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1 Introduction

Measurements of diboson production at the CERN LHC are relevant for precision studies
of the standard model (SM). In the SM, ZZ production proceeds mainly through processes
represented by the quark-antiquark ¢- and wu-channel scattering diagrams (figure 1 left).
In calculations at higher order in quantum chromodynamics (QCD), gluon-gluon fusion
also contributes via box diagrams involving quark loops (figure 1 right). The electroweak
(EW) and QCD vertices result in the production of Z pairs and of associated jets, and the
measurement of this process is the goal of this analysis.

Previously pairs of on-shell Z bosons, produced in the dilepton mass range 60-120 GeV,
were studied by the CMS Collaboration using data sets with integrated luminosities of
51fh " at /s = 7TeV [1], 19.6fb™ " at /s = 8TeV [2, 3] in the ZZ — 202¢', 77 — 202t
and ZZ — 202v decay channels, where ¢,¢ = e or p, and with integrated luminosities of
2.6fb~" [4] and 35.9fb™" [5] at /s = 13TeV in the ZZ — 2£2¢' decay channel. The ZZ cross
section was also measured at /s = 5.02 TeV based on the ZZ — 202¢' and ZZ — 2(2v decay
channels [6]. The differential cross sections for Z boson pair production in association with
jets were measured at /s = 8 and 13 TeV with integrated luminosities of 19.7 and 35.9 fbfl,
respectively, using the ZZ — 2¢2¢ decay channel [7]. The most recent measurement of
77 production cross sections with the full Run 2 data set with an integrated luminosity of
137 " at Vs = 13TeV performed by the CMS Collaboration was published in ref. [8], and
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Figure 1. Example Feynman diagrams of ZZ production associated with jets via (left) quark-initiated
production and (right) loop-induced gluon fusion production.

results on the EW production of ZZ+2jets were published in ref. [9]. All measurements agree
with SM predictions. The ATLAS Collaboration published similar results at /s = 7, 8, and
13 TeV [10-15], which also agree with the SM. These measurements are important to test
predictions recently made available at next-to-next-to-leading order (NNLO) in QCD [16].
Comparing measurements at the highest collision energies to theoretical predictions tests the
ability of the most advanced higher order QCD and EW calculations to predict the cross
sections of complex final states with jets and multiple vector bosons, and the full Run 2
proton-proton (pp) collision data at /s = 13 TeV allow diboson measurements at the highest
energies and integrated luminosities to date.

This paper reports a measurement of the four-lepton production (pp — 2¢2¢, where
2¢ and 2¢' indicate oppositely charged pairs of electrons or muons, and Z/y* interference
is included) in association with jets at /s = 13 TeV using a data set with an integrated
luminosity of 138 fb~! recorded in 2016-2018 by the CMS experiment. Cross sections are
reported for the nonresonant production of pairs of Z bosons, pp — ZZ, in association with
jets, where both Z bosons are produced on-shell, defined as Z bosons with mass in the range
60-120 GeV. The effect of the presence of jets on the four-lepton mass (my,) distribution
is also studied with and without the on-shell requirement. Differential distributions and
cross sections are measured with respect to jet multiplicity (Njes), transverse momentum pr,
pseudorapidity 7, invariant mass and An of the dijet system composed of the highest-p and
second-highest-pr jets, and with respect to my, for events with different jet multiplicities.
The results are compared with predictions of theoretical models. This analysis is an extension
to that of ref. [8] with a focus on jet variables. The two analyses, ref. [8] and this paper, use
the same events with a few minor differences: (i) a 0.3% update in the estimated luminosity
of the data set; (ii) the simulation program MADGRAPH5 aMC@NLO [17] is used instead of
POWHEG [18-21] as the nominal qq — ZZ sample; and (iii) a regularized unfolding method is
used instead of a simple matrix inversion. Therefore, the ZZ fiducial cross section measured
in ref. [8] is directly valid for this analysis. The results are also compared with recent
nNNLO+PS predictions [22, 23], where PS is parton shower.



2 The CMS detector

A detailed description of the CMS detector, together with a definition of the coordinate
system used and the relevant kinematic variables, can be found in ref. [24].

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal
diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel
and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass
and scintillator hadron calorimeter, which provide coverage in pseudorapidity |n| < 1.48 in a
cylindrical barrel and 1.48 < |n| < 3.00 in two endcap regions. Forward calorimeters extend
the coverage provided by the barrel and endcap detectors to |n| < 5.0. Muons are detected in
gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid in the
range |n| < 2.4, with detection planes made using three technologies: drift tubes, cathode
strip chambers, and resistive-plate chambers.

Electron momenta are estimated by combining energy measurements in the ECAL with
momentum measurements in the tracker. The momentum resolution for electrons with
pr ~ 45GeV from Z — eTe™ decays ranges from 1.7% for nonshowering electrons in the
barrel region to 4.5% for showering electrons in the endcaps [25]. Matching muons to tracks
identified in the silicon tracker results in a p resolution for muons with 20 < pp < 100 GeV
of 1.3-2.0% in the barrel and better than 6% in the endcaps. The pt resolution in the barrel
is better than 10% for muons with pr up to 1TeV [26, 27].

Events of interest are selected using a two-tiered trigger system. The first level, composed
of custom hardware processors, uses information from the calorimeters and muon detectors
to select events at a rate of around 100 kHz within a fixed latency of 4 us [28]. The second
level, known as the high-level trigger, consists of a farm of processors running a version of
the full event reconstruction software optimized for fast processing, and reduces the event
rate to around 1kHz before data storage [29].

3 Data and Monte Carlo samples

The data sample used in this analysis was recorded by the CMS experiment in 2016, 2017,
and 2018, corresponding to 36.3, 41.5, and 59.7 fb! of integrated luminosities, respectively.
The details of the luminosity measurement are described in refs. [30-32].

The Monte Carlo (MC) simulation used for this analysis can be divided into signal
and background samples. The ZZ signal production via quark-antiquark annihilation is
simulated at next-to-leading order (NLO) in QCD with MADGRAPH5_aMC@QNLO v2.4.2 [17]
and POWHEG 2.0 [18-21]. The MADGRAPH5_aMC@NLO sample is used as the nominal
qq — 77 sample in reconstruction-level distributions and for unfolding, because this sample
is expected to describe data better than POWHEG since it merges the 0-jet and 1-jet NLO
processes, whereas the POWHEG sample is simulated at NLO accuracy for 0-jet and LO
accuracy for 1-jet processes. The gg — Z7Z process is simulated at leading order (LO) with
MCFM v7.0 [33]. The cross sections of these samples are normalized to the cross sections
calculated at NNLO in QCD for qq — ZZ (K factor of 1.1) [16] and at NLO in QCD for
gg — Z7 (K factor of 1.7) [34]. The production processes via SM Higgs boson production
and decay (specifically gg — H — ZZ) are simulated with POWHEG at NLO. Electroweak ZZ



production in association with two jets is simulated with MADGRAPH5__aMC@NLO [17] at LO.
The nominal SM signal predictions are derived from the MADGRAPH5_aMCQ@NLO qq — ZZ
sample, the MCFM gg — ZZ sample, and the MADGRAPH5_aMCQ@QNLO EW production
sample, which includes vector boson fusion Higgs boson contributions and their interference
with non-Higgs boson EW production, and the POWHEG H — ZZ sample.

Simulated events for the irreducible background processes containing four prompt leptons
in the final state, such as ttZ, WWZ, WZZ, and ZZZ, where the last three are combined and
denoted as VVV, are simulated with MADGRAPH5 aMC@NLO at LO (ttZ) and NLO (VVV).

Parton showering, hadronization and fragmentation are simulated in all samples with
PYTHIA 8.226 and 8.230 [35], with parameters set by the CUETP8M1 [36] (CP5 [37]) tune
for the 2016 (2017 and 2018) data-taking period, and the NNPDF3.0 (3.1) set of parton
distribution functions, PDFs, [38] is used.

Results are also compared with the very recent nNNLO+PS predictions [22, 23], which
consist of NNLO predictions for the quark-initiated production combined with parton showers
using the MiNNLOpg method, and NLO predictions for the loop-induced gluon fusion
production matched to parton showers, with event generators for the two channels implemented
in the POWHEG framework. Spin correlations, interferences, and off-shell effects are included
by calculating the full process pp — (e 0t and considering all contributions to the
four-lepton final state. The contribution mediated by a Higgs boson is included in the
gluon fusion production mode.

As part of the nNNLO+PS predictions, the qq — ZZ predictions from the MiNNLOpg
method are accurate at NNLO for inclusive production and accurate at NLO for Z+1-jet
production. The combination of the two jet multiplicities does not require any unphysical
merging scale [39]. These predictions are expected to be more accurate at high jet multiplicities
than: (i) the POWHEG qq — ZZ predictions, which are accurate at NLO in inclusive
production; (ii) the MADGRAPH5__aMC@QNLO predictions, which are simulated at NLO with
the 0- and 1-jet processes, and merged using the FxFx scheme [40].

The detector response is simulated using a detailed description of the CMS detector
implemented with the GEANT4 package [41]. The simulated samples include additional
interactions per bunch crossing, referred to as pileup. Simulated events were weighted so
that the pileup distribution reproduces that observed in the data.

4 Event reconstruction

Standard CMS reconstruction and identification (ID) algorithms, referred to as particle-flow
(PF) [42], are used to reconstruct and identify stable particles arising from collisions —
electrons, muons, photons, and charged and neutral hadrons — by combining the signals
from all subdetectors. Electrons and muons are considered candidates for the reconstruction
of 77 final states (“signal leptons”) if their pf > 7(5) GeV and their |n‘| < 2.5(2.4) for
electrons (muons).

Signal leptons are required to originate from the primary interaction vertex of the event,
which is taken to be the vertex corresponding to the hardest scattering in the event, evaluated
using tracking information alone, as described in section 9.4.1 of ref. [43]. The distance of
the lepton track origin from the primary vertex is required to be <1 cm along the beam line,



and <0.5cm in the transverse plane. Furthermore, the significance of the three-dimensional
impact parameter relative to the event vertex, SIPsp, is required to satisfy SIP3p = |%| <4
for each lepton, where IP is the distance of closest approach of the lepton track to the primary
vertex and oyp is its associated uncertainty.

Loose and tight ID requirements are defined for each lepton. The tight IDs are used for
signal leptons, whereas the loose IDs are used in control regions to define objects that might
be spuriously identified as a signal lepton. An electron satisfies the loose ID if it satisfies
the p, n, and vertex requirements above. It satisfies the tight ID if it satisfies the loose ID
and the multivariate discriminator described in ref. [44]. A muon satisfies the loose ID if
it satisfies the above pp, 1, and vertex requirements, and provides a good track-matching
between the tracker and the muon detectors. It satisfies the tight ID if it satisfies the loose
ID, and either is tagged as a muon by the PF algorithm for the years 20162017 (satisfies
a multivariate discriminator for the year 2018 [45]), or is a high py (> 200 GeV) muon and
satisfies a set of requirements on the quality of the associated track.

Signal leptons are required to be isolated from other particles in the event. The relative
isolation is defined as

Rigo = ( > pT—i‘maX[O, S pr+ D pr —pr’ (@D/pfr (4.1)

charged neutral photons

where the sums run over the pr of hadrons and photons in a cone of size AR
V(An)? 4 (A¢)* = 0.3 around the lepton momentum direction, where ¢ is the azimuthal
angle in radians. To mitigate the contribution of pileup interactions to the isolation, charged

hadrons are included only if they originate from the primary vertex [46]. The estimated
neutral contribution to the isolation from pileup, p?U(E), is defined differently for electrons
and muons. For electrons, pEEU (e) = p A.g where the average pr flow density p is calculated
for each event using a “jet area” method [47], and is defined as the median of the .Tet [Ajet
distribution for all pileup jets in the event. The effective area A.g is the geometric area of
the isolation cone projection on the face of the calorimeter multiplied by an n-dependent
correction factor that accounts for the residual dependence of the isolation value on pileup.

For muons, ng(u) =0.5 Zp?U’i, where ¢ runs over the momenta of the charged hadron

PF candidates originating %rom pileup vertices, and the factor of 0.5 corrects for the ratio
of charged to neutral particles in the isolation cone. For the years 2016-2017, muons are
considered isolated if their Ry, < 0.35, whereas for 2018 and for electrons the isolation
requirement is included in the multivariate discriminator used for the selection.

The efficiencies for the reconstruction, identification, and isolation of signal leptons are
measured in data and simulation using a tag-and-probe technique [48] based on inclusive
samples of Z boson events, with an additional sample of J/y events for low-pt muons. The
measurements are performed in bins of pff and \nz\, where for electrons the supercluster 7 is
used. The electron selection efficiency in the ECAL barrel (endcaps) varies from ~85 (77)%
at p% ~ 10 GeV, to ~95(89)% for ch > 20 GeV, and is ~85% in the barrel-endcap transition
region. The muons are reconstructed and identified with efficiencies above ~98% within
|n"| < 2.4. The ratio between the data and simulation efficiencies in each pp-|n| bin is applied
as a correction factor to leptons in simulated events. If the correction factor for a given lepton



is ffff(pTé, 77@), the efficiency correction for each event is [] ffﬁ(pTz, 776), where the product
¢

index runs over the four leptons of the ZZ candidate.

Jets are reconstructed based on PF candidates, rejecting the charged hadrons associated
to a pileup vertex, with the anti-kr clustering algorithm [49, 50] using a distance parameter
R = 0.4. To reduce the instrumental background, tight identification criteria based on
the multiplicities and energy fractions carried by charged and neutral hadrons are imposed
on jets [51]. Jets from pileup are rejected using pileup jet identification criteria based
on the compatibility of the associated tracks with the primary vertex, when inside the
tracker acceptance, and on the jet topology [46]. Jet energy corrections are applied to the
reconstructed jets [52, 53].

5 Event selection

The data samples used in this analysis are selected by the trigger system that requires
the presence of a pair of loosely isolated leptons or a triplet of leptons, with minimum-p
thresholds for leptons depending on the lepton combination. Further triggers include a set
of single-electron and single-muon triggers, and triggers on leptons of different flavors. The
trigger efficiency within the acceptance is greater than 98%.

Events are required to have at least four leptons. Each event should contain at least one
lepton with pp > 20 GeV, two leptons with pp > 10 GeV, and four leptons with pp > 7 (5) GeV
for electrons (muons). All leptons must pass the “tight” lepton identification and isolation
requirements described in section 4.

The leptons are required to be separated by AR(¢q,¢5) > 0.02, and electrons are required
to be separated from muons by AR(e,l) > 0.05, to remove spurious “ghost” leptons arising
from ambiguities in track reconstruction. Lepton pairs originating from hadronic decays
are removed by requiring that all oppositely charged lepton pairs in the ZZ candidate have
my e, > 4GeV regardless of lepton flavor.

7 candidates are built from two oppositely-charged leptons of the same flavor. The pair

is retained if it satisfies 4 < m < 120 GeV. All possible four-lepton candidates in an event

s
are then considered. For each ZZ candidate, the dilepton pair with invariant mass closest
to the nominal Z mass my (91.1876 GeV [54]) is designated Z;, and the other is designated

Zy. The event is kept if 40 < my < 120GeV and 4 < mz, < 120GeV.

In the case of multiple ZZ candidates satisfying all requirements, the ambiguity is resolved
by selecting the candidate where my is closest to the nominal Z mass. If more than one
lepton combination is still possible, the Z, candidate is chosen as the one that maximizes
the scalar pr sum of the leptons.

In this analysis, the jets are required to have a pp > 30 GeV and |n| < 4.7. In addition, jets
are required to be well separated from any isolated lepton by requiring AR(jet,lepton) > 0.4,
where the lepton here satisfies all the tight requirements except for the lower pr requirement
(> 5GeV instead of > 7GeV for electrons, > 3 GeV instead of > 5GeV for muons) and a
relaxed SIP3p requirement (<10 instead of <4 for electrons).



6 Background estimates

The requirement of four well-reconstructed and isolated lepton candidates strongly suppresses
any background; therefore, this analysis has very low background contributions, dominated
by Z boson and WZ diboson production in association with jets, and tt production.

In a small fraction of cases, particles from jet fragmentation satisfy both lepton identifi-
cation and isolation criteria, and thus are misidentified as signal leptons. This background
is estimated using control data samples. The probability for jets to be misidentified and
selected as leptons is measured from a sample of Z4£ ., didate €Vents, where Z denotes a
pair of oppositely charged, same-flavor leptons that pass the selection requirements and
satisfy |m A i my| < 7GeV. Each event in this sample must have exactly one additional
lepton candidate £ ., qiqate that satisfies the loose identification requirements with no isolation
requirements applied. The misidentification probability for each lepton flavor, measured in
bins of pp and n of the £, ndidate, 1S defined as the ratio between the number of candidates
that pass the final isolation and identification requirements to the total number of candidates
in the sample. The number of Z+/¢ ., 4idate €vents is corrected for the contamination from
WZ production and for ZZ events in which one lepton is not reconstructed. These events
have a third genuine, isolated lepton that must be excluded from the misidentification proba-
bility calculation. The WZ contamination is suppressed by requiring the missing transverse
momentum p** < 25GeV. The p™* is defined as the magnitude of the missing transverse
momentum vector pp iss, the projection onto the plane transverse to the beams of the negative
vector momentum sum of all reconstructed PF candidates in the event, corrected for the jet

energy scale (JES). The transverse mass, calculated as my = v (pr + PP™)? — (Ff + )2,
is required to be <30GeV. The residual contribution of WZ and ZZ events, which can
be up to a few percent of the ¢, qiqate €vents passing all selection criteria, is estimated
from simulation and subtracted.

Two control samples are used to estimate the number of background events in the signal
region. Both are defined as samples that contain events with a dilepton candidate satisfying
all requirements (as Z;) and two additional lepton candidates ¢t¢. In one control sample,
enriched in WZ+jets events, one ¢ candidate is required to satisfy the tight identification
and isolation criteria and the other must fail this selection and instead satisfy only the loose
requirements; in the other control sample, enriched in Z+jets events, both ¢ candidates must
satisfy the loose criteria, but fail the full criteria. The additional leptons must have opposite
charges and the same flavor (ei(ﬁ and ui].ﬁ). The expected number of background events
in the signal region, denoted “Z+X” in the figures, is obtained by scaling the number of
observed Z; + (0~ events by the misidentification probability for each lepton failing the
selection. The procedure is described in more detail in ref. [55].

In addition to this reducible background, which contributes to approximately 1-2%
of the expected ZZ — 202" event yield, the yields from the ttZ and VVV processes with
four prompt leptons are estimated from simulated samples to be around 1.0-1.5% of the
expected ZZ — 2020 yield.



7 Unfolding and systematic uncertainties

To obtain differential cross sections normalized to the ZZ fiducial cross sections (for the
on-shell ZZ region and for the full four-lepton invariant mass range as defined by the kinematic
requirements) and compare CMS data to theoretical predictions, the data are “unfolded” to
remove detector resolution, efficiency, and acceptance effects. For each distribution to be
unfolded, a response matrix is obtained from simulated signal samples. The response matrix
represents the correlation map between the distributions obtained after the full detector
simulation, reconstruction, and selection, and the generated distributions they originate from.
It is used in unfolding to obtain true physical distributions from observed data. The data are
unfolded using the iterative D’Agostini’s method [56] including correction for background
contributions, with the RooUnfold toolkit as described in ref. [57], and compared with the
theoretical predictions from MADGRAPH5_aMC@NLO qq — ZZ and POWHEG qq — ZZ,
where MCFM gg — ZZ, POWHEG H — ZZ, and MADGRAPH5__ aMCQNLO EW ZZ predictions
are also added to these two sets of predictions. The unfolded results are also compared
with the nNNLO+PS predictions.

The measured on-shell ZZ fiducial cross section from ref. [8] is 40.5+0.7 (stat)+1.1 (syst)+
0.7 (lumi) fb, which agrees well with the expected value of 39.3702 + 0.6 fb. As explained in
the introduction, this fiducial cross section is valid for the current analysis. The fiducial phase
space selections are similar to the reconstruction-level selections and detailed in table 1. We
use the notation my 7, to refer to both myz and my, . The MC particle-level distributions
use generator-level leptons “dressed” by adding the momenta of generator-level photons
within AR(¢,7) < 0.1 from the direction of the lepton.

In constructing the response matrix, there are MC events that pass the reconstruction-
level selections, but do not have corresponding events at particle level that pass the fiducial
selections. In the unfolding method used, these out-of-fiducial events are treated as background
events that equivalently propagate from an additional particle-level bin to the reconstruction-
level bins. The size of the contribution of these out-of-fiducial events can be up to 15%
for events with at least one jet. In addition, the nonprompt and VVV background events
are also added to the out-of-fiducial events.

The systematic uncertainties are propagated through the unfolding by reevaluating the
response matrix with the sample used in building the matrix shifted or reweighted to reflect
a one standard deviation variation in the quantity of interest. The resulting difference in the
final normalized unfolded distributions is taken as the uncertainty related to that quantity.

The systematic uncertainty in the trigger efficiency is estimated to be 2%, and cancels
out in normalized differential cross sections. To evaluate uncertainties associated with lepton
efficiencies, the response matrix is reevaluated using lepton efficiency correction factors varied
up and down by the tag-and-probe [48] fit uncertainties. Electrons and muons are treated
separately, and all leptons of the same type are treated as correlated. For the uncertainties
associated with the JES and jet energy resolution, the jet py is varied by shifting the JES and
the spreading up and down by their uncertainties, and the response matrix is reevaluated.

The uncertainty in lepton fake rates is 40%, and is dominated by the statistical uncertainty
but also includes systematic uncertainties associated with the underlying physics processes
between events in the 3¢ and 4¢ control regions. The reducible background is varied up and



Particle type Selection

7.7 base selection

Leptons pr(fy) > 20GeV
pr(fy) > 10 GeV
pr(€) > 5GeV
In(O)] < 2.5
Z and ZZ 40 <myz < 120GeV, 4 <mgz, <120 GeV

myy > 4 GeV (any oppositely charged same-flavor pair)

Jets pr(j) > 30GeV

In()| < 4.7
AR(¢,j) > 0.4 for each ¢,j

On-shell ZZ region

7 and 77 27 base selection + 60 < myz 7 < 120GeV

Full m,4, range

Z and 77 77 base selection + my, > 80 GeV

Table 1. Particle-level selections used to define the fiducial phase space.

down by the lepton fake rate uncertainty (40%) and the unfolding is repeated to estimate the
associated uncertainty from the difference between the normalized distributions.

The pileup uncertainty is evaluated by recomputing the response matrix with the total
inelastic cross section [58], which defines the pileup weights applied to MC, varied up and
down by 4.6%. The uncertainty associated with the luminosity is evaluated by reevaluating
the response matrix with the simulation normalized to the integrated luminosity varied
up and down by its total uncertainty, which is 1.2, 2.3 and 2.5% for 2016, 2017 and 2018,
respectively. It is small as expected due to the cancellation from the normalization by the
fiducial cross section.

The uncertainty arising from generator-specific modeling differences is evaluated from
the difference between the measurements unfolded with the response matrix based on the
qq — 77 sample simulated by MADGRAPH5__aMC@NLO and the POWHEG sample.

The PDF and related strong coupling (ag) uncertainties are evaluated by reweighting
the MADGRAPH5_aMC@NLO sample to PDF and ag variations, and then redoing the
unfolding and combining the results according to the procedure described in ref. [59]. For the
renormalization (ug) and factorization (up) scales (QCD scales) uncertainties, the response
matrix is reevaluated with the MADGRAPHS_aMCQNLO qq — ZZ sample reweighted to
reflect the distribution with pp and pr independently varied up and down by a factor of



Systematic source

Uncertainty range

Electron efficiency 0.13-0.30%
Muon efficiency 0.02-0.08%
Jet energy resolution 1.65-3.85%
JES correction 0.93-5.32%
Reducible background 0.05-0.43%
Pileup 0.04-1.08%
Luminosity < 0.03%

qq — ZZ MC choice 0.52-4.52%
gg — 77 cross section 0.01-0.19%
QCD scales 0.16-0.82%
PDF 0.05-0.12%
PDF ag 0.01-0.10%

Table 2. Contributions of each source of systematic uncertainty to the normalized differential cross
section measurements of jet variables. Uncertainties depend on the distributions and are listed as a
range.

2. All combinations are considered except those in which pp and up differ by a factor of
four, and the envelope of all variations is used.

The normalization of the MCFM sample (gg — ZZ) is varied by the scale and PDF
uncertainties of its cross section (ﬂ%g), and the resulting difference between the normalized
distributions is used.

The contributions of each source of systematic uncertainty to the final results are
summarized in tables 2—4. The numbers in these tables are only indicative. They are
estimated by varying each source and obtaining the difference in the normalized unfolded
distributions. Each number in the tables is not showing an estimate of uncertainty per bin,

but an estimate of the portion of the uncertainty contribution per distribution, given by

Nbins
Central(l) - hvaried (7“)|

=1
Nbins (71)

hcentral (Z)
=1

where heeptral @a0d hyarieq are the central and varied histograms, respectively, both with sum
of bin contents normalized to 1, and Ny, is the total number of bins. There are, in general,
two estimates from up/down variations and the larger one is used.

~10 -



Systematic source my, with all jets 0 jet 1jet 2jets 3 and more jets

Electron efficiency 0.42% 0.38% 0.66% 0.36% 0.26%
Muon efficiency 0.05% 0.06% 0.07% 0.09% 0.08%
Jet energy resolution — 0.07% 1.72% 1.65% 0.80%
JES correction — 0.17% 1.77% 1.95% 0.97%
Reducible background 0.18% 0.18% 0.32% 0.33% 0.96%
Pileup 0.02% 0.05% 0.11% 0.13% 0.35%
Luminosity 0.01% 0.01% 0.02% 0.02% 0.05%
qq — ZZ MC choice 0.35% 0.65% 0.94% 0.48% 0.35%
gg — Z7Z cross section 0.02% 0.03% 0.09% 0.06% 0.09%
QCD scales 0.15% 0.16% 0.58% 0.54% 0.62%
PDF 0.05% 0.05% 0.15% 0.15% 0.21%
PDF ag 0.02% 0.01% 0.05% 0.03% 0.02%

Table 3. The contributions of each source of systematic uncertainty in the normalized differential
cross sections measurements as a function of my, with jet multiplicity from 0 to 3 and more, in events
satisfying 60 < mgz 7 < 120GeV.

Systematic source my, with all jets 0 jet 1jet 2jets 3 and more jets
Electron efficiency 2.12% 2.55% 2.28% 1.77% 1.46%
Muon efficiency 0.71% 0.78% 0.92% 0.79%% 0.42%
Jet energy resolution — 0.11% 1.73% 2.63% 2.32%
JES correction — 0.33% 1.64% 3.01% 2.02%
Reducible background 2.22% 2.19% 2.88% 3.40% 5.09%
Pileup 0.21% 0.28% 0.19% 0.32% 0.52%
Luminosity 0.12% 0.12% 0.16% 0.17% 0.25%
qq — ZZ MC choice 0.57% 0.48% 1.22% 3.07% 4.21%
gg — Z7 cross section 0.10% 0.18% 0.61% 0.80% 0.46%
QCD scales 0.27% 0.25% 0.67% 1.25% 1.86%
PDF 0.07% 0.09% 0.20% 0.23% 0.28%
PDF ag 0.08% 0.08% 0.15% 0.20% 0.28%

Table 4. The contributions of each source of systematic uncertainty in the normalized differential
cross sections measurements as a function of my, with jet multiplicity from 0 to 3 and more, in events
from the full m,, range.
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Figure 2. Distribution of the number of jets with p > 30 GeV (left) and of myy (right) for ZZ+jets
events with 60 < myz 7 < 120 GeV for the combined 4e, 4u, and 2e2u decay channels. Points
represent the data, vertical bars the statistical uncertainties, and shaded histograms represent the
expected standard model predictions and reducible background estimated from data. The purple
band of slashes represents the systematic uncertainties in the predictions, which includes systematic
uncertainties associated with trigger efficiency, lepton efficiencies, jet energy correction and jet energy
resolution, pileup, luminosity, Monte Carlo generator choice, gg — 77 cross section, and reducible
background. The overflow is included in the last bin of the distributions.

8 Results

8.1 Differential distributions

Differential distributions for various reconstructed quantities are presented in this subsection.
We proceed with unfolding the data to compare directly with particle-level theoretical
predictions, and the results are presented in the next subsection. Figure 2 (left) shows the
number of reconstructed jets with pp > 30 GeV for the ZZ+jets events with 60 < my. 7, <
120 GeV. The last bin includes all events with three or more jets. The description of events
with three and more jets requires NNLO and even higher corrections, but there are not enough
hard jets from the matrix element in the MC samples used, therefore the difference between
data and predictions at high jets multiplicity is expected. The 0 and 2 jet bins are well
described by the predictions, whereas in the 1 jet bin the predictions significantly overestimate
the measured event yield. The my, distribution is shown in figure 2 (right), inclusive in
the number of jets. This distribution is well described by the predictions, except for the
increasing discrepancy between data and MC towards high masses; this can be mitigated by
adding the EW corrections, as demonstrated in ref. [22] and in the next subsection.
Figure 3 shows the pt and |n| distributions for the highest- and second-highest-pt jet
in events with at least one and two jets, respectively. As expected from the distribution
of the number of jets, the predictions overestimate the measurements in the highest-pr jet
distributions. The largest difference is observed for highest-pt jets with pp < 100 GeV,
whereas the second-highest-pr distributions are better described. Apart from the difference
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Figure 3. Distribution of the pr of the highest-pt jet (upper left) in events with at least one jet,
and of the pp of the second-highest-pr jet (upper right) in events containing at least two jets. The
|n| distribution of the highest-pp (lower left) and second-highest-p (lower right) jets. Events are
required to have 60 < mgz 7 < 120GeV. Other details are as in the caption of figure 2.

in the yield, the pr distributions of both the highest-pp and second-highest-p1 jets show
similar differential behavior with respect to the predictions (similar trend up to 300 GeV),
which is demonstrated in the lower panels of the figures, where data-to-prediction ratios are
presented. Similar conclusions are valid also for the || distributions.

The invariant mass of the dijet system and An between two jets with highest pp are
among the most important dijet distributions. The dijet mass distribution is well described
by predictions, as shown in figure 4 (left), whereas in the |An| distribution there is a small
trend between data and predictions that can be seen in the lower panel of figure 4 (right).
As expected, the contribution of the EW ZZ production is increasing towards the high jet
separation and dijet mass, but still remains a small part of the total ZZ cross section.

The effect of the presence of jets in ZZ events is also studied using the m,, distribution for
different jet multiplicities (figures 5, 6). Each distribution contains only events with exactly
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least two jets. Events are required to have 60 < myz 7 <120 GeV. Other details are as in the caption
of figure 2.

0, 1, 2, 3 jets or >4 jets. The predictions describe well the normalized differential behavior,
but fail to describe the event yield in the 1-jet case. With increasing jet multiplicities the
predicted yields decrease much faster than the measured ones. In the case of 4 or more
jets, the data yields are significantly larger than predicted. All distributions in figure 5 are
presented for events with on-shell Z bosons, 60 < mz, 7, < 120 GeV.

The same analysis is repeated in the full my, range and the results are presented in
figure 6. The data and MC predictions are compared in three mass regions: Z boson region,
Higgs boson region, and nonresonant ZZ production region. It is important to note that
the Higgs boson sample is simulated using the POWHEG NLO predictions, whereas a similar
contribution in the ZZ sample has the gg —7ZZ process simulated at LO and normalized to
NLO prediction (see section 3 for detail). As shown in figure 6 (upper left), the predictions
describe well the data that are inclusive in jet multiplicity. In figure 6 (middle left), the
predictions do not describe the event yield of the ZZ nonresonant part, but agree well with
data in the Z and Higgs boson production regions. With increasing jet multiplicity, the
agreement between data and predictions for ZZ and Z production regions becomes worse,
whereas the predictions for the Higgs boson region are compatible with the data within
large statistical uncertainties.

The measured and expected event yields for all decay channels and jet multiplicities in
different mass ranges are summarized in tables 5 and 6.
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Process eeee eelu JLLLILLL 2020
80 < my, < 100 GeV
Background 46+05+18 155+16+6.2 228+21+9.1 43+3+17

Signal 216 + 1730 731 £ 2156 841 +2722 1790 + 3714
Total expected 220 + 1730 747 + 3756 864 +3730 1830 +4719
Data 194 698 838 1730

60 < mZ1722 < 120 GeV
Background 22.94+0.9+£5.7 46 +2 £ 10 260+1.3+6.5 98+24+23

Signal 716 + 2753 1830 + 3149 1138 £3755 3680+ 57550
Total expected 739 + 2783 1870 + 41149 1167 3755 3780 £ 57359
Data 671 1805 1106 3582

Table 5. The observed and expected yields of ZZ events in different mass ranges, and estimated
yields of background events, shown for each final state and for the sum. The first uncertainty is
statistical, and the second one is systematic. (Due to rounding, the sum of individual entries may not
match the total value shown.)

Process 0 jet 1 jet 2 jets 3 jets >4 jets

80 < myy < 100 GeV
Background 2542410  914+13+£36 61+£1.04+24 1.94+06+08 04+0340.1
Signal 1300 + 37199 371 £ 248 95+ 112 18.7+£047¢5 4502713
Total expected 1320 + 31100 381 4+ 2748 101+ 172 20.6 £0.7755 49403733
Data 1238 354 95 31 12

60 < TTLZPZ2 < 120 GeV
Background 203+144+89 286+1.2+6.7 21.2+£09+3.7 11.6+0.7+2.0 7.6+0.5+1.5

Signal 2320 + 3150 960 + 37590 303 + 172 75+ 1% 21.9+0.3779
Total expected 2350 & 47150 990 + 37199 324 £ 290 87 +1%% 29.5+0.7751
Data 2367 741 312 110 52

Table 6. The observed and expected yields of ZZ events in different mass ranges, and estimated
yields of background events, shown for each jet multiplicity. The first uncertainty is statistical, and
the second one is systematic. (Due to rounding, the sum of individual entries may not match the
total value shown.)

8.2 Differential cross sections

The unfolded differential distributions normalized to the ZZ fiducial cross section are pre-
sented in figures 7-10. Figure 7 (left) shows the normalized do/dmy, cross section. The
MADGRAPH5__aMC@NLO, POWHEG and nNNLO+PS predictions demonstrate similar be-
havior and describe well the differential behavior at low my,, whereas they overestimate the
measured values in the moderate to high my, regions. This discrepancy can be mitigated
with EW corrections as discussed in ref. [22]. To estimate the effect of the corrections, a
differential K factor from [22] for the NLO EW corrections was applied to the nNNLO+PS
predictions as a function of my,,. The EW-corrected nNNLO+PS predictions describe the
measured values better than those without the corrections, although at high values of my,
only within large statistical uncertainties of the measurements. The EW corrections are only
significant in m,4, and have negligible effect on any other normalized distribution presented in
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this paper; therefore in all other non-my, distributions only nominal nNNLO+PS predictions
are shown. For the my, distributions for various jet multiplicities the EW corrections are
not available and therefore these distributions do not contain EW corrections.

Figure 7 (right) shows the differential cross sections as a function of the number of
jets in the events. The MADGRAPH5_aMC@NLO and POWHEG predictions show similar
distributions. Similar to the discussion in the previous section, neither of the two MC
simulations describes the 1-jet cross section, and both simulations predict too low cross
sections for high jet multiplicities. On the other hand, the nNNLO+PS prediction describes
the high jet multiplicity bin better than the other two predictions, whereas the agreement
in the 1-jet bin is also improved. In general, the nNNLO+PS prediction describes the Nje
distribution better than MADGRAPH5 aMC@NLO and POWHEG.

Figure 8 shows the differential cross sections in bins of pr and || for the highest- and
the second highest-pt jet in events with at least one and two jets. The pr distributions
show moderate differences between data and predictions, whereas the |n| distributions are
well described within uncertainties.

Figure 9 shows the differential cross sections for dijet events as a function of (left)
|An| and (right) the dijet mass between two highest-p jets. Within uncertainties the dijet
mass is described by the predictions, whereas |An| measurements show a small trend with
respect to the predictions.

Finally, the do/dmy, differential cross section is presented in figure 10 for the full four-
lepton invariant mass range and inclusive in jet multiplicity. The measured normalized
differential cross section is well described by the predictions. Additional do/dmy, differential
cross sections with different jet multiplicities for the on-shell Z bosons and for the full
four-lepton invariant mass range are presented in figures 11 and 12. The comparison with
the theoretical predictions shows the same behavior than for the measurements presented
in the previous section.

9 Summary

The four-lepton production in association with jets, pp — (Z/Y*)(Z/Y*) + jets — 202 + jets,
where £,/ = e or K, was studied in proton-proton collisions at a center-of-mass energy of
13 TeV. The data sample corresponds to an integrated luminosity of 138 fb~! collected with
the CMS detector at the LHC during 2016-2018. Differential distributions and differential
cross sections normalized to the ZZ fiducial cross section were measured with respect to various
kinematic variables: number of jets, jet transverse momentum (pr) and pseudorapidity (n),
invariant mass of the dijet system and n difference between the highest-pt and second-highest-
pr jets, and invariant mass of the four leptons (my,) for different jet multiplicities. Tabulated
results are provided in HEPData [60]. In general, predictions of theoretical models agree with
the data, but in some regions significant discrepancies between predicted and measured values
were observed. The recent nNNLO+PS prediction improves the data/prediction agreement in
the 1-jet and high jet multiplicity regions, and describes the distribution of jet multiplicities
better than NLO samples generated with the event generators MADGRAPH5 aMCQNLO
and POWHEG. The inclusion of electroweak corrections improves the description of the my,
distribution. These measurements demonstrate the necessity for better Monte Carlo modeling
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Figure 7. Differential cross sections normalized to the fiducial cross section as a function of (left) myy,
(right) the number of jets with pr > 30 GeV. The on-shell Z requirement 60 < my 7, < 120GeV is
applied. Points represent the unfolded data, solid histograms the MADGRAPH5 _aMC@NLO qq — ZZ
predictions, and red dashed histograms the POWHEG qq — ZZ predictions. MCFM gg — ZZ, POWHEG
H — Z7, and MADGRAPH5__aMC@NLO EW ZZ predictions are included in these two sets of predictions.
The purple dashed histograms represent the nNNLO+PS predictions, and the yellow dashed histogram
represents the nNNLO+PS prediction with EW corrections applied. Vertical bars on both MC
predictions represent the statistical uncertainties. The lower panels show the ratio of the measured
to the predicted cross sections. The vertical bars on data points with horizontal lines at the ends
represent the statistical uncertainties only, whereas the vertical bars without horizontal lines at the
ends represent the total uncertainties calculated as the sum in quadrature of the statistical and
systematic uncertainties. The overflow is included in the last bin of the distributions.

in events with complex multiboson final states and extra jets. Further improvement of the
predictions is required to describe the ZZ-+jets production in the whole phase space.
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