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ABSTRACT

In stellar-dense environments, stars can collide with each other. For collisions close to a supermassive black hole (SMBH),
the collisional kinetic energy can be so large that the colliding stars can be destroyed, potentially releasing an amount of
energy comparable to that of a supernova. These black hole-driven disruptive collisions have been examined mostly analytically,
with the non-linear hydrodynamical effects being left largely unstudied. Using the moving-mesh hydrodynamics code AREPO,
we investigate high-velocity (>10° kms™') collisions between 1 Mg, giants with varying radii, impact parameters, and initial
approaching velocities, and estimate their observables. Very strong shocks across the collision surface efficiently convert
210 per cent of the initial kinetic energy into radiation energy. The outcome is a gas cloud expanding supersonically,
homologously, and quasi-spherically, generating a flare with a peak luminosity ~10*'-10* ergs~! in the extreme ultraviolet
band (~10 eV). The luminosity decreases approximately following a power law of %7 initially, then 14 after # ~ 10 d at which
point it would be bright in the optical band (<1eV). Subsequent, and possibly even brighter, emission would be generated due to
the accretion of the gas cloud on to the nearby SMBH, possibly lasting up to multiyear time-scales. This inevitable BH—collision
product interaction can contribute to the growth of BHs at all mass scales, in particular, seed BHs at high redshifts. Furthermore,
the proximity of the events to the central BH makes them a potential tool for probing the existence of dormant BHs, even very
massive ones which cannot be probed by tidal disruption events.

Key words: hydrodynamics —stars: kinematics and dynamics—Galaxy: nucleus—quasars: supermassive black holes—
Transients.

SMBH is roughly the Keplerian speed' oc r~%, stars near the BH

would collide at very high speeds (e.g. vy = 2000km s~ within
~0.1 pc around a 10’ Mg, BH). If the kinetic energy of the collision
(210 erg for a collision between two stars with mass M, = 1 Mg
and v 2> 2000 kms™!) is greater than the binding energy of the

~

1 INTRODUCTION

Dynamical interactions between stars in stellar-dense environments,
e.g. globular clusters and galactic centres, play a crucial role in
driving the evolution of the host and determining its thermo-

dynamic state (Hut et al. 1992). If the stellar density is suffi-
ciently high, stars can collide with relative velocities comparable
to the dispersion velocity of the host. In globular clusters, up
to 40 percent of main-sequence stars in the core would un-
dergo a collision during the lifetime of the cluster (Hills & Day
1976). For clusters with very high number densities (=107 pc™3),
a star may suffer multiple such collisions (Dale & Davies
2006).

Galactic centres are extreme environments where stars are densely
packed (e.g. 106~107 pc~3 for nuclear clusters; Neumayer, Seth &
Boker 2020, and references therein) around a supermassive black
hole (SMBH). Because the relative velocity between stars near the
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stars (10°-10% erg for M, = 1 M), the stars would be destroyed,
leaving behind an expanding gas cloud. If even a small fraction of
the collisional kinetic energy is converted into radiation, the high-
velocity collision can generate a bright electromagnetic transient
from the galactic nucleus region.

The total rates of such events between main-sequence stars have
been estimated to be 107 to 10~ yr~! galaxy~' (Rose et al. 2020,
2023; Amaro Seoane 2023b) if the core is fully relaxed to the
Bahcall-Wolf density power law oc 7~ "* (Bahcall & Wolf 1976).% The

I'Sellgren et al. (1990) observed a decrease in the CO absorption line strength
in the central region of our Galaxy, confirming that the velocity dispersion of
stars increases towards the centre.

2While the Bahcall-Wolf solution is a mathematically correct solution when
all stars have the same mass, in the realistic situation where the stellar-
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rate for collisions between giants could be higher due to larger cross-
sections (Amaro Seoane 2023b). However, if collisions continuously
deplete the inner part of the stellar-density cusp, the rate would
become smaller, e.g. ~107> to 10~ yr~! galaxy~! for main-sequence
stars, depending on the assumption of the stellar influx into the
centre (Balberg & Yassur 2023). Since these powerful collisions
essentially destroy stars in galactic centre environments, these
events can affect the frequency of other types of nuclear transients.
For example, Balberg & Yassur (2023) suggest that high-velocity
collisions can almost completely suppress extreme mass-ratio
inspirals.

High-velocity collisions between main-sequence stars (e.g.
Benz & Hills 1987, 1992; Lai, Rasio & Shapiro 1993; Rauch 1999;
Freitag & Benz 2005) have been studied using numerical simulations,
focusing on the mass ejection and the impact of such collisions on
the thermodynamic state of the host, rather than their observation
signatures. Observational signatures of the electromagnetic radiation
from such collisions have been studied mostly analytically. For
example, Balberg, Sari & Loeb (2013) showed that two stars in a
compact binary can collide at high speed when passing very close
to an SMBH, which can generate a flare as bright as supernovae.
Recently, Amaro Seoane (2023b) analytically investigated the ob-
servables of high-velocity collisions between stars of various types
in galactic nuclei. They found that the peak luminosity of high-
velocity collisions can be as high as 10*5,,4 ergs™!. Here, npq is
one of the determining factors which measures how efficiently the
initial kinetic energy is converted into radiation energy. If 7,4 is of
order unity, the peak luminosity can be comparable to different types
of nuclear transients, such as tidal disruption events. However, 7,4
in their work was left as a free parameter because evaluating 7,,g
involves non-linear hydrodynamics effects such as shocks, which
cannot be done analytically.

In this paper, we investigate the hydrodynamics of high-velocity
collisions between 1 Mg giants and numerically estimate the radia-
tion conversion efficiency and their observables, using the moving-
mesh hydrodynamics code AREPO (Springel 2010; Pakmor et al.
2016; Weinberger, Springel & Pakmor 2020). In the simulations, we
consider collisions with v = 10* kms™' between two identical
1 My, giants with four different radii (R, = 10, 20, 50, and 100Ry),
four impact parameters (b = 0.04 R,, 0.2 R,, 0.4 R,, and 0.8 R,), and
three initial approaching velocity (v = 10%,5 x 103, and 2.5 x 10
kms~!). The largest approaching speed corresponds to roughly the
largest relative velocity for stellar collisions near the BH, i.e. the
Keplerian velocity at the smallest possible distance from the BH
where at least two stars exist for a typical stellar density around a
massive BH assuming the Bahcall-Wolf power law: r ~ 10~ pc for
10° Mg BH, ~10~*pc for 10°Mg BH, and ~1073 pc for 10’ Mg
BH. Because collisions with lower relative velocities are expected to
create fainter transients, our simulations with the largest v, would
provide an upper limit for the luminosity and total radiated energy
of these events.

This paper is organized as follows. We describe our methods
in Section 2, including the code description (Section 2.1), stellar
models (Section 2.2), and initial conditions (Section 2.3). Then,
we present our results in Section 3 and discuss astrophysical
implications for the collisions in Section 4. Finally, we summarize
and conclude in Section 5.

mass distribution is inhomogeneous, the slope can be steeper (Alexander &
Hopman 2009; Preto & Amaro-Seoane 2010).
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Figure 1. Evolution of a 1 Mg star in a Hertzsprung—Russell diagram. The
colour bar shows the age of the star. The four star symbols mark the four giant
models adopted for collision experiments: (from smallest to largest symbols)
R, ~9, 20,50, and 100R.

2 METHODS

2.1 Code

We perform a suite of 3D hydrodynamics simulations of high-
velocity collisions between red giants using the massively paral-
lel gravity and magnetohydrodynamics moving-mesh code AREPO
(Springel 2010; Pakmor et al. 2016; Weinberger et al. 2020). The code
inherits advantages of the two widely used hydrodynamical schemes,
the Lagrangian smoothed particle method and the Eulerian finite-
volume method, allowing for an accurate treatment of supersonic
flows and shock capturing without introducing an artificial viscosity
and low advection errors. We use the ideal equation of states that
takes into account radiation pressure assuming local thermodynamic
equilibrium,

pksT n 4o _,

P= T4, (1

unp 3¢

where P is the total pressure, p the density, kg the Boltzmann
constant, T the temperature, i = 0.62 the mean molecular weight,
my, the proton mass, and o the Stefan-Boltzmann constant.

2.2 Stellar model

We adopt the internal structure of giants evolved using the 1D stellar
evolution code MESA (version 122.05.1; Paxton et al. 2011, 2013)
to model giants in 3D. The star has an initial mass M, = 1 Mg
and a metallicity of Z = 0.02. We treat the mixing processes and
winds following Choi et al. (2016). More specifically, we model
convection using the mixing length theory with a mixing length
parameter of 1.81. We adopt the Ledoux (1947) criterion to determine
the boundary of the convective regions and the exponential overshoot
prescription (Herwig 2000) with parameters f = 0.016, fo = 0.008 at
the top of the core and f'= 0.0174, fo = 0.0087 at the bottom of the
hydrogen-burning shell. Semiconvection is treated following Langer,
Fricke & Sugimoto (1983) with an efficiency factor of 0.1. We allow
the star on the red giant branch to lose mass via wind following the
prescription from Reimers (1975) with scaling factor of 0.1.

Fig. 1 shows the evolution of the 1 M star in a Hertzsprung—
Russell diagram until it reaches the tip of the red giant branch. We
take the giants at four different evolutionary stages where their radii
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Figure 2. Enclosed mass as a function of radius for the four giants with
R. = 10Rg (black), 20Rg (red), SO0R (blue), 100 R (green). The vertical
dotted lines, sharing the same colour, indicate the size of the region modelled
using a point particle. Although the point particle size is greater than the size
of the core (R >~ 0.02Rg), given the flat mass—radius relation between the
core radius and the point particle radius, we essentially retain the total energy
budget inside the star above the core with significantly low computational
costs.

are R, >~ 10, 20, 50, and 100 Ry (indicated by the star symbols in
the figure).

We construct 3D giants from the 1D giant models using the method
developed in Ohlmann et al. (2017) with 10° cells. Modelling the
entire giant with gas cells is computationally expensive given very
steep density gradients. So instead, we model the inner part of the star
with a point particle, representing effectively the core. Furthermore,
we place gas cells on top of it such that the internal structure
above the core matches with the MESA model while the entire star
stays in hydrostatic equilibrium. The point particle interacts only
gravitationally with gas: it only gravitationally pulls the envelope
which is cancelled by the pressure gradient of the gas when the star
is in isolation. We choose that the size of the region modelled using a
point particle is 5 per cent of the stellar radius (‘point particle radius’).
The point particle radius is in fact greater than the size of the core (R
~ 0.02Rp). This choice is justified by the fact that the mass of the
core is effectively the same as the enclosed mass within ~0.05 R,
(vertical dotted lines), as illustrated in Fig. 2. This means the total
binding energy inside our 3D giants is essentially the same as what
we would have had when the point particle radius were exactly the
core radius. With this choice of the point radius, while we reduce
computational costs significantly, we lose only a small fraction of
the total energy budget inside the star.

We then relax the 3D stars fully in isolation, which usually takes
5-10 stellar dynamical times (y/ R}/G M,). Fig. 3 shows the radial
density of the fully relaxed stars above the point particle (fop panel)
and their errors (bottom panel) relative to the MESA models. The
relative errors of the density of the inner part of the stars, where most
of the mass is concentrated, are less than a few per cent. Although
the errors at the surface are relatively large, the deviation of such
small masses at the surface, corresponding to the plateau at the end
of each line in Fig. 2, should not affect our results.

We performed resolution tests for nearly head-on collisions
between giants with R, = 100Ry with different resolutions. The
choice of the collision parameters are motivated by the fact that the
impact of the shock in such a collision is the strongest (see Fig.
8), which requires the highest resolution. We first constructed giants

Red giant collision in nuclei ~ 6195
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Figure 3. The radial density profile (fop) of the giants with four different
radii relaxed for 5-10 stellar dynamical times and the relative error with
respect to the MESA models (bottom), as a function of radius from the core.
The dashed grey lines in the top panel show the density profiles of the MESA
models. The density profiles of the 3D stars match well with the MESA models
within a few per cent except for those at the stellar surface.

with N = 2.5 x 10°, 5 x 10%, 10%, 2 x 10°, and 4 x 10° cells and
performed the collision experiments. We find that the results have
already converged very well when N > 10°: the conversion factor
Nrad» defined in equation (8), differs by less than 1 per cent. In fact,
the difference in 7;,q between N < 5 x 10 and N = 10° is already
reasonably small, <20 per cent for N = 2.5 x 10° and <10 per cent
for N =5 x 10° relative to the case with N > 10°. Furthermore, we
confirmed that the total energy is conserved within <1 per cent until
the end of the simulations.

2.3 Initial conditions

We place two identical stars, initially separated by 10R,, on a
hyperbolic orbit with some relative velocity at infinity ve. So it
takes 10 R,/vy =~ (0.1-1) d, depending on R, and v, until the
two stars collide. We note that the time is measured since collision
in this paper: accordingly, the initial time of the simulations is # 2~
—(0.1-1) d. Those stars are embedded in a low-density background
medium with density of 10~!® gcm™3 and temperature of 10* K. The
background density is comparable to the density of the interstellar
medium (ISM) at the Galactic centre ranging between 10° and 10°
particlescm ™2 (Gillessen et al. 2019) at Galactic centre distances
that dominate the collision rate (see Amaro Seoane 2023b). We
discuss the impact of the background density and temperature on
the properties of collision products in Section 4.1. Our fiducial
model is the near-head-on collision between the two 10 Ry giants
initially approaching towards each other at vy = 10*kms~! with
an impact parameter b = 0.04 R,. Here, b = 0.04 R, is the smallest
possible impact parameter given the softening length of the point
particle: in other words, the gravity of the point particles becomes
inaccurate at the closest approach distance with b < 0.04 R,. For this
giant, we additionally consider off-axis collisions with larger impact
parameters, b = 0.2, 0.4, and 0.8 R,, and two additional v, = 2500
and 5000 kms™!, to study the dependence of the impact parameter
and the collision velocity, respectively. For larger giants, we only
consider the near-head-on collisions with v, = 10* kms~!. The
initial parameters of the models are summarized in Table 1.

MNRAS 528, 6193-6209 (2024)
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Table 1. Initial parameters: (from left to right) model number, stellar mass,
stellar radius, relative velocity vy at infinity, and impact parameter b.

Model number  Mass Radius Vrel Impact parameter b
Mo Ro x103 kms™! R,

1 1 10 10 0.04
2 1 10 10 0.2
3 1 10 10 0.4
4 1 10 10 0.8
5 1 10 5 0.04
6 1 10 2.5 0.04
7 1 20 10 0.04
8 1 50 10 0.04
9 1 100 10 0.04
3 RESULT

3.1 Overview

We provide an overview of the evolution of the collision product
using our fiducial model, e.g. head-on collision between the two
10Ry giants. We present in Fig. 4 (from top to bottom) the density
p, the temperature T, the Mach number M, and the speed in the
mid-plane at four different times in our fiducial model.

Initially, the two stars approach at v =~ 10* kms~! (first column).
Since their first contact, the envelopes are continuously compressed
due to the converging motion. Along the contact surface (the
pronounced narrow feature across the centre in the second column,
dubbed ‘shock surface’), pressure gradients are built up and the
temperature is raised above 107 K due to adiabatic compression.
As the later incoming gas collides supersonically with the pressure
wall, shocks are created. Some of the very hot gas in the shock
surface escapes radially perpendicular to the collision axis (or along
the shock surface) with an opening angle of ~30° and speeds of
a few thousands kms~!, which is not particularly high compared
to the rest. At the strongest compression, a significant fraction of
the kinetic energy is converted into heat energy (230 per cent),
which is already a few orders of magnitude greater than the total
binding energy of the stars. When the pressure gradient exceeds the
ram pressure, the compressed gas bounces off and expands quasi-
spherically and homologously at supersonic speeds (see third and
fourth column panels in Fig. 4). On top of the expanding motion, the
converted heat energy continuously drives the outer part of the gas
cloud to expand by the PdV work, meaning that some of the heat
energy is converted back into kinetic energy. At the same time, the
outer edge of the cloud supersonically collides with the background
medium. This has two effects. First, mass piles up at the boundary
between the gas cloud and the background medium, reducing the
kinetic energy of the expansion front. Secondly, shocks are created,
which dissipates the kinetic energy of the expansion front to heat
energy. As a result of both effects, the expansion front slows down.

3.2 Evolution of expanding cloud — parameter dependence
3.2.1 Fiducial case

To describe the evolution of the expanding gas more quantitatively,
we show in Fig. 5 the spherically averaged density p and (mass-
weighted) temperature 7, the expansion speed v, and the area-
weighted average of the optical depth t over the solid angle for our
fiducial model as a function of distance from the collision point at
five logarithmically sampled times between 1 and 30 d after collision.
The density p (top-left) and the temperature T (top-right) of the

MNRAS 528, 6193-6209 (2024)

inner regions of the expanding gas cloud are nearly constant. As the
cloud expands adiabatically, the overall level of p and T drops while
maintaining its slope: p ~ 108 gcm3 att~ 1d to 1072 gcm 3 at
t~30d,andT~2x 100 Katr=1dto5 x 10° Katt~30d,
at which point the cloud is cooler than the background medium. p
and T outside the flat region decay towards the outer edge with a
different steepness: the density drops following a power law of o
r~* with A >~ 12-13 upon collision, gradually decreasing to A ~ 8
at t > 30 d. But the temperature decays rather like o ' at 1 S ¢ <
30 d. The decaying slopes of p and T depend on R,, b, and v, but
the dependence of the slope of T is generally stronger. dln p/dIn r is
almost the same, independent of R, whereas —dln 7/dIn r tends to
be larger for larger R, (e.g. A >~ 2-3 for R, = 100Ry). dln 7/dIn r is
steeper for larger b (e.g. A =~ 2-3 for b = 0.8 R, ), while dln p/dIn r is
only slightly less steeper for larger b (e.g. A >~ 12 for b = 0.8 R,). The
dependence of the slopes on v, is relatively weak: A for p is almost
same for 2500kms™' < vyg < 10*kms~! and A for T is slightly
larger for smaller v (e.g. A > 1-1.5 for v, = 2500 km s7h.

As shown in the bottom-left panel of Fig. 5, the cloud expands
homologously, i.e. v" o r or constant v" at the same mass coordinate,
which is also found in all other models. Right after the collision,
the maximum expansion velocity at the outer edge is greater than
the initial relative velocity by a factor of =5 and stays constant. The
period of time with a constant peak v" is very brief for this particular
model (0.1 d). However, the constant maximum v" phase is longer
for collisions with larger R,, which is illustrated in the bottom-right
panel of Fig. 6. After the constant maximum v" phase, the peak
expansion velocity continuously decreases due to the interactions
with the background medium.

The gas cloud is initially optically thick. The optical depth to the
centre, estimated using an OPAL opacity table for Solar metallicity
(Iglesias & Rogers 1996), is T 2 103 at t =~ 1 d, as demonstrated in
the bottom-right panel of Fig. 5. As it expands and cools, T decreases
following a power law of =73 (see the bottom-right panel of Fig. 6),
indicating that the entire cloud will become optically thin within 7—
8 months, consistent with the analytical estimate by Amaro Seoane
(2023b). The nearly flat t inside the cloud indicates that the transition
from optically thick to completely optically thin may be prompt.

3.2.2 Comparison between models

To further demonstrate the dependence of the stellar radius R,, the
impact parameter b and the initial relative velocity v, we compare
in Fig. 6 the evolution of the same four quantities, shown in Fig.
5 between different models. For a proper comparison, we estimate
» as the average volume within a distance enclosing 75 percent
of the gas mass® and T as the mass-weighted average of T within
the same volume. As shown in the fop panels, p and T decrease
over time, following a power law of #= and 1!, respectively, almost
independently of R, and b except for T with v, = 2.5 x 10° kms~!.
The =3 power law for p is expected from a homologous expansion:
p o< (V)3 oc 3. As the +~!-scaling relation for T suggests, the
total (radiation + gas) internal energy at a given mass coordinate
decreases like ~'.* The significant deviation from the ~! power
law for v, = 2500 km s~! indicates that there is continuous energy

3Note that the radius enclosing 75 per cent of the cloud mass corresponds to
the radius inside which p and T are constant, coinciding with the distance of
the cores from the collision point.

4Total specific energy =40 T*/[3cpl + ks T/[pmp] o ! because T ox 1! and
p o i3,
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Figure 4. Density p (fop), temperature T (top-middle), Mach number M (bottom-middle), and speed v (bottom) of gas in a nearly head-on (b = 0.04R,)
collision between two giants with R, = 10Rg at four different times, r = —0.07 d (before collision), 0 d (at collision), 1 and 30 d (after collision). The red
dots in each panel indicate the location of the cores. The white contour line in the top panel for p shows the location of the photosphere at which the radially
integrated optical depth 1 and those in the bottom-middle panel for M the boundaries at M = 1. The arrows in the bortom panels indicate the direction of
gas motion. Initially the two stars start to move towards each other with vy = 10* kms™! (leff). At collision, very steep pressure gradients are built up at
the collision surface and strong shocks are created when the incoming gas collides with the pressure barrier (left-middle). The gas bounces off and expands

quasi-spherically and homologously at supersonic speeds (right-middle and right).

exchange between gas at different mass shells. Unlike other cases
where the radiation energy is dominant, in this case, the gas internal
energy is comparable to the radiation energy and the total internal
energy drops like oc ~#3, resulting in a non-power-law decay curve
for T. Although each of the two quantities, p and T, tends to follow
a single power law, the degree to which their magnitudes depend on
R., b, and v, is different. p has a very weak dependence on b and

R,. T is insensitive to b and weakly depends on R,: only a factor of
1.5 greater for R, = 100 R than thatR, = 10R.

v;eak stays constant upon collision at (3—6) x v.;. The constant
Upeqx Phase lasts longer for the case involved with stronger shocks
(e.g. larger R, for given b and ve). Eventually, vy, decreases
over time because of the interactions with the background medium,
following a power law of 1~ for all models. In particular, the peak
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Figure 5. Spherically averaged density (fop-left), temperature (fop-right), radial velocity (bottom-left), and optical depth (bottom-right), of the expanding cloud
produced in a collision between two 10 Rg giants, as a function of radius from the collision point at five different times. The averages of the temperature and
radial velocity are mass weighted. The optical depth is estimated by radially integrating « pdr inwards from 20x the distance of the core from the collision
point. The three vertical lines show the distance from the BH with mass 106, 107, and 108 Mg, at which the Keplerian velocity is the same as the initial relative
velocity. In other words, by the time the outer edge reaches the distances, the gas would meet the central BH. The dots indicate the locations of the cores at the
five times, sharing the same colours with the lines. The vertical bars indicate the location of the outer edge where the expansion velocity is the maximum.

expansion speed with varying R, tends to asymptote to a single analytical expressions:

value at later times. As b and vy decrease, vy, is smaller at a given

time. But the difference is at most by a factor of 3 for the collision 10 Lt -3 Vrel -3

parameters considered. p(t) =6x10""gem (ﬁ) (7) )
As explained for our fiducial model above, the optical depth is

initially high at collision, T > O(10%). The optical depth for most

cases gradually decreases as the gas cloud expands, following a

o . . -1
power law of =73, which is expected from the scaling relations of T s t 1
t)=15x10°K | — t v R./10 R
pand Vi, T OC pRycak OC 1~ 383 o 73, where Rpea is the location ® x 1d an™( / °)

@

of the peak ex.pansmn speed zvgeakt ¢’ t?/ 3. Note that we assume a for vy > 5000 kms ™' and b < 0.4 R,, 3)
constant opacity to find the scaling relation given that the electron

scattering is the dominant source of opacities in the gas cloud. The 3

deviation from the =7 power-law relation becomes more significant () =2.5 % 10° ( 0 d) ,

as the collisions happen at lower v, and higher b.
for vy > 5000 kms™' and b < 0.4 R,, “)

3.2.3 Fitting formulae

Combining all the scaling relations, we find that the average density —l/3 Vrel 0.7

p(t), mass-weighted average of temperature 7 peak expansion Vpeak (1) = 50000 km s~ ( 1d ) 104 kms—1 )

velocity vpeak(t), size of the outer edge Rpcqk(?), and radial expansion b/R. +5

speed vpeak (r,t) after t > 5 d can be well described by the following ( ) (®)]
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Figure 6. Average density p (top-left), mass-weighted average of temperature T (top-right), the peak expansion speed vgcak (bottom-left), and the surface
average of the optical depth 7 to the centre (bottom-right) of the cloud in all models, as a function of time since collision. The average density and temperature
are estimated using the cells within a radius containing 75 per cent of the cloud mass.

1d 104 kms—!

—4
()

23 0.7
R = 6510 (12 (i)

for r =< Rpeakv

)

vi(r,t) = Upeak (m)
0

where the expression for Ry, is found by analytically integrating
v'(r, 1) over time. Note that p decays faster than that expected
from the expression 3Myqs/(47 Ryy) = 1% because o follows the
homologous relation whereas the peak expansion speed slows down
so the outer edge expands slower than that expected for homologous
expansion.

Note that we do not include the term describing the dependence on
R, in most of the expressions above because of their very weak R,
dependence. On the other hand, the omission of the v, dependence
in equation (3) for T is because of too small number of models with
varying v, for reliable fitting. Instead, we have specified the range
of v, where the equation is valid.

for r > Rpeak,

3.3 Stellar core

The cores move almost synchronously with the bulk of the gas. The
orbit of the cores are barely affected by the collision: they remain
unbound after collision and move away from each other at a speed
almost same as the incoming speed. The distances from the collision
point in our fiducial model at five different times are marked with
circles in Fig. 5.

The mass bound to the cores is larger for larger v, and
smaller b. But it is overall insignificant. For b < 0.2Rg and vy
> 5000 kms~!, the bound mass is less than 6 x 107 Mg. It
is ~2 x 107*Mg for the model with v, = 2500 kms~' and
that with b = 0.4Ry and ~3 x 1072Mg for the model with
b=0.8Rg.

3.4 Conversion factor

In this section, we investigate how much heat energy is created in
collisions, which is closely related to the amount of energy that
can be radiated away and potentially observed. We first define the
conversion factor 7,4 as the ratio of the total radiation energy to the
initial kinetic energy,

JaT@y*dv

J0.50(t = 0)(r = 0)2dV’ ®

Nrad (t ) =
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Table 2. Peak conversion factor 1, luminosity at peak Lpeak and blackbody temperature at peak Tgppeak for each model, using equation (11) (Lpeak,1 and

TBB peak,1) and equation (12) (Lpeak,2 and TBB peak.2)-

Model number R, Urel b Npeak Lpeak,] Lpeak,2 TBB,peak,] TBB,peak,Z
Ro x 103 kms~! R. x10% ergs™! x 10" erg s~! x10°K x10° K

1 10 10 0.04 0.69 9.6 1.3 3.0 2.1

2 10 10 0.2 0.59 9.3 1.3 29 2.0

3 10 10 0.4 0.41 6.5 1.0 2.7 1.9

4 10 10 0.8 0.13 4.2 0.7 2.7 1.7

5 10 5 0.04 0.69 2.1 0.3 22 1.4

6 10 2.5 0.04 0.56 0.5 0.1 1.0 1.0

7 20 10 0.04 0.65 13 2.0 2.7 1.7

8 50 10 0.04 0.73 26 3.4 2.2 1.4

9 100 10 0.04 0.73 26 34 1.7 1.1

where a is the radiation constant and dV is the volume element of
each cell. Using 7114, One can estimate the total radiation energy
as =~ 0.257,4 M,v%, for equal-mass collisions. To distinguish gas
that initially belonged to the stars from the background gas, we
employ a selection condition using a passive scalar. The passive
scalar is an artificial scalar quantity initially assigned to each cell
which then evolves via advection without affecting the evolution of
hydrodynamics quantities. The initial values of the passive scalar of
the cells in the stars are 1 and that of the background cells is 0. So
depending on the mass exchange (or mixing) between the cells, the
passive scalar varies between 0 (vacuum cells) and 1 (cells originally
in the stars). We perform the integration over cells with the passive
scalar 20.1. The value of 7,4 is largely unaffected by the choice of
the threshold of the passive scalar, provided that it is greater than 0.

We show 1), for all our models in Fig. 8 before the radiation energy
in the optically thin gas becomes dominant. It is generally found that
Nrag dramatically increases at collision to 7,4 ~ 0.1-0.8, meaning a
significant fraction of the initial kinetic energy is converted into heat
energy. The maximum conversion factors are summarized in Table 2.
Then, as the cloud expands and cools, 7.,4 decreases down to < 1072,
We see three clear post-peak trends of 17,4. First, 1,4 is larger when
larger stars collide. Additionally, 7,4 is approximately o R, at any
given time: ~(1-2) x 1073 for R, = 10Rg, ~(3-4) x 1073 for R, =
20Re, ~1072 for R, = 50 Rg, and >~2 x 102 for R, = 100 Ry atr
=~ 3 d. We attribute this positive correlation between 7,4 and R, to the
fact that for the same relative velocity, larger (cooler) stars collide at
higher M, resulting in stronger shocks over a wider contact surface
(¢ R,). Secondly, 1,4 is almost the same when b < 0.2 R,, while 7;,q
begins to decrease with b when b 2 0.2 R,. This trend is somewhat
expected given that as b increases, the mass of gas that is shocked at
collision decreases. Lastly, 1,4 decreases with v, because of lower
M collisions for given sound speed (i.e. the same star). 1;,q at V] =
5000 kms™~! is almost the same as that at v,q = 10000 kms~!, but
Nrad At Uy = 2500 kms™! is lower by a factor of ~2 than that for
our fiducial case. The overall levels of the conversion factors that we
obtain are comparable to what Amaro Seoane (2023b) imposed in
order for their analytical model to match with the observed object
ZTF19acboexm (see their fig. 9).

We can also define the conversion factor for the ram pressure of
gas moving at supersonic speeds,

f,o(t)v(t)de
J p(r =0yt =024V’
where the integration in the denominator is carried out over cells

for which the passive scalar >0.1, and that in the numerator the
integration is carried out only over cells with supersonic speeds,

C)]

nrzlm(t) =
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M > 1. As illustrated in the third column panels of Figs 4 and 7,
almost all the gas is supersonically expanding. As a result, 1 — 7yam

= Nrad-

3.5 Observables

We estimate the luminosity L, blackbody radius Rgg, and temperature
Tsg, using the radiation energy and the local cooling time 7.0, . We
first construct a spherical grid with an extremely small opening polar
angle (6 ~ 107'° rad) to avoid the singularity at the poles, radially
extending out to near the outer boundary of the domain. The grid
in the radial direction is logarithmically divided, i.e. constant Ar/r
where Ar is the cell size at r, while that in the 6 and ¢ directions are
linearly divided, i.e. constant A9 and A¢. The number of grids in r,
0, and ¢ are (800, 600, 600), which we confirmed to give converging
estimates for the observables. We then identify the photosphere at
which the optical depth T >~ 1. 7 is integrated along each r-path with
the opacity found using an OPAL opacity table for Solar metallicity
(Iglesias & Rogers 1996). The photospheric area is

21 >~
App = / / r(r = 1)*sin0drdode, (10)
0 ~0

which gives the effective size of the emitting region or blackbody
radius Rgg = (Agp/4m)'.

We attempt to bracket the range of realistic radiated luminosity
from the collision event by employing two different methods, each
of which places different weights on the contribution from the gas
cloud layers (the inner regions or outer regions near the photosphere)
within the identified photosphere. Our estimates should be accurate
at an order-of-magnitude level. However, for more accurate mod-
elling of light curves, we will carry out detailed non-equilibrium
radiation transport calculations in future follow-up work dedicated
to estimating light curves and spectra.

In both methods, the total luminosity for each radial path is
estimated by summing the contributions from the cells with the
local cooling time .4, shorter than the evolution time ¢ within the
photosphere. Here, t.o01 is defined as h,7(1 + ugas/ttraa)/c Where h,
is the density moment scale height inside the photosphere and u,g
(ugq5) is the radiation (gas thermal) energy. However, the difference
between the two methods is the assumption for how most of the
radiation energy is radiated away. In one method, we assume that the
total radiation energy within the photosphere is radiated away over a
time comparable to the cooling time at the base of the cloud. Under
this assumption, the inner regions tend to dominate the luminosity.
We first integrate the total radiation energy along the radial path and
divide it by the cooling time at the base of the cloud #oo1max, 1-€. the
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Figure 7. Same as Fig. 4, but for off-axis collisions (b = 0.2, 0.4, and 0.8 R,) between two giants with R, = 10Rg at 7 >~ 5 d since collision.
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longest cooling time which is no longer than ¢, or

2 >~ r(r=1)
L= / / |:/ aT*r? sin 0dr | tegolmax (6, @)~ 'dOde.
0 ~0 r

(teool =1)
(11

In the second, we assume that the radiation energy of each cell is
radiated away over the local cooling time. So the total luminosity is
estimated,

2 paw pr(r=1)
L= / / / aT teol(r, 0, ¢)~'r* sinfdrdodg.  (12)
0 ~0 7(teool=t)

In this method, the outer regions near the photosphere dominate the
luminosity. As stressed before, the evolution of the hydrodynamics
quantities for optically thin gas (i.e. outer region near the photo-
sphere) in our simulations is intrinsically less accurate than those for
optically thick gas. Hence, L; should be considered more consistent
with our hydrodynamical scheme. We find that the shapes of the
L, and L, light curves are very similar. However, L; is consistently
smaller than L, by a factor of ~10. For this reason, we present L;
and the resulting blackbody temperature Tgp = (Li/oAgg)"* in this
section and those from equation (12) in Appendix A.

Fig. 9 shows L, (top), Tpp, (middle), and Rgp (bottom) as a
function of time measured since collision for all our models.’
Note that the luminosity and the blackbody temperature differ
depending on the assumption of radiation (equations 11 and 12),
but Rgp is independent of the assumption. The luminosity increases
dramatically to its peak at collision. The peak luminosity is L; =
1041-10% ergs™! (L, > 10*2-10*), which is higher for larger R,
and smaller b and higher v, which has the same trend as 7,,9. The
temperature at peak is Tgp; =~ 10° K. Because Tgg o L', Tgp, is
greater than g by less than a factor of 2. We summarize peak L and
Tpp at peak for all our models in Table 2. Subsequently both L and
Tsg, independent of the assumption for the diffusion time (so both
L, and L), decrease following a power law of oc #~¢ with & slightly
differing at early and late times. L at # < 5 d reveals a decaying curve
with & >~ 0.7-0.8, followed by a slower decay with & >~ 0.4 at¢t > 5d.
L therefore decreases by a factor of 10 for the first 5 d. The decay
in L for the next 30 d is relatively small, by only by a factor of a
few. The change in & for Tpp is very mild: £ >~ 0.6 at < 5 d and
~ (0.5 atr 2 5 d. Tgp decreases from ~(1-2) x 10° K at collision
to 10* K at 5-15 d, (4-6) x 10° K at 30 d. This means the collision
will be bright in extreme ultraviolet (UV) at collision which shifts to
optical on a time-scale of a month. Lastly, Rg increases to ~103cm
in 30 d, approximately following power-law growth of oc 8.

The light curves from our simulations reveal some differences from
that analytically predicted by Amaro Seoane (2023b). Assuming
a constant 1 comparable to the minimum 7.4 shown in Fig. 8,
their analytical model predicts a peak luminosity consistent with the
numerically integrated peak luminosity shown in Fig. 9. However,
the luminosity from their analytical model peaks at a few days after
collision and subsequently decays faster. We attribute these discrep-
ancies to the difference in the way of calculating the luminosity.
In their analytical model, the luminosity was estimated under the
assumption that n does not change over time and the total radiation

SWhile this paper is under review, we published Dessart et al. (2024) in which
we conducted detailed radiation transfer calculations for the observables of
BDCs using the time-dependent radiation transfer code CMFGEN (Hillier &
Dessart 2012). The more accurately estimated luminosity and temperature
are in good agreement with our order-of-magnitude estimates assuming the
inner regions dominating the luminosity (equation 11) shown in Fig. 9.
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Figure 8. The ratio of the radiation energy to the initial kinetic energy g
as a function of time, measured since collision, for all our models.

energy within the gas cloud is radiated away instantaneously on a
time-scale comparable to the longest possible photon cooling time at
any given time (e.g. based on the optical depth to the centre). On the
other hand, in this work, we take into account the time-dependent
contributions (e.g. adiabatic loss of energy due to expansion) of the
cloud.

The observables estimated in this section are driven by stellar
collisions. But given the fact that these collisions occur near an
SMBH, the expanding gas cloud and the nearby BH would very
likely interact, generating a possibly even brighter flare, which we
discuss in Section 4.2.

4 DISCUSSION

4.1 Interaction of gas cloud with interstellar medium

In this work, we simulated high-velocity collisions of giants sur-
rounded by a medium with a constant density of 10~'%gcm™3 and
temperature of 10* K. As the cloud expands, it collides inelastically
with the background medium, which results in the continuous
decrease in the kinetic energy of the expansion front. In addition,
the collision between the outer edge of the cloud and the background
medium can create shocks, converting the kinetic energy into heat en-
ergy. The net effect is the deceleration of the gas cloud, deviating from
a homologous behaviour, which is also found from our simulations
where the velocity of the outer edge decreases following #~'/3. This
impact of the surrounding medium would be faster if the colliding
stars were initially embedded in a denser medium. For example, the
rising slope of 1., would be less steep for the case with lower density
background gas. Given the supersonic motion of the cloud, how the
cloud expands would not be significantly affected by the temperature
of the background medium for a given background density. However,
the evolution of 1,,g would be changed depending on the background
temperature. In fact, we performed extra simulations with different
background temperatures (100-5000 K), showing that while the
expansion properties of the cloud (e.g. o, T, and VUpea) are almost
independent of the background temperature, 7,,4 tends to be lower at
the local minimum and increases more slowly afterward for a lower
background temperature.

Although the deviation from a homologous expansion was only
found near the outer edge for the duration of our simulations, as
an order-of-magnitude estimate, the motion of the entire gas cloud
would become completely deviated from a homologous expansion
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Figure 9. Bolometric luminosity L (top), blackbody temperature Tgp (mid-
dle), and blackbody radius Rgp (bottom), estimated for stellar collisions
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panel indicate the distances of the collision from the black hole with Mgy =
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the power law that describes the quantity shown in the last two panels.
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when the swept-up mass is comparable to the mass of the cloud,

3jugas

A7 prsm(v')?’

~1100d Mgy PISM - V'
o 2 Mg/ \10-18 gcm—3 104kms~! )’

13)

Inon-homologous x~

where v' is the expansion speed and pism the density of the
background medium. At the same time, this also means that the
scaling relations for the homologous expansion found from our
simulations would be applied to the evolution of the homologously
expanding part of the collision product, independent of the existence
of the background medium.

4.2 Interaction of gas cloud with supermassive black hole

In addition to the burst caused by the stellar collision (see Section
3.5), there would be a subsequent burst due to accretion on to the
nearby SMBH. As a result, the overall shape of the luminosity
would be that the stellar collision creates the first peak with L 2
10*? ergs™! which decays, followed by a sharp rise to Eddington
due to accretion on to the BH, possibly remaining at that level
for up to years until the captured gas is accreted on to the BH.
We will examine the observables from the BH—cloud interaction
by considering two cases: (1) Case 1: no-decelerating expansion
(Section 4.2.1) and (2) Case 2: decelerating expansion (Section
4.2.2). For simplicity, we assume that the centre-of-mass motion of
the collision product is moving sufficiently slowly compared to the
cloud expansion speed, which would be relevant for head-on equal-
mass collisions. In addition, we make a crude assumption that the
gas cloud is expanding spherically. However, in reality, the collision
product can have a non-negligible coherent motion compared to the
SMBH and the shape of the gas cloud would be deformed by the tidal
force of the SMBH. These will be studied in detail in a follow-up
project. And we will discuss the astrophysical implications for BHs in
Section 4.2.3.

4.2.1 Case 1: no-decelerating expansion

We first assume that the entire gas cloud expands homologously and
the expansion speed of the outer edge is v' ~ v with ¥ >~ 3-6
(see Fig. 6). The gas cloud starts to interact with the BH when the
size of the expanding gas cloud becomes comparable to the distance
to the BH Rpp for given vy,

GM M Ve \ -2
* = 10" . ( re ) . 14
2 o <107 M®> 10" kms—! 19

rel

RBH ~

The time difference between the first collision-driven burst and the
subsequent accretion-driven burst would be set by the time tgy at
which the outer edge of the cloud reaches the BH, Rgy — Rsch =~ Rpy
> Rpeak» Where Ry, is the Schwarzschild radius,

Rpn M, Vel -3
TB“‘T_M(WMO)(104kms—1) : (15)

To zeroth order, the part of the cloud that is within the Bondi radius
Riondi =~ 2GM,/(v")? from the BH would be gravitationally captured
by the BH and subsequently accreted on to the BH. Assuming a
Bondi-Hoyle accretion (Bondi & Hoyle 1944; Bondi 1952), the
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luminosity Lp,ng; With radiative efficiency € can be estimated,
dreG*M?pc?
LBondi o AT
(v")
M, \' 3
~ 3 x 10" ergs™! (i> ( Urel ) ,
0.1 107 Mg 10* kms~!

16)

which is super-Eddington for M, < 3 x 108 Mg (vr1/10* kms™)!.
Note that Lp,ngi has no dependence on ¢ given the scaling relations
for p (o¢ 73, equation 2) and v'(r = Rpy) (o t!, equation 7):
Lgonai ¢ p(v") 3 o 1. Super-Eddington accretion may be pos-
sible if the gas is optically thick and the trapping radius R, =
(Lgondi/LEaa)(GM,/ec?) is smaller than the Bondi radius (Begelman
1979). The ratio of the two radii is

Ry t - re -1
L (L) : (17
Rpondi 1d 10*kms—!

suggesting super-Eddington accretion would be possible at t >
20 d(vrer/10* kms™')~%3. Here, we caution that the time ratio in
equation (17) is estimated under the assumption that the global
accretion flow is not affected by any accretion feedback, which
is highly uncertain. Assuming a blackbody, the temperature at the
Bondi radius if L >~ Lggq i

T = 109K (L) (M 3/“( Ui )4/2
Bondif) = 3d 107 My, 10°kms! ’

(18)
and at the onset of the BH—gas interaction (or >~ tgp),
1// Mo 1M Urel
Toonai(t = o) ~ 10K [ 2 ) [ —oe— (7)
Bondl( IBH) ( 5 107 MO 104 km S_l
(19)
If L ~ Lpongi,
4 PR 1/4
TBondi ~24x10°K (m) (m)
174 : —5/4
M, Ve
x (5x108 M@) (ret=r) s (20)

and at t = Tgy,

v €\ /4
Taonai(t = ~24x10°K (=) (—
Bondi TBH) X (5 (0.1)

M, — Urel —7/4 21
X<5x108M®> (104kms*1) - @D

Because Rpong; increases faster than Rpeq,
R .
Bondi «t (22)
Rpeak

as the most optimistic case, the entire gas cloud could be ultimately
captured by the BH in a time 7 caprure at Which Rpongi > Rpeak,

1// Mo Urel -3
e = 40d [ 2 . 23
Foapt (5)(107M@)(104kms4) 23)

Then, the maximum duration of the Eddington luminosity may be
set by

M gasec? Mg M, \!
e § = 2oy () (2 ) (g SR
Laq 0.1 2 Mg 107 Mg

where M,, is the mass of the gas cloud, i.e. total mass of the two
collided stars. Here, we assumed that the entire gas would be accreted
on to the BH. However, radiation pressure from super-Eddington
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Figure 10. Time 7y to the accretion-driven burst since the peak collision-
driven luminosity for different collision velocities vy, as a function of black
hole mass. The lines illustrate Case 2: decelerating expansion (Section 4.2.2)
where the entire cloud expands homologously up to 0.5 d since collision
(dashed), then the outer edge starts decays like 13 (solid) due to interactions
with a background medium, using equation (7). The less steep diagonal bars
demarcate the range of tgy for the case where the gas cloud continuously
expands homologously with the outer edge moving at (3—6) X vy (Case 1: no-
decelerating expansion (Section 4.2.1), corresponding to the peak expansion
speed upon collision in our simulations (see the bottom-right panel of Fig. 6).

accretion would be strong enough to generate outflow. For such a
case, only a fraction of the gas cloud would end up accreting and 7 .
would be shorter than estimated above.

4.2.2 Case 2: decelerating expansion

Now we examine the observables from interactions between decel-
erating expanding cloud with vj, oc7~'/* and the SMBH, using
equations (2)—(7). For this case, tgy has a different dependence on
M, and vy,

M, N7/ va N\ [(b/R.A+5\°
~3d R 25
o (107 MO) (104kms*1) ( 5 ) (25)

We show in Fig. 10 the range of tpy for three different collision
velocities v as a function of M, assuming a non-decelerating
expansion speed (thick diagonal bars, 1 = 3-6) and a decelerating
expansion speed (solid lines). The interaction onset time would
be longer generally if the expansion of the cloud slows down.
Depending on Mgy and v, the second burst could happen over a
wide range of time. For example, if a collision with v > 2500 km s~!
occurs in the Galactic centre (with M, ~ 4 x 10° My; GRAVITY
Collaboration 2019), the second accretion-driven burst would occur
after the collision in less than a day to 67 months depending on the
location of the collision from the BH. For very massive black holes
(Mgy > 108 Myg), Ty can be more than tens of years.

The Bondi luminosity is still independent of ¢ and has the same
M, — and v,y — dependence as the case with the no-decelerating
expansion, but it is roughly a factor of 3 greater at given Mgy and

Urel,

€ M - Vrel 3
Ly = 10% ergs™ () . (torm—)" s
Bond AR VASTAYS 10*kms—! (26)

which is further illustrated in Fig. 11. While the expression for the
blackbody temperature at the Bondi radius has the same dependence
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Figure 11. Bondi luminosity due to free-fall accretion of the collision
product on to a black hole for different collision velocities vy, as a function
of black hole mass. The solid line is for the decelerating peak expansion speed
(Case 2: decelerating expansion, Section 4.2.2) and dashed lines for the non-
decelerating expansion speed (Case I: no-decelerating expansion, Section
4.2.1). The grey dashed diagonal line indicates the Eddington luminosity.
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Figure 12. Temperature from the Eddington-limited Bondi luminosity at the
onset of the accretion of the collision product on to a black hole for different
collision velocities v, as a function of black hole mass. As before in Fig.
10, the lines show the case where the cloud undergoes a non-decelerating
expansion up to 0.5 d, followed by a deceleration of the outer edge like 1~/
at 0.5 d since collision due to interactions with a background medium, using
equations (2)—(7). The diagonal bars indicate the range of Tgy when the entire
gas cloud expands without being decelerated with the peak expansion speed
of (3—6) X vre. The power laws are analytically derived in equations (18)

(o< MT %y and (27) (o« M3 and oc MTY%).

on M, and v, as equations (18) and (20), because of the different
expression for gy, Tpengi(f = Tpy) is written differently,

Tgondi(t = TBH)

—3/4 2.1 —6
4 Mo Vre] b/Rut5
8 x 10 K<107M®> (104kms—1) ( 5 ) J
for L = Lgqq,
S (e A me T ( Vrel )2'8 (M)%
6% 10°K (57) (107M®) 104 kms~T 5 ’
for L = Lpondi-
27

We compare Tgongi at the onset of the accretion-drive burst (0 Tgondi
at t = tgy) in Fig. 12 between the non-decelerating expansion case

Red giant collision in nuclei ~ 6205
(thick bars) and the decelerating expansion case (lines). For low-
mass black holes, Tgong is quite similar, e.g. 103 K for M, = 10°—
10° M. However, because of a steeper decline for the decelerating
expansion case (Tgongi ¢ M4 — M73/*, equation 27) than for the
no-decelerating expansion case (Tgonai ¢ M, /4 — M3/*, equations
19 and 21), Tgenai for the decelerating expansion case is generally
lower for high-mass BHs: for M, = 10° Mo, Tgondi =~ 10-10° K for
the decelerating expansion case whereas Tpongi = 103-10* K for the
no-decelerating expansion case.

For the decelerating expansion case, the Bondi radius increases
faster,

RBondi P t4/3, (28)
Rpeak

which leads to a smaller T capure;

gl M . Vet \ 25 (b/R, 45\
Foapture = 107 Mg, ( 10*kms—! ) 5 '

(29)

The duration of the accretion process would be the same as equation
(24).

4.2.3 Astrophysical implication for black holes

The possibility of the accretion of at least some fraction of the
expanding cloud on to the SMBH in proximity can have significant
implications for the growth of BHs in the cosmic landscape. While
several mechanisms for massive BH formation have been proposed,
the precise mechanism for growing BH seeds at extremely high
redshifts remains uncertain (see for reviews Colpi & Dotti 2011;
Inayoshi, Visbal & Haiman 2020). The proposed mechanisms include
rapid growth of the remnants of the Population III stars via super-
Eddington accretion (e.g. Haiman & Loeb 2001; Volonteri & Rees
2005; Lupi etal. 2016; Ryu et al. 2016; Sassano et al. 2023), the direct
collapse of supermassive self-gravitating objects (e.g. Omukai &
Nishi 1998; Yoshida, Omukai & Hernquist 2008; Zwick et al. 2023),
and growth of BHs in a runaway process (e.g. Devecchi et al. 2012;
Stone, Kiipper & Ostriker 2017; Tagawa, Haiman & Kocsis 2020;
Rizzuto et al. 2023). In principle, as long as a BH is more massive
than colliding stars, the velocity of stars around the BH can be large
enough that stellar collisions can be disruptive. Hence, the accretion
of gas produced in stellar collisions on to a nearby BH can provide
another venue for the growth of stellar-mass BHs to massive BHs, in
particular see BHs at high redshift.

However, disruptive collisions are not the only growth mechanism
for BHs in stellar-dense environments. We show in Fig. 13 the regions
around BHs in which several events possibly contributing to their
growth, i.e. disruptive collisions, tidal disruption events, BH—star
collisions, and direct captures by BHs, can occur. When the distance
from the BH is less than a few times greater than the Schwarzschild
radius rs., = 2GM,/c? (dubbed ‘direct capture’ radius), the star would
directly fall into the BH (e.g. » < 2rsc, for parabolic orbits). If the
closest approach distance between the BH and a star is smaller than
the stellar radius, r < R,, they collide, during which the BH would
gravitationally capture a fraction of the star and accrete. When a
star orbits at a distance greater than both the stellar radius and the
direct capture radius, and smaller than the so-called tidal radius,
ro = (M,/M,)"R,, very strong BH’s tidal forces disrupt the star,
creating debris, some of which would end up accreting on to the BH.
This event is called tidal disruption event (Hills 1988; Rees 1988).
Finally, the region for disruptive collisions between giants may be
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Figure 13. Parameter space for disruptive events of a giant with M, =
1Mgp and R, = 10Rg in terms of the distance from the BH for varying
BH masses. The region dubbed ‘Black hole’ is defined by the Schwarzschild
radius, rscn = 2GM,/c2. If the pericentre distance of a star is smaller than
a few times outside rscp, the star would be directly captured by the black
hole. If the separation is smaller than the stellar radius, they would collide
(‘black hole—star collision’). When the pericentre distance is smaller than
the tidal radius r < ry = (M./M,)”3R,., stars are tidally destroyed by the BH
(‘tidal disruption”). Finally, disruptive collisions happen between the distance
at which the Keplerian velocity is greater than the stellar escape velocity, r
< Feollision = (Mo/M,)R, and the tidal radius r < r;. The white diagonal lines
in the region for disruptive collisions correspond to the collision velocity for
given BH mass and radius.

characterized by the two distances, the distance within which the
Keplerian velocity around the BH exceeds the stellar escape speed,
Teollision = (Mo/M,)R, and the tidal radius.

As shown in Fig. 13, all four star destroying events can contribute
to the growth of stellar-mass and intermediate-mass BHs. However,
for SMBHs with rs., > R,, only three events, namely, disruptive
collisions, tidal disruptions, and direct captures, can feed the BHs.
For very massive BHs (e.g. M, > 10° M), disruptive collisions
would be the dominant and likely only observable transient among
those considered here that lead to the mass growth of the BHs (see
Amaro Seoane 2023a).

This has an interesting implication for the detection of dormant
BHs. TDEs have been considered a unique signpost for the existence
of dormant SMBHs. However, because there is a maximum BH mass
capable of disrupting stars, M, at which r, equals to the direct capture
radius, TDEs cannot be used to detect very massive quiescent black
holes. However, disruptive stellar collisions can occur near BHs at
all mass scales, which would make these events a promising tool to
probe the existence of very massive dormant BHs which cannot be
probed by other transients. In particular, if the luminosity due to the
interaction of the collision product with the BH is Eddington limited,
an inference of the BH mass would potentially be possible from the
observed radiated light curve.

Which type of the events is dominant at different mass ranges
would depend on the stellar density, the accretion efficiency, and
occurrence rates, which is beyond the scope of our paper. We will
examine this aspect in more detail in our future work.

4.3 Particle acceleration

In this work, we have conducted numerical hydrodynamical simu-
lations that confirm, following stellar collision event, the formation
of strong shocks. These shocks arise due to the high velocity of
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the outflow, and its impact with the surrounding ISM in the galactic
nucleus environment. These shock waves subsequently compress and
heat the surrounding ISM gas.

The shocks formed in these stellar collisions provide an en-
vironment highly conducive to efficient particle acceleration. As
particles interact with the turbulent magnetic fields expected close
to the shock front, they can gain a significant fraction of the free
energy available from the differential flow speeds (in the shock’s
rest frame, the upstream towards the shock with velocity V and
the downstream moves away from the shock at velocity V/4). This
process of diffusive particle acceleration at shocks, an example of
first-order Fermi acceleration, is expected to result in the generation
of a power-law spectrum of non-thermal particles up to very high
energies (Bell 1978; Blandford & Ostriker 1978).

A fraction of the energy in the accelerated particle population
produced by stellar collisions will subsequently be radiated via
non-thermal emission through various energy loss processes (see
Matthews, Bell & Blundell 2020; Orlando et al. 2021, for review
in the context of active galactic nucleus jets and supernovae,
respectively). For instance, the accelerated electrons will produce
synchrotron radiation as they spiral around the magnetic fields also
generated during the collision. This emission is expected to be
detectable in the radio, and potentially the X-ray, bands. In addition,
the interaction between accelerated protons and the surrounding gas
can generate gamma-ray emission through processes like inelastic
proton—proton collisions.

The non-thermal radiation emitted by the accelerated particles
produced in stellar collisions offers valuable diagnostics into the
physical processes at play during violent stellar collision events. By
analysing the observed non-thermal radiation, we can gain a clearer
understanding of shock front environment. Ultimately, these insights
will elucidate on the dynamics of the collision itself. Our numerical
hydrodynamics simulations, coupled with theoretical estimates for
the production of non-thermal particles not included in our numerical
description, can provide insights into particle acceleration in stellar
collisions. This will be addressed elsewhere in a separate work.

4.4 Destructive collisions between different types of stars

Although we only consider black hole-driven disruptive collisions
(BDCs) between equal-mass 1 M giants, there could be a variety
of BDCs involving various types of stars. The total radiated energy,
luminosity, and temperature of BDCs would be affected by various
factors, including the relative size and mass of the colliding stars.

It is essential to convert the collision kinetic energy into radiation
energy for generating bright flares. For efficient energy conversion,
one important requirement is a large contact area at collision. On the
one hand, when two stars with two significantly different radii collide
(e.g. main-sequence and giant) at high velocity, even if the impact
parameter is small, the smaller star would simply penetrate through
the flufty envelope of the larger star. On the other hand, for collisions
involving stars with comparable sizes, the dependence of luminosity
on the radii of the two colliding stars may not be so simple because
how strong shocks are created at collision and how rapidly photons
escape after collision would be determined by several factors, such as
the temperature and density of the envelop of the star before collision
and those of the gas cloud after collision. At least, our simulations
suggest that collisions involving larger giants are brighter because
of stronger collision shocks over a wider cross-section (see Figs 9
and Al). In addition, the thermodynamic properties and chemical
elements of the gas cloud would affect the spectra of the flare (Dessart
et al. 2024).
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Another important factor that determines the collision outcome
and the amount of radiated energy is the masses of the colliding
stars. For the cases where at least the envelopes of the stars are
completely destroyed due to collision, the total energy radiated away
would be limited by the total mass of the envelopes. However, it is
also possible that only one of the two colliding stars is completely
destroyed. For such cases, while the total energy radiated away due
to the collision would be limited by the mass of the star that is
destroyed, the relatively intact star may play a role as an extra energy
source that may affect the long-term evolution of the light curves.
In addition, unlike the cases considered in this paper, the radiation
would be highly asymmetric.

Taking all these factors into account, flares due to BDCs would
generally be brighter when two stars with larger masses and compara-
ble sizes collide at a higher velocity with a smaller impact parameter.
However, due to the shorter lifetime and lower number density of
more massive stars, the collision rates would be generally smaller.

5 CONCLUSION AND SUMMARY

In this work, we investigate the hydrodynamics of high-velocity
collisions between giants in galactic nuclei and their observational
signatures using two state-of-the-art codes, the 3D moving-mesh
hydrodynamics code AREPO and the 1D stellar evolution code MESA.
The initial conditions of our simulations involved two identical
1 Mg giants with different radii, initial relative speeds, and impact
parameters. This work complements to the analytical calculations
presented by Amaro Seoane (2023b), which is generally consistent
with each other. We improve the estimates of the events’ observables
by accurately taking into account the realistic stellar internal structure
and non-linear hydrodynamics effects.

When two stars collide with exceedingly large kinetic energy, very
strong shocks are created along the contact surface. The envelope of
the two giants are fully destroyed and merged into an homologously,
quasi-spherically, and supersonically expanding gas cloud. The
maximum expansion speed of the cloud is larger than the initial
relative velocity of the stars by a factor of 3—6. The expansion speed at
a given mass coordinate stays the same, but the outer edge of the cloud
slows down because of the interaction with the background medium.
As it expands, the overall level of its density and temperature drops
following a power law of o =% and o ¢~!, respectively, becoming
optically thin within a few hundred days. At any given time of
evolution up to 30 d, the density and temperature of the inner regions
of the cloud remain relatively constant, rapidly decaying towards the
outer edge, following a power law: p(r) o< 78 — 12 and T(r) ocr~! —
r~2. These quantities exhibit weak dependencies on the stellar radius
within 10-100 R, and the impact parameter within b ~ 0.4 Rg. But
the dependence on the collision velocity is relatively strong. We
provide fitting formulae for the average cloud density, temperature,
maximum expansion speed, and optical depth (equations 2—7), which
would be useful for analytical estimates for these high-velocity stellar
collisions.

One of the key findings of our study is to numerically estimate
the amount of radiation energy converted from the initial kinetic
energy, which plays a crucial role in determining the observable
properties of the collisions. The overall trend of the conversion
efficiency, defined as the ratio of the converted radiation energy
to the initial kinetic energy, is such that it peaks at 0.1 at collision,
decays to 107 to 1072 within 10 d, and then gradually increases.
The efficiency reaches 1072 to 10! in 1 month since the collision.
But its magnitude depends on various factors, including the stellar
radius, impact parameter, and collision velocity. More specifically,

Red giant collision in nuclei 6207

a collision between larger stars colliding at a higher speed with
a smaller impact parameter tends to result in greater conversion
efficiency.

We estimate the luminosity, the blackbody radius, and the black-
body temperature, using the converted radiation energy and local
cooling time within the gas cloud. The peak luminosity can reach
values exceeding 10* ergs™! and exhibits the similar dependence
wtih the conversion efficiency. Over time, the luminosity decays
following a power law of =98 at early times and ~* after 10 d since
collision. The blackbody radius increases almost linearly with time
(oc %), while the temperature decreases, following a power law of
705 — 706 The collision events would initially produce bursts of
extreme UV (~10eV) gradually shifting to optical (~0.1eV), with
temporal evolution spanning from days to weeks. These events can be
observed by ongoing [e.g. Zwicky Transient Facility (ZTF), Bellm
et al. 2019° and The All Sky Automated Survey for SuperNovae
(ASSA-SN), Kochanek et al. 20177] and future [e.g. Vera C. Rubin
Observatory (LSST), Ivezi¢ et al. 2019% and Ultraviolet Transient
Astronomy Satellite (ULTRASAT), Shvartzvald et al. 2023°] sur-
veys.More detailed radiation transport calculations will be carried
out in our follow-up project, with which the detection rate for each
survey will be estimated.

In addition to the burst resulting from the stellar collision itself, a
subsequent burst occurs due to the accretion of the gas cloud on to the
SMBH in the galactic centre in 5(M,/10” My,) d for v, = 10* kms~!
since collision. Assuming Bondi accretion, the accretion luminosity
can easily exceed the Eddington limit as well as the luminosity from
the stellar collision. Because the Bondi radius expands faster than
the gas cloud, the entire cloud would be gravitationally captured in
the black holes’s potential in 11(M,/10” Mg)** d and subsequently
accrete on to the black hole. It would take S9(M,/10” Mg)~! yr
if the entire cloud was accreted. Therefore, the overall luminosity
curve would include a peak from the collision event, followed by a
rise to the Eddington luminosity. This heightened luminosity can be
sustained for up to 10 yr.

Although the estimate of the time-scales and luminosity due to
gas—black hole interactions are still of the order-of-magnitude level,
this aspect indicates very important implications. The possibility of
the gas accretion on to the black hole at all mass scales in proximity
subsequently after the collision suggests that the collision can provide
another mechanism for black hole growth. Tidal disruption events
have been proposed as a tool to detect dormant black holes, mostly up
to 108 M. However, because disruptive stellar collisions can occur
near very massive dormant ones (>10° M), such collisions can be
a potentially promising tool to probe the existence of very massive
dormant black holes.

Finally, we demonstrate the conversion of kinetic energy into
radiation energy, providing insights into the efficiency of particle
acceleration in these collisions. The resulting bursts of UV and
optical emission indicate the generation of high-energy particles,
highlighting the importance of particle acceleration processes in
understanding the observational signatures of such events.

While this study, to our knowledge, is the first detailed hydrody-
namics calculations of high-velocity disruptive collisions between
giants, there are a few caveats in our modelling that will be improved
in our future work. First, the assumption for local thermodynamic

Shttps://www.ztf.caltech.edu
7https://www.astronomy.ohio-state.edu/asassn
8https://www.Isst.org
https://www.weizmann.ac.il/ultrasat
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equilibrium is only valid for optically thick gas. This means the
evolution of the collision product at early times is accurate, but
as the gas cloud becomes optically thin, our treatment of radiation
pressure becomes inaccurate. As remarked in Section 3.5, this would
affect the shape of the light curves at late times. We will perform
detailed non-equilibrium radiation transport calculations for the late-
time evolution in our follow-up project using our hydrodynamics
calculations at early times when our assumption for local thermody-
namic equilibrium is valid. This will significantly improve the light-
curve modelling. Secondly, there are several physical impacts that
we have not considered yet, such as magnetic fields, recombination,
and the existence of non-thermal particles. Using the machinery that
we built for this work, we will explore their impacts in a series of
studies dedicated to investigating the impact of each physics.

The high-velocity disruptive collisions will offer insights into
many astrophysical aspects that cannot be provided by other tran-
sients, such as the stellar dynamics and potential particle acceleration
in galactic nuclei and globular clusters, black hole growth, and
detection of dormant black holes.
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APPENDIX A: LUMINOSITY ESTIMATE

Fig. Al show the luminosity L, (top) estimated using equation (12)
and the resulting blackbody temperature Tgg (bottom), as a function
of time measured since collision for all our models.
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Figure A1. Bolometric luminosity L, (tfop) and blackbody temperature 7Tp
(bottom) using equations (10) and (12). As in Fig. 9, the magenta guide lines
in the bottom panel show the power law that describes the quantity.
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