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1 Introduction

The transverse momentum spectra of electroweak bosons produced in hadronic collisions are
flagship observables of the LHC precision program, and have been measured to astonishing
accuracy by the ATLAS [1–6], CMS [7–11], and LHCb collaborations [12, 13]. The pT

spectrum of the Z boson, measured in the experimentally pristine Drell-Yan dilepton channel,
is of particular importance as an irreducible background to many searches for physics beyond
the Standard Model, see e.g. ref. [14], and likewise features great sensitivity to key Standard
Model parameters like the strong coupling [15, 16]. On the other hand, the pT spectrum of
the W boson, while much harder to access experimentally, is a critical input to measurements
of the W boson mass [17–21] that rely on Jacobian peaks — smeared out by the pW

T spectrum
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— to achieve sensitivity. Lastly, recent progress in understanding the complex interplay of
fiducial experimental selection cuts and QCD perturbation theory has revealed that even
seemingly inclusive quantities like (fiducial) rapidity spectra can feature sensitivity to small-pT

physics, requiring a precise understanding of the underlying pT spectrum as well [22–26]. In
turn, a thorough understanding of these percent-level effects on fiducial rapidity spectra is
required e.g. to deliver constraining power on collinear parton distribution functions (PDFs),
whose determination has advanced to approximate N3LO accuracy [27–31].

The phenomenological importance of the pZ
T and pW

T spectra has motivated a large-scale
effort by the theory community to provide precision predictions for them, in turn making
them crucial tests of our understanding of QCD and the electroweak sector of the Standard
Model. Fixed-order predictions in QCD perturbation theory at finite pZ,W

T have reached an
impressive O(α3

s) accuracy [32–40], i.e., NNLO1 relative to the tree-level LO1 process where
one hard parton is radiated into the final state. On the other hand, at small transverse
momenta pV

T ≪ mV , where the vector boson V recoils against soft and collinear radiation,
the infrared singularities of gauge theory enhance the contribution to the cross section at each
perturbative order by large double logarithms αn

s ln2n(pV
T /mV ), upsetting the convergence

and validity of the fixed-order series. The all-order resummation of these dominant singular
terms, which is based on factorization theorems and the renormalization group, has in the
meantime been achieved at N3LL′ [15, 23, 41–43] and approximate N4LL order [40, 44–46] by
several groups. The analytic resummation at this order also provides an important ingredient
to extend the combination of high-order calculations with parton showers to N3LO+PS using
the methods of refs. [47, 48]. (Another ingredient is the NNLL′ or N3LL resummation for
the V + 1 jet process [49].) The region of even smaller transverse momenta pV

T ≲ ΛQCD
close to the QCD confinement scale is of particular interest because it provides access to
the nonperturbative transverse momentum-dependent (TMD) dynamics of partons within
the proton, see e.g. refs. [45, 50, 51]. Beyond (non)perturbative QCD, mixed strong and
weak or electromagnetic corrections have been studied both at fixed order [52–58] and to
all orders in the limit of small transverse momentum [59–62].

In this paper, we present predictions for the resummed and matched qT ≡ pW,Z
T spectrum

as implemented in SCETlib [63], a C++ library for numerical calculations in QCD and Soft-
Collinear effective theory (SCET). Our emphasis lies on consistently combining all information
from across the spectrum, ranging from nonperturbative to fixed-order scales, where we
in particular go beyond the status of the literature by including a thorough assessment
of the associated matching uncertainties. This is part of an overall, careful estimate of
the magnitude of residual perturbative uncertainties, which we supplement with detailed
studies of the parametric strong coupling, PDF, and nonperturbative TMD uncertainties. We
further present a novel way of rigorously defining effective nonperturbative TMD functions
for resonant pV

T and multi-differential spectra, which has served as an important ingredient
of the theoretical model underlying the recent CMS measurement of the W boson mass [21].
As another application of our predictions, we consider the possibility of constraining collinear
PDFs at complete three-loop accuracy using the cumulative pZ

T distribution.
The paper is structured as follows: in section 2, we review the factorization theorem

underlying the resummation, give an overview of the perturbative ingredients entering
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our predictions, and introduce our matching formalism that unifies the nonperturbative
limit, the perturbative resummation, and the fixed-order tail. In section 3, we review
the nonperturbative structure of the factorization theorem, and develop our framework
of effective nonperturbative functions. In section 4 we present our predictions for the pZ

T

spectrum, discussing the perturbative uncertainty, the impact of nonperturbative physics the
parametric αs, and the parametric PDF uncertainties in turn, before showcasing the impact
of approximate N3LO PDFs and N4LL Sudakov ingredients on the predicted pZ

T spectrum.
In section 5, we discuss the cumulative fiducial cross section and its sensitivity to PDFs as
an immediate application. In section 6, we present our results for the pW

T spectrum. We
conclude and summarize our results in section 7.

2 Factorization, perturbative ingredients, and matching

2.1 Review of factorization

We consider the production of a dilepton pair through Z/γ∗ or of a lepton-neutrino final
state through a W boson at the LHC. At leading order in the electromagnetic interaction,
the fiducial cross section differential in the total transverse momentum qT of the respective
vector boson, qT = pZ

T = pℓℓ
T or qT = pW

T = pℓν
T , is given by [22]

1
πqT

dσ(Θ)
dqT

= 1
4E2

cm

∫
dQ2 dY

7∑
i=−1

∑
V,V ′

Li V V ′(q,Θ)Wi V V ′(q, Pa, Pb) , (2.1)

where q is the momentum carried by the (generally off-shell) vector boson with invariant
mass Q2 ≡ q2 and rapidity Y . Here we have decomposed the hadronic tensor into nine
scalar hadronic structure functions Wi V V ′(q, Pa, Pb), with i = −1, 0, . . . , 7, and summed
over the possible vector bosons V, V ′ interfering with each other. The Wi V V ′ encode the
hadronic production dynamics. They depend on the vector boson momentum qµ and the
incoming proton momenta Pa,b, and can be interpreted as entries in the 3× 3 spin density
matrix for the polarization of the vector boson. By contrast, the leptonic tensor projections
Li V V ′(q,Θ) that describe the propagation and decay of the vector boson only depend on the
intermediate momentum q and the set of fiducial acceptance cuts applied on the dilepton
or lepton-neutrino final state, which we collectively denote by Θ. Explicitly, the leptonic
tensor projections are given by

Li V V ′(q,Θ) = 3
16π

∫ 1

−1
d cos θ

∫ 2π

0
dφ Θ̂(q, θ, φ)L±(i)V V ′(q, θ, φ) gi(θ, φ) , (2.2)

where cos θ and φ are spherical coordinates parametrizing the momentum of the matter
particle (i.e., the negatively charged lepton, or the neutrino) in a suitable vector boson rest
frame, which we take to be the Collins-Soper frame [64]. The prefactors L±(i)V V ′ contain
the vector-boson propagator and leptonic couplings and depend on whether the hadronic
structure function is parity even, ±(i) = + for i = −1, 0, 1, 2, 5, 6, or parity-odd, ±(i) = −
for i = 3, 4, 7. It is convenient to also define the so-called helicity cross sections

dσi

d4q ≡ 1
2E2

cm

∑
V,V ′

L±(i)V V ′(q2)Wi V V ′(q, Pa, Pb) (2.3)
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multiplying the spherical harmonics gi at the level of the six-fold differential cross section

dσ

d4q d cos θ dϕ
= 3

16π

∑
i

dσi

d4q gi(θ, φ) . (2.4)

Only the parity-even structure functions contribute to the pZ
T spectrum as long as fiducial cuts

are applied independent of lepton charges, while all structure functions in general contribute
to the pW

T spectrum due to the cuts generically being asymmetric under ℓ ↔ ν. The gi(θ, φ)
are real spherical harmonics that describe the distribution of decay products for a given
intermediate polarization state. Finally, Θ̂(q, θ, φ) encodes the action of the fiducial cuts
on a dilepton phase-space point parametrized by the two rest-frame angles θ and φ, and an
additional total boost by q from the lab frame.1 One notable special case is Θ̂ = 1, which
corresponds to the inclusive qT spectrum proportional to the linear combination Wincl ≡ W−1+
W0/2, where g−1,0 = 1± cos2 θ. Another important special case is Θ̂ = sgn(Y )

[
Θ(cos θ)−

Θ(− cos θ)
]
, which projects out g4 = cos θ, i.e., the forward-backward asymmetry AFB(q) ∝

sgn(Y )W4/Wincl differential in the vector boson kinematics (but applying no additional
fiducial cuts). We stress that while it is convenient to parametrize the decay kinematics in
a definite frame, the corresponding projectors acting on the hadronic tensor can in fact be
defined in a fully covariant way [22], such that the Wi V V ′ are genuine Lorentz scalars.

We are interested in the region of small transverse momentum, qT ≪ Q. In this limit, the
hadronic structure functions corresponding to the inclusive qT spectrum and the qT -dependent
forward-backward asymmetry satisfy the following factorization theorem [65–76], which is
valid for i = −1 and i = 4,

Wi V V ′ = WLP
i V V ′(q, Pa, Pb)

[
1 +O

(
q2T
Q2 ,

Λ2
QCD
Q2

)]

=
∑
a,b

Hi V V ′ ab(Q2, µ) [BaBbS](Q2, xa, xb, q⃗T , µ)
[
1 +O

(
q2T
Q2 ,

Λ2
QCD
Q2

)]
, (2.5)

where xa,b ≡ Q/Ecm e±Y . As indicated, the factorization receives power corrections in
(qT /Q)2 and (ΛQCD/Q)2, but remains valid in the nonperturbative regime qT ∼ ΛQCD.
We will exploit this in section 3 by explicitly parametrizing the leading nonperturbative
corrections O(Λ2

QCD/q2T ) at small qT in a way consistent with the field-theoretic structure of
the factorization theorem, and by capturing yet higher corrections through model functions.

In ref. [22], it was shown that all linear power corrections O(qT /Q) to the fiducial qT

spectrum can be predicted from factorization and resummed to all orders by retaining the
exact dependence of the leptonic tensor projections Li(q,Θ) on qT , which naively would

1Note that this specifies the vector boson rest frame only up to Wigner rotations. The Collins-Soper frame
specifically is defined by first performing a longitudinal boost along the beam axis into the frame where the
vector boson has vanishing rapidity, followed by a transverse boost by qT . In the limit of massless protons (and
only in this limit [22]), this definition is equivalent to demanding that the incoming protons lie in the plane
spanned by the x and z axis of the rest frame, and that they have equal and opposite angles to the z axis.
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be power suppressed,

1
πqT

dσ(Θ)
dqT

= 1
2E2

cm

∫
dQ2 dY

∑
i=−1,4

∑
V,V ′

Li V V ′(q,Θ)WLP
i V V ′(q, Pa, Pb)

×
[
1 +O

(
q2T
Q2 ,

Λ2
QCD
Q2

)
+O

(
Λ2
QCD

qT Q

)
DBM

]
, (2.6)

where the WLP
i V V ′ for i = −1, 4 are given in eq. (2.5). As discussed in ref. [22], this in fact

holds for a broader class of observables that are azimuthally symmetric at leading power,
and also generalizes to so-called leptonic power corrections that arise for leptonic observables
sensitive to the edge of Born phase space.

The first set of power corrections in eq. (2.6) arises from the quadratic power corrections
to the i = −1, 4 structure functions, whose leptonic coefficient functions scale as L−1,4V V ′ ∼
(qT /Q)0, as well as from the hadronic structure functions for i = 0, 1, 3, 5, 6, 7 that start at
most at linear order in qT /Q, but whose leptonic coefficients are all in addition suppressed
by (qT /Q). The second set of power corrections, indicated by the subscript “DBM” for
Double Boer-Mulders effect, arises from the two structure functions W2,5V V ′ . These have a
linearly suppressed leptonic coefficient L2,5V V ′ ∼ qT /Q, but only receive a contribution at
leading power in qT /Q from the product of two Boer-Mulders functions, which in turn are
suppressed by one power of ΛQCD/qT each in the case of massless nf = 5 QCD [77], and by
at least two powers of αs each for massive quarks [78]. The region where both expansion
parameters ΛQCD/qT and qT /Q are not small is negligible for resonant Z or W production
at the LHC, and we therefore ignore this contribution.2

We now return to the individual ingredients in eq. (2.5). Here Hi V V ′ ab denotes the
hard function, which encodes virtual corrections to the production amplitudes ab → V, V ′ in
the underlying hard interaction. The MS result for Hi V V ′ ab can, for instance, be obtained
as the IR-finite part of the corresponding quark form factors squared, using dimensional
regularization to regulate IR divergences. Explicit expressions for the leptonic prefactors
L±V V ′ and the hard functions in terms of IR-finite parts of quark form factors (i.e., SCET
Wilson coefficients) can be found in the appendices of ref. [22]. At our working order in this
paper, we require the complete three-loop results for the hard function. This involves the
three-loop results for the quark nonsinglet form factor [79, 80]. In addition, starting at two
loops, there are contributions to the quark singlet axial and vector form factors from closed
fermion loops [81–85], which we discuss in more detail in section 2.3.

2This is further supported by the observation in section 4.2 that the dominant estimated nonperturbative
contribution arises from the Collins-Soper (or rapidity) evolution, which is common to both i = −1, 4 and
i = 2, 5. See also footnote 12 for the case of leptonic observables directly sensitive to low scales, such as ϕ∗

η or
the pℓ

T spectrum near the Jacobian peak.
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The second term in eq. (2.5) encodes physics at the low scale µ ∼ qT , and can be written
in two prototypical forms,

[BaBbS](Q2, xa, xb, q⃗T , µ)

≡ 1
2π

∫ ∞

0
dbT bT J0(bT qT ) B̃a(xa, bT , µ, ν/ωa) B̃b(xb, bT , µ, ν/ωb) S̃(bT , µ, ν) (2.7a)

= 1
2π

∫ ∞

0
dbT bT J0(bT qT ) f̃a(xa, bT , µ, Q2) f̃b(xb, bT , µ, Q2) . (2.7b)

In eq. (2.7a), the beam functions Bi(x, k⃗T , µ, ν/ω) describe the extraction of an unpolarized
parton i with longitudinal momentum fraction x and transverse momentum k⃗T from an
unpolarized proton, where we have taken a Fourier transform from momentum (k⃗T ) to
position (⃗bT ) space. Similarly, the soft function S(k⃗T , µ, ν) encodes wide-angle soft radiation
with total transverse momentum k⃗T , which is again Fourier conjugate to b⃗T . Evaluating the
two beam functions and the soft function at a common argument b⃗T and taking the inverse
Fourier transform as above implements momentum conservation in position space. We have
also used the fact that the quark beam and soft functions (TMD PDFs) only depend on
the magnitude of b⃗T to freely integrate the Fourier phase ei⃗bT ·q⃗T over the azimuth of b⃗T in
eq. (2.7), yielding a zeroth-order Bessel function J0(bT qT ) of the first kind.

Equivalently, one can write this as shown in eq. (2.7b), where the transverse-momentum
dependent beam and soft functions have been combined into transverse-momentum dependent
PDFs (TMD PDFs)

f̃i(x, bT , µ, ζ) = B̃i

(
x, bT , µ,

ν√
ζ

)√
S̃(bT , µ, ν) . (2.8)

A key feature of transverse-momentum dependent factorization is the explicit dependence
of the low-energy matrix elements on the energy of the colliding parton, encoded either in
its lightcone momentum ω or in the Collins-Soper scale ζ, where

xa,b =
ωa,b

Ecm
e±Y , ωa,b = Q , ζa,b ∝ ω2

a,b , (ωaωb)2 = ζaζb = Q4 , (2.9)

and Ecm is the total hadronic center-of-mass energy. This explicit energy dependence sets
the TMD PDF apart from the usual collinear PDFs, which only depend on the momentum
fraction x, and is a remnant of so-called rapidity divergences [65, 73–75, 86–88]. Regulating
and renormalizing them separately in the individual beam and soft functions in eq. (2.7a)
introduces an additional scale ν, which is analogous to the MS scale µ from renormalizing
UV divergences. The dependence on ν (or equivalently, the rapidity divergences in the
bare objects) cancels between the beam and soft function in the TMD PDF, leaving behind
the explicit dependence on ω (or ζ). Since both ways of writing eq. (2.7) are frequently
encountered in the literature, we will continue to present e.g. the construction of our central
profile scale functions in both notations for the benefit of the reader.

The beam and soft functions (and thus the TMD PDFs) are defined as proton and
vacuum matrix elements of renormalized operators without making reference to perturbation
theory, and thus allow for a rigorous field-theoretic treatment of the q⃗T spectrum in the
nonperturbative regime qT ∼ ΛQCD. For perturbative |⃗kT | ∼ 1/bT ≫ ΛQCD, they can
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be matched onto collinear PDFs and soft vacuum condensates by performing an operator
product expansion [67, 89],

B̃i

(
x, bT , µ,

ν

ω

)
=
∑

j

∫ dz

z
Ĩij

(
z, bT , µ,

ν

ω

)
fj

(
x

z
, µ

)
+O(Λ2

QCDb2T ) ,

S̃(bT , µ, ν) = S̃pert(bT , µ, ν) +O
(
Λ2
QCDb2T

)
,

f̃i(x, bT , µ, ζ) =
∑

j

∫ dz

z
C̃ij(z, bT , µ, ζ) fj

(
x

z
, µ

)
+O(Λ2

QCDb2T ) , (2.10)

where the perturbatively calculable matching coefficients are related by

C̃ij(z, bT , µ, ζ) = Ĩij

(
z, bT , µ,

ν√
ζ

)√
S̃pert(bT , µ, ν) . (2.11)

The perturbative soft, beam functions and TMD PDF matching coefficients are all known to
three loops [90–96, 96–100], as required at our perturbative working order in this paper. Our
treatment of the nonperturbative corrections to eq. (2.10) is described in section 3.

In practice, we find it important to be able to evaluate the PDFs in eq. (2.10) at a scale
that is potentially different from (but still parametrically similar to) the overall scale of the
beam function or TMD PDF. In this case we have

B̃i(x, bT , µ, ν/ω) =
∑

j

∫ dz

z
Ĩij

(
z, bT , µ,

µf

µ
,

ν

ω

)
fj

(
x

z
, µf

)
+O(Λ2

QCDb2T ) , (2.12)

where we analytically evaluate the Mellin convolution

Ĩij

(
z, bT , µ,

µf

µ
,

ν

ω

)
≡
∑

k

∫ dz′

z′
Ĩik

(
z

z′
, bT , µ,

ν

ω

)
Ukj

(
z′, µ,

µf

µ

)
, (2.13)

consistently reexpanding and truncating in αs(µ), and Ukj(z′, µ, µf /µ) is the DGLAP evolution
operator that evolves the PDF from µf to µ, likewise expanded in terms of powers of αs(µ).

2.2 Renormalization group evolution

For observables like qT that are sensitive to soft and collinear radiation, higher-order per-
turbative corrections induce double-logarithmic terms αn

s lnm qT /Q, m ≤ 2n in the hadronic
structure functions Wi V V ′ . In the singular limit, qT → 0, these logarithms grow arbitrarily
large and invalidate its perturbative convergence. The factorization theorem in eq. (2.7a),
effectively splits these logarithms according to their dominant contribution from the respective
physical modes, resulting in single-scale functions. By solving the renormalization group
equations (RGEs), each function is evaluated at its intrinsic (canonical) µ or ν scale and
evolved to a common overall µ and ν, resumming the logarithically enhanced terms to all
orders in perturbation theory. A standard way to obtain the solutions of the RGEs is to
make use of the bT -space form of the cross section in eq. (2.7a), where the RGEs assume
a simple multiplicative form and the boundary scales that eliminate all large logarithms
have the canonical scaling

µcan
B = µcan

S = νcan
S = µcan

0 = µcan
f = b0

bT
, νcan

B = µcan
H = Q , (2.14)
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where µ0 is the scale at which the boundary condition of the resummed rapidity anomalous
dimension or Collins-Soper kernel is evaluated (see below), and the factor of b0 = 2e−γE ≈
1.12292 is conventional. In practice, this amounts to setting the scales in position space, per-
forming the evolution, and finally transforming back to (momentum) qT -space by numerically
integrating over bT . An exactly equivalent way of obtaining the same resummed result is
by setting the boundary scales for the TMD PDFs in eq. (2.7b) as

µcan
0 = µcan

init = µcan
f =

√
ζcaninit =

b0
bT

, (2.15)

and evolve them to the overall µfinal =
√

ζfinal = Q. This approach bypasses unphysical
singularities [101] that arise when naively setting scales or counting logarithms in momentum
space, although approaches to momentum-space resummation exist [102, 103]; the formal
momentum-space RG solutions of ref. [103] are equivalent to the bT -space approach up to
differences in the fixed-order boundary conditions. Recently, similar unphysical singularities
were pointed out for the first time in the resummation of an observable not involving transverse
momentum [104] (the heavy-jet mass distribution near the Sudakov shoulder), and a successful
resolution using position-space scale setting was demonstrated in ref. [105].

To implement the resummation of rapidity logarithms in the individual beam and soft
functions in eq. (2.7a), we employ the exponential regulator [76] together with the rapidity
renormalization group framework [75]. In bT space, the quark beam and soft functions
satisfy the virtuality RGEs,

µ
d
dµ

ln B̃q(x, bT , µ, ν/ω) = γ̃q
B(µ, ν/ω) = 2Γq

cusp[αs(µ)] ln
ν

ω
+ γ̃q

B[αs(µ)] ,

µ
d
dµ

ln S̃q(bT , µ, ν) = γ̃q
S(µ, ν) = 4Γq

cusp[αs(µ)] ln
µ

ν
+ γ̃q

S [αs(µ)] . (2.16)

Here the cusp anomalous dimension Γq
cusp[αs(µ)] is in the fundamental representation. Its

coefficients are known analytically to four loops [106–115] (see ref. [113] for a complete
list of earlier references), which are necessary for the N3LL and N3LL′ Sudakov evolution
together with the four-loop QCD beta function [116–119]. At N4LL, we in addition require
the five-loop beta [120] and cusp coefficient, where the latter is currently known only
approximately [121]. The soft noncusp anomalous dimension γ̃q

S [αs(µ)] in the exponential
regulator scheme is directly related to the soft threshold noncusp anomalous dimension, which
is known to four loops [110, 122–125]. The beam noncusp anomalous dimension γ̃q

B[αs(µ)]
then follows from consistency, since the MS hard anomalous dimension is likewise known
to four loops [115, 126]. In turn, these noncusp anomalous dimensions are also related
through consistency relations [127] to those of the inclusive jet function (or the 0-jettiness
beam function) and the thrust and 0-jettiness soft functions, which have been independently
obtained by direct calculations up to three loops [128, 129].

The rapidity RGEs that the soft and beam functions satisfy are given by

−2ν
d
dν

ln B̃q(x, bT , µ, ν/ω) = ν
d
dν

ln S̃q(bT , µ, ν) = γ̃q
ν(bT , µ) , (2.17)

where the µ and ν anomalous dimensions satisfy an all-order integrability condition,

µ
d
dµ

γ̃q
ν(bT , µ) = −4Γq

cusp[αs(µ)] = ν
d
dν

γ̃q
S(µ, ν) . (2.18)
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Eq. (2.18) predicts the all-order logarithmic (bT ) structure of the rapidity anomalous dimension
in perturbation theory,

γ̃q
ν(bT , µ) = −4ηq

Γ(µ0, µ) + γ̃q
ν(bT , µ0) +O(b2T ) ,

ηq
Γ(µ0, µ) ≡

∫ µ

µ0

dµ′

µ′ Γq
cusp[αs(µ′)] , (2.19)

up to the fixed-order boundary term γ̃q
ν(bT , µ0) that necessitates an explicit calculation and

is currently known to four loops [93, 96, 130–132]. The four-loop result has been obtained
in refs. [131, 132] using an expansion around the critical number of dimensions where QCD
is conformal [130], such that the four-loop rapidity anomalous dimension can be evaluated
in terms of the four-loop soft threshold noncusp anomalous dimension [110, 122–125] and a
correction term that involves explicit calculations of the three-loop threshold soft function to
subleading order in the dimensional regulator [131–133]. In addition, the above expression,
which holds for µ ≳ µ0 ∼ 1/bT , receives nonperturbative power corrections of O(Λ2

QCDb2T )
to which we return in section 3.

Solving the coupled system in eqs. (2.16) and (2.17) yields the resummed beam and
soft functions,

B̃q

(
x, bT , µ,

ν

ω

)
= B̃q

(
x, bT , µB,

νB

ω

)
exp

[
−1
2 ln ν

νB
γ̃q

ν(bT , µB)
]
exp

[∫ µ

µB

dµ′

µ′ γ̃q
B(µ

′, ν/ω)
]

,

S̃q(bT , µ, ν) = S̃q(bT , µS , νS) exp
[
ln ν

νS
γ̃q

ν(bT , µS)
]
exp

[∫ µ

µS

dµ′

µ′ γ̃q
S(µ

′, ν)
]

, (2.20)

where the exponentials correspond to the Sudakov evolution kernels via which resummation
is achieved. Crucially, choosing appropriately the boundary scales µH,B,S and νB,S , the
hard, beam, and soft functions are free of large (double) logarithms which results in their
well-behaved perturbative convergence, and allows for their evaluation at fixed-order. The
beam and soft functions up to N3LO have been obtained in refs. [96, 99, 100, 134, 135] and
are collected in our notation in ref. [127]. The flavor nonsinglet contribution to the massless
quark (vector or axial) form factor, which determines the hard function in eq. (2.5), is likewise
known to N3LO [79, 80, 136]. Explicit expressions for the hard functions and nonsinglet
matching coefficients in our notation can be found in refs. [22, 134].

In eq. (2.20) we choose to perform the evolution first in ν and then in µ. We stress that
any other resummation path in the two-dimensional (µ, ν) plane is equivalent as a result of
the RG consistency relations that the anomalous dimensions satisfy.

It has been shown that the evaluation of the Sudakov evolution kernels in eqs. (2.19)
and (2.20) based on approximate analytical methods can lead to a numerical discrepancy
that can no longer be considered a higher-order effect [61], see also refs. [137, 138], and in
addition upsets the so-called closure condition, i.e., the group property of the renormalization
group evolution, and the exact path independence in the (µ, ν) plane. Recently, in ref. [139]
an exact solution for the evolution kernels and for the running of the strong coupling was
derived by recasting the original integrands in a form amenable to partial fractioning and
the residue theorem. In our N3LL′ predictions we use these exact analytic solutions for the
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β function and Sudakov kernels, which implies that all RGE running is exact and free of
any of the usually employed approximations.3

2.3 Flavor-singlet hard matching coefficients

SCET Wilson coefficients are the building blocks of the hard function Hi V V ′ ab. They are
obtained by matching the full-QCD quark form factors for the underlying hard process
ab → V, V ′ onto SCET. Specifically, for the neutral current Drell-Yan process (V, V ′ = Z/γ∗),
the QCD corrections to the form factors are categorized differently depending on whether
a, b directly couple to V, V ′ or if a quark loop of possibly different flavor couples to V, V ′.
The former contribution is referred to as the (flavor) nonsinglet matching coefficient, and
the latter as the singlet matching coefficient. While the nonsinglet coefficient is the same for
axial and vector terms due to chirality and the fact that the external quarks are massless at
the hard scale, the axial and vector singlet coefficients differ from each other.

Using the notation of ref. [22], the axial singlet matching coefficient summed over all
quark flavors in the Standard Model running in the loop is given by

∑
f

af Ca f (q2, m2
f , µ) = at ∆Ca t,b(q2, m2

t , µ) +O
(

m2
b

q2

)
, (2.21)

where the contributions from the other (approximately massless) generations cancel exactly.
The two-loop coefficient ∆C

(2)
a t,b(q2, m2

t ) is well known [81, 82], including its exact dependence
on mt [83, 85]. We extract the three-loop expression for ∆C

(3)
a t,b(q2, m2

t , µ) from the recent
calculation of all three-loop singlet contributions to the quark form factors in refs. [84, 85].
Our notation relates to that of ref. [85] as ∆Ca t,b = F ′A

s,t −F ′A
s,b , where F ′A

s,q is the axial singlet
contribution to the quark form factor computed in pure dimensional regularization and with
infrared poles subtracted in MS. We account for the one-loop decoupling relation between
α
(6)
s (µ) and α

(5)
s (µ) to extract the individual coefficients ∆C

(2,3)
a t,b in a truncated expansion

in the five-flavor running coupling α
(5)
s (µ). We have checked that the result satisfies the

renormalization group running expected from consistency with an effective quark-antiquark
operator in SCET with nf = 5 massless quark flavors. We stress the necessity of using
the three-loop massless axial vector coefficient [84] together with the corresponding massive
piece [85] to ensure that their µ dependence properly cancels. The vector singlet coefficient
starts at O(α3

s) and receives contributions from all massless quark flavors, which can readily
be extracted from the term multiplying the NF,V coefficient in ref. [79]. In addition, there are
contributions from closed top-quark loops at O(α3

sQ2/(4m2
t )), which were likewise calculated

in ref. [85]. Here the mt dependence is purely power suppressed and not logarithmically
enhanced since it results from the matching of the conserved vector current. However, based
on the observed, negligible numerical effect of the corresponding O(Q2/(4m2

t )) corrections

3An exception are the predictions in figure 11, 12 and 13. There, we consistently employ the approximate
unexpanded analytic evolution kernels (or “iterative” solutions) [61] extended to this order for simplicity,
see appendix A, although in principle, the method for obtaining their exact solution [139] should also be
applicable at N4LL. In this case we also consistently use the iterative solutions at lower orders to ensure that
comparisons to lower orders are one to one.
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Figure 1. Relative impact of the singlet contributions to the combined inclusive hard function and
leptonic coefficient L+H−1,uū ≡

∑
V V ′ L+ V V ′Hi V V ′ uū (left) and the resummed cross section (right)

for neutral-current Drell-Yan as a function of the dilepton invariant mass Q.

in the axial coefficient (discussed below), we choose to ignore the latter contribution for
simplicity and work to leading power in Q/(2mt).

In the left panel of figure 1 we illustrate the numerical impact of the singlet contributions
to the hard function for the i = −1 (unpolarized) helicity channel in the uū flavor channel
at NNLO and at N3LO. Excluding the vector and axial vector singlet terms at both orders
results in a ∼ 0.5% deviation from the exact result, especially in the region Q ∼ mZ where
the relative impact of the latter terms is enhanced due to the Z resonance. On the other
hand, it is evident that the power corrections to the axial coefficient between the exact and
the LP Q ≪ mt result are negligible in the range of Q of interest. This justifies using the LP
expressions for both the axial and vector singlet contributions. In the right panel of figure 1
we perform the same comparison at the level of the resummed cross section at NNLL′ and
N3LL′. The contributions of the axial singlet coefficient to the hard function for up-type
and down-type quarks have opposite sign because the axial singlet coefficient is interfered
with the nonsinglet one weighted with the respective opposite weak charges. This leads to
a large degree of cancellation at the level of the cross section that leaves behind a relative
effect of 0.1%. Despite the small size we nevertheless include the full set of singlet coefficients
(to leading power in Q ≪ 2mt) in our nominal predictions, since (a) they are a part of the
nominal NNLL′ and N3LL′ accuracy, respectively, and (b) the degree of cancellation between
flavor channels is contingent on the underlying collinear PDF set, and also in general different
for the i = 4 helicity cross section, i.e., the forward-backward asymmetry.

We stress that keeping these virtual terms to improve the resummed singular cross
section is not inconsistent with dropping the corresponding real contributions in fixed-order
predictions used to extract the nonsingular cross section as long as one restricts to a range in
qT where the latter is still power-suppressed and numerically small (see the next section).
In general, these contributions arise from heavy-quark pair production or from hard gluon
radiation out of heavy-quark loops. To leading power in Q, qT ≪ 2mt the only contribution of
this kind, starting at O(α3

s), comes from the three-parton real-emission amplitudes involving
the effective operator from integrating out the axial contribution of the top quark.
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Figure 2. Left: relative contributions from the nonsingular cross section coefficients at different fixed
orders to the total fiducial qT spectrum at N3LL′ +O(α3

s). We use the ATLAS 13TeV fiducial cuts for
definiteness, see eq. (4.1). Right: impact of parametric PDF variations and alternate PDF sets on the
O(αs) nonsingular cross section with the central MSHT20nnlo result as baseline, likewise normalized
to the total fiducial qT spectrum at N3LL′ +O(α3

s). The PDF variations around the solid red line on
the right, which give an upper estimate of the corresponding effect on the nonsingular cross section
coefficient at O(α2

s) and O(α3
s), can be thought of as dressing the lines in the plot on the left in the

same units (but note the difference in vertical scale).

2.4 Nonsingular cross section

While the singular cross section in eq. (2.6) dominates the spectrum as qT → 0 and captures
all singularities δ(qT ) and αn

s lnm(qT /Q)/qT , it corresponds only to the leading term in the
expansion of the full cross section in this limit. To include the remaining tower of power-
suppressed contributions of O(q2T /Q2) and higher, usually referred to as the nonsingular
cross section, and extend the prediction into the fixed-order (FO) region, we perform an
additive matching. In practice, the nonsingular cross section (or “the nonsingular”, for short)
is obtained by a differential qT subtraction [140, 141],

dσnons
dqT

=
[dσFO
dqT

− dσsing
dqT

]
qT >0

, (2.22)

where dσFO/dqT is the FO cross section for the Z/W±+1 parton configuration, and dσsing/dqT

is the singular cross section at the appropriate perturbative order. Both are, in practice,
calculated using strict twist-2 collinear factorization, i.e., in terms of standard leading-twist
collinear PDFs. Since the outcome of the subtraction in eq. (2.22) is suppressed by q2T /Q2, i.e.
numerically significantly smaller in the resummation region qT ≪ Q, it typically is sufficient
to evaluate it at a fixed scale µ ∼ µFO ∼ Q and ignore the shape effect due to its (unknown)
all-order resummation. We will further restrict most of our predictions in this paper to a
range of qT ≤ 60− 65GeV, on which we empirically find that the nonsingular cross section —
extracted as described in the next paragraphs — only amounts to a few-percent contribution
to the total qT spectrum, see the left panel of figure 2. This has the substantial benefit that
the nonsingular cross section, e.g. when evaluating parametric PDF uncertainties, may simply
be kept at the central member of the PDF set in question (or may even use another, fixed
PDF set), since propagating these changes into the nonsingular amounts only to a few-percent
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change on top of a few-percent contribution. This substantially reduces the numerical effort
involved in obtaining the nonsingular cross section. To make this approximation quantitative,
the right panel of figure 2 shows the impact of PDF variations and alternate PDF sets on
the O(αs) nonsingular cross section, where we normalize the difference to the central O(αs)
MSHT20nnlo nonsingular cross section to our best prediction for the total qT spectrum. The
impact of these variations, which are computed as described in section 4.3, amounts to less
than two permille for qT ≤ 30GeV, and less than a percent for qT ≤ 65GeV. This effect on
the leading O(αs) nonsingular cross section (where PDF variations are computationally cheap
to perform, and fully retained in all our predictions later on) can serve as an upper estimate
of the error one makes when neglecting PDF variations in the smaller contributions from
the O(α2

s) and O(α3
s) nonsingular coefficients, and thus fully justifies this approximation,

e.g. when comparing to our final estimate of the total perturbative uncertainty in figure 6,
which reaches 1% in the range 5 ≤ qT ≤ 30GeV. Several additional approximations to
the nonsingular cross section, which we describe in the following, can be performed by a
similar argument without affecting the overall accuracy. We note that these manipulations
are not justified when extending the prediction into the far tail where the complete FO
prediction must be recovered, and in particular parametric variations must consistently be
propagated everywhere. (In appendix B we present such predictions valid for all qT for
a fixed reference PDF set.)

At O(αs) we obtain the full cross section for qT > 0, including arbitrary cuts or
measurements on the leptonic decay products, from an in-house implementation of the
analytic LO1 structure functions [142–144]. The O(α2

s) coefficient is obtained from dedicated,
high-precision runs of the publicly available Monte-Carlo program MCFM [145, 146]. For the
evaluation of both coefficients we employ the MSHT20nnlo PDF set [147], which we will also
use as our default PDF set in final predictions.

For Z + jet production with the ATLAS 13TeV cuts at O(α3
s), we use publicly available,

high-precision FO data from the NNLOjet collaboration [43]. In these, we observe that the
NNLO1 K-factor, K = dσNNLO1/dσNLO1 , is quite small for qT ≳ 20GeV and follows an
almost constant trend with K ≈ 0.08. We furthermore find that the model function

fnons(qT ) = Θ(qT − q∗T )
(

c1 ln
qT

q∗T
+ c2 ln2

qT

q∗T

)
, (2.23)

captures reasonably well the qT dependence of the ratio

dσ
(3)
nons/dqT

dσNLO1/dqT
, (2.24)

which we use to perform a fit of the coefficients c1,2. By multiplying the fitted fnons with
dσNLO1/dqT , we obtain an approximate O(α3

s) nonsingular coefficient that in particular is
free of the bin-to-bin statistical fluctuations visible in the raw nonsingular result. Note that
we use NNLOjet data [43] that employ the NNPDF40nnlo set [148] for the estimation of the
model function, which we then multiply with dσNNLO/dqT evaluated using the MSHT20nnlo
PDF set to obtain an approximate nonsingular for the latter (default) set.

The specific choice for the parametrization of fnons(qT ) is motivated by the expected
functional form of the nonsingular cross section. Specifically, the qT spectrum receives Sudakov
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double logarithms at each order in αs at any order in the power expansion. At N3LO, there
are at most two extra powers of the logarithm when dividing out the NNLO full cross section,
which we expect to dominate the shape of the ratio. Another notable feature of the model
function in eq. (2.23) is that we set the O(α3

s) nonsingular coefficient to zero at qT ≤ q∗T to
avoid biasing the shape of the spectrum through the unresummed logarithms of qT /Q in the
nonsingular at very small values of qT . A priori, such a modification is not compatible with
maintaining (even approximate) N3LO accuracy on the normalization of the spectrum, since
it effectively amounts to performing a qT subtraction with an unreasonably high technical
cutoff, which in turn is known to substantially bias the total integral. In the present case,
however, we rely on a remarkable feature of the available fixed-order data [43], which indicate
that the O(α3

s) nonsingular coefficient undergoes a sign change around qT = 2GeV such that
its integral up to q∗T = 8GeV is in fact compatible with zero within the quoted numerical
uncertainty. Specifically, we find that the integral of the O(α3

s) nonsingular coefficient between
the actual technical cutoff of ref. [43] at qcutT = 0.447GeV and q∗T = 8GeV amounts to only

∫ q∗T

0
dqT

dσ
(3)
nons

dqT
≈
∫ q∗T

qcut
T

dqT
dσ

(3)
nons

dqT
= (−0.34± 0.76) pb , (2.25)

which should be compared to the integral of the prediction at N3LL′+O(α3
s) over the reference

range qT ∈ [0, 65]GeV, for which we find 673.4 pb, see table 2. Conveniently, this choice
of q∗T therefore lets us preserve both an unbiased shape of the matched spectrum at small
qT < q∗T as well as the approximate N3LO accuracy of its normalization up to qT ≈ 70GeV,
i.e., within the approximations in the choice of model function, and accounting for the fact
that we use fnons to port the nonsingular from one PDF set to another.

For the extraction of c1,2 in eq. (2.23) we perform a two-parameter fit at fixed q∗T = 8GeV
to the data for the O(α3

s) nonsingular coefficient at qT > q∗T . While the lower end of the
fit window in qT is thus fixed, it is still important to assess the impact of the choice of
upper endpoint in the fitting procedure. This is because the FO data, and hence also the
corresponding nonsingular, are more precise for larger values of qT since they carry smaller
relative statistical uncertainties. On the other hand, increasing the range to qT values that are
too large carries the risk of overfitting and exceeding the physical validity range of the model.
To address this, we perform multiple fits of c1,2 by gradually extending the qT fit window
while inspecting the values of the R2 statistic, which provides a convenient goodness-of-fit
measure. We find that the optimal fitting range is 8GeV ≤ qT ≤ 77.5GeV, resulting in

c1 = −0.02097± 0.00149 , c2 = −0.005737± 0.000804 , R2 = 0.994 . (2.26)

The best-fit model function and the original data are shown in the top left panel of figure 3,
where we also indicate the perturbative uncertainty on the nonsingular cross section at NLO1
(estimated as described in section 4.1) for comparison.

We stress that the fit we perform here does not meet the level of rigor found in state-of-
the-art nonsingular fits that can actually guarantee a given fixed-order accuracy on the total
cross section in the context of qT or TN subtractions. These fits in particular allow one to
thoroughly assess the uncertainty from extrapolating the nonsingular down to qT → 0, see
refs. [23, 43, 149, 150], but necessarily involve a fit function whose functional form contains
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Figure 3. Comparison of the fitted approximate O(α3
s) nonsingular coefficient against NNLOjet

data [43] for the neutral (top left) and the charged-current (bottom) Drell-Yan process. We normalize
to the total O(α2

s) (NLO1) fixed-order qT spectrum, as also done in the fit functional form in eq. (2.24).
The red and blue bands indicate the error due to our approximate treatment of the O(α3

s) nonsingular
coefficient, which is estimated by conservatively scaling up the error obtained from fitting to the
nonsingular model function for the Z case, as described in the text. As a point of reference, the
yellow bands indicate the total perturbative uncertainty on the NLO1 nonsingular cross section, see
section 4.1. The top right panel shows the same estimated approximation error as the red and blue
bands in the other plots, respectively, but normalized to show the relative impact of the error on the
final matched prediction at N3LL′ +O(α3

s). Vertical dashed gray lines indicate q∗T = 8GeV and the
upper edge 65GeV (60GeV) of the range on which we provide predictions for the Z (the W±).

all logarithmic terms present in the O(q2T /Q2) and O(q4T /Q4) terms of the nonsingular at
a given order, possibly using analytic knowledge of the highest logarithms to reduce the
number of free parameters. Instead, our goal here is to obtain an approximate form of the
nonsingular that is convenient to use, appropriately captures the physical few-percent effect
for qT = 20-60GeV, and smoothens out statistical fluctuations at the level of the finely-binned
qT spectrum, while still roughly maintaining the fixed-order accuracy of the total integral.

Ready-to-use fixed-order data at O(α3
s) of similar quality are not yet available for W±

production, inclusive Z production, or fiducial Z production with CMS 13TeV cuts.4 With
the same goal for the nonsingular in mind as above, and in line with the overall focus of
this paper on the state-of-the-art resummed physics, we continue to make use of our model
function in eq. (2.23) to obtain an approximate O(α3

s) nonsingular cross sections also for these

4We note that a public implementation of Z + jet production at O(α3
s) has in the meantime become

available [40], but requires substantial computing resources.
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processes. Specifically, in these cases we apply fnons(qT ), which we take to be universal, to the
NLO1 full cross section for the respective process obtained from our in-house implementation
at O(αs) and from MCFM at O(α2

s). For W± production, we are able to qualitatively compare
our approximate O(α3

s) nonsingular coefficient to the data provided in the ancillary files of
ref. [151] as a cross check, using the fiducial cuts given in that reference.5 The comparison is
shown in the bottom two panels figure 3. We observe reasonable agreement on the shape,
sign, and magnitude of the nonsingular cross section, in particular at qT > 20GeV, giving us
confidence that the dominant physics of the nonsingular cross section for V + jet production
are indeed captured by eq. (2.24).

To conclude this section, we estimate the error associated with this approximate treatment
of the O(α3

s) nonsingular cross section coefficient, specifically the error affecting the shape of
the spectrum at qT ≥ q∗T , and propagate it into our final predictions. To do so, we propagate
the fit uncertainty on the parameters c1 and c2 of the nonsingular model function fnons into an
uncertainty ∆fnons on the O(α3

s) nonsingular cross section coefficient. We then conservatively
scale this uncertainty up by a factor of 3 in the case of the Z boson to reflect the fact that the
functional form of the model only captures the nonsingular coefficient in a simplified way. The
result is shown as a red band in the top left panel of figure 3. In the case of the W±, we scale
∆fnons up by a factor of 10 to in addition reflect the fact that it was ported from one (related)
process to another. The result is shown as a blue band in the bottom two panels of figure 3.
We find that with these scaling factors, our estimate of the approximation error covers both
the scatter of the nonsingular data and its residual deviations from our approximate model
for the W± to a reasonable degree on the range of 20 < qT < 60GeV, where both the data
and the model can be considered reliable. The top right panel shows the same two bands,
but instead normalized to our final prediction at N3LL′ +O(α3

s). It is instructive to already
at this point compare the estimated approximation error to the final perturbative uncertainty
∆pert, see figure 5, 6 and 17. Focussing on the range of 10 < qT < 20GeV, where ∆pert
reaches the level of 1%, we find that the approximation is fully justified for the Z boson, with
the relative approximation error (red) reaching at most a level of 0.2%, and indeed mainly
serves to smoothen out the nonsingular data. For the W±, the estimated approximation
error of ≈ 0.6% (blue) does not constitute a bottleneck at the present time, but dedicated
high-statistics Monte-Carlo campaigns for the nonsingular cross section, or more efficient
techniques to evaluate it, would certainly be desirable in the future.

2.5 Matching and profile scale choices

The final matched prediction is obtained as

dσmatch
dqT

= dσres
dqT

+ dσnons
dqT

= dσres
dqT

+ dσFO
dqT

− dσsing
dqT

, (2.27)

where dσres is the differential resummed cross section obtained from a numerical Bessel
transform, as given by the first line of the right-hand side of eq. (2.6), and dσnons is the

5We did not attempt a dedicated fit to these data for W± production because no statistical uncertainties
were provided with ref. [151]. Note that to produce the bottom two panels of figure 3, we also extracted the
overall normalization of the full fixed-order data in ref. [151] by adjusting it to recover the expected power
suppression of the nonsingular as qT → 0.
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Figure 4. Left: illustration of the hybrid profile scales and the Landau pole treatment, using the
soft virtuality scale µS as an example. The bands indicate µS variations entering the resummation
uncertainty estimate as described in section 4.1. Right: difference of the resummed and the fixed-order
singular cumulative inclusive cross section (i.e., without fiducial cuts) at various orders. The difference
is compatible with zero as qmax

T → Q within the relevant combined resummation and matching
uncertainty ∆res ⊕∆match, which is estimated as described in section 4.1.

nonsingular cross section evaluated at fixed order, as defined in eq. (2.22). At large qT , the
resummation in dσres must be turned off to ensure that it cancels the fixed-order singular
cross section dσsing and the total fixed-order prediction is recovered.6,7 Thus in practice, the
scales in eqs. (2.14) and (2.15) need to be modified to perform the fixed-order matching at
large qT . We achieve this using hybrid profile scales [153],

µB = µFO frun

(
qT

Q
,
1
Q

µ∗

(
b0
bT

, µmin
B

))
, νB = µFO ,

µS = µFO frun

(
qT

Q
,
1
Q

µ∗

(
b0
bT

, µmin
S

))
, νS = µFO frun

(
qT

Q
,
1
Q

µ∗

(
b0
bT

, νmin
S

))
,

µ0 = µ∗

(
b0
bT

, µmin
0

)
, µf = µF frun

(
qT

Q
,
1
Q

µ∗

(
b0
bT

, µmin
f

))
(2.28)

6On a practical note, recovering the fixed-order spectrum exactly also requires expanding the different
fixed-order boundary conditions in the resummed cross section against each other, and truncating in the
overall number of powers of αs (also at different scales).

7Note that the resummed cross section also contains all leading nonperturbative effects of O[Λn+m
QCD/(qn

T Qm)]
with m = 0, 1, as discussed in section 3. These corrections are absent in the nonsingular cross section, which
is calculated using strict leading-twist collinear factorization, and could thus potentially also upset the
cancellation between the resummed and singular cross sections at large qT . However, the scaling of even the
most severe O(Λ2

QCD/q2
T ) correction, which is maintained by the Bessel transform [152], is such that their

numerical effect already at qT ∼ 30 GeV is negligible. For performance reasons we in practice stop using the
numerical Bessel transform altogether when the resummation is fully turned off for all scale and matching
parameter variations and for all points in the considered Q intervals, which amounts to qT ≥ 125 GeV for the
numerical results presented in this paper.
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where µFO = µF = µH = Q is the central fixed-order scale used in our predictions, and

frun(x, y) = 1 + grun(x)(y − 1) , (2.29)

grun(x) =



1 , 0 < x ≤ x1 ,

1− (x−x1)2

(x2−x1)(x3−x1) , x1 < x ≤ x2 ,
(x−x3)2

(x3−x1)(x3−x2) , x2 < x ≤ x3 ,

0 , x3 ≤ x ,

ensures that the scales evaluate to the canonical bT -space scales for x = qT /Q < x1, and
smoothly transition to constant fixed values µFO as x → x3, as illustrated in the left panel of
figure 4.8 Based on the observed size of the nonsingular cross section, we choose

(x1, x2, x3) = (0.3, 0.6, 0.9) (2.30)

for our central predictions. This choice of matching points has the important property that
the integral of the resummed and matched inclusive spectrum indeed recovers the fixed-order
result, as it must because fiducial resummation effects [22] are absent in that case. We verify
this property in the right panel of figure 4, where we show the difference∫ qmax

T

dqT
dσincl

match
dqT

−
∫ qmax

T

dqT
dσincl

FO
dqT

=
∫ qmax

T

dqT
dσincl

res
dqT

−
∫ qmax

T

dqT

dσincl
sing

dqT
≡ σres(qmax

T )− σsing(qmax
T ) (2.31)

of the resummed and the fixed-order singular cumulative inclusive cross section as a function
of the upper integral cutoff qmax

T at different orders. To give a sense of the effect size, we
normalize the difference to the leading-order inclusive Drell-Yan cross section, which evaluates
to σincl

LO = 1182.8 pb for our settings. (The nonsingular cross section exactly drops out in the
difference, and therefore need not be included.) We find that within the relevant combined
resummation and matching uncertainty ∆res ⊕∆match estimated as described in section 4.1,
the integral of the resummed cross section indeed recovers the fixed-order result. While more
complicated implementations of the matching such as cumulant scales or the so-called Bolzano
algorithm [154] exist that would make the agreement exact, we conclude that the hybrid
(spectrum) scales we use here already ensure the fixed-order integral property to a sufficient
degree. This behavior of spectrum scales strongly differs e.g. from that of the thrust observable
considered in ref. [154], and is due to the fact that for the bulk of the cross section in the peak,
the bT -space scales are in fact canonical and independent of qT in our construction, such that
up to fiducial resummation effects, the cumulant integral can directly be taken at the level of
the Bessel integral kernel in eq. (2.7) without having to integrate the scales by parts.

8An alternative way of implementing the transition is by raising y to a power as falt
run(x, y) = ygrun(x), which

directly translates to controlling the size of the resummed logarithms since y ultimately appears as a ratio
of scales in the resummed cross section. We have verified that this alternative choice leads to predictions
that show quantitatively similar behavior in the transition region and are completely compatible with the
above within the matching uncertainty defined in section 4.1. All numerical predictions given in this paper are
obtained using eq. (2.29).
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The central profile scales in eq. (2.28) serve the additional purpose of freezing out the
scales at which the perturbative components in eq. (2.28) are evaluated before b0/bT reaches
the Landau pole of QCD. This is implemented through the function µ∗ appearing in the
second argument of frun in eq. (2.28) and controlled by, in general, four additional parameters
µmin

B , µmin
S , νmin

S , µmin
f ∼ 1GeV. The function µ∗(a, b) must be a monotonic function of a and

in addition have the following asymptotic behavior,

a ≫ b : µ∗(a, b) = a

[
1 +O

(
bp

ap

)]
,

a ≪ b : µ∗(a, b) = b

[
1 +O

(
aq

bq

)]
, (2.32)

where p, q > 0 are positive powers. This ensures that at perturbative b0/bT ≫ ΛQCD (and
qT ≪ Q, specifically qT ≤ x1Q), the profile scales in eq. (2.28) indeed evaluate to the canonical
scales in eq. (2.14) up to power corrections of (ΛQCDbT )p. In the opposite limit b0/bT ≲ ΛQCD
it ensures that the profile scales remain bounded from below by the respective minimum scale.

Various choices for µ∗ have been considered in the literature. One common choice going
back to Collins and Soper [66] is to use

µCS
∗ (a, b) =

√
a2 + b2 , (2.33)

which results in p = q = 2. Here, p ≥ 2 is desirable because it ensures that the Landau
pole prescription does not introduce spurious power corrections with stronger scaling than
the genuine Λ2

QCDb2T power corrections to the leading term of the OPEs in eq. (2.10). As
discussed in ref. [152], this scheme may be extended to ensure that also higher powers in the
OPE are not contaminated by the Landau pole prescription. Two simple options are

µCS4
∗ (a, b) = (a4 + b4)

1
4 , (2.34a)

µexp
∗ (a, b) =

a

[
1− exp

(
− 2

2b/a−1

)]−1
, a < 2b ,

a , a ≥ 2b .

, (2.34b)

leading to p = q = 4 and p = q = ∞, respectively. The emphasis of our analysis is on the
treatment of the O(Λ2

QCDb2T ) power corrections, so the µCS4
∗ prescription that guarantees

their direct field-theoretic interpretation in terms of higher-twist matrix elements is sufficient
for our purposes, and we thus adopt it throughout our numerical results.9 We pick the
minimum scales as

µmin
B = µmin

S = µmin
0 = 1GeV , νmin

S = 0 . (2.35)

For µmin
f we pick the maximum of the Q0 value of the respective PDF set, i.e., down to which

value of Q0 ≤ µ the LHAPDF interpolation grid is provided, and the value of the charm quark
mass as quoted in the PDF set. This avoids both extrapolation outside of the LHAPDF grid
and large effects from the charm threshold, which is effectively screened by this prescription.

9We note that the Pavia prescription µPavia
∗ (a, b) = b

[
1 − exp

(
−b4/a4)]− 1

4 introduced in ref. [155] also has
p = 4 > 2 (and q = ∞).
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At the same time, it allows us to resum Sudakov logarithms to the largest extent possible
by letting the scales relevant for it (µB, µS , νS) decrease further until 1GeV.

Following this prescription in practice, we set µmin
f = 1.65GeV (Q0) for the NNLO

PDF sets by the NNPDF collaboration [148, 156], whereas for the aN3LO [28] set we use
µmin

f = 1.51GeV (charm mass). For all sets produced by the MSHT collaboration [27, 147] we set
µmin

f = 1.40GeV (charm mass), and for sets by the CTEQ collaboration [157] µmin
f = 1.30GeV

(charm mass).
For the convenience of the reader, we again present the equivalent profile scales in terms

of TMD boundary scales, which are a ready-to-use implementation of large-qT fixed-order
matching for general TMD studies (suitably adjusting the µ∗ function to recover existing
scale choices at small qT ). The explicit relations for the central scale choices are

µinit = µFO frun

(
qT

Q
,
1
Q

µ∗

(
b0
bT

, µmin
init

))
,

√
ζinit = µFO frun

(
qT

Q
,
1
Q

µ∗

(
b0
bT

,
√

ζmin
init

))
,

µfin =
√

ζfin = νB = µFO , (2.36)

where µ0 is common to both approaches, and identifying a combined TMD PDF requires
setting νmin

S =
√

ζmin
init and µmin

init = µmin
B = µmin

S such that νS =
√

ζinit and µB = µS for central
scales. It is also instructive to discuss how the above prescription relates to standard, so-called
b∗ prescriptions. Assuming an identical functional form of µ∗, a “local” b∗ prescription acting
only on boundary scales is obtained by setting

µmin
B = µmin

S = νmin
S = µ0 = µf = µmin

init =
√

ζmin
init = b0

bmax,local
. (2.37)

Note that some implementations that only act on virtuality scales entering the strong
coupling or the PDFs may instead require νmin

S = ζmin
init = 0, corresponding to our earlier

choice. By contrast, a “global” b∗ prescription amounts to globally replacing bT by a suitable
function b∗(bT ) of the form b0/µ∗ such that b∗(bT ) → bmax,global as bT → ∞. Specifically, this
replacement is performed everywhere under the Fourier integral in eq. (2.7) except for the
integral kernel, including in particular the bT arguments of the TMDs themselves, i.e.,

[BaBbS](Q2, xa, xb, q⃗T , µfin)
∣∣
global

= 1
2π

∫ ∞

0
dbT bT J0(bT qT ) f̃a

(
xa, b∗, µinit(b∗), ζinit(b∗)

)
f̃b

(
xb, b∗, µinit(b∗), ζinit(b∗)

)
× U2(µinit(b∗), ζinit(b∗), µfin, ζfin = µ2

fin) , (2.38)

where U is the combined quark TMD PDF evolution kernel. The scales µinit(b∗) and ζinit(b∗)
may still be chosen as above to implement the fixed-order matching using hybrid profile
scales (but without an additional Landau prescription at the level of the scales, which would
be redundant in this case).

– 20 –



J
H
E
P
0
2
(
2
0
2
5
)
1
7
0

3 Nonperturbative TMD dynamics

3.1 Sources of nonperturbative contributions

The resummed unpolarized TMD PDFs entering the factorized cross section in eq. (2.6),
including all possible nonperturbative effects allowed by the structure of TMD factorization,
take the following form [158]:

f̃i
(
x, bT , µ, ζ) = f̃pert

i

(
x, bT , µinit, ζinit

)
Ui(µinit, µ, ζinit)Vi(bT , µ, ζinit, ζ) f̃np

i (x, bT ) (3.1)

Here f̃pert
i denotes the leading term in the OPE in eq. (2.10) evaluated at boundary scales µinit

and ζinit using a Landau pole prescription such as in eq. (2.28),10 Ui denotes the virtuality
evolution of the TMD PDF at a fixed CS scale (which is purely perturbative by consistency
with the hard function), and Vi denotes the CS evolution kernel at fixed µ, which contains a
nonperturbative component discussed below. Finally, f̃np

i (x, bT ) denotes the nonperturbative
contribution to the TMD PDF boundary condition, which can be interpreted as the intrinsic
transverse momentum spectrum of partons within the proton.

The CS evolution factor Vi in eq. (3.1) is obtained by solving [158]

γi
ζ(bT , µ) = 2 d

d ln ζ
ln f̃i(x, bT , µ, ζ)

= − d
d ln ν

ln B̃i(bT , µ, ν) = +1
2

d
d ln ν

ln S̃i(bT , µ, ν) = 1
2 γ̃i

ν(bT , µ) , (3.2)

where γi
ζ is known as the Collins-Soper kernel, and we have included its relation to the beam

and soft rapidity anomalous dimensions in the rapidity renormalization group approach [75, 88]
for reference. (Note that as in ref. [127], we reserve the symbol γ̃i

ν for the soft rapidity
anomalous dimension, in contrast to section 4.5 of ref. [158].) Similar to the TMD PDFs in
eq. (3.1), the CS kernel contains an evolution term resumming logarithms of µbT , a fixed-
order boundary condition evaluated at µ0 ∼ bT for b0/bT ≫ ΛQCD, and a nonperturbative
contribution, which in this case are all additive [158],

γ̃i
ζ(bT , µ) = −2ηi

Γ(µ0, µ) + γ̃i
ζ(bT , µ0) + γ̃i,np

ζ (bT ) . (3.3)

Expressions for the fixed-order boundary condition γ̃i
ζ(bT , µ0) and a recursive analytic solution

for ηi
Γ to N4LL are given in appendix A, while the exact analytic solution for the latter to

N3LL is given in ref. [139]. Following the split of perturbative and nonperturbative physics
in γ̃i

ζ , we accordingly define their exponentials as

Vi(bT , µ, ζinit, ζ) = exp
[1
2 γ̃ζ(bT , µ) ln

(
ζ

ζinit

)]
≡ V pert

i (bT , µ, ζinit, ζ)V np
i (bT , ζinit, ζ) , (3.4)

which together make up the total CS kernel. For later convenience we also define

f̃i
(
x, bT , µ, ζ) ≡ f̃pert

i

(
x, bT , µ, ζ)V np

i (bT , ζinit, ζ) f̃np
i (x, bT )

≡ f̃
pert+npζ

i

(
x, bT , µ, ζ) f̃np

i (x, bT ) , (3.5)
10The additional deformation of the scales to implement the fixed-order matching for qT → Q is not relevant

here, since it is of higher order in qT /Q than the formal accuracy of the TMD factorization itself.
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i.e., the purely perturbative TMD PDF f̃pert
i including the Ui evolution to µ and the

perturbative component of the CS evolution from ζinit to ζ, and the TMD PDF f̃
pert+npζ

i

including in addition the nonperturbative part of the CS evolution (but still excluding the
nonperturbative TMD boundary condition).

We remind the reader of the well-known fact that f̃np
i (x, bT ), γq,np

ζ (bT ), and the entire
notion of “splitting” perturbative and nonperturbative physics are defined with respect to
a given choice of boundary scales (i.e. in particular, a given Landau pole prescription), for
which many choices are available in the literature, see e.g. refs. [66, 155, 159]. Meaningful
comparisons and conversions between them must therefore be performed at the level of the
complete TMD PDF in eq. (3.1). Nevertheless, the interpretation of the nonperturbative
functions can be made more straightforward if the Landau pole prescription in µinit and µ0
(and possibly ζinit) is of O(Λp

QCDbp
T ) with p > 2 [152]. In this case the power expansions of the

model functions are in direct correspondence to the first subleading terms in the OPEs of the
TMD PDF and the CS kernel in eqs. (2.10) and (2.19). Combining them, they read as follows,

fi(x, bT , µ, ζ) =
[∑

j

∫ dz

z
C̃ij(z, bT , µ, ζ) fj

(
x

z
, µ

)]

×
[
1 + b2T

(
Λ(2)

i (x) + 1
2γ

(2)
ζ,i ln

b2T ζ

b0

)
+O(Λ4

QCDb4T )
]

, (3.6)

and relate to the nonperturbative functions introduced above as

γ̃i,np
ζ (bT ) = γ

(2)
ζ,i b2T +O(Λ4

QCDb4T ) , f̃np
i (x, bT ) = 1 + Λ(2)

i b2T +O(Λ4
QCDb4T ) . (3.7)

Here γ
(2)
ζ,i is a single number given by a gluon vacuum condensate [160], and Λ(2)

i (x) is a
function of x and the flavor i given by a normalized combination of twist-4 collinear matrix
elements. If the Landau pole prescription instead starts at p = 2, the relation must include
total derivatives of the perturbative piece with respect to bT in addition, and analogously
for higher terms in the OPE and Landau pole prescriptions of higher order. Here we ignore

— as is common in the literature — the possible presence of anomalous powers of ΛQCD
from the RG evolution of the condensate and the higher-twist matrix elements that is not
captured by that of the twist-2 ingredients. I.e., taking the nonperturbative function to be
analytic at bT = 0 appropriately captures the higher-twist contributions for ΛQCD bT ≪ 1
when working to leading order for their Wilson coefficient and ignoring their running. Finally,
we note that while the leading O(Λ2

QCDb2T ) renormalons in the CS kernel and TMD PDFs
are known to be nonzero [161], we do not include any renormalon subtractions, which is
motivated a posteriori by the excellent convergence we observe in our predictions towards
higher perturbative orders, see sections 4, 5 and 6.

We note that while we mostly choose to work in TMD notation in this section for
definiteness and to make contact with the literature, one can indeed express all results
in a completely equivalent way by introducing nonperturbative functions B̃np

i (x, bT ) and√
Snp

i (bT ) for the beam and soft functions at their respective boundary scales, where one may
choose Snp

i = 1 and f̃np
i (x, bT ) = B̃np

i (x, bT ) without loss of generality through a suitable
rapidity renormalization scheme. In our final predictions based on eqs. (3.19) and (3.27)
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(which in practice will use effective models, but the same could be done with a more detailed
model for the underlying f̃np

i ), we evaluate the evolved perturbative TMD PDF dressing the
nonperturbative model functions in the more general form of the rapidity renormalization
framework as in eq. (2.20), explicitly,

f̃
pert+npζ

i

(
x, bT , µ, ζ) (3.8)

= B̃pert
i

(
x, bT , µB,

νB√
ζ

)
exp

[
−1
2 ln ν

νB
γ̃i

ν(bT , µB)
]
exp

[∫ µ

µB

dµ′

µ′ γ̃i
B

(
µ′,

ν√
ζ

)]
×
√

S̃pert
i (bT , µS , νS) exp

[1
2 ln ν

νS
γ̃i

ν(bT , µS)
]
exp

[1
2

∫ µ

µS

dµ′

µ′ γ̃i
S(µ′, ν)

]
,

which in particular may involve independent µB,S and/or νB,S variations, as described in
section 4.1. Here B̃pert

i and S̃pert
i are defined as the respective leading term of the OPEs in

eq. (2.10), and the nonperturbative component of the resummed CS kernel at its (implicit)
boundary scale µ0 in eq. (3.3) is, of course, exactly equivalent to that of the rapidity
anomalous dimension in eq. (3.8), see eq. (3.9) below.

3.2 Modeling the CS kernel

We consider the following simple nonperturbative model for the quark rapidity anomalous
dimension, i.e., the CS kernel in the fundamental representation,

γq,np
ζ (bT ) =

1
2γq

ν np(bT ) = cq
ν tanh

(
ω2

ν,q

|cν |
b2T

)
= sgn(cq

ν)ω2
ν,qb2T +O(Λ6

QCDb6T ) , (3.9)

defined with respect to our preferred Landau-pole prescription in eqs. (2.34a) and (2.35). The
above two-parameter model is useful for two reasons. First, it asymptotes to a constant cν as
bT → ∞, so the total CS kernel also becomes flat (up to logarithmic terms) in the large-bT

limit, as suggested in ref. [162].11 The absence of at least linear power-law growth has in
the meantime also been confirmed by first-principles calculations on the lattice [163–167],
and we will give an illustrative range over which our model parameters are varied based on
the spread of these lattice results in section 4.2. In addition, the most recent global TMD
fits [45, 50, 51, 168] also point to a functional form of this kind. (However, since these fits use
LHC Drell-Yan data, we cannot include them in an a priori estimate of the nonperturbative
impact.) Second, the sign of the whole model and the height of the plateau at large bT are
controlled through cν in a way independent of the ων parameter that governs the strength of
the quadratic term and thus the onset of nonperturbative physics. For ease of illustrating
the impact of variations around it, we take

(ci
ν , ων,q) = (−0.05, 0.25GeV) (3.10)

as our default values used in all our numerical results unless otherwise noted.
11We note that these potentially large logarithms of µmin

0 bT as bT → ∞ from having µ0 → µmin
0 in our

“local” Landau-pole prescription, like the renormalons of the TMD ingredients, are another possible source of
unstable behavior as the perturbative logarithmic order increases. While we find no drastic lack of convergence
(again a posteriori) even at very small qT , removing these terms explicitly provides one way of improving the
stability of the fit between different orders when model parameters are extracted from data, which we plan to
address in the future.
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3.3 Effective rapidity-dependent models for multi-differential Drell-Yan

We first consider the impact of nonperturbative TMD physics on a generic multi-differential
Drell-Yan measurement, which can be expressed in terms of their contributions to the helicity
cross sections i = −1, 4 that factorize in terms of leading-power unpolarized TMD PDFs
as in eq. (2.7). We may rewrite the latter as

dσi

d4q = 1
2π

∫ ∞

0
dbT bT J0(bT qT )

∑
a,b

σ̃
pert+npζ

i,ab (Q, Y, bT ) f̃np
a (xa, bT ) f̃np

b (xb, bT ) , (3.11)

where the nonperturbative TMD boundary conditions are weighted by a function

σ̃
pert+npζ

i,ab (Q, Y, bT ) ≡
1

2E2
cm

∑
V,V ′

L±(i)V V ′(Q2)Hi V V ′ ab(Q2, µ)

× f̃
pert+npζ
a

(
xa, bT , µ, Q2) f̃

pert+npζ

b

(
xb, bT , µ, Q2) (3.12)

that contains the electroweak couplings, hard functions, and all other parts of the evolved
TMD PDFs, i.e., all its perturbative components and the nonperturbative CS evolution as
in eq. (3.5). Note that this weight function (like the definitions derived from it below) also
depend on the collider beams and center-of-mass energy Ecm as well as the type of boson
(Z/γ∗, W+, or W−), all of which we suppress in the following. We now simply let

F
np
i (Q, Y, bT ) ≡

∑
a,b σ̃

pert+npζ

i,ab (Q, Y, bT ) f̃np
a (xa, bT ) f̃np

b (xb, bT )∑
a,b σ̃

pert+npζ

i,ab (Q, Y, bT )
(3.13)

which satisfies F
np
i (Q, Y, bT ) = 1 + O(Λ2

QCDb2T ) by construction. Note that i = −1, 4 in
this case labels helicity cross sections, not parton species u, d, ū, . . . as in the TMD PDF
nonperturbative function in eq. (3.1). Inserting eq. (3.13) into eq. (3.11), we have

dσi

d4q = 1
2π

∫ ∞

0
dbT bT J0(bT qT )

[∑
a,b

σ̃
pert+npζ

i,ab (Q, Y, bT )
]

F
np
i (Q, Y, bT ) . (3.14)

This is precisely in the spirit of ref. [152], where an approach was proposed to extract effective,
flavor-averaged nonperturbative parameters at O(Λ2

QCDb2T ), but generalized to all powers
in ΛQCD. Specifically, the — in general complicated — flavor and x dependence of the
underlying TMD PDFs is transformed into effective, flavor-averaged model functions that
are both minimal and sufficient to describe the nonperturbative TMD physics contained
in a given process at a given collider, as relevant when using one process at a time to e.g.
extract fundamental parameters like αs(mZ) or mW .

The above result can be simplified further for resonant Drell-Yan (integrated over Q) by
noting that the weight factor in eq. (3.14) is strongly dominated by Q ∼ mV , with mV = mZ

or mW , whereas the resonant enhancement cancels in eq. (3.13), leaving behind only the
slowly varying x and logarithmic Q dependence of the resummed perturbative TMD PDFs.
It is then reasonable to approximate

F
np
i (Q, Y, bT ) ≈ F

np
i (mV , Y, bT ) ≡ F

np
i (Y, bT ) (3.15)
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by a simpler, two-dimensional function of just Y and bT . We stress that cross terms between
the finite vector boson width and the nonperturbative TMD boundary conditions encoded in
F

np
i (Y, bT ) are in fact retained and treated exactly in our numerics, i.e., the width is kept

exact in σ̃
pert+npζ

i,ab in our final eq. (3.19). The above manipulations using the narrow width
thus only limit the degree to which our model predictions deviate from the most general
form of nonperturbative dynamics allowed by TMD factorization (similar to the impact
of picking any given functional form for the model), with the residual model dependence
starting at O[(Λ2

QCDΓV )/(q2T mV )] in this case.
Fixing Q = mV also simplifies the averaging procedure, since in this case the perturbative

µ evolution and the (non)perturbative CS evolution cancel exactly between numerator and
denominator,

F
np
i (Y, bT ) =

∑
a,b σ̃pert

i,ab (mZ , Y, bT ) f̃a(xa, bT , µ, Q2) f̃b(xb, bT , µ, Q2)∑
a,b σ̃pert

i,ab (mZ , Y, bT )
(3.16)

i.e., the nonperturbative model for γq
ζ decouples from the averaging procedure, allowing us

to drop the superscript npζ . If we further ignore the numerically tiny effect of singlet hard
Wilson coefficients, see section 2.3, the higher-order corrections to the hard function also
cancel, leaving behind the simple formula

F
np
i (Y, bT ) =

∑
a,b σB

i,ab(mZ) f̃pert
a f̃pert

b f̃np
a (xa, bT ) f̃np

b (xb, bT )∑
a,b σB

i,ab(mZ) f̃pert
a f̃pert

b

, (3.17)

where

σB
i,ab(Q) ≡ 1

2Q2

∑
V,V ′

L±(i)V V ′(Q2)HLO
i V V ′ ab (3.18)

is the Born cross section in the given helicity channel, containing the quark and lepton
electroweak charges (see appendix A in ref. [22]), and the perturbative TMD PDFs are
evaluated at xa,b, bT , µinit, ζinit with xa,b = mZ/Ecm e±Y . To low perturbative accuracy one
may even approximate f̃i(x, bT , µinit, ζinit) by a collinear PDF fi(x, µinit), yielding a very
simple pocket formula that can be evaluated quickly to convert between effective and general
nonperturbative models.

Based on the above discussion, our final, recommended nonperturbative TMD model
for multi-differential resonant Drell-Yan studies reads

dσi

d4q = 1
2π

∫ ∞

0
dbT bT J0(bT qT )

[∑
a,b

σ̃
pert+npζ

i,ab (Q, Y, bT )
]

F
np
i (Y, bT ) , (3.19)

where σ̃
pert+npζ

i,ab includes the contribution from the nonperturbative Collins-Soper kernel
modeled e.g. as in eq. (3.9). We stress that for Z boson production, the F

np
i (Y, bT ) for

i = −1, 4 (i.e., the inclusive cross section and the forward-backward asymmetry) will in
general differ from each other due to the different ways flavors are weighted with electroweak
charges. Nevertheless, the two functions exactly coincide for W+ and W− production due
to the V − A structure of the weak current, leading to a large degree of universality. (Note
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that the effective model functions for each of W+ and W− are not equal to each other in
general due to e.g. a different u vs. d valence TMD PDF contributing to each). To predict
their degree of correlation, or their correlation(s) across different colliders and bosons, one
necessarily has to resort to a more complete model of the TMD PDF boundary condition
and perform the conversion using eq. (3.17).12

On the other hand, based on the argument above, we find that one can make F̄ np
i (Y, bT )

the primary target of the TMD nonperturbative modelling effort when considering multi-
differential Drell-Yan distributions for one boson at a time, with the understanding that they
are defined with respect to a definite choice of boundary scales, just like the underlying flavor
and x-dependent model would be. For definiteness, one may pick the following flexible model,

F
np
i (Y, bT ) =

[
1 + Λi,2(Y ) b2T

]2 exp[−2Λi,4(Y ) b4T
]

(3.20)

with power expansion

F
np
i (Y, bT ) = 1 + Λi,2(Y ) b2T +

[
Λ2

i,2(Y )− Λi,4(Y )
]
b4T +O(Λ6

QCDb6T ) , (3.21)

where the coefficient of the quadratic term Λi,2(Y ) ∼ Λ2
QCD may take either sign as long

as Λi,4(Y ) ∼ Λ4
QCD is positive. The functions Λi,n(Y ) must be even functions of Y for pp

collisions and may, again for definiteness, be chosen as

Λi,n(Y ) = Λi,n +∆Λi,n Y 2 . (3.22)

We stress that the parameters of the model upon expansion have a direct field-theoretic
interpretation in terms of (averaged and normalized) entries in the OPE of the TMD PDFs,
accounting for the effect of the Landau-pole prescription starting at O(Λ4

QCDb4T ). Since the
12We note that in principle, the result in eq. (3.19) for the case of the i = 2 helicity cross section of the

Z boson should be extended by another effective function of Y and bT starting at O(Λ2
QCDb2

T ) that encodes
the flavor-weighted contribution from the product of two Boer-Mulders functions, possibly supplemented by
their known twist-3 matching [169]. (The Double Boer-Mulders (DBM) contribution is suppressed by the
width and/or the size of singlet contributions for i = 5 in the Z case, and vanishes altogether for i = 2, 5 in
the case of W± due to the V − A structure of the current [170, 171], such that none of this affects direct mW

measurements that do not rely on tuning to the Z.) As shown in ref. [22], this DBM contribution can in
fact become leading in general multi-differential Drell-Yan studies when leptonic observables pL approach
pL ∼ qT ∼ ΛQCD. Examples with nonzero DBM contributions in this regime analyzed in ref. [22] are pL = ϕ∗

ηQ

and, indeed, the distance pL = Q − 2pℓ
T to the Jacobian peak in the pℓ

T spectrum as relevant for mW -like mZ

measurements.
At this point we like to remark that our statements in this section about the dimensionality of the effective

function space are actually unaffected by the presence of the DBM effect because the approximate leptonic
tensors for pL ∼ qT ≪ Q in ref. [22] can be recast as effective integral functionals acting directly on the bT

space integrand upon performing the qT integral, following the approach of ref. [172], which in turn preserve
the power counting of terms of O(Λn

QCDbn
T ) as O(Λn

QCD/pn
L). Thus one still only requires one nonperturbative

function of Y to describe the total net nonperturbative effect at each power in Λ2
QCD/p2

L, and a single number
if no rapidity-differential information (ηℓ or Y ) is retained. Details on this point will be given elsewhere.

Finally, we note that introducing an explicit DBM model function, just like decorrelating the nonperturbative
models between i = −1 and i = 4 for the Z, is not easy to reconcile with the commonly chosen approach in
mW measurements, where the angular coefficients (as ratios of helicity cross sections) are evaluated at fixed
order, and would first require introducing dedicated resummed components into the description of at least the
leading-power helicity cross sections i = −1, 2, 4 (and i = 5 for full generality).
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x dependence of the collinear twist-2 PDFs has been divided out, we generally expect a
slowly varying Y dependence and thus no need to include terms of O(Y 4) or choose a more
complicated functional form for the rapidity dependence.

3.4 Effective models for fiducial qT spectra

We can take the averaging procedure further by also including the rapidity integral in it,
as relevant for the single-differential fiducial qT spectra that are the main focus of this
paper. To do so, it is necessary to also consider the action of fiducial cuts Θ, since they
shape the contributing rapidity region in this case. Up to corrections of O[Λ2

QCD/(qT Q)],
which are small for qT spectra in resonant Drell-Yan production, we may simply ignore the
qT dependence of the leptonic tensors when acting on the nonperturbative model, i.e., we
evaluate Li V V ′(q,Θ) in eq. (2.6) at qT = 0. This results in a formula similar to eq. (3.19),

1
πqT

dσLP(Θ)
dqT

(3.23)

= 1
2π

∫ ∞

0
dbT bT J0(bT qT )

[∑
a,b

∫
dQ2 dY σ̃

LP,pert+npζ

ab (Q, Y,Θ, bT )
]
F

np(Θ, bT ) ,

where the leading-power fiducial perturbative cross section in bT space is defined as

σ̃
LP,pert+npζ

ab (Q, Y,Θ, bT ) =
3
8
∑

i=−1,4
σ̃
pert+npζ

i,ab (Q, Y, bT )
∫ 1

−1
d cos θ gi(θ) Θ̂LP(Q, Y, θ) , (3.24)

with Θ̂LP(Q, Y, θ) the acceptance function Θ̂(q, θ, φ) of the fiducial cuts Θ evaluated for
qT = 0, which implies that the φ dependence also drops out [22]. The corresponding averaged
(effective) nonperturbative model is given by

F
np(Θ, bT ) =

∑
a,b

∫
dY σB

ab(mV , Y,Θ) f̃pert
a f̃pert

b f̃np
a (xa, bT ) f̃np

b (xb, bT )∑
a,b

∫
dY σB

ab(mV , Y,Θ) f̃pert
a f̃pert

b

(3.25)

where the fiducial Born cross section is defined in terms of eq. (3.18) as

σB
ab(Q, Y,Θ) = 3

8
∑

i=−1,4
σB

i,ab(Q)
∫ 1

−1
d cos θ gi(θ) Θ̂LP(Q, Y, θ) , (3.26)

the perturbative TMD PDFs are again evaluated at xa,b, bT , µinit, ζinit, and we have made
use of Q ≈ mV as before such that the (non)perturbative CS evolution, hard functions,
and µ evolution drop out.

Our final predictions for the resummed contribution to fiducial qT spectra are then
obtained by inserting this model back as an overall common factor to all factorized helicity
cross sections into the factorization formula with exact leptonic kinematics,

1
πqT

dσres(Θ)
dqT

= 1
4E2

cm

∫
dQ2 dY

∑
i=−1,4

∑
V,V ′

Li V V ′(q,Θ) 1
2π

∫ ∞

0
dbT bT J0(bT qT )

×
[∑

a,b

Hi V V ′ ab(Q2, µ) f̃
pert+npζ
a (xa, bT , µ, Q2) f̃

pert+npζ

b (xb, bT , µ, Q2)
]

× F
np(Θ, bT ) , (3.27)
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which also follows e.g. from eqs. (3.19), (3.20) and (3.22) by setting Λ−1,n = Λ4,n and
∆Λ−1,n = 0, i.e., dropping the Y dependence. We stress that as for the narrow-width
approximation already used above, cross terms of O[Λ2

QCD/(qT Q)] between nonperturbative
and linear fiducial power corrections are indeed retained exactly in our final predictions
through the exact kinematic dependence of Li V V ′(q,Θ), and it is only the degree of model
(in)dependence that is qualified by the approximations we make. In particular, the final
formula in eq. (3.27) still retains all the exact linear power corrections dressing the perturbative
resummation.

In order to illustrate the effect of the nonperturbative TMD boundary condition on the
predictions at the highest perturbative orders that we present in this paper, we make the
following, simple Gaussian choice for the model function,

F
np(Θ, bT ) = exp

(
−2ΩV bT

)
= 1− 2Ω2

V b2T + 2Ω4
V b4T +O(Λ6

QCDb6T ) , (3.28)

and we include a subscript V = Z, W+, W− to remind the reader that the parameter is
decorrelated between bosons (and their associated fiducial phase-space volumes Θ). We note
that while this is numerically equivalent to assuming a common Gaussian width ΩV for all
quark and antiquark flavors, it is much more rigorously justified through our effective model
approach, where the existence of the model is well-defined, minimal, and sufficient, and only
in a second step does one pick a specific form for it. Again, in order to be able to easily
showcase the impact of variations around it, we will take

ΩV = 0.5GeV (3.29)

as our default central value.

Discussion. Eqs. (3.19) and (3.27) make precise the intuitive notion that a one-dimensional
qT (two-dimensional Y and qT ) spectrum contains only information about a single effective one-
dimensional (two-dimensional) nonperturbative model function of bT (Y and bT ), independent
of the underlying complexity of the flavor and x-dependent TMD PDF nonperturbative
boundary conditions. In particular, upon expansion in ΛQCD bT (or ΛQCD/qT ), the results
imply that only a single number (or a single one-dimensional function of Y ) is required in
addition to the first correction to the CS kernel in order to completely describe the leading
nonperturbative effect. Eq. (3.25) generalizes the formula derived in ref. [152] for the effective
parameter Λ(2) appearing in the O(Λ2

QCD/q2T ) term in the fiducial spectrum to all powers in
ΛQCD.13 (As a downside of extending to all powers in ΛQCD, the manifestly linear impact of
the leading nonperturbative term in ref. [152] is lost, and dedicated numerics like in this paper
are required to obtain fit templates for each set of parameters describing F

np.) Conversely,
no additional information about the underlying TMD nonperturbative structure beyond
F

np
i (Y, bT ) or F

np(Θ, bT ) can be extracted from resonant Drell-Yan spectra. This formally
explains the observations of ref. [51], which found that the combination of Drell-Yan and
semi-inclusive deep-inelastic scattering data for different hadron species was crucial to achieve
flavor separation of the TMDs. Of course, in the context of a global, flavor-dependent TMD

13Note that eq. (4.11) in ref. [152] misses a factor of 2 in the denominator).

– 28 –



J
H
E
P
0
2
(
2
0
2
5
)
1
7
0

0 5 10 15 20 30 40 50 60

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0 5 10 15 20 30 40 50 60

-20

-15

-10

-5

0

5

10

15

20

0 5 10 15 20 30 40 50 60

0

1

2

3

4

5

Figure 5. Predictions for the normalized inclusive pZ
T spectrum at the 13TeV LHC (top left), its

relative difference to the highest-order prediction (top right), and the complete perturbative uncertainty
breakdown of the N3LL′ +O(α3

s) result in terms of each contributing source (bottom).

NNLL+O(αs) N3LL+O(α2
s) N3LL′ +O(α3

s)
σ65 [pb] 1813.5 1806.9 1787.3

Table 1. Normalization factors for the inclusive pZ
T spectra with MSHT20nnlo shown in figure 5.

NNLL+O(αs) N3LL+O(α2
s) N3LL′ +O(α3

s)

σ65 [pb]
ATLAS cuts [5]
CMS cuts [11]

682.1
673.1

682.6
673.9

673.4
664.9

Table 2. Normalization factors for the fiducial pZ
T spectra with MSHT20nnlo shown in figure 6.

fit or if a more granular model is desired and e.g. explicit flavor ratios are known from the
lattice, one can always revert to instead using the product f̃np

a (xa, bT ) f̃np
b (xb, bT ) on the last

line of eq. (3.27) and pulling it back under the flavor sums and (Q, Y ) integral.

4 Results for the inclusive and fiducial pZ
T spectrum

In figure 5 and 6 we present our predictions for the inclusive and fiducial Z-boson transverse-
momentum spectrum at different orders in resummed and matched perturbation theory up
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Figure 6. Predictions for the normalized fiducial pZ
T spectrum at the 13TeV LHC (top row),

its relative difference to the highest-order prediction (middle row), and the complete perturbative
uncertainty breakdown of the N3LL′ +O(α3

s) result in terms of each contributing source (bottom row).
In the left (right) column, we compare to the ATLAS 13TeV [5] (CMS 13TeV [11]) measurement,
using the respective set of fiducial cuts.

to N3LL′+O(α3
s). We use the MSHT20nnlo PDF set [147] as our default with the attendant

value of αs(mZ) = 0.118. We consider two sets of fiducial cuts on the dilepton pair, as used
in the ATLAS [5] and CMS [11] 13TeV measurements, respectively,

ATLAS cuts: pℓ
T > 27GeV , |ηℓ| < 2.5

CMS cuts: pℓ
T > 25GeV , |ηℓ| < 2.4 , (4.1)
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which are applied to both the lepton and the antilepton. For ref. [5], we compare to the result
obtained for Born leptons after combining the electron and muon channels. For ref. [11], we
compare to the result obtained using dressed leptons, again from a combination of electron
and muon channels.14

Our electroweak inputs are as follows, see ref. [22] for details,

mZ = 91.1535GeV , ΓZ = 2.4943GeV ,

mW = 80.3580GeV , ΓW = 2.0843GeV , (4.2)
GF = 1.1663787× 10−5GeV−2 ,

VCKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 =


0.97446 0.22452 0.00365
0.22438 0.97359 0.04214
0.00896 0.04133 0.999105

 ,

sin2 θw = 0.22284 , αem = 1
132.357 . (4.3)

The numerical treatment of the oscillatory Bessel integral and our semi-analytic evaluation
of the leptonic phase-space integrals are also described in section (4.1) of ref. [22].

To easily study the uncertainties in the pZ
T spectrum and compare to the (most often

normalized) experimental data, we find it convenient to normalize the spectrum on the range
0 ≤ qT ≤ 65GeV,15 where we empirically found that nonsingular contributions are small.
For reference, the total integrals of our predictions as used for the normalization, which we
denote by σ65, are reported in tables 1 and 2. From the data comparisons in figure 6 we
observe that our predictions with the default PDF set and default nonperturbative parameters
closely track the fiducial ATLAS [5] and CMS [11] data over a wide range of qT , but residual
differences are well visible. In the following subsections, we assess the impact of various
sources of uncertainties and different physical effects on our predictions.

4.1 Scale variations, convergence, and estimated matching uncertainties

Predictions in either fixed-order or resummation-improved perturbation theory are necessarily
subject to an uncertainty from missing higher-order terms. A commonly used approach to
assess these is to vary the scales at which various objects appearing in the prediction are
renormalized. Since the dependence on any individual scale is beyond the working order in
a factorized cross section, these variations can indicate the typical size of missing higher-
order terms. While they do not offer any handle on the correlations between perturbative
uncertainties e.g. between different bins, scale variations nevertheless can serve, and are
heavily used, as a crude estimate of the truncation uncertainty based on the available
lower-order data. For this reason, we do present estimates of the perturbative uncertainty
within the scale variation paradigm in this section. (For an alternative that overcomes all

14We note that at least as of version 2, the HEPData entry for ref. [11] had an incorrect total integral ( ̸= 1)
for the normalized pZ

T spectrum, while relative uncertainties in each bin were correct. The correct result is
obtained by dividing by the total integral once more. We thank Aram Apyan for help with this issue.

15Experimental data are re-normalized on this range by dividing by the central value of the norm and
maintaining the relative uncertainties in each bin. We ignore possible correlations between individual bins and
the norm that are negligible compared to the original relative uncertainties in each (narrow) bin.
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the shortcomings, see refs. [173, 174].) To do so in the most reliable and granular fashion
possible within the conventional paradigm, we refine the profile scale variation setup of
ref. [22], which in turn was based on ref. [175]. We here give a self-contained description of
the profile scale variations we perform, commenting on the improvements and differences to
ref. [22] along the way. The profile scales and variations originally designed in the course
of preparing the present manuscript have recently been applied already in ref. [176], where
the ability to separately freeze out the PDF scale µf proved particularly useful for heavy
flavor-induced processes like bb̄ → H.

For the resummed cross section, the task is to vary the central boundary scales given in
eq. (2.28) around their central values by (up to) the conventional factor of 2 in all possible
ways such that the variations (a) do not induce undue sensitivity to the Landau pole and
(b) smoothly transition into a set of conventional fixed-order scale variations in the tail at
qT ∼ Q. We achieve this task by varying them as

µH = µcentral
FO 2wFO ,

µB = µcentral
FO 2wFO f

vµBvary frun

(
qT

Q
,
1
Q

µ∗

(
b0
bT

,
µmin

B

2wFO f
vµBvary

))
,

νB = µcentral
FO 2wFO f

vνBvary ,

µS = µcentral
FO 2wFO f

vµSvary frun

(
qT

Q
,
1
Q

µ∗

(
b0
bT

,
µmin

S

2wFO f
vµSvary

))
,

νS = µcentral
FO 2wFO f

vνSvary frun

(
qT

Q
,
1
Q

µ∗

(
b0
bT

,
νmin

S

2wFO f
vνSvary

))
,

µf = µcentral
F 2vµf frun

(
qT

Q
,
1
Q

µ∗

(
b0
bT

,
µmin

f

2vµf

))
, (4.4)

where µcentral
FO = µcentral

F = Q are the central fixed-order renormalization and factorization
scales. The central scales are recovered for

vµB = vνB = vµS = vνS = wFO = vµf
= 0 . (4.5)

The boundary scale µ0 of the rapidity anomalous dimension is held fixed at its central value
since its variations would be double counted with the explicit νB,S variations [175]. Here
fvary ≡ fvary(qT /Q) governs the strength of those variations that must turn off as qT /Q → 1,
fvary → 1, where we choose

fvary(x) =


2(1− x2/x2

3) , 0 ≤ x < x3/2 ,

1 + 2(1− x/x3)2 , x3/2 ≤ x < x3 ,

1 , x3 ≤ x .

(4.6)

For qT ≥ x3Q, the above variations thus all reduce to

µB = νB = µS = νS = µcentral
FO 2wFO , µf = µcentral

F 2vµf , (4.7)

which exactly matches the variations we perform on the renormalization and factorization
scale in the nonsingular cross section (and thus on the whole prediction in the far tail),

µR = µcentral
FO 2wFO , µF = µcentral

F 2vµf . (4.8)
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We note the appearance of factors like 2wFO , 2vµf , or f
vµXvary in the argument of the µ∗ func-

tions in eq. (4.4). These ensure that scale variations are also frozen out at long distances as
bT → 1/ΛQCD, which in turns ensures that no scales ≲ 1GeV are probed by the variations, see
the bands in the left panel of figure 4. Like the addition of the minimum scales implemented
through the µ∗ functions themselves, this change compared to ref. [22] is necessary because
unlike ref. [22] (which simply froze out the coupling and PDFs), we aim to maintain a straight-
forward OPE interpretation of the nonperturbative functions we introduced in section 3.

We now describe how the above variation flags are grouped into subsets of joint and
individual variations that each estimate a distinct source of uncertainty, as shown in the
bottom rows of figure 5 and 6.

Resummation uncertainty ∆res. A first set of variations concerns those independent scales
that emerge in the canonical resummation region qT ≪ Q, and estimates the perturbative
uncertainty on (mainly) the shape of the resummed Sudakov spectrum. In eq. (4.4), they
are controlled by vµB , vνB , vµS , vνS , which we vary as

(vµB , vνB , vµS , vνS ) ∈ Vres =
{
(↑,−,−,−), (−, ↑,−,−), (−,−, ↑,−), (−,−,−, ↑),
(−,−,−, ↓), (−,−, ↓,−), (−, ↓,−,−), (↓,−,−,−),
(↑, ↑,−,−), (↑,−, ↑,−), (↑,−,−, ↑), (↑,−,−, ↓), (↑, ↓,−,−),
(−, ↑, ↑,−), (−, ↑,−, ↑), (−, ↑, ↓,−), (−,−, ↑, ↑),
(−,−, ↓, ↓), (−, ↓, ↑,−), (−, ↓,−, ↓), (−, ↓, ↓,−), (↓,−,−, ↑),
(↓,−, ↓,−), (↓, ↓,−,−), (↑, ↑, ↑,−), (↑, ↑,−, ↑), (↑,−, ↑, ↑),
(↑, ↓, ↑,−), (↑, ↓,−, ↓), (−, ↑, ↑, ↑), (−, ↓, ↓, ↓), (↓, ↑,−, ↑),
(↓, ↓,−, ↓), (↓, ↓, ↓,−), (↑, ↑, ↑, ↑), (↓, ↓, ↓, ↓)

}
, (4.9)

where we write ↑ (↓, −) for v = +1 (v = −1, v = 0) for brevity. The set of variations
in eq. (4.9) is defined by considering all 34 − 1 = 80 possible variations of the four v, and
removing all the ones where the argument of a logarithm exponentiated by the renormalization
group evolution between terms would be varied by a factor of four [175]. The final uncertainty
estimate is obtained by taking the symmetrized envelope of all tuples v⃗ of variations above,

∆res = max
v⃗∈Vres

∣∣dσv⃗ − dσcentral
∣∣ . (4.10)

It has been noted in refs. [22, 175] that while the set of variations in eq. (4.9) appears
large, keeping all combinations under the envelope is often important to prevent accidental
underestimates when several scale variations at once cross the central value at some point
in qT . For definiteness, we take each individual variation to be fully correlated between
each bin and the total integral when normalizing the spectrum. This effect on the total
integral is responsible for the nonzero (but subdominant) contribution of ∆res also at large
qT ≥ 60GeV in figure 5 and 6 where the underlying variations are largely turned off already
at the level of the unnormalized spectrum. We note at this point that while eq. (2.7a) with
separately finite soft and beam functions can easily be translated into suitably evolved TMD
PDFs for central scales, see eq. (3.8), the rapidity renormalization group does provide a
larger set of possible nontrivial scale variations, which we here make use of for our estimate
of the perturbative uncertainties.
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Fixed-order uncertainty ∆FO. A second set of variations, which affects the spectrum
everywhere and can be thought of as (mainly) varying its normalization, concerns the overall
choice of fixed-order renormalization scale entering in particular the strong coupling,

µFO = µcentral
FO 2wFO , (4.11)

which we vary as follows, taking the uncertainty estimate to be the symmetrized envelope,

wFO ∈ VFO = {+1,−1} , ∆FO = max
wFO∈VFO

∣∣dσwFO − dσcentral
∣∣ . (4.12)

Variations of wFO, which we take to be fully correlated when normalizing the spectrum, are
consistently propagated into the resummed and nonsingular cross sections through eqs. (4.4)
and (4.8), which involve factors of 2wFO in front of all renormalization-like scales. Compared
to the most common approaches to estimate the total truncation uncertainty in fixed-order
perturbation theory for hadronic processes, we yet have to include an uncertainty component
from variations of the factorization scale, which we turn to next.

DGLAP (factorization scale) uncertainty ∆DGLAP. While it is challenging in general
to identify common underlying sources of uncertainty for different regions of the spectrum,
one source can in fact be readily identified as the truncation uncertainty in the DGLAP
evolution of the twist-2 collinear PDF that feature as a common ingredient everywhere. To
estimate it, we perform a common variation of the scales entering the PDFs everywhere
in the prediction as follows,

vµf
∈ VDGLAP = {+1,−1} , ∆DGLAP = max

vµf
∈VDGLAP

∣∣dσvµf
− dσcentral

∣∣ . (4.13)

Variations of vµf
, which we take to be fully correlated when normalizing the spectrum, are

again consistently propagated into the resummed and nonsingular cross sections through
eqs. (4.4) and (4.8). We recall that in the resummed cross section, only the beam function
matching coefficient is evaluated at µB, while the underlying PDF is evaluated (in general)
at µf ̸= µB using our dedicated implementation of eq. (2.12), which precisely induces a set
of compensating logarithmic terms in µf /µB whose difference to the central value probes the
residual dependence on µf . Note that in contrast to µB, whose variations are damped by
fvary at large qT in eq. (4.4), the variations of µf stay fully turned on all the way into the
tail, as is required to recover a standard µF variation of the fixed-order result in that region.
Compared to refs. [22, 175], having a dedicated uncertainty component ∆DGLAP is new for
a resummed and matched prediction; both references effectively only considered common
diagonal variations of µFO and µcentral

F , which then were inherited by the respective µB = µf

in the resummed cross section when computing the total ∆FO quoted in those references. We
would also like to point out that in our present setup, µR and µF variations are effectively
combined in quadrature in the final perturbative uncertainty estimate also in the fixed-order
region, see eq. (4.18). In our case, this choice of separating out ∆DGLAP (rather than moving
it under a common envelope) is motivated by the special role of PDF evolution affecting
the spectrum everywhere. We point out that the mildly oscillatory behavior of ∆DGLAP in
figure 5 and 6 is induced by the discontinuity of the PDF at the mb threshold, which in turn
spreads over the entire qT range by the inverse bT -integral with a period of ∆qT ∼ mb.
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Matching uncertainty ∆match. The profile scales that implement the transition from
the canonical to the fixed-order region involve three transition points xi that determine the
onset, midpoint, and endpoint of the transition. While the values of these transition points
are based on a quantitative assessment of the size of nonsingular terms [22], they are not
uniquely determined by this criterion, and the associated uncertainty must be assessed. As
in refs. [22, 175], we thus compute a matching uncertainty ∆match as follows,

(x1, x2, x3) ∈ Vmatch = {(0.4, 0.75, 1.1), (0.2, 0.45, 0.7), (0.4, 0.55, 0.7), (0.2, 0.65, 1.1)} ,

∆match = max
x⃗∈Vmatch

∣∣σx⃗ − σcentral
∣∣ , (4.14)

where we take the variations to be fully correlated when normalizing the spectrum. At the
level of the unnormalized spectrum, the matching uncertainty vanishes for qT ≤ xmin

1 Q and
qT ≥ xmax

3 Q, where xmin
1 and xmax

3 are the minimum or maximum value taken by x1 and
x3, respectively. The 0.5% effect visible at small qT in the normalized spectra in figure 5
and 6, on the other hand, is precisely due to the residual effect of the matching variations
on the total integral, which is not guaranteed to be preserved by either the central xi or
their variations in eq. (4.14). We note that if a symmetric impact of variations entering the
matching uncertainty is desired, an alternative scheme is to simply vary the midpoint x2
of the profile up and down by a suitable amount [176].

Recoil uncertainty ∆recoil. A final contribution to our total perturbative uncertainty
estimate is not related to any specific scale choice, but — like the matching uncertainty —
still concerns the split between resummed and fixed-order terms.

Specifically, when decomposing the fiducial qT spectrum (or any observable sensitive to
the differential lepton-antilepton distribution) as in eq. (2.6), a choice is made in which frame
to decompose the hadronic tensor in terms of helicity cross sections, where subsequently the
leading-power ones are resummed to all orders while dressing them with the exact lepton
kinematics to ensure the exact treatment of linear or leptonic (“fiducial”) power corrections.
Making these choices explicit, we compute the resummed and fixed-order singular cross
sections using the following formula,

1
πqT

dσX(Θ)
dqT

= 1
2E2

cm

∫
dQ2 dY

∑
i=−1,4

∑
V,V ′

LX
i V V ′(q,Θ)WLP,X

i V V ′ (q, Pa, Pb) , (4.15)

where X, affecting both the leptonic prefactors and the structure functions, indicates the
choice of frame, and X = CS (the Collins-Soper frame) for our central prediction. While
these frame choices are subject to the constraint that their zµ axes coincide with the beam
axis as qT → 0, this does not uniquely specify them, and different choices for the structure
function decomposition (i.e., the choice of Z rest frame, i.e., the choice of a specific recoil
prescription) differ by moving a set of terms of O(q2T /Q2) [22] between the leading-power
and subleading-power structure functions. This means that as soon as the leading-power
resummation is performed, they will differ by whether these terms are resummed to all orders
or evaluated at fixed order. In order to assess the potential presence of an ambiguity due to
this choice, we here perform — to our knowledge, for the first time — an explicit variation
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of the choice of structure function decomposition in a resummed and matched prediction.16

Specifically, we consider the two extreme cases

X ∈ Vrecoil = {GJ ,GJ} . (4.16)

Here the decomposition is performed in either the Gottfried-Jackson (X = GJ) frame [177],
where the zµ axis is aligned with the hadron incoming along the positive zµ

lab direction,
or performed in the “anti-Gottfried Jackson” frame (X = GJ) where the opposite hadron
is chosen as reference; our default value X = CS amounts to a certain symmetric choice
between the two that has compact covariant expressions [22] and a particularly simple power
expansion [171]. The associated uncertainty is then computed by taking the envelope,

∆match = max
X∈Vrecoil

∣∣dσX − dσcentral
∣∣ . (4.17)

Like e.g. the matching uncertainty, ∆recoil vanishes by construction at the level of the
unnormalized spectrum since it amounts to reexpanding certain O(q2T /Q2) terms. We
nevertheless point out that for the normalized fiducial spectra shown in figure 6, its impact
instead again tends to a constant as qT → 0 due to its residual effect on the total matched
fiducial cross section. From this observation, we find it interesting to note that this uncertainty
on the total fiducial cross section is in fact under excellent control, where we may read off its
relative size from the uncertainty breakdown plots in figure 6 at qT → 0 as roughly a permille.

Combined perturbative uncertainty ∆pert. The final perturbative uncertainty estimate
∆pert, which provides the bands at different orders in the ratio plots in figure 5 and 6 and is
indicated by a solid black line in the uncertainty breakdown plots, is computed by adding
the uncertainties from all individual sources in quadrature,

∆pert = ∆res ⊕∆FO ⊕∆DGLAP ⊕∆match ⊕∆recoil . (4.18)

As can be seen from the top right panel in figure 5 and the center row of panels in figure 6,
where we show ratios of predictions at different orders to the highest order, the resulting
uncertainty estimate features excellent perturbative coverage, i.e., higher orders are well
contained within the lower-order uncertainty estimates. We note that while the convergence
at the level of the central value seems to be more rapid than the uncertainty estimates would
allow for, we see no justification for reducing the estimate after the fact.

4.2 Impact of nonperturbative TMD physics

We next consider the impact of the nonperturbative model functions introduced in section 3
on our predictions. We do so by performing illustrative variations of the model parameters
to determine which regions in the spectrum are affected by nonperturbative physics, and
to which extent. While this already helps to assess whether residual differences to the

16A distinct issue is how the choice of frame for computing the singular cross section affects the efficiency of
differential qT subtractions, see ref. [22]. The two issues are related because they both hinge on the size of the
remaining fixed-order nonsingular, but our study here concerns the potential scheme dependence of fiducial
resummation effects that remain present even after taking all technical cutoffs to zero.
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Figure 7. Illustration of the model parameter spread we consider for the Collins-Soper kernel, i.e., the
rapidity anomalous dimension. The black solid line indicates our default choice of model parameters.
The gray vertical line indicates a distance of bT = 1GeV−1 ≈ 0.197 fm for reference. The right panel
shows a close-up in the small-bT region.
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Figure 8. Impact of parameter variations in the nonperturbative TMD models at N3LL′ +O(α3
s)

compared to ATLAS 13TeV [5] (left) and CMS 13TeV [11] (right) measurements. For illustration, we
also compare to the estimated size ∆pert of the perturbative uncertainty.

data may be of nonperturbative origin, we leave a dedicated fit of the nonperturbative
contributions to future work.

We vary the parameters entering the model for the Collins-Soper kernel (i.e., the rapidity
anomalous dimension) in eq. (3.9) as follows,

(cq
ν , ων,q) ∈ {(−0.15, 0.433GeV), (0.05, 0.25GeV),

(0.5, 0.15GeV), (−0.5, 0.37GeV)} . (4.19)

The result for the total CS kernel at N3LL′ (i.e., retaining the complete three-loop boundary
condition and four-loop cusp evolution) is shown in figure 7 with the default set of model
parameters (cq

ν , ων,q) = (−0.05, 0.25GeV) shown as a solid black line. The first two variations
(indicated by long and short-dashed dark blue lines) are chosen such that they predominantly
affect the CS kernel at short transverse distances bT ≲ 0.197 fm ∼ 1GeV−1 by varying the
quadratic coefficient in the OPE down or up, as illustrated in the right panel of figure 7.
Since we expect the impact of the quadratic coefficient to be linear at qT ≳ 5GeV, we choose
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the magnitude of ων,q and the sign of cq
ν such that the variations they induce on the leading

quadratic coefficient sgn(cq
ν)ω2

ν,q ∈ {−0.1875GeV2,+0.0625GeV2} are symmetric around
the central value of −0.0625GeV2.

By contrast, the third and fourth variation in eq. (4.19) are chosen such that they
only change the quadratic coefficient in the CS kernel by a smaller amount, and instead
predominantly affect the behavior of the CS kernel at long distances by varying the sign
sgn(cq

ν) and height |cq
ν | of the plateau in the model function, as illustrated in the left panel

of figure 7. Here we choose the magnitude of the variation such that it covers the spread
of available lattice results as reviewed in ref. [178].17

For the effective nonperturbative one-parameter model for the TMD boundary conditions
in eq. (3.28) we choose the following illustrative variations,

ΩZ ∈ {0, 0.707GeV} . (4.20)

Compared to our default central value of ΩZ = 0.5GeV, these again amount to a symmetric
variation of the leading quadratic coefficient Ω2

Z ∈ {0, 0.5GeV2} around the central value
of 0.25GeV2. We thus again expect the impact of these variations to be linear for qT ≳
5GeV [152].

Our results for the impact of the above nonperturbative parameter variations on the
fiducial pZ

T spectrum N3LL′ +O(α3
s) are shown in figure 8. We indeed observe the expected

symmetric opposite-sign impact of the short-distance down/up variations in the CS kernel and
the variations of ΩZ , respectively, at qT ≳ 5GeV. We furthermore observe that the impact of
the short-distance variations of the CS kernel dominates over the long-distance variation for
all bins at the LHC (including the very first one, which we clipped for readability), suggesting
that the strong Sudakov suppression of the bT -space cross section for resonant Drell-Yan makes
it challenging to access the genuine long-distance behavior. We also note that the impact of
the nonperturbative parameter variations, which we chose for illustration, is comparable to the
estimated total perturbative uncertainty ∆pert, which is shown as the yellow band in figure 8
for reference. It is interesting to note that the corresponding variations in the underlying
model functions, see e.g. figure 7, exceed the typical uncertainties obtained in TMD global
fits [45, 51], which however do not account for perturbative uncertainties in the fit.

Comparing to the experimental data, it seems likely — based on the first few bins — that
the data in fact prefer weaker nonperturbative effects than our default choices (e.g. ΩZ = 0,
solid green). However, the fact that the prediction for our default PDF set overshoots the
data at qT ≳ 20GeV cannot be addressed by the nonperturbative model since this region lies
well outside of its effective range, i.e., because of the fact that the leading nonperturbative
effects in the OPE have to fall off as 1/q2T upon Fourier transform [152].
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Figure 9. Impact of parametric strong coupling variations (top) and parametric PDF variations
(bottom), as well as alternate PDF sets, on the normalized pZ

T spectrum at N3LL′ +O(α3
s) compared

to the ATLAS 13TeV [5] (left) and CMS 13TeV [11] (right) measurements.

CT18NNLO NNPDF31nnlo NNPDF40nnlo

σ65 [pb]
ATLAS cuts [5]
CMS cuts [11]

659.2
650.1

678.1
669.9

691.3
682.9

Table 3. Normalization factors for the central N3LL′ +O(α3
s) fiducial pZ

T spectra shown in figure 9.
The corresponding one for MSHT20nnlo is given in table 2.

4.3 Parametric αs and PDF uncertainties

We next estimate the parametric uncertainties related to the strong coupling constant and the
collinear PDFs on our prediction using standard methods, closely following those described
in ref. [180]. In practical terms, both variations are performed only in the resummed singular
cross section and the O(αs) nonsingular coefficient while keeping the O(α2

s) and O(α3
s)

nonsingular coefficients at central values and at the reference PDF set, as already discussed
in section 2.4. This strategy for the uncertainty estimation avoids performing CPU-intensive

17While high-precision lattice results at physical pion masses have recently become available [167], we leave
it to future work to incorporate them directly in our prediction. Doing so in particular requires one to include
and smoothly match the known perturbative bottom quark mass effects in the CS kernel [179] in order to
correctly transition from the nf = 5 massless limit to the precision results of ref. [167], which feature three
light and one massive (charm) flavor.
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runs for the FO nonsingular coefficients and is justified by the smallness of the O(α2
s) and

the O(α3
s) nonsingular coefficients for qT ≲ 65GeV.

For the uncertainty related to αs, we perform variations of

αs(mZ) = 0.118± 0.001 , (4.21)

properly taking into account its effect on the DGLAP running and on PDF determinations by
using the PDF set that consistently employs the corresponding value of αs(mZ). Eq. (4.21)
roughly corresponds to the currently quoted PDG 2023 uncertainty [181]. The associated
parametric αs uncertainty is computed as

∆αs = 1√
2

[(
dσαs,up − dσcentral

)2 + (dσαs,down − dσcentral
)2]1/2

. (4.22)

The resulting uncertainty on the normalized fiducial pZ
T spectrum is shown in the top

row of figure 9 (orange band). On the range 5 ≤ qT ≤ 30GeV, the uncertainty is on par
with ∆pert (light yellow band) at this order. Neither of them is able to remedy the overshoot
of the prediction compared to the data at (qT ≳ 15GeV). Curiously, we find that a lower
value of the strong coupling, αs(mZ) = 0.114 (short-dashed green), captures the data trend
much more closely over a wide range of qT , including in particular the region qT ≥ 20GeV
where nonperturbative effects are already negligible, see section 4.2. While this observation
did not result from an αs fit, it is interesting to note since similarly low αs values have been
extracted in the past [182, 183] from other resummation-sensitive observables, specifically
e+e− event shapes. We stress, however, that a complete fit of αs to hadron-collider pZ

T data
must include profiling over the PDF set, as done e.g. in refs. [15, 16], and in section 4.4 we
will indeed confirm that the inclusion of approximate N3LO effects in the PDF set in fact
yields much closer agreement with the data for αs(mZ) = 0.118 from the start.

For the uncertainty related to the collinear PDFs, we show results for CT18NNLO [157],
NNPDF31nnlo [148], NNPDF40nnlo [148], and for our default set MSHT20nnlo [147]. Since these
collaborations in general employ different methodologies in estimating an uncertainty from the
fit, we follow the respective collaboration’s nominal formula for calculating the corresponding
uncertainty on our prediction. For Hessian sets such as CT18NNLO and MSHT20nnlo we use

∆Hessian
PDF = 1√

2

[nrep∑
i

(dσi − dσcentral)2
]1/2

. (4.23)

The index i runs over the set of nrep different replicas provided by each collaboration and
dσcentral (dσi) denotes the prediction evaluated using the central member (ith member) of the
PDF set. Compared to eq. (20) of ref. [180], the relative factor of 1/

√
2 in eq. (4.23) avoids the

possible double counting induced by replicas of opposite eigenvectors in the symmetric limit.
We note that we in addition rescale the resulting uncertainty for the CT18NNLO set to account
for the difference in their quoted confidence level (CL, 90%) to our common target CL of 68%
for all PDF sets. For Monte-Carlo (MC) sets such as NNPDF31nnlo and NNPD40nnlo, we use

∆MC
PDF = 1√

nrep − 1

[nrep∑
i

(dσi − dσcentral)2
]1/2

, (4.24)

where for dσcentral we use the averaged PDF replica provided by each set.
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Figure 10. Impact of parametric strong coupling variations (left) and parametric PDF variations
(right), as well as alternate PDF sets, on the unnormalized pZ

T spectrum at N3LL′ +O(α3
s).

Turning to the bottom row of figure 9, we show the respective central values and
parametric PDF uncertainties for CT18NNLO [157] (solid green), NNPDF31nnlo [156] (dashed
blue) and NNPDF40nnlo [148] (solid blue) for the normalized pZ

T spectrum, with the associated
normalization factors given in table 3. Specifically, we show relative deviations from our
default choice, MSHT20nnlo [147] (red). It is worth noting that all sets agree at the level of
the normalized pZ

T spectrum well within the uncertainties of the CT18NNLO and MSHT20nnlo
predictions, while the MSHT20nnlo and CT18NNLO central values fall on the upper edge
or outside of the NNPDF40nnlo, respectively. In particular, none of the PDF parametric
uncertainties, and no alternate choice of central set at this PDF order (NNLO), is able to
capture the discrepancy to the data at qT ≥ 15GeV. We have checked that this behavior
of NNLO PDF sets, with a characteristic overshoot above the data at qT ≥ 15GeV, in
fact persists for the pZ

T spectrum as measured in bins of the Z boson rapidity at 8TeV by
the ATLAS collaboration [4].

Concerning the nonperturbative region of qT ≤ 5GeV, it has been pointed out in
ref. [168] that fits of nonperturbative TMD physics are subject to a sizable bias due to the
choice of reference collinear PDF set. We find this surprising in light of the small (≤ 1%)
relative differences between modern PDF sets that we observe in this region for common
nonperturbative inputs at the level of the self-consistently normalized pZ

T spectrum. We
hasten to add, however, that while the TMD fit of ref. [168] like other fits heavily relies on
LHC data for resonant Drell-Yan, the latter are, of course, not the only data set entering
the fit, and by our own universality arguments in section 3.4 insufficient to determine the
individual TMDs or, indeed, fully assess the presence of bias due to the collinear PDFs.

We find it interesting to also consider the impact of the parametric uncertainties on the
unnormalized pZ

T spectrum, which we show in figure 10 for reference. Since the data sets for
unnormalized spectra are more limited, we simply show our predictions on their own here,
using the ATLAS cuts for definiteness; in section 5 we will perform direct comparisons to
available data at the level of the unnormalized cumulative cross section, i.e., the piece of
information orthogonal to the normalized spectrum. Interestingly, while the various PDF
sets were in close agreement on the shape of the normalized spectrum, the agreement worsens
at the level of the unnormalized spectrum, see the right panel of figure 10. Together with
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Figure 11. Impact of aN3LO PDFs (blue) and of N4LL Sudakov effects (red/yellow, with overall
aN4LL+O(α3

s) accuracy) on the fiducial pZ
T spectrum relative to our baseline prediction (black/gray)

using an NNLO PDF set at N3LL′+O(α3
s) compared to the ATLAS 13TeV measurement [5]. Here we

compare the MSHT20nnlo and MSHT20an3lo PDF sets produced by the MSHT collaboration [27, 147].
Predictions on the left (right) are dressed with the perturbative (parametric PDF) uncertainty. The
top (bottom) row shows the impact on the normalized (unnormalized) pZ

T spectrum.

MSHT20an3lo NNPDF40an3lo

σ65 [pb]
aN4LL+O(α3

s)
N3LL′ +O(α3

s)
675.975
675.979

691.963
691.969

Table 4. Normalization factors for the additional fiducial pZ
T spectra shown in figure 11 and 12.

Normalization factors for the respective baseline NNLO PDF sets are given in tables 2 and 3.

our findings on the impact of nonperturbative physics and the size of the nonsingular cross
section, this suggests an attractive strategy to distinguish between PDF sets at complete
three-loop accuracy using the cumulative cross section, see section 5, which precisely retain
the PDF sensitivity that usually cancels to a large extent in normalized spectra.

4.4 Impact of N4LL Sudakov effects and approximate N3LO PDFs

While all of our highest-order predictions so far involved partonic cross sections at complete
three-loop accuracy, they employed NNLO PDFs determined using NNLO (three-loop)
DGLAP evolution and NNLO theory predictions in the fit, which until recently constituted
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Figure 12. Same as figure 11, but comparing the NNPDF40nnlo and NNPDF40an3lo PDF sets produced
by the NNPDF collaboration [28, 148].
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Figure 13. Impact of parameter variations in the nonperturbative TMD models at N3LL′ +O(α3
s)

for the MSHT20an3lo PDF set [27] (left) and for the NNPDF40an3lo PDF set [28] (right) compared to
the ATLAS 13TeV measurement [5]. For illustration, we also compare to the estimated size ∆pert of
the perturbative uncertainty.
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the state-of-the-art. Lately, both the MSHT and the NNPDF collaboration exploited the rapidly
growing body of knowledge [184–188] on the N3LO DGLAP and mass decoupling kernels in
order to produce approximate N3LO (aN3LO) PDF sets [27–31]. Notably, in ref. [27] both
the set of unknown N3LO K factors for the relevant physical processes and the few remaining
unknown N3LO DGLAP ingredients are promoted to nuisance parameters [173, 174]. In
addition, this allows for an improved uncertainty estimation of the PDF set, in principle also
addressing common obstacles such as correlations between missing higher-order uncertainties
in the fit and in predictions that use the PDF set.

Importantly, the DGLAP kernels also enter as a key set of noncusp anomalous dimensions
in resummed predictions for the qT spectrum, since they govern the evolution of the collinear
PDFs from their input scale to the beam function scale µB ∼ qT ∼ 1/bT . Specifically, since
the input scale is effectively set by the weak scale mW,Z ∼ Q in modern PDF sets due
to the wealth of LHC data entering the fits, this evolution indeed resums a large single
logarithm and cannot be bypassed when attempting to achieve N4LL accuracy in any TMD or
resummed prediction that uses collinear PDFs as input. Therefore, achieving (approximate)
N3LO DGLAP evolution provides the last missing ingredients for achieving (approximate)
N4LL accuracy at the level of the resummed spectrum. This is thanks to dedicated previous
efforts to calculate (or numerically estimate) the five-loop β function [120], the five-loop
cusp anomalous dimension [121], the four-loop rapidity anomalous dimension [131, 132], and
the four-loop virtuality anomalous dimensions [115, 126], all of which are also necessary
ingredients at this order. We collectively refer to these as “N4LL Sudakov effects”, as opposed
to the purely single-logarithmic DGLAP evolution. Conversely, since all of these contributions
are known either fully analytically or, in the case of the five-loop cusp anomalous dimension,
estimated to sufficient precision given its small overall impact a resulting approximate
N4LL (aN4LL) resummed prediction will be “approximate” precisely in the sense that the
underlying PDF set is aN3LO.

It is clearly of key interest to determine the size of the effect that N3LO evolution and
N3LO fixed-order contributions in PDF fits have on the extremely precisely measured pZ

T

spectrum at the LHC, and similarly for N4LL Sudakov effects. To do so, we have performed
a complete implementation of the additional N4LL Sudakov effects in SCETlib and interfaced
them with the recent aN3LO PDF sets to achieve aN4LL accuracy. Numerical results produced
with this further upgraded setup are shown in figure 11 and 12, with normalization factors
reported in table 4. Specifically, beginning with the MSHT sets, we show predictions at
N4LL+O(α3

s) (red) and N3LL′ +O(α3
s) (dashed blue) with the MSHT20an3lo set, normalized

to the N3LL′ + O(α3
s) results with the MSHT20nnlo set (dotted black) in figure 11. All

predictions consistently employ the approximate unexpanded analytic RGE solutions [61]
at the corresponding order, which are summarized in appendix A.

The effect of the approximate N3LO PDF set is quite significant, leading to differences
of up to ∼ 5% to the corresponding NNLO PDF set in the low-qT region and, crucially,
a decrease of the prediction by 1 − 2% in the region at qT ≥ 15GeV where we previously
observed an irreconcilable disagreement with the data. This implies that the three-loop
ingredients that were included during the fitting procedure have a nontrivial impact, even at
this high perturbative order. The much improved agreement in the region qT ≥ 15GeV is
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particularly remarkable in light of the fact that the shape of the pZ
T spectrum at values of

qT ≤ 30GeV has never been used as an input for any PDF fits, cf. ref. [189] for its uses in the
large pZ

T fixed-order region. These findings are confirmed almost entirely by performing the
analogous comparison between the two relevant NNPDF sets, as shown in figure 12, with only a
slightly reduced change going from NNLO to aN3LO in the region qT ≥ 15GeV compared to
MSHT. A similarly striking change from including aN3LO PDF information into the prediction
for the qT spectrum has previously been reported in ref. [40], and the MSHT20an3lo has in the
meantime also been adopted as the reference set for the αs(mZ) determination in ref. [16].

Turning to the N4LL Sudakov effects, we find that their additional effect on top of
the aN3LO PDFs at aN4LL is completely marginal in comparison. Specifically, in figure 11
the resummed and matched N4LL prediction (red) only exhibits marginal differences to
N3LL′ (dashed blue) for the same PDF set (MSHT20an3lo). As expected, the uncertainty
band of the former is contained within that of the latter, while their central values mildly
differ (≲ 0.5%) only in the first bin, indicating that the impact of the four-loop rapidity
boundary term is not large.

Returning to the comparison to the data in the region qT ≲ 10GeV we find that the
agreement of even the aN3LO PDF results (or, equivalently, the predictions at overall aN4LL)
with the data in this region is not optimal for our default nonperturbative model parameters.
Since our nonperturbative parameters were chosen mainly for illustration, it is interesting to
ask whether varying them further improves the agreement with the data and allows one to
resolve the residual differences in the region where the nonperturbative model is effective.
In figure 13 we thus show the same nonperturbative variations as in section 4.2, again at
N3LL′ +O(α3

s), but in this case using the MSHT20an3lo (left) and NNPDF40an3lo sets (right).
Taken at face value, no single parameter variation follows the entire data trend, but the
typical size of the effect of short-distance variations in the Collins-Soper kernel and the TMD
PDF effective model easily accounts for the remaining differences.

5 Results for cumulative fiducial pZ
T cross sections

Our earlier observation of differences between PDF sets at the level of the unnormalized
spectrum leads us to consider the cumulative pZ

T cross section, defined in terms of the fiducial
pZ

T spectrum as follows,

σ(qmax
T ) =

∫ qmax
T

dqT
dσ

dqT
, (5.1)

which can readily be computed in our framework by accumulating over bins in our previous
predictions. To estimate perturbative uncertainties in this case, we perform the envelopes
defined in section 4.1 after accumulating over bins, i.e., we treat the individual variations
entering the envelope as fully correlated across bins. We stress that while this amounts to an
ad-hoc assumption on the profile scale variations of section 4.1, it is, of course, a well-defined
procedure for the parametric nonperturbative, αs, and collinear PDF variations described
in sections 4.2 and 4.3. The correct correlations of the perturbative uncertainties in qT can
be fully accounted for using the approach of refs. [173, 174].
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Figure 14. Predictions for the unnormalized cumulative fiducial cross section (left) and the relative
difference to our prediction at the highest order (right) compared to the CMS 13TeV measurement [11].
The black (gray) bars indicate the experimental uncertainty excluding (including) the luminosity
uncertainty.
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Figure 15. Left: breakdown of perturbative uncertainties contributing to the cumulative fiducial
cross section at N3LL′ +O(α3

s). Right: impact of parameter variations in the nonperturbative TMD
models on the cumulative fiducial cross section at N3LL′ +O(α3

s). For illustration, we also compare
to the estimated size ∆pert of the total perturbative uncertainty.

We compare our predictions to the CMS 13TeV measurement in the µ+µ− channel [11]
using dressed muons. Both the unnormalized fiducial spectrum and its complete experimen-
tal covariance matrix were reported for this channel, allowing us to fully reconstruct the
experimental uncertainty on the cumulative cross section as a function of qmax

T . Our results
are shown in figure 14. We again observe excellent perturbative coverage and convergence,
this time at the level of the cumulative cross section, with the total perturbative uncertainty
estimate below the percent level at N3LL′ +O(α3

s), on par with the experimental uncertainty
if one excludes the common overall luminosity uncertainty. The prediction for our default
MSHT20nnlo PDF set overshoots the data, but the difference can easily be accounted for, as
we will see below, by the spread between NNLO PDF sets.

To substantiate the percent-level perturbative precision of the N3LL′ + O(α3
s) result,

we consider the breakdown of the perturbative uncertainty in the left panel of figure 15.
We find that the matching uncertainty, which increases with qmax

T , plays a crucial role in

– 46 –



J
H
E
P
0
2
(
2
0
2
5
)
1
7
0

10 20 30 40 50 60 70

-6

-5

-4

-3

-2

-1

0

1

2

3

4

10 20 30 40 50 60 70

-10

-8

-6

-4

-2

0

2

4

6

8

10 20 30 40 50 60 70

-10

-8

-6

-4

-2

0

2

4

6

8

Figure 16. Impact of parametric strong coupling variations (top left) and parametric PDF variations
for alternate NNLO PDF sets (top right), as well as for aN3LO PDF sets (bottom), on the cumulative
fiducial cross section at N3LL′ +O(α3

s), compared to the CMS 13TeV measurement [11]. The black
(gray) bars indicate the experimental uncertainty excluding (including) the luminosity uncertainty.

stabilizing the uncertainty estimate towards the fixed-order region. While an uncertainty of
≤ 0.6% at qmax

T ≥ 30GeV may seem aggressive even for a three-loop prediction, we believe
that our careful estimate derived from a large number of sources is reliable (and indeed could
be considered conservative at the level of the spectrum). In the right panel of figure 15
we consider the impact of the same model parameter variations encoding nonperturbative
TMD that we previously introduced in section 4.2. We find that the relative impact of any
reasonably sized variations is at the permille level already for qmax

T ≥ 25GeV, as expected
from their (1/qmax

T )2 falloff. This suggests that while the cumulative cross section in this
region is still sensitive to the effects of perturbative resummation, it is essentially unaffected
by genuinely nonperturbative physics, implying that it is fully predicted in terms of the
strong coupling and the collinear PDFs.

Turning now to the top left panel of figure 16, we see that the impact of strong coupling
variations of 0.118± 0.001 on the cumulative cross section is small and roughly of O(1%),
which should be contrasted with the much stronger impact of αs on the shape of the spectrum,
see the top left panel of figure 9. The most interesting observation of this section is found in
the top right and bottom panels of figure 16, where we compare the impact of alternate PDF
choices and PDF parametric uncertainties on the prediction for NNLO PDFs and aN3LO
PDFs, respectively. Keeping in mind the ≤ 1% perturbative accuracy of our predictions,
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NNLL+O(αs) N3LL+O(α2
s) N3LL′ +O(α3

s)

σ60 [pb]
W+

W−

4294.6
3281.5

4277.6
3257.8

4230.3
3220.1

Table 5. Normalization factors for the fiducial pW
T spectra shown in figure 17.

we find that our prediction together with the similarly precise experimental data can easily
distinguish between both NNLO and aN3LO PDF sets, and also constrain them further to
a fraction of their currently quoted uncertainties.

Discussion. Our findings for the cumulative cross section suggest an appealing strategy to
perform PDF fits at complete three-loop accuracy using our predictions here. Specifically, one
could envision a scheme where the nonsingular cross sections at O(α2

s) and O(α3
s), which are

numerically extremely expensive but small, are computed only once at a reference PDF set
and then treated as a fixed bias correction while propagating the PDF through the orders of
magnitude cheaper resummed cross section during the fit. The latter has complete three-loop
accuracy, but much more beneficial scaling of computational cost with the loop order. Such a
scheme is particularly attractive given that PDF fit templates at complete N3LO accuracy, as
required to further improve on the existing aN3LO PDF fits [27–31], are still lacking beyond
total inclusive cross sections [190], and have to be extrapolated to fiducial quantities using
K factors. By contrast, the scheme we propose here could even be extended easily to the
cumulative cross section differential in rapidity at negligible additional cost (mainly due
to the more differential reference nonsingular). Importantly, our findings for the impact of
nonperturbative TMD physics confirm that while resummation sensitive, the cumulative
cross section for the qmax

T values of interest is in fact nearly free of nonperturbative effects
and well suited for a perturbative QCD fit at leading twist.

6 Results for the fiducial pW ±

T spectrum

We finally use our setup to provide predictions for the transverse momentum spectrum of
W+ and W− bosons at the LHC. We apply the following set of reference fiducial cuts,

pℓ
T > 25GeV , |ηℓ| < 2.5 , pν

T > 25GeV , mT,W > 50GeV (6.1)

where the definition of a “transverse mass” often used in W analyses reads

m2
T,W ≡

(
pℓ

T + pν
T

)2 − (p⃗ ℓ
T + p⃗ ν

T

)2
, (6.2)

and it is understood that the magnitude and direction of p⃗ ν
T are reconstructed from the missing

transverse energy and transverse momentum in the event. Our results for the normalized
pW

T spectrum, its perturbative uncertainty, and the perturbative uncertainty breakdown, are
shown in figure 17. To account for the slightly larger nonsingular cross section due to the
lower effective value of Q, we here choose to normalize our predictions to a reference range of
0 ≤ qT ≤ 60GeV, with normalization factors given in table 5. We find that most features of
the prediction, notably including the perturbative convergence and coverage, closely resemble
those we found for the pZ

T spectrum. An interesting difference between the two is found when
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Figure 17. The normalized transverse momentum spectrum (top), its relative difference to the
highest-order prediction (middle), and the complete perturbative uncertainty decomposition in terms
of each conributing source (bottom) for W + (left) and W− (right) production.

considering the “factorization scale” uncertainty ∆DGLAP, see eq. (4.13), which has a much
more pronounced peak at qT ∼ 12GeV in this case, reaching a peak height of about 2%.
As previously found for the Z, these oscillations are due to the discontinuity of the PDF µ

dependence at the bottom quark threshold, and in this case — to our understanding — are
more pronounced because the sea and heavy quark channels (strange and charm) relevant
here are more susceptible than valence quarks to the discontinuous change in the gluon
PDF. We note that an alternate, more direct way of assessing these kinds of secondary
heavy-quark effects would consist of performing variations of the bottom-quark decoupling
scale µb away from the canonical µb = mb.
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Figure 18. Impact of parameter variations in the nonperturbative TMD models on the normalized
W + (left) and W− (right) pT spectrum at N3LL′ +O(α3

s). For illustration, we also compare to the
estimated size ∆pert of the perturbative uncertainty.

Finally, the impact of the nonperturbative parameter variations described in section 4.2
on the pW

T spectra is shown in figure 18. While the W+ and W− cases closely resemble each
other and the Z results in figure 8, we remind the reader that the interpretation and value
of the effective parameter ΩV encoding the TMD PDF boundary conditions is in principle
different for each of V = Z, W+, W−, and correlations between them must necessarily be
predicted from a full TMD flavor model. By contrast, for an analysis as in ref. [21] involving
only W bosons, but no tuning to the Z, effective (rapidity-dependent) nonperturbative
functions are fully sufficient, as we proved in sections 3.3 and 3.4.

7 Summary and conclusions

In this paper, we have provided state-of-the-art QCD precision predictions for the transverse
momentum (qT ) spectra of electroweak bosons at the LHC up to N3LL′ and approximate
N4LL in resummation-improved perturbation theory, matched to available O(α3

s) fixed-order
results. Our predictions fully account for the effect of realistic fiducial selection cuts on the
decay leptons, incorporate the entire relevant and available perturbative information at three,
four, and five-loop order in QCD, and feature a rigorously defined field-theoretic description of
the nonperturbative TMD physics at small qT ≳ ΛQCD. We have placed particular emphasis
on careful estimates of the magnitude of residual perturbative uncertainties on our predictions,
also assessing in detail the impact of scheme choices made to perform the matching between
nonperturbative, resummed perturbative, and fixed-order contributions to the spectrum. This
makes our predictions the first of their kind to consistently incorporate all information from
the nonperturbative region of qT ≳ ΛQCD all the way up to the fixed-order tail qT ∼ mZ , mW

with a complete assessment of the associated matching uncertainties. In addition, we have
studied the parametric strong coupling and PDF uncertainties in detail, finding that NNLO
PDF sets consistently overshoot the data at intermediate qT , a mismatch that is successfully
resolved a priori by the recent aN3LO PDF determinations. By contrast, the additional N4LL
Sudakov resummation ingredients at overall aN4LL accuracy only have a negligible impact
beyond the baseline N3LL′ prediction. Our predictions are made possible by a fast, modular,
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and well-tested implementation of N4LL resummation with fiducial cuts in the SCETlib
numerical C++ library. This scetlib-qT module, for which a public release is foreseen, has
in the meantime already found several applications [21, 26, 78, 174], in particular as a key
ingredient of the recent CMS mW measurement [21].

Regarding the treatment of nonperturbative TMD physics, our analysis for the first
time clarifies in detail under what conditions the — in general very complicated — flavor
and Bjorken-x dependence of the nonperturbative quark TMD PDFs can be captured by
a much simpler effective nonperturbative function for a given process. Indeed, we are able
to formally derive the intuitive notion that all nonperturbative effects in the pV

T transverse
momentum and rapidity spectrum of a given resonantly produced electroweak boson V at a
given collider configuration can be captured by a single effective one-dimensional function
of the transverse distance bT . We also showed simple pocket formulas to convert back to
general flavor-dependent TMD models. A similar result holds for the effective two-dimensional
function if the rapidity of V (or the pseudorapidity of a decay lepton) is measured in addition.
The complexity reduces further to a single nonperturbative number (or a one-dimensional
function of the rapidity) if only the leading quadratic correction of O(Λ2

QCDb2T ) is considered,
generalizing the approach of ref. [152]. While at face value this may seem like a step backward
from the desired goal of TMD universality as assessed by global TMD fits, our insights in
fact have two important uses:

(a) If a self-contained analysis of a single process is performed, e.g. when extracting the
strong coupling from resonant Z production or the W mass from W boson data alone,
our analysis clarifies the most general form of the nonperturbative physics that must be
included in this case. In fact, all of our predictions in this paper for single-differential
resonant pZ

T and pW
T spectra make heavy use of this, since it allows us to illustrate

the most general effect of TMD physics (beyond that of the Collins-Soper kernel) by
varying a single parameter ΩV in each case.

(b) Conversely, our statements about the validity of effective models can be read as precisely
specifying the maximum information on nonperturbative TMD physics that can be
extracted from a given pV

T spectrum in the context of a global fit. Specifically, in the
idealized limit where the spectrum is measured and perturbatively predicted to perfect
precision, it reduces the most general TMD nonperturbative parameter space by exactly
one dimension at each order in (ΛQCDbT )2n.

As an exciting immediate application of our predictions, we have identified a strong
sensitivity of the unnormalized cumulative pZ

T cross section to the physics of collinear PDFs,
with differences between recent PDF sets easily resolved within our three-loop perturbative
and the typical experimental uncertainties. Our framework also allows us to fully assess the
impact of nonperturbative physics on the cumulative cross section, indicating that it is at
the permille level already for a cumulative cut at qmax

T = 20GeV. Making use of the power
expansion in (pZ

T /mZ)2 valid in this region, we furthermore expect that the small — but
numerically extremely expensive — nonsingular cross section can be treated as a fixed bias
correction in future PDF fits to this observable, while the PDF can easily be propagated exactly
through the much cheaper three-loop resummed cross section during the fit, also differential

– 51 –



J
H
E
P
0
2
(
2
0
2
5
)
1
7
0

in rapidity. Fits to the cumulative fiducial pZ
T cross section at a value of qmax

T = 20− 30GeV
thus provide a very promising avenue for a numerically inexpensive, but nevertheless fully
three-loop accurate theory template for future improvements to approximate N3LO PDF sets.

In summary, the predictions and conceptual advances in this paper constitute another
important step towards a rigorous and comprehensive study of transverse momentum spectra
at hadron colliders. We look forward to future applications of our results to precision QCD
and electroweak physics at the LHC.
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A Renormalization group solutions at N4LL

The four-loop boundary condition for the rapidity anomalous dimension at a general scale
µ ∼ 1/bT is easily derived from eq. (2.18) in terms of the cusp anomalous dimension and
the recently calculated four-loop constant term γ̃i

ν 3 at µ = b0/bT [132, 133]. Using the
conventions and notation of ref. [127], it reads

γ̃i (3)
ν (bT , µ) = −L4

b

1
2β3

0Γi
0 + L3

b

(
β3
0 γ̃i

ν 0 −
5
3β0β1Γi

0 − 2β2
0Γi

1
)

+ L2
b

(5
2β0β1γ̃

i
ν 0 + 3β2

0 γ̃i
ν 1 − β2Γi

0 − 2β1Γi
1 − 3β0Γi

2

)
+ Lb

(
β2γ̃

i
ν 0 + 2β1γ̃

i
ν 1 + 3β0γ̃

i
ν 2 − 2Γi

3
)
+ γ̃i

ν 3 , (A.1)

where Lb = ln
(
b2T µ2/b20

)
.
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Next, using the conventions and nomenclature of ref. [61], the N4LL iterative solution
for the running of the strong coupling reads

α(µ0)
α(µ) = X+ϵ

α(µ0)
4π

b1 lnX+ϵ2
α(µ0)2

(4π)2
(

b2
X−1

X
+b21

1−X+lnX

X

)
+ϵ3

α(µ0)3

(4π)3
[
b3

X2−1
2X2 +b2b1

(1−X

X
+ lnX

X2

)
+b31

(1−X)2− ln2 X

2X2

]
+ϵ4

α(µ0)4

(4π)4
1

6X3

[
(1−X)

(
(2X2−X−1)b41−6(X2−1)b21b2+2(X2+X−2)b22

+(4X2+X+1)b1b3−2(X2+X+1)b4
)
+6b1

(
(X−1)b31+(1−X)b1b2+b3

)
lnX

−3(b41+2b21b2) ln2 X+2b41 ln3 X

]
, (A.2)

where bn = βn/β0, X = 1 + αs(µ0)
2π β0 ln(µ/µ0), and ϵ = 1 is a bookkeeping parameter for the

order of the expansion. Finally, using again the techniques and notation of ref. [61], the N4LL
iterative solutions for the building blocks of the Sudakov evolution kernels are given by

KΓ(µ0,µ) =− Γ0
4β2

0

{ 4π

α(µ0)

(
1− 1

r
− ln r

)
+ϵ

[
(Γ̂1−b1)(1−r+ln r)+ b1

2 ln2 r

]
+ϵ2

α(µ0)
4π

[
(b21−b2)

(1−r2

2 +ln r

)
+(b1Γ̂1−b21)(1−r+r ln r)

−(Γ̂2−b1Γ̂1)
(1−r)2

2

]
+ϵ3

α(µ0)2

(4π)2
[
(b2−b21)(Γ̂1−b1)

(1−r)2(2+r)
3

+(Γ̂3−b3−b1(Γ̂2−b2))
(1−r3

3 − 1−r2

2

)
+b1(Γ̂2−b2−b1(Γ̂1−b1))

(1−r2

4 + r2 ln r

2

)
+(−b3+2b1b2−b31)

(1−r2

4 + ln r

2

)]
+ϵ4

α(µ0)3

(4π)3
[

b3Γ̂1
12

(
5−6r−2r3+3r4

)
+ b2Γ̂2
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36
(
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12
(
7−6r(1+r)+2r3+3r4−4 ln r+4r3 ln r

)
+ b31Γ̂1

36
(
25−18r(1+r)+2r3+9r4+12r3 ln r

)
− b21Γ̂2

36
(
13−18r2−4r3+9r4+12r3 ln r

)
+ b2b

2
1

36
(
41−36r(1+r)+4r3+27r4−36 ln r+24r3 ln r

)
− b3b1

18
(
7−9r−7r3+9r4−12 ln r+6r3 ln r

)
+ b1Γ̂3

36
(
7−16r3+9r4+12r3 ln r

)
− b2b1Γ̂1

18
(
20−18r−9r2−2r3+9r4+6r3 ln r

)]}
, (A.3)
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Figure 19. Same as the center left panel of figure 6, but normalizing to the whole kinematic range of
0 ≤ qT ≤ 2.5TeV instead. For the purposes of this plot, we in addition switched to the NNPDF40nnlo
PDF set as baseline, cf. figure 9, and turned off the nonperturbative model for use as a reference. Further
modifications are described in the text. The prediction at the highest order still visibly overshoots
the data for qT ≥ 20GeV with these settings, and is not compatible with it within uncertainty.

NNLL+O(αs) N3LL+O(α2
s) N3LL′ +O(α3

s)
σ [pb] 724.01 728.9 722.1

Table 6. Normalization factors for the fiducial pZ
T spectrum shown in figure 19.

Kγ(µ0,µ) =− γ0
2β0

[
ϵ ln r+ϵ2

α(µ0)
4π

(γ̂1−b1)(r−1)+ϵ3
α(µ0)2

(4π)2 (γ̂2−b1γ̂1+b21−b2)
r2−1
2

+ϵ4
α(µ0)3

(4π)3
[
γ̂3−b3−b1(γ̂2−b2)+(b21−b2)(γ̂1−b1)

]r3−1
3

]
, (A.4)

ηΓ(µ0,µ) =− Γ0
2β0

[
ln r+ϵ

α(µ0)
4π

(Γ̂1−b1)(r−1)+ϵ2
α(µ0)2

(4π)2 (Γ̂2−b1Γ̂1+b21−b2)
r2−1
2

+ϵ3
α(µ0)3

(4π)3
[
Γ̂3−b3−b1(Γ̂2−b2)+(b21−b2)(Γ̂1−b1)

]r3−1
3

+ϵ4
α(µ0)4

(4π)4
[
b41+b22−b4−b31Γ̂1−b3Γ̂1−b2Γ̂2

+b21(Γ̂2−3b2)+b1(2b3+2b2Γ̂1− Γ̂3)+Γ̂4
]r4−1

4

]
, (A.5)

where in addition Γ̂n = Γn/Γ0, γ̂n = γn/γ0, and r = αs(µ)/αs(µ0).

B Reference results for spectra normalized to the full qT range

In this appendix we provide reference results for the fiducial pZ
T spectrum normalized on the

whole kinematic range, i.e., extending all the way into the far fixed-order tail. To do so, we
directly use the fixed-order data from ref. [43] to perform the matching without additional
modification, also adopting the original slicing cut of qcutT = 0.447GeV used in that reference,
and switch to NNPDF40nnlo as the baseline PDF set. For consistency and ease of comparison
with the resummed component of ref. [43] (and the integrated counterterm, i.e., the fixed-order
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singular cross section, in the N3LO results of ref. [43]), we furthermore switch off all singlet
terms in the hard function and switch off the nonperturbative model by setting

ων,q = ΩZ = 0 . (B.1)

Our results with these settings are shown in figure 19, with normalization factors (i.e., total
fiducial Drell-Yan cross sections) reported in table 6. As further consistency checks against
the fixed-order results reported in ref. [43], we have verified that the LO cross section agrees in
all significant digits, and that the O(α3

s) increment to the fixed-order cross section, reported
as −18.7(1.1) pb in ref. [43], is in numerical agreement with our result of −19.0(1.1) pb
within numerical uncertainty.18

Data Availability Statement. This article has no associated data or the data will not
be deposited.

Code Availability Statement. This article has no associated code or the code will not
be deposited.
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