertainties [42].17 We can therefore also capture the correlations
in leptonic kinematic variables, most notably the lepton transverse momentum pZT, or between
the ¢r spectrum and the ¢p-dependent forward-backward asymmetry.

"More precisely, leptonic observables can give rise to enhanced power corrections, which for azimuthally
symmetric observables can be taken into account in terms of the leading-power QCD contributions, and thus
without inducing additional sources of QCD uncertainties. Starting at O(g%/Q?) also genuinely new QCD
structures can contribute, see ref. [42] for a detailed discussion.
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In principle, eq. (6.2) could be applied to each coefficient of the perturbative series of
do(®). However, at each order in aj, (double) logarithms of ¢7/Q appear, which render
a fixed-order expansion of do(®) unstable. Instead, eq. (6.2) also provides the basis for
systematically resumming the unstable logarithmic contributions to all orders in «j, leading
to precise and perturbatively stable predictions. We will not discuss how the resummation is
carried out in practice but refer to refs. [42, 44] for details. The key point for us is that a
given perturbative resummation order, N"LL, is uniquely defined by including all underlying
scalar perturbative series discussed below to a specific order in as. We then define our
generalized counting including TNPs, N***LL, to include the true values for all coefficients
relevant for N"LL and in addition for each series the TNP parameterization of the next k
terms. In analogy to section 3.2, we also define the approximate N"T°LL implementation
by absorbing the TNPs appearing at N*T'LL as an additive correction to the respective
highest coeflicients appearing at N"LL.

6.2 TNPs for gr resummation

The perturbative ingredients required in eq. (6.2) are the hard, beam, and soft functions.
Their functional dependence on the kinematic variables, except z, is fully predicted to all
orders in «a; by their renormalization group equations, which we now discuss in turn. At
the end we will be left with a set of (mostly) scalar perturbative series that fully determine
the (fixed-order and/or resummed) perturbative series of do(®). We will give a summary in
section 6.2.4, so readers not interested in the detailed definitions can directly skip there.

6.2.1 Hard function

The leptonic tensors for inclusive Z — ¢¢ and W — (v in eq. (6.2) are given by

2 q2 2
I 2y _ £Qem 2 2
22(q7) 3 4 (v + ay) & —mZ 1 Czmy
la 1 ¢
L 2) = =2 6.3
wew () 6 ¢*> sin®6y, |¢? —m}, +iTwmy (6:3)

Their ¢ dependence is known exactly in QCD. The corresponding hard functions have the form

87 em

Ne

+2RY [qufCJ(qQ, 1) Cop (a2, 1) + aqayCii(q?, 1) Cay (¢, u)} . } ’
7

Hyz40(2p) = 5qq,{(v§ + a2)|Cy(g?, )2

2
2T em |Vaq'|
N, sin26,,

Hyyrw+ g0 (6 1) = 1Cy (g%, )2 (6.4)

The expressions for the remaining V'V’ combinations can be found in appendix A of ref. [42].
The v; and a; are the usual axial and vector couplings of the Z boson, @), is the electromagnetic
charge of quark ¢, and V,, are the CKM-matrix elements.

The ¢? dependence of the hard function is determined by that of the matching coefficients
Ci(q?, 1), which correspond to the infrared-finite parts of the respective QCD form factors.
Here, Cy = 1+ O(a?) is the dominant vector nonsinglet coefficient corresponding to diagrams
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where the vector boson couples to the external quark line. The Cyy and Cyy in eq. (6.4)
are axial-singlet and vector-singlet coeflicients corresponding to diagrams where the vector
boson couples to a closed fermion loop, which only contribute to Z production but not to W
production. They have separate perturbative series starting at O(a?) and O(a?), respectively,
and have to be parameterized separately. In practice, their contributions are very small even
at the order they contribute [44], so we can neglect them here for simplicity. In principle they
would have to be included (starting at N3LL) to fully account for the correct (de)correlation
between W and Z production. The ellipses in Hzz,7 denote terms proportional to the
square of Cyr and C,¢, which only contribute starting at O(a).

The functional form of the ¢?> dependence of Cq(q2, ) is known because by dimensional
analysis it can only depend on the ratio ¢?/u?. The ¢* dependence is therefore fully predicted
by the p dependence, which in turn is governed by C,’s renormalization group evolution
(RGE) equation,

9 .

b Gl ) = Pl 1o =222 4 208 1) (6.5)

The full ¢? and p dependence of C,, can be reconstructed by solving eq. (6.5) (either order
by order in a; or to all orders to obtain its resummed expression).

The cusp and noncusp anomalous dimensions I'd,¢,(as) and v (as) in eq. (6.5) are
already scalar series. Following our conventions for anomalous dimensions in section 5.2,
we parameterize

P(as) = MWep(as),  yulas) = 298(es), (6.6)

in terms of corresponding TNPs 6. and 6,".

The remaining nontrivial part of C; we need to parameterize is the ¢? and p-independent
constant term, which is not predicted by eq. (6.5) and effectively acts as the boundary
condition for solving the differential equation. We can formally define it as the matching
coefficient evaluated at the canonical scale 2 = —¢2,

cqlas) = Cy(@® 1 = —¢°) . (6.7)

By choosing the canonical scale proportional to ¢, the perturbative series for cq(ag) becomes

a scalar series with ¢* and p independent coefficients. Here, c,(avs) is equal to cygy () in
H

.., where the label is meant

section 5.2, so we parameterize it directly in terms of TNPs 6
to remind us that they come from the hard function.

Note that the matching coefficient is defined in a certain renormalization scheme, for
which we use the standard MS scheme here. Together with the canonical scale choice, which
also determines the form of the logarithm in eq. (6.5), this defines the reference scheme for

the anomalous dimensions and constant term and their TNPs.

6.2.2 Soft function

The TNP parameterization of the soft function S (br, p, v) proceeds analogously to that of
the matching coefficient Cq(q2, 1) above. A new element is the soft function’s dependence on
the additional rapidity renormalization scale v, which has dimension one. By dimensional
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analysis, the soft function can only depend on two ratios br/p and u/v, so its full by
dependence is determined by its dependence on p and v, which is now governed by a system
of RGE equations,

d ~ -
prg B (b, o) = ATl ()] n - Fslars ()
d = -
Va In S(bT7 L, V) - VV(bTv :u) )
d _
H@’YV(bTv M) = _4Fgusp[a8(u)] : (68)

Here, the rapidity anomalous dimensions 4, (br, 1) has a more nontrivial dependence on
br, which is in turn determined by its own p dependence governed by its own p RGE in
the last line.

Solving eq. (6.8) now requires two independent boundary conditions, one for v, (br, 1)
and one for S (br, p, v) itself. The canonical scale in by space is p = by /by with by = 2e™7F =~
1.12291, which corresponds to g = gr in momentum space. The soft function scales like
a squared 2 — 0 matrix element. Following our conventions in section 5.2, we therefore
define the relevant scalar series as

1_
71/(055) = §7V(bT7 n = bO/bT) ’

5(as) = \/S(br, pt = bo/br,v = bo/br), (6.9)

which we parameterize in terms of corresponding TNPs )~ and 65. Note that the reference
scheme for the TNPs here corresponds to our choices of using by space and its canonical scale,
MS renormalization, and rapidity renormalization [86] with the exponential regulator [87].
The other perturbative ingredients we need for the soft function are the cusp and noncusp
anomalous dimensions in the first line of eq. (6.8). Following our conventions we would
again parameterize I'(as) = 2I'¢,q, (@), consistent with eq. (6.6), and ys(as) = Ys(as)/2. In
practice, we do not need TNPs for yg(as), for reasons we will explain in a moment.

6.2.3 Beam functions

The beam function B;(x,br, 1, v/Q) only depends on the combination v/Q, as indicated
by its argument, and thus by dimensional analysis only on bp/u. Its by and explicit @
dependence is thus governed by its RGE system, which is closely analogous to that of the
soft function in eq. (6.8),

d - v
M@ In Bq(m7 br, 1, V/Q) - QFguSp[as (:u)] In a + B [as(ﬂ)] >
d ~ 1.
V@ lan($, bTa M, V/w) = _§7V(bTa lu’) )
d _
M@%(b% p) = =4l las ()] - (6.10)

We need again the cusp and rapidity anomalous dimensions, which are the same as before in
eq. (6.8), the noncusp beam anomalous dimension yp(as) = p(as), and the beam function
boundary condition.
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We do not need TNPs for the beam and soft noncusp anomalous dimensions for the
following reason. When using the beam and soft function’s RGEs to reconstruct their
full fixed-order expressions, we only need the known anomalous dimension coefficients (for
our considered resummation orders). Their TNPs would only enter in the evolution itself.
However, since the beam and soft functions start their evolution at the same canonical scale
i = bg/bp, only their total ;1 anomalous dimension actually enters in the resummation, which
by consistency is equal to minus that of the hard function. We therefore only need the single
noncusp p anomalous dimension in eq. (6.6).

Importantly, the RGEs do not depend on z, which implies that the additional  depen-
dence factorizes from the by and ) dependencies and only enters via the beam boundary
condition, which is now defined at the canonical scales pu = bg/br and v = @,

Z;i(x,as) EBi(x,bT,u:bo/bT,V/Q: 1). (6.11)
The additional complication for the beam function arises because its & dependence is not
predicted by its RGE, so the beam boundary condition is a general one-dimensional function
of x. To further break down this dependence, we calculate its series coefficients ZN)M (z) in
terms of collinear PDFs f;(x),

Bzm(.%) = Z /dj fij,n(z) fj (g) s (6.12)
J

where fij,n(z) are perturbatively calculable matching kernels. The 2 dependence of the beam
function is thus determined via the Mellin convolution of the x dependence of the PDFs and
the z dependence of the matching kernels. Since the x dependence of the PDFs tends to
be quite strong, the mix of contributing PDFs determines the overall size of 5Zn(x) as well
as playing an important role in determining its shape in x. The I;;,(z) are perturbative
coefficients, so we can in principle estimate their natural size as in section 5.2. (In fact, their
moments in z enter into our sample of matrix-element constants). In contrast, it would be
quite difficult to estimate the natural size of b;, () directly. eq. (6.12) is thus an example
where parameterizing a dependence (here the channel dependence) is beneficial or even
necessary for obtaining a natural-size estimate.

Following our discussion in section 4, if we do not require precise correlations in x, one
option would be to only parameterize the integral of I;;, (%), with e.g. a trivial z dependence
~ 0(1 — z). If we do require proper correlations in z, i.e. in Y and/or E¢y, we need to
properly parameterize the z dependence. At the orders we are working their true expressions
are actually known [88, 89]. Therefore, as a starting point we parameterize them using their
known functional form in z multiplied by an overall scalar coefficient

iij,n(Z, 95”) = g 95” I:ij,n(z) , (6.13)
where we include a factor of 3/2 to be conservative and account for the fact that their true
values are typically somewhat below their natural size. Another option would be to explicitly
normalize the I;;,(2) in some way.

With the TNP parameterization in eq. (6.13), we effectively treat the shape as exactly
known, while the overall normalization is unknown. We prefer this option to using §(1 — z),
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because it means we have the exact correlations for the overall normalization uncertainty we
do consider. Of course, at the highest known order we cannot do that, and strictly speaking
at lower orders we should not be allowed to use the known shape but include some shape
uncertainties. In the future, the z dependence of the matching kernels can be explicitly
parameterized, for example by using strategy 2 and expanding them in ¢ = 1 — z, since
their z — 1 limit is actually well understood [47].

The dominant partonic channels are ij = {qqV, qg}, which start at O(1) and O(as). At
higher orders, further singlet channels ij = {qqV, qq¢S, qgAS} appear, whose precise definition
is given in ref. [47]. Since they only give small corrections even at the order they appear,
for our numerical results in section 6.3 we only consider two TNPs for the beam boundary
condition, namely a single effective 95 .

§Bua = gLV = glav = glus = glusas (6.14)
which collectively varies all gg channels together with 07113 % for the qg channel.

In principle, we also have to include the QCD splitting functions, which govern the
evolution of the PDFs, in our counting. In the resummed cross section, the PDFs enter through
the beam functions where they are evaluated at the scale of the beam function, which means
their evolution contributes to the gr resummation by resumming single logarithms of b7. That
is, they count as a noncusp anomalous dimension. Constructing TNP parameterizations for the
splitting functions can be done similarly to the beam function matching kernels by considering
their z — 1 and also z — 0 limits. In fact, in this way TNPs for the four-loop splitting
functions have already been considered in ref. [13] including constraints from their known
moments. Since varying the splitting functions is rather involved technically, as it requires
re-evolving the PDFs, we refrain from doing so here, and leave this for future work. Instead,
if needed, this source of uncertainty can be probed for now by conventional pg variations.

6.2.4 Summary of TNPs

To summarize, we have a minimum of seven TNPs, corresponding to seven independent
perturbative ingredients and thus sources of uncertainty: three anomalous dimensions and
four boundary conditions, which belong to the category of matrix-element constants,

00 -y € {0,y wt,  0L:f€{H, S By By} (6.15)

There is actually one piece of perturbative information that we have silently taken for
granted so far: the solution of the RGEs also requires the QCD f function, because it governs
the p dependence of as(p), and its TNP would in principle enter in the resummation at the
same loop order as the TNP of the cusp anomalous dimension. In practice however, while
the overall p evolution of ag(p) is important, the higher-order corrections to it tend to be
numerically very small. We therefore continue to treat the g function as known to avoid
adding significant but unnecessary complexity.

In addition to the above 7 TNPs (or 6 if we are willing to count the beam function as a
single one), we have 3 (or 4) more once we account for the full set of partonic channels of
the beam function (still without accounting for its functional dependence). In addition, we
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Figure 4. Leading-power qr = p% spectrum for inclusive pp — Z production at the 13 TeV LHC at
NYFLL (yellow), N2T'LL (green), N>*T9LL (blue), and N> LL (orange). The results are shown for
the absolute spectrum on the left and as the relative difference to the N®+t!'LL central value on the
right. The bands show the total theory uncertainty at 95% theory CL.

have 2 more once we account for singlet contributions to the hard function, 1 more if we also
count the 8 function, and several more once we account for the splitting functions.

Let us contrast this with a scale-variation based approach to estimate perturbative
uncertainties. Even the most sophisticated currently available scale-variation-based setup [44]
involves 5 scales (up, up, s, VB, Vs) that are being varied, which thus cannot begin to
capture even the minimal space of theory uncertainties and correlations. And in most other

approaches to gr resummation even fewer scales are considered.

6.3 Numerical results

For our numerical results for the leading-power qr spectrum, we consider inclusive pp — V
production with V = Z, W= at the 13TeV LHC at fixed invariant mass Q = 1/¢? = my and
rapidity Y = 0 of the vector boson, unless noted otherwise. We use the MSHT20an31o [13]
PDF set with as(mz) = 0.118. All results are obtained with SCET1ib [90] based on its
implementation of gr resummation up to N*LL [42-44, 47], which we have extended to
support the required theory nuisance parameter variations. Since we only consider the
leading-power spectrum without matching to the full fixed-order result at large g7, we restrict
ourselves to g7 < 30GeV, where the neglected O(q2/Q?) and higher power corrections
amount to at most a few-percent correction and the uncertainties associated with the
matching procedure are also not yet relevant [44].

In figures 4, we start by presenting the Z ¢r spectrum at different subsequent orders
up to N**1LL. The uncertainty bands show the total theory uncertainty at 95% theory CL
from varying all TNPs by Au, = 2. Note that the N*"?LL result is an intermediate order,
which is included for illustration and future reference.

In figures 5 we show the breakdown of the theory uncertainty by individual TNPs. The
impacts on the spectrum from varying the TNPs up or down are roughly symmetric, so
for clarity we always only show the Awu, = +1 variation for the anomalous dimensions,
hard function, and soft function, and the Awu, = —1 variation for the beam function. Since
each TNP corresponds to an independent source of uncertainty, which furthermore can be
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Figure 5. Breakdown of the relative uncertainties in the leading-power ¢ = pf’w spectrum at the
13TeV LHC at N?>T1LL (left panels) and N3T'LL (right panels) for pp — Z (top row), pp — W
(middle row), and their ratio (bottom row). The different lines show the impact of varying the
corresponding theory nuisance parameter by +1 or —1, corresponding to 68% theory CL. The yellow
band shows their sum in quadrature. See the text for more details.

considered Gaussian distributed (see section 5), the correct way to combine them into a
total uncertainty is to add them in quadrature. This is shown by the light yellow band,'®
corresponding to the total uncertainty at 68% theory CL. In the top and middle rows we
show the results for Z and W and in the bottom row their ratio.

Concerning the point-by-point correlations in the shape of the gr spectrum, each of
the TNP variations shown by the different lines in figures 5 reflects a 100% correlated

BTo be precise, in case of small asymmetries we sum in quadrature the larger of the up and down variations
for each TNP for definiteness.
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Figure 6. Same as figures 5 but for the approximate implementation at N3+0LL.

uncertainty component across the gr spectrum. We observe that the different components
have quite different shapes and include cases where the correlation is always positive as well
as cases switching sign from correlated to anticorrelated at different points in ¢r. Hence,
as anticipated, it is not possible to correctly model the correlations in the ¢y spectrum by
a 100% (anti)correlated hypothesis.

Let us briefly compare this to a scale-variation based approach. By scanning over different
scale variations in order to account for the shape uncertainties, one is precisely scanning over
various (more-or-less arbitrary) 100% (anti)correlated hypotheses. We remind the reader
(see section 2.1.2) that when correlations matter, incorrect correlation assumptions can have
dramatic consequences on the resulting uncertainties. In ref. [16], we will show explicitly that
accounting for the correct point-by-point correlations in gr is indeed absolutely critical if
one wants to exploit precision measurements of the gp spectrum, particularly its extremely
precisely measured shape, for interpretation purposes such as extracting nonperturbative
parameters or the strong coupling constant. All current attempts at doing so, including the
recent analysis in ref. [85], are based on scale variations and are thus subject to uncontrolled
correlation assumptions in the underlying perturbative predictions. Hence, the quoted
perturbative theory uncertainties in the extracted parameters of interest cannot be taken
at face value but must be interpreted with extreme caution.

As expected, the uncertainties are very similar for the closely related Z and W processes,
whose main differences are the different partonic channel combinations and the small difference
in their masses. Since the TNPs for both processes are the same, each of the individual
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impacts are 100% correlated between the processes, and as a result cancel in the ratio to very
large extent, roughly by a factor of 10. We stress that whilst a large degree of cancellation
is expected and has been encountered many times before, we can now correctly quantify it
for the first time, and in particular also its dependence on grp.

In figures 6 we show the same results using the approximate implementation of the theory
nuisance parameters at N3+t0LL. This is the setup utilized for the resummed component of
the gp spectrum in the analysis of ref. [1], where it is also further matched to the fixed-
order NLO; result for the V+1-parton process. At N3TCLL, formally the same 6, enter
as at N3T1LL but their impacts are only approximately correct. Namely, their shape is
approximated by the corresponding one at N?>*1LL, while their overall impact is similar to
that at N3T1LL. Whilst the precise shapes of the components differ between N3+1LL and
N3+0LL their overall qualitative behaviour is similar. The total uncertainties at N3+0LL
are similar to but somewhat larger than at full N3*!'LL. Notably, the uncertainties on the
W/Z ratio, which strongly depend on the detailed correlations, are very similar to those at
N3+1LL. Therefore, we can conclude that the N3TOLL result provides a clear improvement
over N>M1LL and a reasonable approximation to the more correct N3+1LL result. Although
the N3+1LL result should be preferred, the approximate N3tOLL result can serve as a viable
compromise if the former cannot be utilized for some reason. One such reason could be the
availability of the required fixed-order matching at large ¢r. Since N3+tOLL implements the
N3LL structure it can be consistently matched to NLO{, whereas N3+!LL implements the
full N*LL structure and therefore requires matching to NNLO;.

In figures 7 we show the ratios of the gr spectra for Z production at Q = 1TeV vs.
Q=mzandY = 1.6 vs. Y = 0. Figures 8 shows the ratios of the gy spectra for W vs.
W~ and for W+ at 13 TeV vs. 7TeV. The cancellation of uncertainties is expectedly most
pronounced for W+ /W ™. Tt is weakest but still present for the case of Q = 1TeV vs. Q = my.
This is also not unexpected, since the spectrum mostly depends on ¢r/Q, so for different
() the gp spectra are shifted against each other.

We stress that the primary purpose of the various ratios we show is to easily visualize
the effect of correlations and the resulting degree of cancellations. When correctly accounting
for the theory correlations there is no difference as far as theory uncertainties are concerned
in using the ratio or the quantities separately. In a real analysis, one would typically not use
ratios but simply perform a combined analysis of all relevant processes, which constrains the
TNPs among all of them accounting for all correlations and resulting cancellations. In the limit
where one particular process is much more precisely measured than the others, one can think
of it as effectively acting as a control process to obtain improved predictions for the others.

An important observation is that the dominant uncertainties that remain in the ratios
and tend to cancel the least are those due to the beam functions, in particular for W/Z
but also in many cases for the other ratios in figures 7 and 8. This is because the main
difference between the processes, which is due to the different combinations of flavor channels,
precisely enters via a different relative mix of different beam functions. This motivates a
more detailed study of the beam function TNPs.

To conclude this section, we stress again that here we only consider the leading-power
contributions. This is warranted as these are by far the dominant contributions to the spectrum
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Figure 7. Relative uncertainties in the leading-power gr = pZ spectrum at the 13 TeV LHC at
N3TILL for the ratio of pp — Z at Q = 1TeV vs. Q = myz (left) and Y = 1.6 vs. Y = 0 (right). The
meaning of the curves is the same as in figures 5.
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Figure 8. Relative uncertainties in the leading-power g = p¥ spectrum at N3*1LL for the ratio of
pp — W vs. pp — W™ at the 13TeV LHC (left) and pp — W™ at the 7 TeV LHC vs. 13 TeV LHC
(right). The meaning of the curves is the same as in figures 5.

at small ¢, so the precise correlation and resulting cancellation of their uncertainties is
a critical ingredient to any interpretation of precision measurements of the gr spectrum,
which we are able to properly take into account for the first time. The uncertainties in the
ratios illustrate the level of precision that can now be reached via the cancellation of the
dominant uncertainties in a combined analysis. At the resulting sub-percent level of precision,
many other previously subleading effects can become equally or more important and must
be accounted for to maintain this level of precision, motivating future work on them. We

briefly comment on these in the next subsection.

6.4 Subleading effects

The application of our approach to the leading-power resummed contribution represents
a crucial milestone toward a more complete and comprehensive understanding of the ¢r
spectrum. A complete treatment also requires accounting for several other subdominant

effects. These are in particular:

o The neglected subleading power corrections in eq. (6.1) starting at O(¢2./Q?).
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« Effects due to finite quark masses of O(m2/q7).
e QED and electroweak effects.
o Nonperturbative corrections of (’)(AéCD /q%).

The nonperturbative corrections already have a parametric nature. In the future, our approach
can also be applied systematically to the first three effects following the methodology developed
in the previous sections. In the absence of their complete TNP-based treatment, they can
still be included from existing results based on conventional methods. In other words, a TNP
treatment of even just the leading-power resummed component is already extremely valuable,
simply because it contributes by far the dominant uncertainties.

7 Conclusions

The theory nuisance parameter approach developed in this paper holds enormous potential
to make perturbative predictions more robust and also more precise:

o It allows for the first time to correctly account for theory correlations, which are
important whenever one simultaneously interprets multiple measurements (including
different bins in a spectrum).

e The theory uncertainties and correlations are straightforward to propagate, like any
other nuisance parameters, into fits, Monte-Carlo generators, multivariate analyses,
neural networks, etc.

e In fits to experimental measurements, it is possible and consistent to profile the
theory nuisance parameters and thereby constrain them, effectively reducing the theory
uncertainties by the measurements, which is not possible with existing methods.

o New structures (e.g. partonic channels or additional logarithmic powers) appearing at
higher order are explicitly anticipated and accounted for by the theory uncertainties.

e All new, even partial, higher-order information can have immediate phenomenological
impact in reducing theory uncertainties, even if the complete next order is not yet
available.

e The theory uncertainties have a well-defined and meaningful statistical interpretation.

Any estimate of a systematic (epistemic) uncertainty will have some level of arbitrariness
arising from choices one has to make. An important goal and feature of the TNP approach is
to systematically manage this arbitrariness and to minimize its impact on the final uncertainty
estimate. In the TNP approach, there are roughly three types of choices involved:

e The perturbative scheme choices used to define the perturbative series. This scheme
dependence has been discussed in section 3.4.
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¢ The choices required in deriving a suitable TNP parameterization in step 1. This includes
which internal dependencies are parameterized, possible required approximations, and
given these the actual choice of parameterization. These aspects have been discussed in
section 4.

e How to normalize the TNPs and how to constrain their numerical values in step 2.
These aspects have been discussed in section 3.3 and section 5.

When applied to color-singlet transverse-momentum (pr) resummation, the theory
nuisance parameters allow one to correctly and fully account for the theory correlations in
the shape of the small-py spectrum, between different () values, partonic channels, hard
processes (e.g. W and Z production), collider energies, and different resummation-sensitive
variables (e.g. p%, pfip near the Jacobian peak, or ¢*). In this context, our approach opens
the door to reaching sub-percent level theoretical precision, which will be able to match the
incredible precision already achieved by experimental measurements. To fully reach this
level of theoretical precision, a variety of subleading effects must still be accounted for. We
thus hope that our results also provide strong motivation for future work in this direction.
For expedience, they can at first be included using conventional methods, which does not
invalidate the TNP-based treatment of the dominant uncertainties. More importantly, our
approach is also not limited to the dominant resummed contribution. It can be systematically
and incrementally applied also to subleading effects as they become relevant at any given
level of theory precision.

More generally, it will obviously be impossible to equip existing predictions with TNP-
based uncertainties all at once. We should stress that this is also not required by the TNP
approach. To the contrary, a more practical, incremental adoption, focusing on the dominant
sources of uncertainties first is exactly in the spirit of our approach, namely to parameterize
and include the sources of uncertainties in the theory predictions in order of their relevance.
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A Sample of known perturbative series

The QCD matrix-element constants and anomalous dimensions included in the samples of
known perturbative series in section 5.3 are listed in tables 4 and 5. For definiteness, we
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give the explicit 1-loop results in the 3rd column. The 4th column shows the included loop
orders and the last column gives the original references (starting at 3 loops for brevity). As
already mentioned in section 5.3.2, we have made an effort to include all matrix-element
constants known to four loops and anomalous dimensions known to four and five loops in
QCD. The included quantities that are known at lower orders are certainly not exhaustive,
and more can be added in the future.

Following the normalization conventions discussed in sections 5.2.1 and 5.2.2, we consider
matching coefficients and jet and beam functions directly, while we consider the square root
for decay rates and soft functions, and also include corresponding factors of 2 and 1/2 for

the associated anomalous dimensions. For the beam function matching kernels, I;;(z), we

! moment (2nd Mellin moment). For ,,(2)

reduce their z dependence by considering their 2z
we also consider its total integral (1st Mellin moment), which exists since this kernel does not
have a 1/z singularity. Similarly, for the QCD splitting functions we consider their lowest
moments in z, which in some cases are known to five loops.

For scheme-dependent quantities (decoupling constants, Wilson coefficients, beam, jet,
and soft functions) we always use the MS scheme and canonical logarithms to define their
scalar series for the constant terms or boundary conditions. That is, the constant terms are
defined as the remaining nonlogarithmic terms when all logarithmic terms are written in
terms of the respective canonical (possibly distributional) logarithms. These choices define
the reference scheme for their corresponding TNPs. Some explicit examples with more details
can be found in section 6.2. For the soft functions we only consider the quark functions, since
the gluon ones are closely related to the quark ones by Casimir scaling. For the threshold
and thrust soft functions we consider them both in position and momentum space, since the
translation between spaces causes a significant reshuffling of the constant terms with the
logarithmic terms such that the constants in either space become largely uncorrelated. On
the other hand, for the ¢r or by soft function we only consider the bpr-space result because
the constant terms in g and br space appear very strongly correlated.

Concerning the anomalous dimensions, the QCD § function is defined as

das (1)
dp

= —2a; B(as) with By = %C’A — gTan. (A.1)
Since it is the anomalous dimension of the coupling itself, it clearly plays a special role. For
example, it is the only anomalous dimension whose ny dependence starts at one loop. Despite
its special role, we include it in our collection for completeness. A closely related anomalous
dimension, which fits more naturally into our collection, is the anomalous dimension ;(cv)
of the ggH Wilson coefficient that arises from integrating out the top quark, which is given
to all orders by

d B(as)
S :*2 2 9
o) = ~203 20

Yin = —2n8y, . (A.2)

Note that there are several gluonic anomalous dimensions, whose n; dependence also starts at
one loop. However, this dependence (and similarly the highest power of ny at higher orders)
is always that of B(«s) itself, which we therefore subtract. This can also be understood from
the fact that the corresponding quantities are always associated with an explicit power of
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Name f fi n refs.

ag decoupling Ca 0 1,2,3,4 [91-94]
quark mass decoupling Cm - 2,3,4  [91, 94, 95]
ggH Wilson coefficient Cq —%TF 1,2,3,4 [91-94, 96]
gqH Wilson coefficient Co - 2,3,4  [91, 95]
ggH H Wilson coefficient Cun — 8Ty 3,4 [94, 97, 98]
v* — qq R-ratio (nonsinglet) /By %CF 1,2,3,4 [96, 99-102]
v* — qq R-ratio (singlet) Ry - 3,4 [96, 99-102]
H — gg Ryg BCpy— Y Tpny 1,2,3,4 [96, 103, 104]
H — qg (nonsinglet) VRas LCr 1,2,3,4 [96, 105, 106]
quark vector form factor CqqV (—8 %2) Cr 1,2,3,4 [48, 107-109]
gluon scalar form factor Cgg %2 Ca 1,2,3,4 [48, 107-109]
quark scalar form factor CqqS (—2 %2) Cr 1,2,3,4 [49, 110]
quark jet function Jq (7 —7?) CF 1,2,3  [111]

gluon jet function Jg (% —712)Cp — 2 Tpnf 1,2,3  [112]

quark EEC jet function jEEC (442 )CF 1,2,3  [113]

gluon EEC jet function ngEC (% — 4L) Cy— Tan 1,2,3  [113]

qq by beam fct (integral) Igg1 Cr 1,2,3  [88, 89]

qq br beam fct (2! moment) IquQ %C’F 1,2,3  [88, 89]

qg by beam fct (2! moment) fqg,g %Tp 1,2,3  [88, 89]

gg by beam fct (2! moment) Tyg2 0 1,2,3  [88, 89]

gq by beam fct (2! moment) Tyq2 2Cr 1,2,3  [88, 89]

br soft function V3q —%2 Cr 1,2,3  [114]
threshold soft fct. (pos. space)  /Snr %2 Cr 1,2,3  [115]
threshold soft fct. (mom. space) /Sgnr —%2 Cr 1,2,3  [115]

thrust soft fct. (pos. space) Vs —% Cr 1,2,3  [116]

thrust soft fct. (mom. space) Vs %2 Cr 1,2,3  [116]
heavy-light soft fct. Shi —% Cr 1,2,3  [117]

Table 4. Quantities included in our sample of known matrix-element constants.

as at the lowest order, or equivalently, the corresponding operators involve a gluon field
strength. It would actually be more natural to always include an appropriate power of the
coupling with the field strength, which would then automatically remove the 3(«s) piece
from the anomalous dimension.

Consistency of the ete™ thrust [19, 20] and partonic beam-thrust [141] factorization
implies
46(0s) + 29 (as) +7s(0) =0, (A.3)

where 7% (as) is the (noncusp) anomalous dimension of the (beam)thrust soft function, and we
have already used that the anomalous dimensions of the SCETT inclusive beam and jet function
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Name y Y0 n refs.

QCD 2 function —28  —2ZCa+ 5Tpns 0,1,2,3,4  [50-56]

ggH Wilson coeflicient Ve 0 0,1,2,3,4

quark mass Ym —6Cp 0,1,2,3,4 [57-62]

vector correlator (nonsinglet) 2v{7 %dp 0,1,2,3,4 [102]

vector correlator (singlet) 27y - 3,4 [102]

scalar correlator 2vs 4dp 0,1,2,3 [105]

P (2) (2! moment) 2735 T L cp 0,1,2,3,4 [67, 118-123]
P(2) (22 moment) 2v3°%” -BCp 0,1,2,3,4 [67, 118, 121-124]
Pyy(2) (2! moment) 2v99 428 —20y 0,1,2,3 [125, 126]
Pyy(2) (2! moment) 2+99 8Tr 0,1,2,3 [125-127]
quark cusp 2l ep 8CF 0,1,2,3,(4) [63-67]

gluon cusp 2 ep 8Cy 3 [63-66]

tensor current N1 2CFp 0,1,2,3 [119, 128, 129]
HQET heavy-light current  yuqeT —-3CFp 0,1,2,3 [130, 131]
quark threshold PDF o 6Cp 0,1,2,3  [63, 122, 123, 132]
gluon threshold PDF fy? — 20 0 0,1,2,3 [64, 133]
quark collinear 27¢, —6CF 0,1,2,3 [66, 134, 135]
gluon collinear 27 +2p 0 0,1,2,3 [66, 135, 136]
heavy-quark collinear 2’yg —4Cp 0,1,2 [117, 137]
quark jet function v 6Cp 0,1,2,3 [111]

gluon jet function 79 —28 0 0,1,2,3

quark soft function /2 0 0,1,2,3 (115, 122, 132]
gluon soft function v4/2 0 3 [115, 133]
heavy-light soft function fyg /2 2CF 0,1,2 [117]

quark rapidity 43/2 0 0,1,2,3 [114, 138-140]
gluon rapidity 79/2 0 3 [114, 138-140]

Table 5. Quantities included in our sample of known anomalous dimensions.

are equal, vp = 7 [142]. Consistency of color-singlet threshold factorization [143, 144] implies
4y (as) + 295 (as) + Ve (as) = 0. (A4)

Consistency of the generalized threshold factorization [145] implies
470 (as) +p(as) +75(as) = 0. (A.5)

We thus have 3 relations for 5 anomalous dimensions, which means only 2 are independent.
In particular, we have

’7%'(045) = _'Y‘:hr(O‘S) = 7}(“8) - ’73(045) . (A.6)

At three loops, 7% and 73} have been known first [63, 64, 134, 136], with 7%, 7%, 7%, Y,
determined from consistency. Subsequently, 'ytihr and % have been confirmed by independent
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explicit calculations [111, 115]. At four loops, 7% and 7%, are fully known [66, 122, 132, 135],
where for the latter the coefficients of some color structures are only known numerically but
with sufficient precision for practical purposes. We use these to obtain 7}, vfj, ’yg at four
loops. In particular, doing so determines the remaining color coefficients in ok that were
only available approximately in refs. [132, 133], see also ref. [146]. To our knowledge, the
four-loop 7Y had not been considered in the literature so far.

For the cusp, soft, and rapidity anomalous dimensions, we do not include the gluon
coefficients up to 3-loop order as they are trivially related to the quark ones by a simple
overall Casimir scaling, 79 = C4/Cpy2 for n < 2. At 4-loop order, n = 3, the quark and
gluon coefficients are still related by generalized Casimir scaling, which however no longer
relates the coefficients as a whole, so we include both.
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