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A B S T R A C T 

In stellar-dense environments, stars can collide with each other. For collisions close to a supermassive black hole (SMBH), 

the collisional kinetic energy can be so large that the colliding stars can be destroyed, potentially releasing an amount of 

energy comparable to that of a supernova. These black hole-driven disruptive collisions have been examined mostly analytically, 

with the non-linear hydrodynamical effects being left largely unstudied. Using the moving-mesh hydrodynamics code AREPO , 

we investigate high-velocity ( > 10 
3 km s −1 ) collisions between 1 M ⊙ giants with varying radii, impact parameters, and initial 

approaching velocities, and estimate their observables. Very strong shocks across the collision surface efficiently convert 

� 10 per cent of the initial kinetic energy into radiation energy. The outcome is a gas cloud expanding supersonically, 

homologously , and quasi-spherically , generating a flare with a peak luminosity ≃ 10 
41 –10 

44 erg s −1 in the extreme ultraviolet 

band ( ≃ 10 eV). The luminosity decreases approximately following a power law of t −0.7 initially, then t −0.4 after t ≃ 10 d at which 

point it would be bright in the optical band ( � 1eV). Subsequent, and possibly even brighter, emission would be generated due to 

the accretion of the gas cloud on to the nearby SMBH, possibly lasting up to multiyear time-scales. This inevitable BH–collision 

product interaction can contribute to the growth of BHs at all mass scales, in particular, seed BHs at high redshifts. Furthermore, 

the proximity of the events to the central BH makes them a potential tool for probing the existence of dormant BHs, even very 

massive ones which cannot be probed by tidal disruption events. 

Key words: hydrodynamics – stars: kinematics and dynamics – Galaxy: nucleus – quasars: supermassive black holes –

Transients. 

1  I N T RO D U C T I O N  

Dynamical interactions between stars in stellar-dense environments, 

e.g. globular clusters and galactic centres, play a crucial role in 

dri ving the e volution of the host and determining its thermo- 

dynamic state (Hut et al. 1992 ). If the stellar density is suffi- 

ciently high, stars can collide with relative velocities comparable 

to the dispersion velocity of the host. In globular clusters, up 

to 40 per cent of main-sequence stars in the core would un- 

dergo a collision during the lifetime of the cluster (Hills & Day 

1976 ). For clusters with very high number densities ( � 10 7 pc −3 ), 

a star may suffer multiple such collisions (Dale & Davies 

2006 ). 

Galactic centres are extreme environments where stars are densely 

packed (e.g. 10 6 –10 7 pc −3 for nuclear clusters; Neumayer, Seth & 

B ̈oker 2020 , and references therein) around a supermassive black 

hole (SMBH). Because the relative velocity between stars near the 

⋆ E-mail: tryu@mpa-garching.mpg.de 

SMBH is roughly the Keplerian speed 1 ∝ r −0.5 , stars near the BH 

would collide at very high speeds (e.g. v rel � 2000 km s −1 within 

≃ 0.1 pc around a 10 7 M ⊙ BH). If the kinetic energy of the collision 

( � 10 50 erg for a collision between two stars with mass M ⋆ = 1 M ⊙

and v rel � 2000 km s −1 ) is greater than the binding energy of the 

stars (10 48 –10 49 erg for M ⋆ = 1 M ⊙), the stars would be destroyed, 

leaving behind an expanding gas cloud. If even a small fraction of 

the collisional kinetic energy is converted into radiation, the high- 

velocity collision can generate a bright electromagnetic transient 

from the galactic nucleus region. 

The total rates of such events between main-sequence stars have 

been estimated to be 10 −4 to 10 −5 yr −1 galaxy −1 (Rose et al. 2020 , 

2023 ; Amaro Seoane 2023b ) if the core is fully relaxed to the 

Bahcall–Wolf density power law ∝ r −7/4 (Bahcall & Wolf 1976 ). 2 The 

1 Sellgren et al. ( 1990 ) observed a decrease in the CO absorption line strength 

in the central region of our Galaxy, confirming that the velocity dispersion of 

stars increases towards the centre. 
2 While the Bahcall–Wolf solution is a mathematically correct solution when 

all stars have the same mass, in the realistic situation where the stellar- 
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rate for collisions between giants could be higher due to larger cross- 

sections (Amaro Seoane 2023b ). Ho we ver, if collisions continuously 

deplete the inner part of the stellar-density cusp, the rate would 

become smaller, e.g. ≃ 10 −5 to 10 −7 yr −1 galaxy −1 for main-sequence 

stars, depending on the assumption of the stellar influx into the 

centre (Balberg & Yassur 2023 ). Since these powerful collisions 

essentially destroy stars in galactic centre environments, these 

events can affect the frequency of other types of nuclear transients. 

F or e xample, Balberg & Yassur ( 2023 ) suggest that high-velocity 

collisions can almost completely suppress extreme mass-ratio 

inspirals. 

High-velocity collisions between main-sequence stars (e.g. 

Benz & Hills 1987 , 1992 ; Lai, Rasio & Shapiro 1993 ; Rauch 1999 ; 

Freitag & Benz 2005 ) have been studied using numerical simulations, 

focusing on the mass ejection and the impact of such collisions on 

the thermodynamic state of the host, rather than their observation 

signatures. Observational signatures of the electromagnetic radiation 

from such collisions have been studied mostly analytically. For 

example, Balberg, Sari & Loeb ( 2013 ) showed that two stars in a 

compact binary can collide at high speed when passing very close 

to an SMBH, which can generate a flare as bright as supernovae. 

Recently, Amaro Seoane ( 2023b ) analytically investigated the ob- 

servables of high-velocity collisions between stars of various types 

in galactic nuclei. They found that the peak luminosity of high- 

velocity collisions can be as high as 10 44 ηrad erg s −1 . Here, ηrad is 

one of the determining factors which measures how efficiently the 

initial kinetic energy is converted into radiation energy. If ηrad is of 

order unity, the peak luminosity can be comparable to different types 

of nuclear transients, such as tidal disruption e vents. Ho we ver, ηrad 

in their w ork w as left as a free parameter because e v aluating ηrad 

involves non-linear hydrodynamics effects such as shocks, which 

cannot be done analytically. 

In this paper, we investigate the hydrodynamics of high-velocity 

collisions between 1 M ⊙ giants and numerically estimate the radia- 

tion conv ersion efficienc y and their observables, using the moving- 

mesh hydrodynamics code AREPO (Springel 2010 ; Pakmor et al. 

2016 ; Weinberger, Springel & Pakmor 2020 ). In the simulations, we 

consider collisions with v rel = 10 4 km s −1 between two identical 

1 M ⊙ giants with four different radii ( R ⋆ = 10, 20, 50, and 100 R ⊙), 

four impact parameters ( b = 0.04 R ⋆ , 0.2 R ⋆ , 0.4 R ⋆ , and 0.8 R ⋆ ), and 

three initial approaching velocity ( v rel = 10 4 , 5 × 10 3 , and 2.5 × 10 3 

km s −1 ). The largest approaching speed corresponds to roughly the 

largest relative velocity for stellar collisions near the BH, i.e. the 

Keplerian velocity at the smallest possible distance from the BH 

where at least two stars exist for a typical stellar density around a 

massive BH assuming the Bahcall–Wolf power law: r ≃ 10 −5 pc for 

10 5 M ⊙ BH, ≃ 10 −4 pc for 10 6 M ⊙ BH, and ≃ 10 −3 pc for 10 7 M ⊙

BH. Because collisions with lower relative velocities are expected to 

create fainter transients, our simulations with the largest v rel would 

provide an upper limit for the luminosity and total radiated energy 

of these events. 

This paper is organized as follows. We describe our methods 

in Section 2 , including the code description (Section 2.1 ), stellar 

models (Section 2.2 ), and initial conditions (Section 2.3 ). Then, 

we present our results in Section 3 and discuss astrophysical 

implications for the collisions in Section 4 . Finally, we summarize 

and conclude in Section 5 . 

mass distribution is inhomogeneous, the slope can be steeper (Alexander & 

Hopman 2009 ; Preto & Amaro-Seoane 2010 ). 

Figure 1. Evolution of a 1 M ⊙ star in a Hertzsprung–Russell diagram. The 

colour bar shows the age of the star. The four star symbols mark the four giant 

models adopted for collision experiments: (from smallest to largest symbols) 

R ⋆ ≃ 9, 20, 50, and 100 R ⊙. 

2  M E T H O D S  

2.1 Code 

We perform a suite of 3D hydrodynamics simulations of high- 

velocity collisions between red giants using the massively paral- 

lel gravity and magnetohydrodynamics moving-mesh code AREPO 

(Springel 2010 ; Pakmor et al. 2016 ; Weinberger et al. 2020 ). The code 

inherits advantages of the two widely used hydrodynamical schemes, 

the Lagrangian smoothed particle method and the Eulerian finite- 

volume method, allowing for an accurate treatment of supersonic 

flows and shock capturing without introducing an artificial viscosity 

and low advection errors. We use the ideal equation of states that 

takes into account radiation pressure assuming local thermodynamic 

equilibrium, 

P = 
ρk B T 

µm p 
+ 

4 σ

3 c 
T 4 , (1) 

where P is the total pressure, ρ the density, k B the Boltzmann 

constant, T the temperature, µ = 0.62 the mean molecular weight, 

m p the proton mass, and σ the Stefan–Boltzmann constant. 

2.2 Stellar model 

We adopt the internal structure of giants evolved using the 1D stellar 

evolution code MESA (v ersion r22.05.1; P axton et al. 2011 , 2013 ) 

to model giants in 3D. The star has an initial mass M ⋆ = 1 M ⊙

and a metallicity of Z = 0.02. We treat the mixing processes and 

winds following Choi et al. ( 2016 ). More specifically, we model 

convection using the mixing length theory with a mixing length 

parameter of 1.81. We adopt the Ledoux ( 1947 ) criterion to determine 

the boundary of the conv ectiv e re gions and the exponential overshoot 

prescription (Herwig 2000 ) with parameters f = 0.016, f 0 = 0.008 at 

the top of the core and f = 0.0174, f 0 = 0.0087 at the bottom of the 

hydrogen-burning shell. Semiconvection is treated following Langer, 

Fricke & Sugimoto ( 1983 ) with an efficiency factor of 0.1. We allow 

the star on the red giant branch to lose mass via wind following the 

prescription from Reimers ( 1975 ) with scaling factor of 0.1. 

Fig. 1 shows the evolution of the 1 M ⊙ star in a Hertzsprung–

Russell diagram until it reaches the tip of the red giant branch. We 

take the giants at four different evolutionary stages where their radii 
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Figure 2. Enclosed mass as a function of radius for the four giants with 

R ⋆ = 10 R ⊙ (black), 20 R ⊙ (red), 50 R ⊙ (blue), 100 R ⊙ (green). The vertical 

dotted lines, sharing the same colour, indicate the size of the region modelled 

using a point particle. Although the point particle size is greater than the size 

of the core ( R ≃ 0.02 R ⊙), given the flat mass–radius relation between the 

core radius and the point particle radius, we essentially retain the total energy 

budget inside the star abo v e the core with significantly low computational 

costs. 

are R ⋆ ≃ 10, 20, 50, and 100 R ⊙ (indicated by the star symbols in 

the figure). 

We construct 3D giants from the 1D giant models using the method 

developed in Ohlmann et al. ( 2017 ) with 10 6 cells. Modelling the 

entire giant with gas cells is computationally e xpensiv e giv en v ery 

steep density gradients. So instead, we model the inner part of the star 

with a point particle, representing ef fecti vely the core. Furthermore, 

we place gas cells on top of it such that the internal structure 

abo v e the core matches with the MESA model while the entire star 

stays in hydrostatic equilibrium. The point particle interacts only 

gravitationally with gas: it only gravitationally pulls the envelope 

which is cancelled by the pressure gradient of the gas when the star 

is in isolation. We choose that the size of the region modelled using a 

point particle is 5 per cent of the stellar radius (‘point particle radius’). 

The point particle radius is in fact greater than the size of the core ( R 

≃ 0.02 R ⊙). This choice is justified by the fact that the mass of the 

core is ef fecti vely the same as the enclosed mass within ≃ 0.05 R ⋆ 

(vertical dotted lines), as illustrated in Fig. 2 . This means the total 

binding energy inside our 3D giants is essentially the same as what 

we would have had when the point particle radius were exactly the 

core radius. With this choice of the point radius, while we reduce 

computational costs significantly, we lose only a small fraction of 

the total energy budget inside the star. 

We then relax the 3D stars fully in isolation, which usually takes 

5–10 stellar dynamical times ( 
√ 

R 3 ⋆ /G M ⋆ ). Fig. 3 shows the radial 

density of the fully relaxed stars above the point particle ( top panel) 

and their errors ( bottom panel) relative to the MESA models. The 

relative errors of the density of the inner part of the stars, where most 

of the mass is concentrated, are less than a few per cent. Although 

the errors at the surface are relatively large, the deviation of such 

small masses at the surface, corresponding to the plateau at the end 

of each line in Fig. 2 , should not affect our results. 

We performed resolution tests for nearly head-on collisions 

between giants with R ⋆ = 100 R ⊙ with different resolutions. The 

choice of the collision parameters are moti v ated by the fact that the 

impact of the shock in such a collision is the strongest (see Fig. 

8 ), which requires the highest resolution. We first constructed giants 

Figure 3. The radial density profile ( top ) of the giants with four different 

radii relaxed for 5–10 stellar dynamical times and the relative error with 

respect to the MESA models ( bottom ), as a function of radius from the core. 

The dashed grey lines in the top panel show the density profiles of the MESA 

models. The density profiles of the 3D stars match well with the MESA models 

within a few per cent except for those at the stellar surface. 

with N = 2.5 × 10 5 , 5 × 10 5 , 10 6 , 2 × 10 6 , and 4 × 10 6 cells and 

performed the collision experiments. We find that the results have 

already converged very well when N ≥ 10 6 : the conversion factor 

ηrad , defined in equation ( 8 ), differs by less than 1 per cent. In fact, 

the difference in ηrad between N ≤ 5 × 10 5 and N = 10 6 is already 

reasonably small, � 20 per cent for N = 2.5 × 10 5 and � 10 per cent 

for N = 5 × 10 5 relative to the case with N ≥ 10 6 . Furthermore, we 

confirmed that the total energy is conserved within � 1 per cent until 

the end of the simulations. 

2.3 Initial conditions 

We place two identical stars, initially separated by 10 R ⋆ , on a 

hyperbolic orbit with some relative velocity at infinity v rel . So it 

takes 10 R ⋆ / v rel ≃ (0.1–1) d, depending on R ⋆ and v rel , until the 

two stars collide. We note that the time is measured since collision 

in this paper: accordingly, the initial time of the simulations is t ≃ 

−(0.1–1) d. Those stars are embedded in a low-density background 

medium with density of 10 −18 g cm 
−3 and temperature of 10 4 K. The 

background density is comparable to the density of the interstellar 

medium (ISM) at the Galactic centre ranging between 10 5 and 10 6 

particles cm 
−3 (Gillessen et al. 2019 ) at Galactic centre distances 

that dominate the collision rate (see Amaro Seoane 2023b ). We 

discuss the impact of the background density and temperature on 

the properties of collision products in Section 4.1 . Our fiducial 

model is the near-head-on collision between the two 10 R ⊙ giants 

initially approaching towards each other at v rel = 10 4 km s −1 with 

an impact parameter b = 0.04 R ⋆ . Here, b = 0.04 R ⋆ is the smallest 

possible impact parameter given the softening length of the point 

particle: in other words, the gravity of the point particles becomes 

inaccurate at the closest approach distance with b < 0.04 R ⋆ . For this 

giant, we additionally consider off-axis collisions with larger impact 

parameters, b = 0.2, 0.4, and 0.8 R ⋆ , and two additional v rel = 2500 

and 5000 km s −1 , to study the dependence of the impact parameter 

and the collision v elocity, respectiv ely. F or larger giants, we only 

consider the near-head-on collisions with v rel = 10 4 km s −1 . The 

initial parameters of the models are summarized in Table 1 . 
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Table 1. Initial parameters: (from left to right) model number, stellar mass, 

stellar radius, relative velocity v rel at infinity, and impact parameter b . 

Model number Mass Radius v rel Impact parameter b 

M ⊙ R ⊙ ×10 3 km s −1 R ⋆ 

1 1 10 10 0.04 

2 1 10 10 0.2 

3 1 10 10 0.4 

4 1 10 10 0.8 

5 1 10 5 0.04 

6 1 10 2.5 0.04 

7 1 20 10 0.04 

8 1 50 10 0.04 

9 1 100 10 0.04 

3  RE S ULT  

3.1 Ov er view 

We provide an overview of the evolution of the collision product 

using our fiducial model, e.g. head-on collision between the two 

10 R ⊙ giants. We present in Fig. 4 (from top to bottom ) the density 

ρ, the temperature T , the Mach number M , and the speed in the 

mid-plane at four different times in our fiducial model. 

Initially, the two stars approach at v rel ≃ 10 4 km s −1 (first column). 

Since their first contact, the envelopes are continuously compressed 

due to the converging motion. Along the contact surface (the 

pronounced narrow feature across the centre in the second column, 

dubbed ‘shock surface’), pressure gradients are built up and the 

temperature is raised abo v e 10 7 K due to adiabatic compression. 

As the later incoming gas collides supersonically with the pressure 

wall, shocks are created. Some of the very hot gas in the shock 

surface escapes radially perpendicular to the collision axis (or along 

the shock surface) with an opening angle of ≃ 30 ◦ and speeds of 

a few thousands km s −1 , which is not particularly high compared 

to the rest. At the strongest compression, a significant fraction of 

the kinetic energy is converted into heat energy ( � 30 per cent ), 

which is already a few orders of magnitude greater than the total 

binding energy of the stars. When the pressure gradient exceeds the 

ram pressure, the compressed gas bounces off and expands quasi- 

spherically and homologously at supersonic speeds (see third and 

fourth column panels in Fig. 4 ). On top of the expanding motion, the 

converted heat energy continuously drives the outer part of the gas 

cloud to expand by the P d V work, meaning that some of the heat 

energy is converted back into kinetic energy. At the same time, the 

outer edge of the cloud supersonically collides with the background 

medium. This has two effects. First, mass piles up at the boundary 

between the gas cloud and the background medium, reducing the 

kinetic energy of the expansion front. Secondly, shocks are created, 

which dissipates the kinetic energy of the expansion front to heat 

energy. As a result of both effects, the expansion front slows down. 

3.2 Evolution of expanding cloud – parameter dependence 

3.2.1 Fiducial case 

To describe the evolution of the expanding gas more quantitatively, 

we show in Fig. 5 the spherically averaged density ρ and (mass- 

weighted) temperature T , the expansion speed v r , and the area- 

weighted average of the optical depth τ o v er the solid angle for our 

fiducial model as a function of distance from the collision point at 

five logarithmically sampled times between 1 and 30 d after collision. 

The density ρ ( top-left ) and the temperature T ( top-right ) of the 

inner regions of the expanding gas cloud are nearly constant. As the 

cloud expands adiabatically, the overall level of ρ and T drops while 

maintaining its slope: ρ ≃ 10 −8 g cm 
−3 at t ≃ 1 d to 10 −12 g cm 

−3 at 

t ≃ 30 d, and T ≃ 2 × 10 5 K at t = 1 d to 5 × 10 3 K at t ≃ 30 d, 

at which point the cloud is cooler than the background medium. ρ

and T outside the flat region decay towards the outer edge with a 

different steepness: the density drops following a power law of ∝ 

r −λ with λ ≃ 12–13 upon collision, gradually decreasing to λ ≃ 8 

at t ≃ 30 d. But the temperature decays rather like ∝ r −1 at 1 � t � 

30 d. The decaying slopes of ρ and T depend on R ⋆ , b , and v rel , but 

the dependence of the slope of T is generally stronger. dln ρ/dln r is 

almost the same, independent of R ⋆ whereas −dln T /dln r tends to 

be larger for larger R ⋆ (e.g. λ ≃ 2–3 for R ⋆ = 100 R ⊙). dln T /dln r is 

steeper for larger b (e.g. λ ≃ 2–3 for b = 0.8 R ⋆ ), while dln ρ/dln r is 

only slightly less steeper for larger b (e.g. λ ≃ 12 for b = 0.8 R ⋆ ). The 

dependence of the slopes on v rel is relatively weak: λ for ρ is almost 

same for 2500 km s −1 ≤ v rel ≤ 10 4 km s −1 and λ for T is slightly 

larger for smaller v rel (e.g. λ ≃ 1–1.5 for v rel = 2500 km s −1 ). 

As shown in the bottom-left panel of Fig. 5 , the cloud expands 

homologously, i.e. v r ∝ r or constant v r at the same mass coordinate, 

which is also found in all other models. Right after the collision, 

the maximum expansion velocity at the outer edge is greater than 

the initial relativ e v elocity by a factor of ≃ 5 and stays constant. The 

period of time with a constant peak v r is very brief for this particular 

model ( � 0.1 d). Ho we ver, the constant maximum v r phase is longer 

for collisions with larger R ⋆ , which is illustrated in the bottom-right 

panel of Fig. 6 . After the constant maximum v r phase, the peak 

e xpansion v elocity continuously decreases due to the interactions 

with the background medium. 

The gas cloud is initially optically thick. The optical depth to the 

centre, estimated using an OPAL opacity table for Solar metallicity 

(Iglesias & Rogers 1996 ), is τ � 10 5 at t ≃ 1 d, as demonstrated in 

the bottom-right panel of Fig. 5 . As it expands and cools, τ decreases 

following a power law of t −7/3 (see the bottom-right panel of Fig. 6 ), 

indicating that the entire cloud will become optically thin within 7–

8 months, consistent with the analytical estimate by Amaro Seoane 

( 2023b ). The nearly flat τ inside the cloud indicates that the transition 

from optically thick to completely optically thin may be prompt. 

3.2.2 Comparison between models 

To further demonstrate the dependence of the stellar radius R ⋆ , the 

impact parameter b and the initial relative velocity v rel , we compare 

in Fig. 6 the evolution of the same four quantities, shown in Fig. 

5 between different models. For a proper comparison, we estimate 

ρ as the average volume within a distance enclosing 75 per cent 

of the gas mass 3 and T as the mass-weighted average of T within 

the same volume. As shown in the top panels, ρ and T decrease 

o v er time, following a power law of t −3 and t −1 , respectively, almost 

independently of R ⋆ and b except for T with v rel = 2.5 × 10 3 km s −1 . 

The t −3 power law for ρ is expected from a homologous expansion: 

ρ ∝ ( v r t ) −3 ∝ t −3 . As the t −1 -scaling relation for T suggests, the 

total (radiation + gas) internal energy at a given mass coordinate 

decreases like t −1 . 4 The significant deviation from the t −1 power 

law for v rel = 2500 km s −1 indicates that there is continuous energy 

3 Note that the radius enclosing 75 per cent of the cloud mass corresponds to 

the radius inside which ρ and T are constant, coinciding with the distance of 

the cores from the collision point. 
4 Total specific energy = 4 σT 4 /[3 c ρ] + k B T /[ µm p ] ∝ t −1 because T ∝ t −1 and 

ρ ∝ t −3 . 
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Figure 4. Density ρ ( top ), temperature T ( top-middle ), Mach number M ( bottom-middle ), and speed v ( bottom ) of gas in a nearly head-on ( b = 0.04 R ⋆ ) 

collision between two giants with R ⋆ = 10 R ⊙ at four different times, t = −0.07 d (before collision), 0 d (at collision), 1 and 30 d (after collision). The red 

dots in each panel indicate the location of the cores. The white contour line in the top panel for ρ shows the location of the photosphere at which the radially 

integrated optical depth ≃ 1 and those in the bottom-middle panel for M the boundaries at M ≃ 1. The arrows in the bottom panels indicate the direction of 

gas motion. Initially the two stars start to mo v e towards each other with v rel = 10 4 km s −1 ( left ). At collision, very steep pressure gradients are built up at 

the collision surface and strong shocks are created when the incoming gas collides with the pressure barrier ( left-middle ). The gas bounces off and expands 

quasi-spherically and homologously at supersonic speeds ( right-middle and right ). 

exchange between gas at different mass shells. Unlike other cases 

where the radiation energy is dominant, in this case, the gas internal 

energy is comparable to the radiation energy and the total internal 

energy drops like ∝ t −4/3 , resulting in a non-power-law decay curve 

for T . Although each of the two quantities, ρ and T , tends to follow 

a single power law, the degree to which their magnitudes depend on 

R ⋆ , b , and v rel is different. ρ has a very weak dependence on b and 

R ⋆ . T is insensitive to b and weakly depends on R ⋆ : only a factor of 

1.5 greater for R ⋆ = 100 R ⊙ than that R ⋆ = 10 R ⊙. 

v r peak stays constant upon collision at (3–6) × v rel . The constant 

v r peak phase lasts longer for the case involved with stronger shocks 

(e.g. larger R ⋆ for given b and v rel ). Eventually, v r peak decreases 

o v er time because of the interactions with the background medium, 

follo wing a po wer law of t −1/3 for all models. In particular, the peak 
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Figure 5. Spherically averaged density ( top-left ), temperature ( top-right ), radial velocity ( bottom-left ), and optical depth ( bottom-right ), of the expanding cloud 

produced in a collision between two 10 R ⊙ giants, as a function of radius from the collision point at five different times. The averages of the temperature and 

radial velocity are mass weighted. The optical depth is estimated by radially integrating κρd r inwards from 20 × the distance of the core from the collision 

point. The three vertical lines show the distance from the BH with mass 10 6 , 10 7 , and 10 8 M ⊙ at which the Keplerian velocity is the same as the initial relative 

velocity. In other words, by the time the outer edge reaches the distances, the gas would meet the central BH. The dots indicate the locations of the cores at the 

five times, sharing the same colours with the lines. The vertical bars indicate the location of the outer edge where the expansion velocity is the maximum. 

expansion speed with varying R ⋆ tends to asymptote to a single 

value at later times. As b and v rel decrease, v r peak is smaller at a given 

time. But the difference is at most by a factor of 3 for the collision 

parameters considered. 

As explained for our fiducial model above, the optical depth is 

initially high at collision, τ > O (10 6 ). The optical depth for most 

cases gradually decreases as the gas cloud expands, following a 

power law of t −7/3 , which is expected from the scaling relations of 

ρ and v r peak : τ ∝ ρR peak ∝ t −3 t 2/3 ∝ t −7/3 , where R peak is the location 

of the peak expansion speed ≃ v r peak t ∝ t 2 / 3 . Note that we assume a 

constant opacity to find the scaling relation given that the electron 

scattering is the dominant source of opacities in the gas cloud. The 

deviation from the t −7/3 power-law relation becomes more significant 

as the collisions happen at lower v rel and higher b . 

3.2.3 Fitting formulae 

Combining all the scaling relations, we find that the average density 

ρ( t), mass-weighted average of temperature T peak expansion 

velocity v r peak ( t), size of the outer edge R peak ( t ), and radial expansion 

speed v r peak ( r, t) after t > 5 d can be well described by the following 

analytical expressions: 

ρ( t) = 6 × 10 −10 g cm 
−3 

(

t 

1 d 

)−3 
( v rel 

10 4 km s −1 

)−3 
, (2) 

T ( t) = 1 . 5 × 10 5 K 

(

t 

1 d 

)−1 

tan −1 ( 
√ 

R ⋆ / 10 R ⊙) 

for v rel ≥ 5000 km s −1 and b � 0 . 4 R ⋆ , (3) 

τ ( t) = 2 . 5 × 10 5 
(

t 

1 d 

)−7 / 3 

, 

for v rel > 5000 km s −1 and b � 0 . 4 R ⋆ , (4) 

v r peak ( t) = 50 000 km s −1 
(

t 

1 d 

)−1 / 3 
( v rel 

10 4 km s −1 

)0 . 7 

×

(

b/R ⋆ + 5 

5 

)−4 

, (5) 
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Figure 6. Average density ρ ( top-left ), mass-weighted average of temperature T ( top-right ), the peak expansion speed v r peak ( bottom-left ), and the surface 

average of the optical depth τ to the centre ( bottom-right ) of the cloud in all models, as a function of time since collision. The average density and temperature 

are estimated using the cells within a radius containing 75 per cent of the cloud mass. 

R peak ( t) = 6 . 5 × 10 14 

(

t 

1 d 

)2 / 3 
( v rel 

10 4 km s −1 

)0 . 7 

×

(

b/R ⋆ + 5 

5 

)−4 

, (6) 

v r ( r, t) = 

{ 

v r peak 

(

r 
R peak 

)

for r ≤ R peak , 

0 for r > R peak , 
(7) 

where the expression for R peak is found by analytically integrating 

v r ( r , t ) o v er time. Note that ρ decays faster than that e xpected 

from the expression 3 M gas / (4 πR 
3 
peak ) ≃ t −2 because ρ follows the 

homologous relation whereas the peak expansion speed slows down 

so the outer edge expands slower than that expected for homologous 

expansion. 

Note that we do not include the term describing the dependence on 

R ⋆ in most of the expressions above because of their very weak R ⋆ 

dependence. On the other hand, the omission of the v rel dependence 

in equation ( 3 ) for T is because of too small number of models with 

varying v rel for reliable fitting. Instead, we have specified the range 

of v rel where the equation is valid. 

3.3 Stellar core 

The cores mo v e almost synchronously with the bulk of the gas. The 

orbit of the cores are barely affected by the collision: they remain 

unbound after collision and mo v e a way from each other at a speed 

almost same as the incoming speed. The distances from the collision 

point in our fiducial model at five different times are marked with 

circles in Fig. 5 . 

The mass bound to the cores is larger for larger v rel and 

smaller b . But it is o v erall insignificant. F or b ≤ 0.2 R ⊙ and v rel 

≥ 5000 km s −1 , the bound mass is less than 6 × 10 −6 M ⊙. It 

is ≃ 2 × 10 −3 M ⊙ for the model with v rel = 2500 km s −1 and 

that with b = 0.4 R ⊙ and ≃ 3 × 10 −2 M ⊙ for the model with 

b = 0.8 R ⊙. 

3.4 Conversion factor 

In this section, we investigate how much heat energy is created in 

collisions, which is closely related to the amount of energy that 

can be radiated away and potentially observed. We first define the 

conversion factor ηrad as the ratio of the total radiation energy to the 

initial kinetic energy, 

ηrad ( t ) = 

∫ 
aT ( t ) 4 d V 

∫ 
0 . 5 ρ( t = 0) v( t = 0) 2 d V 

, (8) 
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Table 2. Peak conversion factor η, luminosity at peak L peak and blackbody temperature at peak T BB,peak for each model, using equation ( 11 ) ( L peak,1 and 

T BB,peak,1 ) and equation ( 12 ) ( L peak,2 and T BB,peak,2 ). 

Model number R ⋆ v rel b ηpeak L peak,1 L peak,2 T BB,peak,1 T BB,peak,2 

R ⊙ ×10 3 km s −1 R ⋆ ×10 43 erg s −1 
×10 43 erg s −1 

×10 5 K ×10 5 K 

1 10 10 0.04 0.69 9.6 1.3 3.0 2.1 

2 10 10 0.2 0.59 9.3 1.3 2.9 2.0 

3 10 10 0.4 0.41 6.5 1.0 2.7 1.9 

4 10 10 0.8 0.13 4.2 0.7 2.7 1.7 

5 10 5 0.04 0.69 2.1 0.3 2.2 1.4 

6 10 2.5 0.04 0.56 0.5 0.1 1.0 1.0 

7 20 10 0.04 0.65 13 2.0 2.7 1.7 

8 50 10 0.04 0.73 26 3.4 2.2 1.4 

9 100 10 0.04 0.73 26 3.4 1.7 1.1 

where a is the radiation constant and d V is the volume element of 

each cell. Using ηrad , one can estimate the total radiation energy 

as ≃ 0 . 25 ηrad M ⋆ v 
2 
rel for equal-mass collisions. To distinguish gas 

that initially belonged to the stars from the background gas, we 

employ a selection condition using a passive scalar. The passive 

scalar is an artificial scalar quantity initially assigned to each cell 

which then evolves via advection without affecting the evolution of 

hydrodynamics quantities. The initial values of the passive scalar of 

the cells in the stars are 1 and that of the background cells is 0. So 

depending on the mass exchange (or mixing) between the cells, the 

passive scalar varies between 0 (vacuum cells) and 1 (cells originally 

in the stars). We perform the inte gration o v er cells with the passive 

scalar � 0.1. The value of ηrad is largely unaffected by the choice of 

the threshold of the passive scalar, provided that it is greater than 0. 

We show ηrad for all our models in Fig. 8 before the radiation energy 

in the optically thin gas becomes dominant. It is generally found that 

ηrad dramatically increases at collision to ηrad ≃ 0.1–0.8, meaning a 

significant fraction of the initial kinetic energy is converted into heat 

energy. The maximum conversion factors are summarized in Table 2 . 

Then, as the cloud expands and cools, ηrad decreases down to � 10 −2 . 

We see three clear post-peak trends of ηrad . First, ηrad is larger when 

larger stars collide. Additionally, ηrad is approximately ∝ R ⋆ at any 

given time: ≃ (1–2) × 10 −3 for R ⋆ = 10 R ⊙, ≃ (3–4) × 10 −3 for R ⋆ = 

20 R ⊙, ≃ 10 −2 for R ⋆ = 50 R ⊙, and ≃ 2 × 10 −2 for R ⋆ = 100 R ⊙ at t 

≃ 3 d. We attribute this positive correlation between ηrad and R ⋆ to the 

fact that for the same relative velocity, larger (cooler) stars collide at 

higher M , resulting in stronger shocks o v er a wider contact surface 

( ∝ R ⋆ ). Secondly, ηrad is almost the same when b � 0.2 R ⋆ , while ηrad 

begins to decrease with b when b � 0.2 R ⋆ . This trend is somewhat 

e xpected giv en that as b increases, the mass of gas that is shocked at 

collision decreases. Lastly, ηrad decreases with v rel because of lower 

M collisions for given sound speed (i.e. the same star). ηrad at v rel = 

5000 km s −1 is almost the same as that at v rel = 10 000 km s −1 , but 

ηrad at v rel = 2500 km s −1 is lower by a factor of ≃ 2 than that for 

our fiducial case. The o v erall lev els of the conv ersion factors that we 

obtain are comparable to what Amaro Seoane ( 2023b ) imposed in 

order for their analytical model to match with the observed object 

ZTF19acboexm (see their fig. 9). 

We can also define the conversion factor for the ram pressure of 

gas moving at supersonic speeds, 

ηram ( t ) = 

∫ 
ρ( t ) v( t ) 2 d V 

∫ 
ρ( t = 0) v( t = 0) 2 d V 

, (9) 

where the integration in the denominator is carried out o v er cells 

for which the passive scalar > 0.1, and that in the numerator the 

integration is carried out only over cells with supersonic speeds, 

M ≥ 1. As illustrated in the third column panels of Figs 4 and 7 , 

almost all the gas is supersonically expanding. As a result, 1 − ηram 

≃ ηrad . 

3.5 Obser v ables 

We estimate the luminosity L , blackbody radius R BB , and temperature 

T BB , using the radiation energy and the local cooling time t cool . We 

first construct a spherical grid with an extremely small opening polar 

angle ( θ ≃ 10 −10 rad) to a v oid the singularity at the poles, radially 

extending out to near the outer boundary of the domain. The grid 

in the radial direction is logarithmically divided, i.e. constant � r / r 

where � r is the cell size at r , while that in the θ and φ directions are 

linearly divided, i.e. constant �θ and �φ. The number of grids in r , 

θ , and φ are (800, 600, 600), which we confirmed to give converging 

estimates for the observables. We then identify the photosphere at 

which the optical depth τ ≃ 1. τ is integrated along each r -path with 

the opacity found using an OPAL opacity table for Solar metallicity 

(Iglesias & Rogers 1996 ). The photospheric area is 

A BB = 

∫ 2 π

0 

∫ 
≃ π

≃ 0 

r ( τ = 1) 2 sin θd r d θd φ, (10) 

which gives the effective size of the emitting region or blackbody 

radius R BB = ( A BB /4 π ) 1/2 . 

We attempt to bracket the range of realistic radiated luminosity 

from the collision event by employing two different methods, each 

of which places different weights on the contribution from the gas 

cloud layers (the inner regions or outer regions near the photosphere) 

within the identified photosphere. Our estimates should be accurate 

at an order-of-magnitude le vel. Ho we ver, for more accurate mod- 

elling of light curves, we will carry out detailed non-equilibrium 

radiation transport calculations in future follow-up work dedicated 

to estimating light curves and spectra. 

In both methods, the total luminosity for each radial path is 

estimated by summing the contributions from the cells with the 

local cooling time t cool shorter than the evolution time t within the 

photosphere. Here, t cool is defined as h ρτ (1 + u gas / u rad )/ c where h ρ
is the density moment scale height inside the photosphere and u rad 

( u gas ) is the radiation (gas thermal) energy. Ho we ver, the dif ference 

between the two methods is the assumption for how most of the 

radiation energy is radiated away. In one method, we assume that the 

total radiation energy within the photosphere is radiated away over a 

time comparable to the cooling time at the base of the cloud. Under 

this assumption, the inner regions tend to dominate the luminosity. 

We first integrate the total radiation energy along the radial path and 

divide it by the cooling time at the base of the cloud t cool,max , i.e. the 
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Figure 7. Same as Fig. 4 , but for off-axis collisions ( b = 0.2, 0.4, and 0.8 R ⋆ ) between two giants with R ⋆ = 10 R ⊙ at t ≃ 5 d since collision. 
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longest cooling time which is no longer than t , or 

L 1 = 

∫ 2 π

0 

∫ 
≃ π

≃ 0 

[
∫ r( τ= 1) 

r( t cool = t) 

aT 4 r 2 sin θd r 

]

t cool , max ( θ, φ) −1 d θd φ. 

(11) 

In the second, we assume that the radiation energy of each cell is 

radiated a way o v er the local cooling time. So the total luminosity is 

estimated, 

L 2 = 

∫ 2 π

0 

∫ 
≃ π

≃ 0 

∫ r( τ= 1) 

r( t cool = t) 

aT 4 t cool ( r, θ, φ) −1 r 2 sin θd rd θd φ. (12) 

In this method, the outer regions near the photosphere dominate the 

luminosity. As stressed before, the evolution of the hydrodynamics 

quantities for optically thin gas (i.e. outer region near the photo- 

sphere) in our simulations is intrinsically less accurate than those for 

optically thick gas. Hence, L 1 should be considered more consistent 

with our hydrodynamical scheme. We find that the shapes of the 

L 1 and L 2 light curv es are v ery similar. Ho we ver, L 1 is consistently 

smaller than L 2 by a factor of ≃ 10. For this reason, we present L 1 

and the resulting blackbody temperature T BB,1 = ( L 1 / σA BB ) 
1/4 in this 

section and those from equation ( 12 ) in Appendix A . 

Fig. 9 shows L 1 ( top ), T BB,1 ( middle ), and R BB ( bottom ) as a 

function of time measured since collision for all our models. 5 

Note that the luminosity and the blackbody temperature differ 

depending on the assumption of radiation (equations 11 and 12 ), 

but R BB is independent of the assumption. The luminosity increases 

dramatically to its peak at collision. The peak luminosity is L 1 � 

10 41 –10 43 erg s −1 ( L 2 � 10 42 –10 44 ), which is higher for larger R ⋆ 

and smaller b and higher v rel , which has the same trend as ηrad . The 

temperature at peak is T BB,1 ≃ 10 5 K. Because T BB ∝ L 
1/4 , T BB,2 is 

greater than T BB,1 by less than a factor of 2. We summarize peak L and 

T BB at peak for all our models in Table 2 . Subsequently both L and 

T BB , independent of the assumption for the diffusion time (so both 

L 1 and L 2 ), decrease following a power law of ∝ t −ξ with ξ slightly 

differing at early and late times. L at t � 5 d reveals a decaying curve 

with ξ ≃ 0.7–0.8, followed by a slower decay with ξ ≃ 0.4 at t � 5 d. 

L therefore decreases by a factor of 10 for the first 5 d. The decay 

in L for the next 30 d is relatively small, by only by a factor of a 

few. The change in ξ for T BB is very mild: ξ ≃ 0.6 at t � 5 d and 

≃ 0.5 at t � 5 d. T BB decreases from ≃ (1–2) × 10 5 K at collision 

to 10 4 K at 5–15 d, (4–6) × 10 3 K at 30 d. This means the collision 

will be bright in extreme ultraviolet (UV) at collision which shifts to 

optical on a time-scale of a month. Lastly, R BB increases to ≃ 10 15 cm 

in 30 d, approximately following power-law growth of ∝ t 0.8 . 

The light curves from our simulations reveal some differences from 

that analytically predicted by Amaro Seoane ( 2023b ). Assuming 

a constant η comparable to the minimum ηrad shown in Fig. 8 , 

their analytical model predicts a peak luminosity consistent with the 

numerically integrated peak luminosity shown in Fig. 9 . Ho we ver, 

the luminosity from their analytical model peaks at a few days after 

collision and subsequently decays faster. We attribute these discrep- 

ancies to the difference in the way of calculating the luminosity. 

In their analytical model, the luminosity was estimated under the 

assumption that η does not change o v er time and the total radiation 

5 While this paper is under re vie w, we published Dessart et al. ( 2024 ) in which 

we conducted detailed radiation transfer calculations for the observables of 

BDCs using the time-dependent radiation transfer code CMFGEN (Hillier & 

Dessart 2012 ). The more accurately estimated luminosity and temperature 

are in good agreement with our order-of-magnitude estimates assuming the 

inner regions dominating the luminosity (equation 11 ) shown in Fig. 9 . 

Figure 8. The ratio of the radiation energy to the initial kinetic energy ηrad 

as a function of time, measured since collision, for all our models. 

energy within the gas cloud is radiated away instantaneously on a 

time-scale comparable to the longest possible photon cooling time at 

an y giv en time (e.g. based on the optical depth to the centre). On the 

other hand, in this work, we take into account the time-dependent 

contributions (e.g. adiabatic loss of energy due to expansion) of the 

cloud. 

The observables estimated in this section are driven by stellar 

collisions. But given the fact that these collisions occur near an 

SMBH, the expanding gas cloud and the nearby BH would very 

likely interact, generating a possibly even brighter flare, which we 

discuss in Section 4.2 . 

4  DIS CUS S ION  

4.1 Interaction of gas cloud with interstellar medium 

In this work, we simulated high-velocity collisions of giants sur- 

rounded by a medium with a constant density of 10 −18 g cm 
−3 and 

temperature of 10 4 K. As the cloud expands, it collides inelastically 

with the background medium, which results in the continuous 

decrease in the kinetic energy of the expansion front. In addition, 

the collision between the outer edge of the cloud and the background 

medium can create shocks, converting the kinetic energy into heat en- 

ergy. The net effect is the deceleration of the gas cloud, deviating from 

a homologous behaviour, which is also found from our simulations 

where the velocity of the outer edge decreases following t −1/3 . This 

impact of the surrounding medium would be faster if the colliding 

stars were initially embedded in a denser medium. For example, the 

rising slope of ηrad would be less steep for the case with lower density 

background gas. Given the supersonic motion of the cloud, how the 

cloud expands would not be significantly affected by the temperature 

of the background medium for a given background density. However, 

the evolution of ηrad would be changed depending on the background 

temperature. In fact, we performed extra simulations with different 

background temperatures (100–5000 K), showing that while the 

expansion properties of the cloud (e.g. ρ, T , and v r peak ) are almost 

independent of the background temperature, ηrad tends to be lower at 

the local minimum and increases more slowly afterward for a lower 

background temperature. 

Although the deviation from a homologous expansion was only 

found near the outer edge for the duration of our simulations, as 

an order-of-magnitude estimate, the motion of the entire gas cloud 

would become completely deviated from a homologous expansion 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/528/4/6193/7603392 by D
eutsches Elektronen Synchrotron D

ESY user on 18 D
ecem

ber 2024



Red giant collision in nuclei 6203 

MNRAS 528, 6193–6209 (2024) 

Figure 9. Bolometric luminosity L ( top ), blackbody temperature T BB ( mid- 

dle ), and blackbody radius R BB ( bottom ), estimated for stellar collisions 

using equations ( 10 ) and ( 11 ). The dotted grey horizontal lines in the bottom 

panel indicate the distances of the collision from the black hole with M BH = 

10 6 M ⊙ ( ≃ 10 14 cm) and 10 7 M ⊙ ( ≃ 10 15 cm). The magenta guide lines show 

the power law that describes the quantity shown in the last two panels. 

when the swept-up mass is comparable to the mass of the cloud, 

t non - homologous ≃ 
3 M gas 

4 πρISM ( v r ) 3 
, 

≃ 1100 d 

(

M gas 

2 M ⊙

)(

ρISM 

10 −18 g cm −3 

)−1 (
v r 

10 4 km s −1 

)

, 

(13) 

where v r is the expansion speed and ρISM the density of the 

background medium. At the same time, this also means that the 

scaling relations for the homologous expansion found from our 

simulations would be applied to the evolution of the homologously 

expanding part of the collision product, independent of the existence 

of the background medium. 

4.2 Interaction of gas cloud with supermassi v e black hole 

In addition to the burst caused by the stellar collision (see Section 

3.5 ), there would be a subsequent burst due to accretion on to the 

nearby SMBH. As a result, the o v erall shape of the luminosity 

would be that the stellar collision creates the first peak with L � 

10 42 erg s −1 which decays, followed by a sharp rise to Eddington 

due to accretion on to the BH, possibly remaining at that level 

for up to years until the captured gas is accreted on to the BH. 

We will examine the observables from the BH–cloud interaction 

by considering two cases: (1) Case 1: no-decelerating expansion 

(Section 4.2.1 ) and (2) Case 2: decelerating expansion (Section 

4.2.2 ). For simplicity, we assume that the centre-of-mass motion of 

the collision product is moving sufficiently slowly compared to the 

cloud expansion speed, which would be rele v ant for head-on equal- 

mass collisions. In addition, we make a crude assumption that the 

gas cloud is expanding spherically. Ho we ver, in reality, the collision 

product can have a non-negligible coherent motion compared to the 

SMBH and the shape of the gas cloud would be deformed by the tidal 

force of the SMBH. These will be studied in detail in a follow-up 

project. And we will discuss the astrophysical implications for BHs in 

Section 4.2.3 . 

4.2.1 Case 1: no-decelerating expansion 

We first assume that the entire gas cloud expands homologously and 

the expansion speed of the outer edge is v r ≃ ψv rel with ψ ≃ 3–6 

(see Fig. 6 ). The gas cloud starts to interact with the BH when the 

size of the expanding gas cloud becomes comparable to the distance 

to the BH R BB for given v rel , 

R BH ≃ 
GM •

v 2 rel 

= 10 15 cm 

(

M •

10 7 M ⊙

)

( v rel 

10 4 km s −1 

)−2 
. (14) 

The time difference between the first collision-driven burst and the 

subsequent accretion-driven burst would be set by the time τBH at 

which the outer edge of the cloud reaches the BH, R BH − R Sch ≃ R BH 

≃ R peak , where R Sch is the Schwarzschild radius, 

τBH ≃ 
R BH 

v r 
≃ 3 d 

(

M •

10 7 M ⊙

)

( v rel 

10 4 km s −1 

)−3 
. (15) 

To zeroth order, the part of the cloud that is within the Bondi radius 

R Bondi ≃ 2 GM •/( v r ) 2 from the BH would be gravitationally captured 

by the BH and subsequently accreted on to the BH. Assuming a 

Bondi–Hoyle accretion (Bondi & Hoyle 1944 ; Bondi 1952 ), the 
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luminosity L Bondi with radiative efficiency ǫ can be estimated, 

L Bondi ≃ 
4 πǫG 

2 M 
2 
•
ρc 2 

( v r ) 3 
, 

≃ 3 × 10 47 erg s −1 
( ǫ

0 . 1 

)

(

M •

10 7 M ⊙

)−1 
( v rel 

10 4 km s −1 

)3 
, 

(16) 

which is super-Eddington for M • < 3 × 10 8 M ⊙( v rel /10 4 km s −1 ) 1.5 . 

Note that L Bondi has no dependence on t given the scaling relations 

for ρ ( ∝ t −3 , equation 2 ) and v r ( r = R BH ) ( ∝ t −1 , equation 7 ): 

L Bondi ∝ ρ( v r ) −3 ∝ t 0 . Super-Eddington accretion may be pos- 

sible if the gas is optically thick and the trapping radius R tr = 

( L Bondi / L Edd )( GM •/ ǫc 2 ) is smaller than the Bondi radius (Begelman 

1979 ). The ratio of the two radii is 

R tr 

R Bondi 
≃ 300 

(

t 

1 d 

)−2 
( v rel 

10 4 km s −1 

)−1 
, (17) 

suggesting super-Eddington accretion would be possible at t � 

20 d( v rel /10 4 kms −1 ) −0.5 . Here, we caution that the time ratio in 

equation ( 17 ) is estimated under the assumption that the global 

accretion flow is not affected by any accretion feedback, which 

is highly uncertain. Assuming a blackbody, the temperature at the 

Bondi radius if L ≃ L Edd is 

T Bondi ( t) ≃ 10 5 K 

(

t 

3 d 

)−1 (
M •

10 7 M ⊙

)3 / 4 
( v rel 

10 4 km s −1 

)−1 / 2 
, 

(18) 

and at the onset of the BH–gas interaction (or t ≃ τBH ), 

T Bondi ( t = τBH ) ≃ 10 5 K 

(

ψ 

5 

)(

M •

10 7 M ⊙

)−1 / 4 
( v rel 

10 4 km s −1 

)

. 

(19) 

If L ≃ L Bondi , 

T Bondi ≃ 2 . 4 × 10 4 K 
(

t 
150 d 

)−1 ( ǫ
0 . 1 

)1 / 4 

×

(

M •
5 ×10 8 M ⊙

)1 / 4 
(

v rel 
10 4 km s −1 

)−5 / 4 
, (20) 

and at t = τBH , 

T Bondi ( t = τBH ) ≃ 2 . 4 × 10 4 K 

(

ψ 

5 

)

( ǫ

0 . 1 

)1 / 4 

×

(

M •

5 × 10 8 M ⊙

)−3 / 4 
( v rel 

10 4 km s −1 

)−7 / 4 
. (21) 

Because R Bondi increases faster than R peak , 

R Bondi 

R peak 
∝ t, (22) 

as the most optimistic case, the entire gas cloud could be ultimately 

captured by the BH in a time τ capture at which R Bondi ≃ R peak , 

τcapture ≃ 40 d 

(

ψ 

5 

)(

M •

10 7 M ⊙

)

( v rel 

10 4 km s −1 

)−3 
. (23) 

Then, the maximum duration of the Eddington luminosity may be 

set by 

τacc � 
M gas ǫc 

2 

L Edd 
≃ 9 yr 

( ǫ

0 . 1 

)

(

M gas 

2 M ⊙

)(

M •

10 7 M ⊙

)−1 

, (24) 

where M gas is the mass of the gas cloud, i.e. total mass of the two 

collided stars. Here, we assumed that the entire gas would be accreted 

on to the BH. Ho we ver, radiation pressure from super-Eddington 

Figure 10. Time τBH to the accretion-driven burst since the peak collision- 

driven luminosity for different collision velocities v rel , as a function of black 

hole mass. The lines illustrate Case 2: decelerating expansion (Section 4.2.2 ) 

where the entire cloud expands homologously up to 0.5 d since collision 

(dashed), then the outer edge starts decays like t −1/3 (solid) due to interactions 

with a background medium, using equation ( 7 ). The less steep diagonal bars 

demarcate the range of τBH for the case where the gas cloud continuously 

expands homologously with the outer edge moving at (3–6) × v rel ( Case 1: no- 

decelerating expansion (Section 4.2.1 ), corresponding to the peak expansion 

speed upon collision in our simulations (see the bottom-right panel of Fig. 6 ). 

accretion would be strong enough to generate outflow. For such a 

case, only a fraction of the gas cloud would end up accreting and τ acc 

would be shorter than estimated abo v e. 

4.2.2 Case 2: decelerating expansion 

Now we examine the observables from interactions between decel- 

erating expanding cloud with v r peak ∝ t −1 / 3 and the SMBH, using 

equations ( 2 )–( 7 ). For this case, τBH has a different dependence on 

M • and v rel , 

τBH ≃ 3 d 

(

M •

10 7 M ⊙

)3 / 2 
( v rel 

10 4 km s −1 

)−3 
(

b/R ⋆ + 5 

5 

)6 

, (25) 

We show in Fig. 10 the range of τBH for three different collision 

velocities v rel as a function of M • assuming a non-decelerating 

expansion speed (thick diagonal bars, ψ = 3–6) and a decelerating 

expansion speed (solid lines). The interaction onset time would 

be longer generally if the expansion of the cloud slows down. 

Depending on M BH and v rel , the second burst could happen o v er a 

wide range of time. For example, if a collision with v rel � 2500 km s −1 

occurs in the Galactic centre (with M • ≃ 4 × 10 6 M ⊙; GRAVITY 

Collaboration 2019 ), the second accretion-driven burst would occur 

after the collision in less than a day to 6–7 months depending on the 

location of the collision from the BH. For very massive black holes 

( M BH > 10 8 M ⊙), τBH can be more than tens of years. 

The Bondi luminosity is still independent of t and has the same 

M • − and v rel − dependence as the case with the no-decelerating 

expansion, but it is roughly a factor of 3 greater at given M BH and 

v rel , 

L Bondi ≃ 10 48 erg s −1 
( ǫ

0 . 1 

)

(

M •

10 7 M ⊙

)−1 
( v rel 

10 4 km s −1 

)3 
, (26) 

which is further illustrated in Fig. 11 . While the expression for the 
blackbody temperature at the Bondi radius has the same dependence 
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Figure 11. Bondi luminosity due to free-fall accretion of the collision 

product on to a black hole for different collision velocities v rel , as a function 

of black hole mass. The solid line is for the decelerating peak expansion speed 

( Case 2: decelerating expansion , Section 4.2.2 ) and dashed lines for the non- 

decelerating expansion speed ( Case 1: no-decelerating expansion , Section 

4.2.1 ). The grey dashed diagonal line indicates the Eddington luminosity. 

Figure 12. Temperature from the Eddington-limited Bondi luminosity at the 

onset of the accretion of the collision product on to a black hole for different 

collision velocities v rel , as a function of black hole mass. As before in Fig. 

10 , the lines show the case where the cloud undergoes a non-decelerating 

expansion up to 0.5 d, followed by a deceleration of the outer edge like t −1/3 

at 0.5 d since collision due to interactions with a background medium, using 

equations ( 2 )–( 7 ). The diagonal bars indicate the range of τBH when the entire 

gas cloud expands without being decelerated with the peak expansion speed 

of (3–6) × v rel . The power laws are analytically derived in equations ( 18 ) 

( ∝ M 
−1 / 4 
• ) and ( 27 ) ( ∝ M 

−3 / 4 
• and ∝ M 

−5 / 4 
• ). 

on M • and v vel as equations ( 18 ) and ( 20 ), because of the different 
expression for τBH , T Bondi ( t = τBH ) is written differently, 

T Bondi ( t = τBH ) 

≃ 

 
 
 
 
 
 
 

 
 
 
 
 
 

8 × 10 4 K 
(

M •
10 7 M ⊙

)−3 / 4 (
v rel 

10 4 km s −1 

)2 . 1 (
b/R ⋆ + 5 

5 

)−6 
, 

for L = L Edd , 

6 × 10 3 K 
(

ǫ
0 . 1 

)1 / 4 
(

M •
10 7 M ⊙

)−5 / 4 (
v rel 

10 4 km s −1 

)2 . 8 (
b/R ⋆ + 5 

5 

)−6 
, 

for L = L Bondi . 

(27) 

We compare T Bondi at the onset of the accretion-drive burst (so T Bondi 

at t = τBH ) in Fig. 12 between the non-decelerating expansion case 

(thick bars) and the decelerating expansion case (lines). For low- 

mass black holes, T Bondi is quite similar, e.g. 10 5 K for M • = 10 5 –

10 6 M ⊙. Ho we ver, because of a steeper decline for the decelerating 

expansion case ( T Bondi ∝ M 
−3 / 4 
•

− M 
−5 / 4 
•

, equation 27 ) than for the 

no-decelerating expansion case ( T Bondi ∝ M 
−1 / 4 
•

− M 
−3 / 4 
•

, equations 

19 and 21 ), T Bondi for the decelerating expansion case is generally 

lower for high-mass BHs: for M • = 10 9 M ⊙, T Bondi ≃ 10–10 3 K for 

the decelerating expansion case whereas T Bondi ≃ 10 3 –10 4 K for the 

no-decelerating expansion case. 

For the decelerating expansion case, the Bondi radius increases 

faster, 

R Bondi 

R peak 
∝ t 4 / 3 , (28) 

which leads to a smaller τ capture , 

τcapture ≃ 11 d 

(

M •

10 7 M ⊙

)3 / 4 
( v rel 

10 4 km s −1 

)−2 . 5 
(

b/R ⋆ + 5 

5 

)−3 

. 

(29) 

The duration of the accretion process would be the same as equation 

( 24 ). 

4.2.3 Astrophysical implication for black holes 

The possibility of the accretion of at least some fraction of the 

expanding cloud on to the SMBH in proximity can have significant 

implications for the growth of BHs in the cosmic landscape. While 

several mechanisms for massive BH formation have been proposed, 

the precise mechanism for growing BH seeds at extremely high 

redshifts remains uncertain (see for re vie ws Colpi & Dotti 2011 ; 

Inayoshi, Visbal & Haiman 2020 ). The proposed mechanisms include 

rapid growth of the remnants of the Population III stars via super- 

Eddington accretion (e.g. Haiman & Loeb 2001 ; Volonteri & Rees 

2005 ; Lupi et al. 2016 ; Ryu et al. 2016 ; Sassano et al. 2023 ), the direct 

collapse of supermassive self-gravitating objects (e.g. Omukai & 

Nishi 1998 ; Yoshida, Omukai & Hernquist 2008 ; Zwick et al. 2023 ), 

and growth of BHs in a runaway process (e.g. Devecchi et al. 2012 ; 

Stone, K ̈upper & Ostriker 2017 ; Tagawa, Haiman & Kocsis 2020 ; 

Rizzuto et al. 2023 ). In principle, as long as a BH is more massive 

than colliding stars, the velocity of stars around the BH can be large 

enough that stellar collisions can be disruptive. Hence, the accretion 

of gas produced in stellar collisions on to a nearby BH can provide 

another venue for the growth of stellar-mass BHs to massive BHs, in 

particular see BHs at high redshift. 

Ho we ver, disrupti ve collisions are not the only growth mechanism 

for BHs in stellar-dense environments. We show in Fig. 13 the regions 

around BHs in which several events possibly contributing to their 

gro wth, i.e. disrupti ve collisions, tidal disruption events, BH–star 

collisions, and direct captures by BHs, can occur. When the distance 

from the BH is less than a few times greater than the Schwarzschild 

radius r Sch = 2 GM •/ c 2 (dubbed ‘direct capture’ radius), the star would 

directly fall into the BH (e.g. r < 2 r Sch for parabolic orbits). If the 

closest approach distance between the BH and a star is smaller than 

the stellar radius, r � R ⋆ , they collide, during which the BH would 

gravitationally capture a fraction of the star and accrete. When a 

star orbits at a distance greater than both the stellar radius and the 

direct capture radius, and smaller than the so-called tidal radius, 

r t = ( M •/ M ⋆ ) 
1/3 R ⋆ , very strong BH’s tidal forces disrupt the star, 

creating debris, some of which would end up accreting on to the BH. 

This event is called tidal disruption event (Hills 1988 ; Rees 1988 ). 

Finally, the region for disruptive collisions between giants may be 
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Figure 13. Parameter space for disruptive events of a giant with M ⋆ = 

1 M ⊙ and R ⋆ = 10 R ⊙ in terms of the distance from the BH for varying 

BH masses. The region dubbed ‘Black hole’ is defined by the Schwarzschild 

radius, r Sch = 2 GM •/ c 2 . If the pericentre distance of a star is smaller than 

a few times outside r Sch , the star would be directly captured by the black 

hole. If the separation is smaller than the stellar radius, they would collide 

(‘black hole–star collision’). When the pericentre distance is smaller than 

the tidal radius r ≤ r t = ( M •/ M ⋆ ) 
1/3 R ⋆ , stars are tidally destroyed by the BH 

(‘tidal disruption’). Finally, disruptive collisions happen between the distance 

at which the Keplerian velocity is greater than the stellar escape velocity, r 

≤ r collision = ( M •/ M ⋆ ) R ⋆ and the tidal radius r ≤ r t . The white diagonal lines 

in the region for disruptive collisions correspond to the collision velocity for 

given BH mass and radius. 

characterized by the two distances, the distance within which the 

Keplerian velocity around the BH exceeds the stellar escape speed, 

r collision = ( M •/ M ⋆ ) R ⋆ and the tidal radius. 

As shown in Fig. 13 , all four star destroying events can contribute 

to the growth of stellar-mass and intermediate-mass BHs. Ho we ver, 

for SMBHs with r Sch > R ⋆ , only three e vents, namely, disrupti ve 

collisions, tidal disruptions, and direct captures, can feed the BHs. 

F or v ery massiv e BHs (e.g. M • > 10 9 M ⊙), disruptiv e collisions 

would be the dominant and likely only observable transient among 

those considered here that lead to the mass growth of the BHs (see 

Amaro Seoane 2023a ). 

This has an interesting implication for the detection of dormant 

BHs. TDEs have been considered a unique signpost for the existence 

of dormant SMBHs. Ho we ver, because there is a maximum BH mass 

capable of disrupting stars, M • at which r t equals to the direct capture 

radius, TDEs cannot be used to detect very massive quiescent black 

holes. Ho we ver, disrupti ve stellar collisions can occur near BHs at 

all mass scales, which w ould mak e these events a promising tool to 

probe the existence of very massive dormant BHs which cannot be 

probed by other transients. In particular, if the luminosity due to the 

interaction of the collision product with the BH is Eddington limited, 

an inference of the BH mass would potentially be possible from the 

observed radiated light curve. 

Which type of the events is dominant at different mass ranges 

would depend on the stellar density, the accretion efficiency, and 

occurrence rates, which is beyond the scope of our paper. We will 

examine this aspect in more detail in our future work. 

4.3 Particle acceleration 

In this work, we have conducted numerical hydrodynamical simu- 

lations that confirm, following stellar collision event, the formation 

of strong shocks. These shocks arise due to the high velocity of 

the outflow, and its impact with the surrounding ISM in the galactic 

nucleus environment. These shock waves subsequently compress and 

heat the surrounding ISM gas. 

The shocks formed in these stellar collisions provide an en- 

vironment highly conducive to efficient particle acceleration. As 

particles interact with the turbulent magnetic fields expected close 

to the shock front, they can gain a significant fraction of the free 

energy available from the differential flow speeds (in the shock’s 

rest frame, the upstream towards the shock with velocity V and 

the downstream mo v es a way from the shock at velocity V /4). This 

process of dif fusi ve particle acceleration at shocks, an example of 

first-order Fermi acceleration, is expected to result in the generation 

of a power-law spectrum of non-thermal particles up to very high 

energies (Bell 1978 ; Blandford & Ostriker 1978 ). 

A fraction of the energy in the accelerated particle population 

produced by stellar collisions will subsequently be radiated via 

non-thermal emission through various energy loss processes (see 

Matthews, Bell & Blundell 2020 ; Orlando et al. 2021 , for re vie w 

in the context of active galactic nucleus jets and supernovae, 

respectiv ely). F or instance, the accelerated electrons will produce 

synchrotron radiation as they spiral around the magnetic fields also 

generated during the collision. This emission is expected to be 

detectable in the radio, and potentially the X-ray, bands. In addition, 

the interaction between accelerated protons and the surrounding gas 

can generate gamma-ray emission through processes like inelastic 

proton–proton collisions. 

The non-thermal radiation emitted by the accelerated particles 

produced in stellar collisions of fers v aluable diagnostics into the 

physical processes at play during violent stellar collision events. By 

analysing the observed non-thermal radiation, we can gain a clearer 

understanding of shock front environment. Ultimately, these insights 

will elucidate on the dynamics of the collision itself. Our numerical 

hydrodynamics simulations, coupled with theoretical estimates for 

the production of non-thermal particles not included in our numerical 

description, can provide insights into particle acceleration in stellar 

collisions. This will be addressed elsewhere in a separate work. 

4.4 Destructi v e collisions between different types of stars 

Although we only consider black hole-driven disruptive collisions 

(BDCs) between equal-mass 1 M ⊙ giants, there could be a variety 

of BDCs involving various types of stars. The total radiated energy, 

luminosity, and temperature of BDCs would be affected by various 

factors, including the relative size and mass of the colliding stars. 

It is essential to convert the collision kinetic energy into radiation 

energy for generating bright flares. For efficient energy conversion, 

one important requirement is a large contact area at collision. On the 

one hand, when two stars with two significantly different radii collide 

(e.g. main-sequence and giant) at high v elocity, ev en if the impact 

parameter is small, the smaller star would simply penetrate through 

the fluffy envelope of the larger star. On the other hand, for collisions 

involving stars with comparable sizes, the dependence of luminosity 

on the radii of the two colliding stars may not be so simple because 

how strong shocks are created at collision and how rapidly photons 

escape after collision would be determined by several factors, such as 

the temperature and density of the envelop of the star before collision 

and those of the gas cloud after collision. At least, our simulations 

suggest that collisions involving larger giants are brighter because 

of stronger collision shocks o v er a wider cross-section (see Figs 9 

and A1 ). In addition, the thermodynamic properties and chemical 

elements of the gas cloud would affect the spectra of the flare (Dessart 

et al. 2024 ). 
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Another important factor that determines the collision outcome 

and the amount of radiated energy is the masses of the colliding 

stars. For the cases where at least the envelopes of the stars are 

completely destroyed due to collision, the total energy radiated away 

would be limited by the total mass of the envelopes. Ho we ver, it is 

also possible that only one of the two colliding stars is completely 

destroyed. For such cases, while the total energy radiated away due 

to the collision would be limited by the mass of the star that is 

destroyed, the relatively intact star may play a role as an extra energy 

source that may affect the long-term evolution of the light curves. 

In addition, unlike the cases considered in this paper, the radiation 

would be highly asymmetric. 

Taking all these factors into account, flares due to BDCs would 

generally be brighter when two stars with larger masses and compara- 

ble sizes collide at a higher velocity with a smaller impact parameter. 

Ho we ver, due to the shorter lifetime and lower number density of 

more massive stars, the collision rates would be generally smaller. 

5  C O N C L U S I O N  A N D  S UM M ARY  

In this work, we investigate the hydrodynamics of high-velocity 

collisions between giants in galactic nuclei and their observational 

signatures using two state-of-the-art codes, the 3D moving-mesh 

hydrodynamics code AREPO and the 1D stellar evolution code MESA . 

The initial conditions of our simulations involved two identical 

1 M ⊙ giants with different radii, initial relative speeds, and impact 

parameters. This work complements to the analytical calculations 

presented by Amaro Seoane ( 2023b ), which is generally consistent 

with each other. We impro v e the estimates of the events’ observables 

by accurately taking into account the realistic stellar internal structure 

and non-linear hydrodynamics effects. 

When two stars collide with exceedingly large kinetic energy, very 

strong shocks are created along the contact surface. The envelope of 

the two giants are fully destroyed and merged into an homologously, 

quasi-spherically, and supersonically expanding gas cloud. The 

maximum expansion speed of the cloud is larger than the initial 

relativ e v elocity of the stars by a factor of 3–6. The expansion speed at 

a given mass coordinate stays the same, but the outer edge of the cloud 

slo ws do wn because of the interaction with the background medium. 

As it expands, the overall level of its density and temperature drops 

follo wing a po wer law of ∝ t −3 and ∝ t −1 , respecti vely, becoming 

optically thin within a few hundred days. At an y giv en time of 

evolution up to 30 d, the density and temperature of the inner regions 

of the cloud remain relatively constant, rapidly decaying towards the 

outer edge, following a power law: ρ( r ) ∝ r −8 − r −12 and T ( r ) ∝ r −1 −

r −2 . These quantities exhibit weak dependencies on the stellar radius 

within 10–100 R ⊙ and the impact parameter within b ≃ 0.4 R ⊙. But 

the dependence on the collision velocity is relatively strong. We 

provide fitting formulae for the average cloud density, temperature, 

maximum expansion speed, and optical depth (equations 2 –7 ), which 

would be useful for analytical estimates for these high-velocity stellar 

collisions. 

One of the key findings of our study is to numerically estimate 

the amount of radiation energy converted from the initial kinetic 

energy, which plays a crucial role in determining the observable 

properties of the collisions. The o v erall trend of the conversion 

efficiency, defined as the ratio of the converted radiation energy 

to the initial kinetic energy, is such that it peaks at � 0.1 at collision, 

decays to 10 −4 to 10 −2 within 10 d, and then gradually increases. 

The efficiency reaches 10 −2 to 10 −1 in 1 month since the collision. 

But its magnitude depends on various factors, including the stellar 

radius, impact parameter, and collision velocity . More specifically , 

a collision between larger stars colliding at a higher speed with 

a smaller impact parameter tends to result in greater conversion 

efficiency. 

We estimate the luminosity, the blackbody radius, and the black- 

body temperature, using the converted radiation energy and local 

cooling time within the gas cloud. The peak luminosity can reach 

values exceeding 10 42 erg s −1 and exhibits the similar dependence 

wtih the conversion efficiency. Over time, the luminosity decays 

follo wing a po wer law of t −0.8 at early times and t −0.4 after 10 d since 

collision. The blackbody radius increases almost linearly with time 

( ∝ t 0.8 ), while the temperature decreases, following a power law of 

t −0.5 − t −0.6 . The collision events would initially produce bursts of 

extreme UV ( ≃ 10 eV) gradually shifting to optical ( ≃ 0.1eV), with 

temporal evolution spanning from days to weeks. These events can be 

observed by ongoing [e.g. Zwicky Transient Facility (ZTF), Bellm 

et al. 2019 6 and The All Sky Automated Surv e y for SuperNo vae 

(ASSA-SN), Kochanek et al. 2017 7 ] and future [e.g. Vera C. Rubin 

Observatory (LSST), Ivezi ́c et al. 2019 8 and Ultraviolet Transient 

Astronomy Satellite (ULTRASAT), Shv artzv ald et al. 2023 9 ] sur- 

v e ys.More detailed radiation transport calculations will be carried 

out in our follow-up project, with which the detection rate for each 

surv e y will be estimated. 

In addition to the burst resulting from the stellar collision itself, a 

subsequent burst occurs due to the accretion of the gas cloud on to the 

SMBH in the galactic centre in 5( M •/10 7 M ⊙) d for v rel = 10 4 km s −1 

since collision. Assuming Bondi accretion, the accretion luminosity 

can easily exceed the Eddington limit as well as the luminosity from 

the stellar collision. Because the Bondi radius expands faster than 

the gas cloud, the entire cloud would be gravitationally captured in 

the black holes’s potential in 11( M •/10 7 M ⊙) 3/4 d and subsequently 

accrete on to the black hole. It w ould tak e � 9( M •/10 7 M ⊙) −1 yr 

if the entire cloud was accreted. Therefore, the o v erall luminosity 

curve would include a peak from the collision e vent, follo wed by a 

rise to the Eddington luminosity. This heightened luminosity can be 

sustained for up to 10 yr. 

Although the estimate of the time-scales and luminosity due to 

gas–black hole interactions are still of the order-of-magnitude level, 

this aspect indicates very important implications. The possibility of 

the gas accretion on to the black hole at all mass scales in proximity 

subsequently after the collision suggests that the collision can provide 

another mechanism for black hole growth. Tidal disruption events 

have been proposed as a tool to detect dormant black holes, mostly up 

to 10 8 M ⊙. Ho we ver, because disrupti ve stellar collisions can occur 

near v ery massiv e dormant ones ( > 10 9 M ⊙), such collisions can be 

a potentially promising tool to probe the existence of very massive 

dormant black holes. 

Finally, we demonstrate the conversion of kinetic energy into 

radiation energy, providing insights into the efficiency of particle 

acceleration in these collisions. The resulting bursts of UV and 

optical emission indicate the generation of high-energy particles, 

highlighting the importance of particle acceleration processes in 

understanding the observational signatures of such events. 

While this study, to our knowledge, is the first detailed hydrody- 

namics calculations of high-v elocity disruptiv e collisions between 

giants, there are a few caveats in our modelling that will be improved 

in our future work. First, the assumption for local thermodynamic 

6 https://www.ztf.caltech.edu 
7 https://www .astronomy .ohio-state.edu/asassn 
8 https://www.lsst.org 
9 https:// www.weizmann.ac.il/ ultrasat
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equilibrium is only valid for optically thick gas. This means the 

evolution of the collision product at early times is accurate, but 

as the gas cloud becomes optically thin, our treatment of radiation 

pressure becomes inaccurate. As remarked in Section 3.5 , this would 

affect the shape of the light curves at late times. We will perform 

detailed non-equilibrium radiation transport calculations for the late- 

time evolution in our follow-up project using our hydrodynamics 

calculations at early times when our assumption for local thermody- 

namic equilibrium is valid. This will significantly impro v e the light- 

curve modelling. Secondly, there are several physical impacts that 

we have not considered yet, such as magnetic fields, recombination, 

and the existence of non-thermal particles. Using the machinery that 

we built for this work, we will explore their impacts in a series of 

studies dedicated to investigating the impact of each physics. 

The high-velocity disruptive collisions will offer insights into 

many astrophysical aspects that cannot be provided by other tran- 

sients, such as the stellar dynamics and potential particle acceleration 

in galactic nuclei and globular clusters, black hole growth, and 

detection of dormant black holes. 
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APPE NDIX  A :  L UM INOS IT Y  ESTIMATE  

Fig. A1 show the luminosity L 2 ( top ) estimated using equation ( 12 ) 

and the resulting blackbody temperature T BB ( bottom ), as a function 

of time measured since collision for all our models. 
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Figure A1. Bolometric luminosity L 2 ( top ) and blackbody temperature T BB 

( bottom ) using equations ( 10 ) and ( 12 ). As in Fig. 9 , the magenta guide lines 

in the bottom panel show the power law that describes the quantity. 
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