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Abstract: Combining high peak- and high average power has long been a key challenge of

ultrafast laser technology, crucial for applications such as laser-plasma acceleration and strong-

field physics. A promising solution lies in post-compressed ytterbium lasers, but scaling these

to high pulse energies presents a major bottleneck. Post-compression techniques, particularly

Herriott-type multi-pass cells (MPCs), have enabled large peak power boosts at high average

powers but their pulse energy acceptance reaches practical limits defined by setup size and coating

damage threshold. In this work, we address this challenge and demonstrate a novel type of

compact, energy-scalable MPC (CMPC). By employing a novel MPC configuration and folding

the beam path, the CMPC introduces a new degree of freedom for downsizing the setup length,

enabling compact setups even for large pulse energies. We experimentally and numerically verify

the CMPC approach, demonstrating post-compression of 8 mJ pulses from 1 ps down to 51 fs

in atmospheric air using a cell roughly 45 cm in length at low fluence values. Additionally, we

discuss the potential for energy scaling up to 200 mJ with a setup size reaching 2.5 m. Our work

presents a new approach to high-energy post-compression, with up-scaling potential far beyond

the demonstrated parameters. This opens new routes for achieving the high peak and average

powers necessary for demanding applications of ultrafast lasers.

1. Introduction

Ultrafast laser technology has experienced immense progress within recent years. Ultrashort,

high-peak power lasers are used in a vast range of applications, including attosecond science and

high-harmonic generation [1–4], laser-plasma acceleration [5, 6] or high-field science including

laser-based nuclear fusion [7]. However, developing a laser source which is simultaneously

average and peak power scalable remains a major challenge.

The invention of mode-locked solid-state laser technology, in particular Titanium-doped

sapphire (Ti:Sa) lasers in combination with chirped-pulse amplification (CPA) enabled ultrashort,

few-cycle pulses with unprecedented pulse energy [8–10]. Nowadays, peak powers exceeding

the Terawatt regime are routinely employed [9]. While excelling in peak power performance,

Ti:Sa amplifiers are commonly constrained in average power to a few tens of Watts, which

can be attributed to their large quantum defect [11]. As an alternative to laser amplification

in active gain media, optical parametric processes can be employed. In particular optical

parametric chirped-pulse amplifiers (OPCPA) offer broad bandwidths supporting few-cycle

pulses and simultaneously high average powers [10, 12]. However, OPCPA systems suffer
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from low pump-to-signal efficiencies typically around 10-20% for pulses in the range of 10s of

femtoseconds (fs) [13]. Ultrafast Ytterbium (Yb) -based laser architectures on the other hand

provide excellent average power scalability exceeding 10 kW [14], but pulse durations limited

to 100s of femtoseconds up to about 1 picosecond (ps). Combining Yb lasers with efficient

post-compression methods supporting large (>10) compression factors and high pulse energies

can offer an excellent solution to the power scaling challenge.

In recent years, a number of post-compression techniques have been developed, mostly relying

on self-phase modulation (SPM) as the nonlinear process for spectral broadening [15]. In

particular, gas-based technologies provide excellent tools for post-compression of high power

lasers. Example systems rely on gas-filled hollow-core fibers (HCF) [16–18], cascaded focus and

compression (CASCADE) [19], white-light filaments [20], as well as Herriott-type multi-pass

cells (MPCs) [15,21–23]. In HCFs, post-compression of 70 mJ 220 fs pulses down to 30 fs has

been demonstrated in a 3 m long fiber [24]. Post-compression of very high pulse energies in the

multiple Joule range has been achieved via thin-film spectral broadening techniques. However,

typical compression factors lie in the range of only 2-5 [25, 26]. Similar to HCFs, MPCs enable

large compression factors reaching 10-20 or more while supporting a wide range of pulse energies.

In addition, MPCs support high average powers [27] and outperform HCFs in system footprint

especially for large compression factors [15]. The maximum attainable energy acceptance in

a standard, two-mirror MPC is directly proportional to its size [15, 28]. A record of 200 mJ

has been achieved in a 10 m long MPC setup [29]. Further energy up-scaling leads to MPC

sizes that are impractical for standard laboratory settings. The development of a highly efficient

post-compression method supporting large compression factors and high pulse energies thus

remains a key challenge.

We here introduce a new MPC type, the compact MPC (CMPC) which possesses a weakly

focused fundamental mode as well as a linear beam pattern on the focusing mirrors. This

geometry allows us to fold the beams inside the MPC using two additional planar mirrors, thus

introducing a new energy scaling parameter, the folding ratio Γ. The CMPC in principle allows

for an arbitrary amount of folding and thus, very compact setup sizes while sharing key properties

of standard MPCs such as high average power support, excellent beam quality and efficiency.

We experimentally demonstrate spectral broadening of 1030 nm, 8 mJ, 1 ps pulses in a CMPC in

atmospheric air using a setup with an effective length of around 45 cm. We keep the maximum

mirror fluence at a moderate level of around 170 mJ/cm2 and demonstrate compressibility of 1 ps

input pulses down to 51 fs with an MPC throughput reaching 89% while maintaining excellent

spatio-temporal pulse characteristics.

2. Concept

Most MPCs demonstrated for post-compression to date rely on two identical concave mirrors,

resembling the most basic optical cavity arrangement. However, more complex designs

employing a convex and a concave mirror [30,31] or even multiple additional mirrors can provide

advantageous mode-forming capabilities. MPCs with more than two mirrors have been proposed

in previous works focusing on energy-scaling of MPCs [31,32]. The concept of the CMPC is

based on a weakly focused beam and folding of the beam path via multiple reflections on two

additional, planar mirrors in each pass through the cell, as shown in Fig. 1. This provides an

additional tuning parameter, namely the folding ratio Γ, which reduces the length of the CMPC

by !eff ≈ !/Γ. Figures 1(A) and 1(B) depict the principle of beam folding and the effective size

reduction of the cell together with the configuration regimes for standard MPCs and the CPMC.

In general, the geometry of a symmetric Herriott-type MPC - including a CMPC - is fully

determined by three of the following four parameters: radius-of-curvature (ROC) of the mirrors

', the propagation length between the two focusing mirrors !, the number of round-trips # , and





















high-energy laser pulses in a compact setup. The CMPC enables tuning and down-scaling

of the setup size via beam folding using additional planar mirrors, using weakly focused cell

modes. Instead of increasing the length of the setup, the folding ratio Γ acts as the energy scaling

parameter. We demonstrate post-compression in air from 1.1 ps down to 51 fs in a CMPC with

an effective length of 45 cm and a folding ratio Γ = 25, while keeping the fluence comparable to

a standard MPC supporting the same pulse energy but requiring around 2 m cell length. Further

up-scaling options promise post-compression of pulses with an energy of 100 mJ and beyond in

a table-top setup.
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S1. Nonlinear Pulse Propagation Model

The pulse propagation model used for simulations in this work is presented here. We use

single-atomic gases as well as ambient air, which mainly consists of molecular gases (N2 and

O2), as the nonlinear media. In order to conduct simulations, we thus need to take into account

time-dependent nonlinear 3rd-order effects, which stem from coupling of the electric field to the

rotational states of the gas molecules [35, 36]. The full equation for the propagation model used

in this work can be written in the frequency and spatial frequency domain as:

d� (:G , :H , l)

dI
= 8:I � (:G , :H , l) + %NL (:G , :H , l) , (5)

where :I =

√

:2 (l) − :2
G − :2

H , : (l) = =(l)l/20 with l denoting the radial frequency, :G

and :H the spatial wave-numbers, 20 the speed of light in vacuum and =(l) the refractive

index. The second term %NL in equation (5) contains all the nonlinear effects used in the

model. Here we include the Kerr-effect via the nonlinear refractive index =2 up to its first

order derivative, as well as the single damped-oscillator model for the molecular response as

described in references [36,37]. The gas-specific single damped-oscillator model is described

by the damping time Γ, the frequency Λ, the Raman-Kerr nonlinear refractive index =R
2

and

the Raman-Kerr fraction 5R. In space and time domain, the nonlinear polarization %NL can be

written as:

%NL (G, H, C) =
cY020=(_)

_

[ (

=2 |� |
2 − 8

(

_

2c

=2

20

+
d=2

dl

) (

2�∗ d�

dC
+ �

d�∗

dC

))

(1 − 5R) (6)

+ 5R =R
2

Γ
2/4 + Λ

2

Λ
Im

{

e−(Γ/2−8Λ)C

∫ ∞

−∞

e(Γ/2−8Λ)C ′ |� (C′) | dC′
}

]

, (7)

where � = � (G, H, C) is the electric field of the pulse, �∗ the complex conjugate of � , Y0 the

dielectric constant, =(_) the refractive index and =2 the nonlinear refractive index. The first

derivative d=2/dl is determined using the scaling formula described in reference [38] (Eq. (12)).

Equation (7) describes the delayed molecular response of the medium. For the case of 1 bar

of air, we use Λ = 12 THz, Γ = 10 THz, 5R = 0.6, which we extract from reference [36], as

well as the Raman-Kerr nonlinear refractive index =R
2
= 42 × 10−24 m2/W [39]. We further

use =2 = 8 × 10−24 m2/W [40] for air and =2 = 24 × 10−24 m2/W for krypton [41]. We solve

Eq. (5) using a radially symmetric (2+1)D split-step approach with � = � (A, C) and the spatial

coordinate A =
√

(G2 + H2), where in the spatial domain, the Fourier-transforms are replaced by

Hankel-transforms1.

S2. Calculation of CMPC mirror dimensions

We here provide some useful equations describing the required minimum mirror dimensions

for the CMPC. We consider a pulse energy � , a threshold fluence �th as well as the CMPC

configuration with : and # . We determine the focusing mirror radius-of-curvature ', the diameter

of the focusing mirrors D (which is the same as the height of the planar mirrors) and the width of

the planar folding mirrors W. The corresponding dimensions are shown in Fig. 10. In order to

1In the simulations we use the "pyhank" package by Github user etfrogers for Hankel-transforms.
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Fig. 10. CMPC geometry.

calculate ', we use the equation for the fluence in the focus �0 = 4�/(_' sin (c:/#)) [32], set

�0 ≤ �th and re-arrange such that

' ≥
4�

_�th

1

sin (c:/#)
. (8)

To find out the width of the planar folding mirrors , , we need to ensure that the beam at any

reflection has sufficient free aperture. For this, we define a factor V, where VFm is the distance

between the spot on the focusing mirror to the first reflection on the folding mirror [Fig. 10], and

Fm = ('_/c · tan (c:/2#))1/2 [32] is the 1/42 beam radius on the focusing mirror. With some

basic geometric considerations, we arrive at:

, ≥
Γ

4
V

√

4�

c�th

tan (c:/2#)

sin(c:/#)
, (9)

defining the minimum width of the planar folding mirrors. Here, Γ is the folding ratio. We

typically choose a value V = 5 for our size estimations. The height of the mirrors, or equivalently,

the minimal diameter of the focusing mirrors � can be calculated via:

� ≥
(2# + 1)V

c3/2

√

'_ tan (c:/2#) . (10)

S3. Spectral homogeneity calculation and experimental data

The spatio-spectral homogeneity, expressed as the G and H-dependent spectral overlap + (G, H) as

it is used in reference [29], is calculated using the overlap integral

+ (G, H) =

[
∫

�0 (_) � (_, G, H) d_
]2

∫

�2
0
(_) d_

∫

�2 (_, G, H) d_
× 100 , (11)

where _ is the wavelength, � the spectral intensity and �0 the spectral intensity at (G, H) = (0, 0).

The averaged spectral homogeneity is then calculated using the average of + (G, H) weighted with

the wavelength-integrated intensity � (G, H) =
∫

� (_, G, H) d_, yielding

+avg =

∫ F

−F
+ (G, H) � (G, H)dGdH
∫ F

−F
� (G, H)dGdH

, (12)

where F is the 1/42 beam radius in G- and H-direction respectively.

In Figs. 11-13 we display + (G, H) for the measurements in krypton and air in the CMPC, as

well as the comparison measurement conducted in a standard MPC. Figure 11 shows + (G, H) for

each measurement point which is displayed in Figure (8)(A) in the main article. In Fig. 12, the



spectral homogeneity is shown for the air measurements, carried out at the same parameters as

the main spectral broadening and post-compression measurements shown in Fig. 5 in the main

article with 1 bar air and 8 mJ pulse energy. Finally, Fig. 13 shows + (G, H) for the comparison

measurement in a standard MPC.
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Fig. 11. Spectral homogeneity + (G, H) [Eq. (11)] for each +avg data point shown in Fig.

8 in the main article. The circles indicate the area of integration for the calculation of

+avg [Eq. (12)].
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Fig. 12. Spectral homogeneity + (G, H) [Eq. (11)] for spectral broadening in air at 8 mJ.

The circle indicates the area of integration for the calculation of +avg [Eq. (12)].
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Fig. 13. Spectral homogeneity+ (G, H) [Eq. (11)] for the MPC comparison measurement

shown in Fig. 8(C) in the main article. The circle indicates the area of integration for

the calculation of +avg [Eq. (12]).
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