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learning (RL) has found adoption to accelerator control tasks 
(21,  22). RL has also been successfully applied to so- called RL- 
trained optimization (RLO), where neural network (NN) policies 
are trained through optimizer learning (23–26) to be capable of 
sample- efficient accelerator tuning (3, 27–29).

Most recently, LLMs have had a highly visible impact on the 
field of artificial intelligence (AI) and ML. Usually based on the 
transformer NN architecture, first introduced in (30), these models 
are trained to perform text completion such that they develop text 
understanding and text generation capabilities, which can be ex-
ploited to create chatbots. As such, state- of- the- art LLMs like 
GPT 4 (4) have been demonstrated to have not only impressive 
capabilities, such as text summarization, but also the ability to 
solve more complex tasks like coding and general problem solving. 
�e field of LLMs is moving fast and seeing substantial invest-
ments. Despite their high training cost, many of these models have 
been released in a short time frame, both commercial and closed 
in nature, such as GPT 4 (4), Gemini (31), and Claude (32), but 
also numerous open- source (or more specifically open- weights) 
models, such as Llama (2) (5), Orca (2) (33, 34), Starling- LM (35), 
and Mistral/Mixtral (36, 37). Most of these are released in varying 
sizes with varying trade- offs between capabilities and computa-
tional efficiency.

�e application of LLMs to optimization is less prominent in re-
cent research than other applications. Naturally fitting the natural 
language processing (NLP) origins of LLMs, they have successfully 
been applied to optimizing prompts to LLM chatbots (38). In fur-
ther work, LLMs have been used to find more effective algorithms 
than the state of the art to solve complex problems (39). Most simi-
lar to our work, the ability of LLMs to solve numerical optimization 
has been demonstrated on the simple task of linear regression in 
(38). A benchmark evaluating the performance of different LLMs on 
a game- playing task like those typically solved by training NN poli-
cies through RL is presented in (7).

In the context of particle accelerators, there exist ambitions to 
harness the NLP abilities of LLMs for various purposes. In (40), 
the authors demonstrate how to fine- tune an open- source LLM 
to be a particle accelerator domain expert using open- access sci-
entific literature as training data, augmented by another LLM to 
generate question- answer pairs from research papers. The fine- 
tuned model, called PACuna, is shown to be more proficient in 
answering questions related to particle accelerators. In (41, 42), 
the author demonstrates how off- the- shelf LLMs can be used 
as a general AI assistant for intelligent accelerator operations 
(GAIA), using the ReAct (43) prompting scheme to enable the 
LLM to intelligently trigger accelerator operation routines, auto-
matically contact experts when needed, research questions in the 
facility’s logbook, provide the correct control system addresses 
for actuators and sensors of the accelerator, and write weekly 
shift reports.

Here, we introduce an approach to using LLMs for autonomous 
tuning of a particle accelerator. We answer whether current state- 
of- the- art LLMs are capable of solving particle accelerator tuning 
tasks, and whether they present a promising alternative to the cur-
rent state of the art in particle accelerator tuning. To this end, we 
compare 14 different LLMs and 4 different prompts, and evaluate 
our LLM- based approach against other tuning algorithms, includ-
ing RLO and BO.

RESULTS

Evaluation setup
For this work, we evaluate a total of 14 different LLMs, which are 
specified in detail below. We evaluate each of the LLMs with multi-
ple different prompts on three different instances of the experimen-
tal area (EA) transverse beam parameter tuning task. �e instances 
differ in the target beam parameters set by the human operator, the 
transverse misalignments of the quadrupole magnets and the diag-
nostic screen, the properties of the beam entering the EA section 
from upstream, and the initial magnet settings before the respective 
tuning algorithm has taken any action. We refer to these instances as 
trials. �e transverse tuning task, where the goal is to set five magnet 
values to achieve a desired beam shape downstream, is known to be 
a nonlinear nonconvex optimization problem. �e task and the EA 
section are described in detail in Methods. For each trial, we run 
each model and prompt three times with different random seeds to 
account for the stochasticity of the LLMs and some of the baseline 
algorithms.

Performance is evaluated in terms of the mean absolute error 
(MAE) between the measured beam parameters and the target 
beam parameters a�er 50 iterations [“Final beam difference (m)”]. 
�is tests the ability of the models to find a good set of magnet set-
tings. We further consider the normalized MAE improvement from 
the initial magnet settings to the final magnet settings found by the 
model, which tests the ability of the models to improve the beam 
parameters from the initial settings [“Normalized beam improve-
ment (%)”]. Normalization by dividing the MAE improvement by 
the MAE with the initial magnet settings makes this metric less sen-
sitive to the inherent variability and difficulty of different trials. Fi-
nally, we consider the normalized MAE over all interactions, which 
tests the ability of the models to find a good set of magnet settings 
quickly (“Number of successful steps”). Here, too, the impact of 
trial- to- trial variations is reduced by dividing by the accumulated 
MAE of keeping the magnet settings the same as the initial settings 
for 50 iterations. For all LLMs, we further consider the number of 
consecutive steps for which they are able to generate a parsable 
JSON output, which tests the models’ reliability in generating a valid 
output. LLMs are given a second chance in each sample, if they fail 
to generate a parsable JSON output on the first attempt.

�e main goal of this work is not to determine whether LLMs are 
capable of outperforming the current state of the art in accelerator 
tuning algorithms. We expect that the current state of the art in ac-
celerator tuning algorithms, such as RLO and BO, should clearly 
outperform LLMs. Instead, we hope to determine whether LLMs are 
capable of solving accelerator tuning (and by extension other com-
plex optimization tasks) at all, and to what extent they can do so. We 
therefore also introduce three measures of “success,” where we con-
sider a tuning run successful, if the final beam difference is at least 
40 m improved over the initial beam difference before any tuning 
has taken place, with 40 m being twice the real- world measurement 
accuracy for beam parameters on the diagnostic screen. �is means 
that runs are only considered successful if a clearly measurable im-
provement of the beam parameters has been achieved. A tuning 
algorithm is considered “outright successful” if it is able to achieve 
the success criteria in all nine evaluation runs. We consider a tuning 
algorithm as “partially successful” if it is able to achieve the success 
criterion in at least six of the nine evaluation runs. Partial success 
suggests that, while not perfectly reliable, successful runs are 
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probably not coincidental. We further know that some trials can be 
harder to solve than others. As a third and weakest success criterion, 
we therefore consider a tuning algorithm as “single trial successful” 
if it is able to achieve the success criterion for each of the three runs 
of a single trial, suggesting that, while some trials may have been too 
difficult to solve, the model was able to reliably solve this one trial.

�e 14 different LLMs that have been considered are Gemma 2B 
and Gemma 7B (44) (version 1.0); GPT 3.5 Turbo (checkpoint 0125) 
(45), GPT 4 (4) (checkpoint 0613), and GPT 4 Turbo (preview 
checkpoint 0125) (46); Llama 2 7B, Llama 2 13B, and Llama 2 70B 
(5), as well as the fine- tuned variants of Llama 2: Orca 2 7B and Orca 
2 13B (33, 34), and Vicuna 7B 16 K (47); Mistral 7B (version 0.2) 
(36) and Mixtral 8x7B (37); and Starling- LM 7B (beta) (35). In total, 
we evaluate four different templates for prompting the models (Tun-
ing Prompt, Explained Prompt, Chain- of- �ought Prompt, and 
Optimization Prompt) to account for the sensitivity of the models 
regarding particular formulations of the same task (48). We explain 
the prompt templates in detail in the “Optimization scheme” 
section. For cost reasons and because the Explained Prompt and 
Chain- of- �ought Prompt are variations on the Tuning Prompt, the 
Explained Prompt and Optimization Prompt are evaluated with all 
models, while the Tuning Prompt and Chain- of- �ought Prompt 
are evaluated only with Gemma 2B, GPT 4 Turbo, and Mixtral 
8x7B. �is should provide a sense for how the additions of chain- of- 
thought and a task explanation affect performance with the repre-
sentative LLMs while comprehensively comparing different LLMs 
and two very different prompts.

Prompt generation and response parsing are implemented using 
the LangChain (49) Python package, which provides a straightfor-
ward set of tools for constructing prompts, calling LLMs and pars-
ing their responses. �e open- weights LLMs used in this work are 
run using Ollama (50), while the OpenAI models are run through 
the OpenAI API. All models are run using their default temperature 
value, with T = 0.7 for the OpenAI models and T = 0.8 for all other 
models. Every LLM is prompted following its respective prompt for-
mat for system prompt, user prompt, and response. Orca 2 7B, Orca 
2 13B, and Vicuna 7B 16 K are run with their default system prompts 
as listed in the Supplementary Materials. All other models are run 
without any system prompts as per their default configuration. A 
Gymnasium (51) environment of the EA transverse beam parame-
ter tuning task using the Cheetah (52, 53) beam dynamics simulator 
is used to evaluate the LLMs and baselines. �e baselines BO, ES, 
and random search are implemented following (54). �e RLO and 
do nothing baselines are implemented according to (3), using the 
trained policy model from that work.

�e results of the evaluation in terms of the three previously de-
fined metrics are shown in Table 1. �e number of successful runs 
and wholly successful trials for each model and prompt are shown in 
Fig. 1 Two example tuning runs by a well- performing and a poorly 
performing model and prompt combination are shown in Fig. 2.

Performance
We find that the state- of- the- art tuning algorithms RLO and BO, as 
well as ES, all achieve the strictest success criterion of outright suc-
cess in all nine evaluation runs. Of the LLM prompt combinations 
evaluated, GPT 3.5 Turbo, GPT 4, and GPT 4 Turbo in combination 
with the Optimization Prompt also achieve outright success in all 
nine evaluation runs, with GPT 4 Turbo with the Optimization 
Prompt also being the best- performing LLM prompt combination 

in all evaluated metrics. In addition, a further 10 LLM prompt com-
binations achieve partial success, with Llama 2 13B, Llama 2 70B, 
and Orca 2 7B doing so with the Optimization Prompt; Gemma 7B, 
Mixtral 8x7B, and Starling LM 7B achieving partial success with the 
Explained Prompt; Gemma 2B and Mixtral 8x7B achieving partial 
success with the Tuning Prompt; and Gemma 2B and GPT 4 Turbo 
achieving partial success with the Chain- of- �ought Prompt. Over-
all, Mixtral 8x7B is the best- performing model with the Explained 
Prompt, but is outperformed by Starling LM 7B on the Final Beam 
Difference metric. With the Tuning Prompt, Mixtral 8x7B performs 
best of the three evaluated models, while Gemma 2B is the best- 
performing model with the Chain- of- �ought Prompt. All models 
that achieve partial success also achieve single trial success in at least 
one trial, demonstrating that they are able to solve some trials reli-
ably. A further six LLM prompt combinations achieve single trial 
success: Gemma 2B and GPT 4 with the Explained Prompt, Mixtral 
8x7B with the Optimization Prompt, and Mixtral 8x7B with the 
Chain- of- �ought Prompt. In total, of the 34 LLM prompt combi-
nations tried, 18 achieve at least one success criterion. Of 14 LLMs 
evaluated, 10 achieve at least one success criterion with at least one 
prompt. �is demonstrates that LLMs can be used to solve accelera-
tor tuning tasks.

However, these results also show that LLMs are not yet competi-
tive with the state- of- the- art accelerator tuning algorithms. �e 
best- performing LLM prompt combination, GPT 4 Turbo with the 
Optimization Prompt, achieves an average normalized beam im-
provement of −50%. �is is a good result, but it is also a notably 
worse result than the −99% and −93% achieved by RLO and BO, 
respectively. A similar trend can be observed in how fast algorithms 
are able to find a good set of magnet settings. GPT 4 Turbo with the 
Optimization Prompt achieves an average normalized integrated 
MAE of 67%, which is an order of magnitude worse than the 3% 
achieved by RLO. However, it is only about two times worse than 
BO and ES.

Choosing a prompt
�e results show that the performance of LLMs is highly dependent 
on the specific model and prompt used. While 18 of the 34 LLM 
prompt combinations tried achieve at least one success criterion, the 
remaining 16 do not achieve any. Similarly, 4 of the evaluated LLMs 
do not achieve any success criterion with any of the prompts they 
were tested on. We observe that in general, the Optimization Prompt 
performs best in our evaluations. Outright success was only achieved 
with the Optimization Prompt, and at least one success criterion 
was achieved by seven LLMs when using the Optimization Prompt, 
while only five LLMs achieve at least one success criterion with the 
Explained Prompt. �e Optimization Prompt is also used in the 
best- performing LLM prompt combination with GPT 4 Turbo. 
�at, however, does not mean that the Optimization Prompt is al-
ways the better choice. Some models perform better with one of the 
other prompts. Gemma 7B, Mixtral 8x7B, and Starling LM 7B, for 
example, all achieve partial success with the Explained Prompt, but 
only single trial success or no success criterion at all with the Opti-
mization Prompt. Similarly, Gemma 2B and Mixtral 8x7B achieve 
their best results with the Tuning Prompt. We conclude that the 
choice of prompt must be made on a model- by- model basis.

It is also worth noting that adding explanations to the prompts 
about how the magnets work, or adding a chain- of- thought to the 
prompts, does not always lead to the expected improvements. Of the 
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three models evaluated with all four prompts, only GPT 4 Turbo 
improves with the addition of explanations. However, this is with 
GPT 4 Turbo generally performing badly on any of the three vari-
ants of the Tuning Prompt, generally performing better with the 
Optimization Prompt. Gemma 2B and Mixtral 8x7B, on the other 
hand, perform worse when the explanations are added. A possible 
explanation for this observation is that, rather than helping the 
model understand the tuning task, the length of the explanations 
makes it harder for the LLM to retrieve relevant information, such 
as specific past samples or the target beam parameters, from the 
prompt. �is problem is known as needle in a haystack and a gen-
eral challenge with LLMs. Chain- of- thought prompting seems to 
improve performance over the Explained Prompt with Gemma 2B 
and GPT 4 Turbo, but has an adverse effect on the performance of 
Mixtral 8x7B. �ese results also suggest that intuitive improvements 
of the prompt are not always beneficial, and reinforce the conclusion 
that the choice of prompt must be made on a model- by- model basis.

In designing the presented LLM tuning solution, we found that 
aside from getting LLMs to successfully tune the particle accelerator, 
another difficulty is to get them to output the magnet settings in a 
parsable JSON format. �is is why LLMs are given a second chance 

in each sample, if the parsing of their response fails on the first at-
tempt. Nevertheless, some models fail on the second attempt as well, 
at which point we consider the tuning run terminated. We can 
therefore take the number of performed iterations (excluding sec-
ond attempts) as an indicator of a model’s ability to produce a valid 
JSON output when provided with one of our prompts. Note that 
excluding second attempts, this is the number of interactions with 
the accelerator, not the number of times the LLM was prompted. 
�e observed number of iterations for the nine evaluation runs of 
each model and prompt are shown in Table 1. We observe that many 
models, o�en those achieving good tuning results, have a high num-
ber of successful steps, with models like those by OpenAI and Llama 
70B always achieving the maximum of 50 successful steps, regard-
less of the prompt used. Other models, such as both Orca 2 and the 
smallest variant of Llama 2, consistently struggle to produce a valid 
JSON output, with the number of successful steps being very low for 
either prompt. While in most cases it appears that the ability to gen-
erate valid JSON responses depends mostly on the LLM used, we 
also observe that the choice of prompt can have an impact in a few 
cases, with the difference being especially pronounced for the Gemma 
models, which achieve a higher number of successful steps with 

Table 1. Evaluation results. The metrics are given as mean ± SD. The best results for each metric are highlighted in bold. CoT, chain- of- thought.

Final beam difference (m) Normalized beam improve-
ment (%)

Normalized integrated MAE 
(%)

Number of successful steps

Explained Optimization Explained Optimization Explained Optimization Explained Optimization

 Gemma 2B 1,665 ± 634 3,180 ± 5,187 11 ± 71 34 ± 171 115 ± 51 137 ± 88 23 ± 19 39 ± 14

 Gemma 7B 1,651 ± 764 8,105 ± 12,933 −16 ± 11 284 ± 428 85 ± 10 247 ± 142 9 ± 0 29 ± 11

 GPT 3.5 Turbo 11,593 ± 14,850 1,197 ± 771 397 ± 618 −36 ± 27 292 ± 245 78 ± 20 50 ± 0 50 ± 0

 GPT 4 1,849 ± 1,445 1,213 ± 860 11 ± 73 −40 ± 25 98 ± 60 73 ± 20 50 ± 0 50 ± 0

 GPT 4 Turbo 2,184 ± 1,879 962 ± 740 20 ± 89 −50 ± 28 107 ± 76 67 ± 21 50 ± 0 50 ± 0

 Llama 2 7B 1,432 ± 798 2,085 ± 779 −12 ± 55 15 ± 27 94 ± 15 106 ± 15 8 ± 6 3 ± 4

 Llama 2 13B 1,936 ± 772 1,507 ± 821 5 ± 26 −22 ± 23 101 ± 10 85 ± 21 0 ± 1 13 ± 20

 Llama 2 70B 1,947 ± 964 1,539 ± 942 10 ± 42 −21 ± 27 107 ± 37 92 ± 16 50 ± 0 50 ± 0

 Orca 2 7B 2,149 ± 1,222 1,377 ± 855 17 ± 42 −23 ± 37 122 ± 65 93 ± 17 4 ± 3 4 ± 7

 Orca 2 13B 1,634 ± 875 3,232 ± 3,684 −13 ± 24 77 ± 170 88 ± 18 142 ± 92 1 ± 2 3 ± 2

 Vicuna 7B 16 K 4,756 ± 5,332 4,331 ± 3,829 184 ± 320 320 ± 580 189 ± 137 234 ± 236 34 ± 7 48 ± 7

 Mistral 7B 2,551 ± 1,233 19,653 ± 23,427 48 ± 57 803 ± 869 121 ± 40 1,574 ± 1,513 50 ± 0 30 ± 22

 Mixtral 8x7B 1,606 ± 1,158 1,901 ± 1,192 −24 ± 27 −14 ± 31 76 ± 26 101 ± 26 50 ± 0 45 ± 14

 Starling LM 7B 1,401 ± 449 7,659 ± 7,249 1 ± 69 363 ± 521 98 ± 60 324 ± 252 36 ± 15 19 ± 16

 Tuning CoT Tuning CoT Tuning CoT Tuning CoT

 Gemma 2B 1,452 ± 525 955 ± 702 −14 ± 46 −40 ± 49 97 ± 43 87 ± 60 10 ± 1 50 ± 0

 GPT 4 Turbo 2,647 ± 1,827 1,337 ± 813 45 ± 81 −23 ± 45 119 ± 64 70 ± 25 50 ± 0 50 ± 0

 Mixtral 8x7B 1,321 ± 771 1,775 ± 926 −29 ± 23 −8 ± 17 71 ± 22 95 ± 19 50 ± 0 50 ± 0

 Baselines

 RLO 16 ± 17 −99 ± 1 3 ± 1 –

 BO 100 ± 26 −93 ± 6 31 ± 23 –

 Extremum 
seeking 

457 ± 267 −71 ± 19 35 ± 17 –

 Random 
search 

7,677 ± 3,830 487 ± 588 647 ± 476 –

 Do nothing 1,967 ± 903 0 ± 0 100 ± 0 –
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the Optimization Prompt than with the Explained Prompt. It does 
not appear as though one prompt is generally better than the other 
in terms of the number of successful steps. Furthermore, the nature 
of different invalid responses varies greatly. In some cases, the mis-
takes are so minor that human experts might fail to spot them, for 
example, when a trailing comma is added to the last JSON property. 
�is is not allowed in JSON syntax and causes the parser to fail. 
Another failure case is related to chain- of- thought. For example, 
Orca 2—a model specifically trained to respond with chain- of- 
thought—o�en outputs an explanation of a strategy to solve the op-
timization problem rather than the next magnet settings requested 
in the prompt. Last, but certainly not least, some models fail to out-
put a coherent response altogether, with responses being nonsensi-
cal, for example, starting the response with an invalid continuation 
of a JSON object and then continuing with multiple valid JSON ob-
jects even though only a single one was requested. In this case, both 
the invalid JSON object and the ambiguity about which JSON object 
should be parsed make the response invalid. Examples of these three 
described failure modes are given in Supplementary Text.

Choosing a model
It is well known that some LLMs generally perform better than oth-
ers. O�en, an LLM’s capabilities are correlated with the number of 
parameters it has. �ere are also a number of benchmarks that aim 
to measure the performance of LLMs. �ese include the LMSYS 
Chatbot Arena ELO rating (47), the MT- bench score (47), the 

Massive Multitask Language Understanding (MMLU) score (55), 
and the HellaSwag score (56). When plotting the number of success-
ful episodes, normalized beam improvement, and normalized inte-
grated MAE over number of model parameters and benchmark 
scores in Fig. 3, we find that there typically is at least a weak correla-
tion, in particular when considering results using the Optimization 
Prompt, where we measure Pearson correlation coefficients as high 
as 0.55 between the number of successful episodes and the HellaS-
wag benchmark results. �e Pearson correlation coefficients are 
listed in Fig. 3. �is finding suggests that the size and benchmark 
performance of an LLM can to some extent serve as an indicator for 
its performance on particle accelerator tuning and general numeri-
cal optimization tasks. �ese metrics can therefore be taken into ac-
count when choosing an LLM for these purposes. �is observation 
further implies that, as increasingly well- performing general pur-
pose LLMs are released, we can probably expect to see better perfor-
mance on accelerator tuning and numerical optimization tasks.

Resource requirements
Apart from LLMs’ ability to solve a given task, it is also important to 
consider the fact that LLMs are usually very resource intensive to 
run. �e open- weights models used in this work are run on four 
NVIDIA A100 graphics processing units (GPUs) with 80 GB of 
memory each. �e OpenAI models are run through the OpenAI 
API, where the exact hardware used is not known, but likely also using 
many NVIDIA A100 or H100 GPUs. In contrast, the state- of- the- art 

A B

Fig. 1. Number of successful runs and trials for each model and prompt. We define as success an improvement of at least 40 m on the beam differences when com-

pared to the initial magnet settings. (A) Number of successful runs. (B) Number of wholly successful trials, i.e., trials where all three runs were successful.
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Fig. 2. Magnet setting and beam parameter traces for a good and a bad tuning run by LLMs. Both runs used the same trial, where the target beam parameters are 

μx = μy = σx = σy = 0mm.

Fig. 3. Number of successful tuning runs, average normalized MAE improvement, and average normalized accumulated MAE for each LLM with respect to its 

size, LMSYS Chatbot Arena ELO rating, MMLU score, MT- bench score, and HellaSwag score. Results for the Explained Prompt are shown in red, and results for the 

Optimization Prompt are shown in green. Linear fits are shown for the presented data. Pearson correlation coefficients r are provided for the shown samples in the respec-

tive subplots. We expect the number of successful episodes to increase and the other two metrics to decrease if model size or high benchmark scores improve the ability 

of LLMs to solve the investigated particle accelerator tuning task.
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accelerator tuning algorithms RLO and BO can easily be run on lap-
top central processing unit (CPU), specifically an Apple M1 Pro sys-
tem on a chip (SOC) for the results presented in this work. An 
average inference takes less than 200 s for RLO and around 700 ms 
for BO. In contrast, the fastest open- weights LLM was Gemma 2B 
on the Tuning Prompt with an average inference time of 700 ms, 
while the slowest was Orca 2 13B with 30 s on the Explained Prompt. 
Orca 2 inference is particularly slow because its chain- of- thought 
responses are long. We see similarly long inference times at 28 s 
when prompting GPT 4 Turbo with the Chain- of- �ought Prompt. 
Otherwise, the OpenAI models achieved between 1 s for GPT 3.5 
Turbo on the Optimization Prompt and 4 s for GPT 4 on the Ex-
plained Prompt. A large open- weights model like Llama 2 70B 
achieved an average inference time of 7 s on the Optimization 
Prompt in our evaluations.

Such large resource demands usually induce high cost. While the 
actual cost of running LLMs on our own GPUs is difficult to esti-
mate, the cost of running the OpenAI models through the OpenAI 
API as of 10 April 2024 is around USD 5.35 for one tuning run with 
GPT 4 and the Explained Prompt, and USD 2.98 for GPT 4 with the 
Optimization Prompt. GPT 4 Turbo costs less at around USD 1.81 
for a tuning run using the Explained Prompt and USD 0.74 for the 
Optimization Prompt. GPT 3.5 Turbo was the cheapest, with API 
costs of around USD 0.09 and USD 0.05 for the Explained and Opti-
mization Prompt, respectively. When using prompts that are likely 
to include more than a magnet setting JSON in the response, such as 
the Chain- of- �ought Prompt, the cost of running an optimization 
with GPT 4 Turbo increases to USD 2.63.

Considering the large amount of compute resources these mod-
els require, we must also consider their energy consumption and 
associated environmental impact. In (57), the authors find that GPT 
3 consumes 500 ml of water for 10 to 50 responses. For the 50 re-
sponses in one evaluated tuning run, this comes out to 0.5 to 2.5 li-
ters of water. While the authors do not mention the number of 
tokens assumed for a response, we can safely assume that these 
numbers are a lower bound for the much more resource- intensive 
GPT 4 and GPT 4 Turbo models used in this work. To estimate the 
CO2 emissions associated with using these models for particle ac-
celerator tuning, we can consider Mixtral 8x7B as a representative 
model somewhat of average size. Taking the average inference time of 
6 s per step with the Optimization Prompt, this model uses a total 
of 300 s of GPU time on four A100 GPUs. �e energy consumption of 
a single A100 GPU is quoted as 250 W (58), i.e., 1 kW for all four 
GPUs, giving a total energy consumption of 83 W h for one tuning 
run. �is is about the same amount of energy it takes to run a mod-
ern fridge for 11 h (59) or drive a modern electric vehicle for 0.5 km 
(60), and results in CO2 emissions of about 36 g (61). �ese numbers 
are only rough estimates, but they give an idea of the environmental 
impact of using LLMs for particle accelerator tuning. Generally, 
these should be lower for the smaller open- weights models, but 
higher for larger models like GPT 4 and GPT 4 Turbo. Note that 
none of the given numbers consider the environmental impact of 
training these models, which is substantial. However, as the models 
are already trained for other purposes and available, we do not take 
this into account in our evaluation.

To put these resource requirements into context, it is worth 
considering the amount of tuning that is typically required during 
accelerator operations. At the European X- ray Free Electron 
Laser (XFEL) facility at DESY, 2248 hours were spent on accelerator 

tuning in 2022 (62), and 1920 hours in 2023 (63). Under the assump-
tion that LLM- based tuning takes the same amount of time as the 
tuning procedures currently in place, with half of that time spent on 
LLM inference, an average inference time per step of 4 s, and 1.66 W h 
of energy consumed on each inference step, this would amount 
around 1.6 MW h of energy consumption and 700 kg of CO2 emis-
sions per year. For comparison, the total annual energy consumption 
of the ARES and European XFEL facilities is around 0.3 and 62 GW h, 
respectively (64). �at means that the energy consumption of LLM- 
based tuning would amount to around 0.003% to 0.5% of the total 
energy consumption of such facilities. What is more, this is about 
half the energy consumption of the average German household per 
year (65), and the CO2 emissions are about 30% of the annual CO2 
emissions of a mid- sized car (66).

DISCUSSION

Here, we demonstrated that LLMs can be used to solve accelerator 
tuning tasks and, by extension, general numerical optimization 
tasks. However, considering a combination of 14 different open- 
weights and commercial LLMs and 4 different prompts, we find that 
only 18 of the 34 LLM prompt combinations can successfully 
achieve an improvement on the transverse beam parameter tuning 
task considered in this work. We conclude that, while it is generally 
possible to use LLMs for accelerator tuning, the choice of model and 
prompt is crucial. Comparing to state- of- the- art accelerator tuning 
algorithms, we further find that LLMs are not yet competitive with 
RLO and BO. �e best- performing LLM prompt combination, GPT 
4 Turbo with the Optimization Prompt, achieves an average nor-
malized beam improvement of −50%, which is only about half as 
good as the −99% and −93% achieved by RLO and BO, respectively. 
While not achieving competitive performance, LLMs also incur 
high computational costs, leading to long inference times, high 
monetary costs, and notable environmental impact.

Despite these clear disadvantages that mean LLMs are not yet a 
viable alternative to state- of- the- art accelerator tuning algorithms, 
our results present an intriguing proof of concept. �e field of LLMs 
is rapidly evolving, with ever more capable models being released on 
a near- daily basis. We have shown that more capable models gener-
ally perform better on accelerator tuning tasks, meaning that the 
inevitable progress in the field of LLMs will also lead to better per-
formance on accelerator tuning tasks. Ultimately such development 
could make the intuitive deployment of autonomous accelerator 
tuning solutions through natural language a feasible option.

In the near future, we expect that, instead of being used as a re-
placement for state- of- the- art accelerator tuning algorithms, LLMs 
will find applications as copilots to human particle accelerator op-
erators. Here, they can provide a natural language interface to 
various tasks related to accelerator operations, such as retrieving 
information from logbooks, generating reports, or diagnosing the 
accelerator’s state from large amounts of diagnostic measurements. 
Such efforts are already underway (40–42). In continuation of this 
work, we believe that LLMs could also be used to coordinate state- 
of- the- art accelerator tuning algorithms, such as RLO and BO, in a 
federated setting, deciding or helping the operator decide which 
part of the accelerator to tune next, using which algorithm and with 
which desired outcome. What is more, LLMs could also be used to 
assist human operators in the deployment of state- of- the- art tuning 
algorithms, for example, by proposing Xopt (19) configurations, or 
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objective functions and suitable actuators in response to natural lan-
guage prompts about the desired outcome. In the longer term, the 
approach of letting LLMs perform tuning directly may be improved 
by using a ReAct prompting scheme (43) or using LLMs to check if 
the magnet settings proposed algorithms like RLO and BO are sen-
sible in a setup similar to (67, 68).

METHODS

Particle accelerator tuning task
For the purpose of this work, we consider a specific particle accel-
erator tuning task, namely, the transverse beam parameter tuning in 
the EA section of the accelerator research experiment at SINBAD 
(ARES) linear particle accelerator (69, 70) at DESY in Hamburg, 
Germany. �is task has been chosen as it is a well- defined and well- 
understood task in the accelerator community, and has been exten-
sively studied in the context of autonomous accelerator tuning 
(3, 54, 71, 72). At the same time, the task is complex enough to be 
difficult to solve manually and can provide a meaningful benchmark 
for the capabilities of LLMs in accelerator tuning, yet simple enough 
such that solutions can still be easily understood and evaluated. 
Solving it would provide a valuable streamlining of accelerator op-
erations because similar transverse tuning tasks can be found at 
most accelerator facilities and have to be regularly performed dur-
ing everyday operations.

�e EA section is primarily made up of five magnets as shown in 
Fig. 4. �ree of these magnets are quadrupole magnets, Q1

, Q
2
, and 

Q3, which are used to focus the beam, and two are dipole magnets, 
C
v
 and C

h
, which are used to bend the beam, one in the vertical plane 

and one in the horizontal plane. Here, we control the focusing 
strength k of the quadrupole magnets in m−2 and the angle α by 
which the dipole magnets deflect particles in mrad. Note that turn-
ing up the strength of a quadrupole magnet will focus the beam in 
the horizontal plane and defocus it in the vertical plane, while turn-
ing down the strength will have the opposite effect. Increasing the 
steering angle of the vertical steering magnet will steer the beam 
upward, while decreasing the angle will steer the beam downward. 
�e horizontal steering magnet works similarly, steering the beam 
to the right when the angle is increased and to the le� when the 
angle is decreased. What is more, if the beam is off- center as it 

passes through the quadrupole magnet, the beam will additionally 
experience an angular deflection as it would with a dipole magnet. 
Any tuning task involving quadrupoles is therefore complex. �e 
magnets are arranged in the order 

(

Q
1
,Q2,Cv,Q3,Ch

)

. At the end of 
the EA section, there is a diagnostic screen station. At the screen 
station, a screen made of a scintillating material is inserted into the 
beam pipe. When electrons pass through the screen, light is emitted, 
which is then captured by a camera and used to measure a trans-
verse projection of the beam. Transverse beam parameters of beam 
position μx,y and beam size σx,y can then be computed from the 

screen image by fitting a 2D Gaussian distribution. �e goal of the 
tuning task is to find a set of magnet settings 

(

kQ1
, kQ2

, αCv
, kQ3

, αCh

)

 

that minimize the difference between the measured beam parame-

ters 
(

μx , σy , μy , σy

)

 and some target beam parameters 
(

μ
′

x
, σ′

y
, μ′

y
, σ′

y

)

 

set by the human operator.
We consider different instances of this tuning task, which we call 

trials. Trials differ in three aspects: �e quadrupole magnets and the 
diagnostic screen have transverse misalignments �. �ese affect the 
dipole effect the quadrupoles have on the beam and shi� the beam 
position measured on the screen. �e misalignments are usually not 
known. Additionally, the incoming beam I entering the EA from 
upstream varies from day to day and between working points. It is 
difficult to measure the incoming beam, and therefore, it is also con-

sidered unknown. Finally, the target beam parameters 
(

μ
′

x
, σ′

y
, μ′

y
, σ′

y

)

 

may differ from one tuning run to the next as they can be requested 
by the operator based on the experimental requirements.

Optimization scheme
We consider an iterative optimization scheme for accelerator tun-
ing, where the state of the accelerator is observed, and then the tun-
ing algorithm chooses new actuator settings based on the current 
and all past states from the tuning run. �is process is repeated 
either for a fixed number of iterations or until some termination 
criterion is met. For an LLM to act as the tuning or optimization 
algorithm, a prompting scheme needs to be devised. In our ap-
proach, we consider the use of a chatbot LLM, where the user can 
provide a question or command to the LLM and the LLM will re-
spond with an answer. Our optimization scheme using LLMs ex-
tends on the approach for linear regression presented in (38) and is 

Fig. 4. Schematic of the EA section of the ARES linear particle accelerator. Quadrupole magnets are shown in red; the vertical and horizontal dipole are shown in blue 

and turquoise, respectively. The electron beam is shown as a green envelop passing through the magnets and onto the screen at the end of the experimental area.
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shown in Fig. 5. In the prompt to the LLM, the user provides a de-
scription of the optimization task that the LLM should solve. �is is 
followed by a list of input and output pairs from previous optimiza-
tion steps. A�er this list, the user asks for the next set of input pa-
rameters that help optimize the objective function and gives the 
LLM instructions on how these should be formatted such that the 
user can parse the output from text to numerical values. �is prompt 
is then sent to the LLM, which responds with the next set of input 
parameters that should be used to optimize the objective function, 
and potentially also an explanation of why these parameters were 
chosen. �e response should look similar to the one listed in Fig. 6. 
It is then parsed, and the input parameters are used to evaluate the 
objective function. �e output of this evaluation is then added to the 
list along with its corresponding input parameters, and the process 
is repeated.

Prompt engineering is a crucial part of using LLMs and can no-
tably affect the performance of the model. Because of the variability 
in the performance of different prompts and the difficulty of finding 
the best prompt, we evaluate the ability of LLMs to solve the accel-
erator tuning task using four different prompts: Tuning Prompt 
(see the “Tuning Prompt” section), Explained Prompt (see the 
“Explained Prompt” section), Chain- of- �ought Prompt (see the 
“Chain- of- �ought Prompt” section), and Optimization Prompt 
(see the “Optimization Prompt” section). All prompts follow the 
general prompting scheme described above, of task description, 
input- output pairs, request for next input parameters, and instruc-
tions on how to format the output. �e prompts used in this work 
differ mainly in the task description and the outputs of the previous 
optimization steps.
Tuning Prompt
The Tuning Prompt is the most straightforward and intuitive 
prompt used in this work. It describes the task of tuning the trans-
verse beam parameters in the EA section and the goal of achieving 
some target beam parameters on the diagnostic screen such that the 
LLM is aware of the fact it is tuning a particle accelerator. �e 
input- output pairs are the magnet settings and the corresponding 

measured beam parameters. �is prompt assumes that the LLM has 
some understanding of particle accelerators and understands, for 
example, what a quadrupole magnet is and how it affects the beam. 
An example of the Tuning Prompt is provided in Fig. 6, where the 
task description is highlighted in gray, the input- output pairs are in 
blue, and the request for the next input parameters and output in-
structions is in green.

Note that the choice was made to provide previously observed 
magnet settings and beam parameters formatted as a markdown 
JSON snippet. We found that if these are provided as a simple tex-
tual list of property names and their values, the LLMs would o�en 
output the next magnet settings in the same format instead of the 
requested JSON format. By providing the examples in the same for-
mat as we desire for the output, the parsing reliability of the LLM is 
increased substantially.
Explained Prompt
�e Explained Prompt is mostly the same as the Tuning Prompt, but 
includes additional explanations of how each of the magnets affects 
the beam. �is is done because accelerator physics is a complex and 
niche field, which is unlikely to have been widely covered in the 
training data of most general- purpose LLMs. �e explanations are 
generally kept on a high level, similar to how one might explain the 
task to a new accelerator operator to give them an intuition of how 
the magnets affect the beam on the diagnostic screen. In Fig. 6, an 
example of the Explained Prompt is provided with the explanations 
highlighted in violet.
Chain- of- Thought Prompt
Chain- of- thought prompting (8) is a technique where the user asks 
the LLM to explain its reasoning before it gives its answer. �is was 
found to generally improve the quality of the answers given by 
LLMs, especially in the case of logical reasoning tasks. Note that it is 
important to have the explanation before the answer, as otherwise 
the model will phrase the explanation in support of the already 
given and potentially incorrect answer, thereby negating the benefit 
of chain- of- thought prompting. In the Chain- of- �ought Prompt, 
we add a request to the prompt whereby the users asks the LLM to 

Fig. 5. Flowchart of the optimization scheme used to tune particle accelerators using LLMs. The prompt is made up for three components: Task description, list of 

previous input and output samples, and instructions for what to output and how to format the output. The prompt is then sent to the LLM, which generates a response. 

The response is parsed into values that can be input into the tuning or optimization task. A measurement or objective value from the task is then inserted into the previous 

samples along with its corresponding input, and the loop is repeated.
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BA

C
E

D

Fig. 6. Examples of the evaluated prompts. Different parts of the prompts are highlighted in different colors, with the task description in gray, the input- output pairs in 

blue, and the request for the next input parameters and output instructions in green. Purple text highlights changes compared to the original prompt. (A) Tuning Prompt. 

(B) Optimization Prompt. (C) Modification of the Explained Prompt to make the Chain- of- Thought Prompt. (D) Modification of the Tuning Prompt to make the Explained 

Prompt. (E) Example of a response.
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explain its reasoning before it gives the next set of input parameters. 
Otherwise, the Chain- of- Thought Prompt is the same as the 
Explained Prompt. We give an example of the Chain- of- �ought 
Prompt in Fig. 6, where the request for chain- of- thought reasoning 
is highlighted in violet.
Optimization Prompt
�e Optimization Prompt phrases the task as a numerical optimiza-
tion problem instead of a particle accelerator tuning task. �is means 
that the model is completely unaware that it is tuning a particle ac-
celerator. Numerical optimization tasks are more generic than par-
ticle accelerator tuning tasks and therefore expected to be more 
present in the training data used to train LLMs, meaning that models 
are likely to be more familiar with them. However, this also means 
that the model is given no information about the topology of the 
objective function, which makes the optimization problem harder to 
solve. �e objective function is therefore a black box to the model. 
�e input- output pairs are the magnet settings and a corresponding 
single scalar objective value computed from the beam parameters as

We list an example of the Optimization Prompt in Fig. 6, where 
the task description is highlighted in gray, the input- output pairs are 
in blue, and the request for the next input parameters and output 
instructions is in green.

Supplementary Materials
This PDF file includes:

Supplementary Text

REFERENCES AND NOTES
 1. L. Emery, M. Borland, H. Shang, Use of a general- purpose optimization module in 

accelerator control, in Proceedings of the 2003 Particle Accelerator Conference (IEEE, 2003), 

vol. 4, pp. 2330–2332.

 2. R. Roussel, A. L. Edelen, T. Boltz, D. Kennedy, Z. Zhang, F. Ji, X. Huang, D. Ratner,  

A. S. Garcia, C. Xu, J. Kaiser, A. F. Pousa, A. Eichler, J. O. Lübsen, N. M. Isenberg, Y. Gao,  

N. Kuklev, J. Martinez, B. Mustapha, V. Kain, C. Mayes, W. Lin, S. M. Liuzzo, J. St. John,  

M. J. V. Streeter, R. Lehe, W. Neiswanger, Bayesian optimization algorithms for accelerator 

physics. Phys. Rev. Accel. Beams 27, 084801 (2024).

 3. J. Kaiser, O. Stein, A. Eichler, Learning- based optimisation of particle accelerators under 

partial observability without real- world training, in Proceedings of the 39th International 

Conference on Machine Learning, K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu,  

S. Sabato, Eds. (PMLR, 2022), vol. 162, pp. 10575–10585.

 4. OpenAI, J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,  

J. Altenschmidt, S. Altman, S. Anadkat, R. Avila, I. Babuschkin, S. Balaji, V. Balcom,  

P. Baltescu, H. Bao, M. Bavarian, J. Belgum, I. Bello, J. Berdine, G. Bernadett- Shapiro,  

C. Berner, L. Bogdonoff, O. Boiko, M. Boyd, A.- L. Brakman, G. Brockman, T. Brooks,  

M. Brundage, K. Button, T. Cai, R. Campbell, A. Cann, B. Carey, C. Carlson, R. Carmichael,  

B. Chan, C. Chang, F. Chantzis, D. Chen, S. Chen, R. Chen, J. Chen, M. Chen, B. Chess,  

C. Cho, C. Chu, H. W. Chung, D. Cummings, J. Currier, Y. Dai, C. Decareaux, T. Degry,  

N. Deutsch, D. Deville, A. Dhar, D. Dohan, S. Dowling, S. Dunning, A. Ecoffet, A. Eleti,  

T. Eloundou, D. Farhi, L. Fedus, N. Felix, S. P. Fishman, J. Forte, I. Fulford, L. Gao, E. Georges, 

C. Gibson, V. Goel, T. Gogineni, G. Goh, R. Gontijo- Lopes, J. Gordon, M. Grafstein, S. Gray,  

R. Greene, J. Gross, S. S. Gu, Y. Guo, C. Hallacy, J. Han, J. Harris, Y. He, M. Heaton,  

J. Heidecke, C. Hesse, A. Hickey, W. Hickey, P. Hoeschele, B. Houghton, K. Hsu, S. Hu, X. Hu, 

J. Huizinga, S. Jain, S. Jain, J. Jang, A. Jiang, R. Jiang, H. Jin, D. Jin, S. Jomoto, B. Jonn, H. Jun, 

T. Kaftan, L. Kaiser, A. Kamali, I. Kanitscheider, N. S. Keskar, T. Khan, L. Kilpatrick, J. W. Kim, 

C. Kim, Y. Kim, J. H. Kirchner, J. Kiros, M. Knight, D. Kokotajlo, L. Kondraciuk, A. Kondrich,  

A. Konstantinidis, K. Kosic, G. Krueger, V. Kuo, M. Lampe, I. Lan, T. Lee, J. Leike, J. Leung,  

D. Levy, C. M. Li, R. Lim, M. Lin, S. Lin, M. Litwin, T. Lopez, R. Lowe, P. Lue, A. Makanju,  

K. Malfacini, S. Manning, T. Markov, Y. Markovski, B. Martin, K. Mayer, A. Mayne, B. McGrew, 

S. M. McKinney, C. McLeavey, P. McMillan, J. McNeil, D. Medina, A. Mehta, J. Menick, L. Metz, 

A. Mishchenko, P. Mishkin, V. Monaco, E. Morikawa, D. Mossing, T. Mu, M. Murati, O. Murk, 

D. Mély, A. Nair, R. Nakano, R. Nayak, A. Neelakantan, R. Ngo, H. Noh, L. Ouyang,  

C. O’Keefe, J. Pachocki, A. Paino, J. Palermo, A. Pantuliano, G. Parascandolo, J. Parish,  

E. Parparita, A. Passos, M. Pavlov, A. Peng, A. Perelman, F. d. A. B. Peres, M. Petrov, 

H. P. d. O. Pinto, M. Petrov, M. Pokorny, M. Pokrass, V. H. Pong, T. Powell, A. Power, B. Power,  

E. Proehl, R. Puri, A. Radford, J. Rae, A. Ramesh, C. Raymond, F. Real, K. Rimbach, C. Ross,  

B. Rotsted, H. Roussez, N. Ryder, M. Saltarelli, T. Sanders, S. Santurkar, G. Sastry,  

H. Schmidt, D. Schnurr, J. Schulman, D. Selsam, K. Sheppard, T. Sherbakov, J. Shieh,  

S. Shoker, P. Shyam, S. Sidor, E. Sigler, M. Simens, J. Sitkin, K. Slama, I. Sohl, B. Sokolowsky, 

Y. Song, N. Staudacher, F. P. Such, N. Summers, I. Sutskever, J. Tang, N. Tezak,  

M. B. Thompson, P. Tillet, A. Tootoonchian, E. Tseng, P. Tuggle, N. Turley, J. Tworek,  

J. F. C. Uribe, A. Vallone, A. Vijayvergiya, C. Voss, C. Wainwright, J. J. Wang, A. Wang,  

B. Wang, J. Ward, J. Wei, C. Weinmann, A. Welihinda, P. Welinder, J. Weng, L. Weng,  

M. Wiethoff, D. Willner, C. Winter, S. Wolrich, H. Wong, L. Workman, S. Wu, J. Wu, M. Wu,  

K. Xiao, T. Xu, S. Yoo, K. Yu, Q. Yuan, W. Zaremba, R. Zellers, C. Zhang, M. Zhang, S. Zhao,  

T. Zheng, J. Zhuang, W. Zhuk, B. Zoph, GPT- 4 technical report. arXiv:2303.08774 [cs.CL] (2023).

 5. H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,  

P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. Canton Ferrer, M. Chen, G. Cucurull,  

D. Esiobu, J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn,  

S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann, A. Korenev,  

P. S. Koura, M.- A. Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet,  

T. Mihaylov, P. Mishra, I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi,  

A. Schelten, R. Silva, E. M. Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams,  

J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez,  

R. Stojnic, S. Edunov, T. Scialom, Llama 2: Open foundation and fine- tuned chat models. 

arXiv:2307.09288 [cs.CL] (2023).

 6. T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,  

P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert- Voss, G. Krueger, T. Henighan, R. Child, 

A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,  

B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, D. Amodei, Language 

models are few- shot learners, in Advances in Neural Information Processing Systems,  

H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, H. Lin, Eds. (Curran Associates Inc., 2020), 

vol. 33, pp. 1877–1901.

 7. N. Oulianov, P.- L. Biojout, P. L. Venard, S. Girard, Evaluate LLMs in real time with Street 

Fighter III (2024); https://github.com/OpenGenerativeAI/llm- colosseum.

 8. J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. Le, D. Zhou, 

Chain- of- thought prompting elicits reasoning in large language models, in 36th 

Conference on Neural Information Processing Systems (NeurIPS, 2023).

 9. H. Shang, M. Borland, A parallel simplex optimizer and its application to high- brightness 

storage ring design, in Proceedings of the 2005 Particle Accelerator Conference (IEEE, 2005), 

pp. 4230–4232.

 10. X. Huang, Robust simplex algorithm for online optimization. Phys. Rev. Accel Beams 21, 

104601 (2018).

 11. X. Huang, J. Corbett, J. Safranek, J. Wu, An algorithm for online optimization of 

accelerators. Nucl. Instrum. Methods Phys. Rev. A 726, 77–83 (2013).

 12. D. Olsson, Online optimisation of the MAX- IV 3 GeV ring dynamic aperture, in Proceedings 

of the 9th International Particle Accelerator Conference (JACoW Publishing, 2018),  

pp. 2281–2283.

 13. Z. Zhang, M. Song, X. Huang, Optimization method to compensate accelerator 

performance drifts. Phys. Rev. Accel. Beams 25, 122801 (2022).

 14. A. Scheinker, E.- C. Huang, C. Taylor, Extremum seeking- based control system for particle 

accelerator beam loss minimization. IEEE Trans. Contr. Syst. Technol. 30, 2261–2268 

(2022).

 15. W. F. Bergan, I. V. Bazarov, C. J. R. Duncan, D. B. Liarte, D. L. Rubin, J. P. Sethna, Online 

storage ring optimization using dimension- reduction and genetic algorithms. Phys. Rev. 

Accel. Beams 22, 054601 (2019).

 16. S. Tomin, G. Geloni, I. Agapov, I. Zagorodnov, Y. Fomin, Y. Krylov, A. Valintinov, W. Colocho, 

T. M. Cope, A. Egger, D. Ratner, Progress in automatic software- based optimization of 

accelerator performance, in Proceedings of the 7th International Particle Accelerator 

Conference (JACoW, 2016).

 17. Z. Zhang, “Badger: The Ocelot Optimizer rebirth” (Tech. Rep., SLAC National Accelerator 

Laboratory, 2021).

 18. Z. Zhang, A. Edelen, C. Mayes, J. Garrahan, J. Shtalenkova, R. Roussel, S. Miskovich,  

D. Ratner, M. Boese, S. Tomin, G. Wang, Y. Hidaka, Badger: The missing optimizer in ACR, in 

Proceedings of the 13th International Particle Accelerator Conference (IPAC 2022) (JACoW; 2022).

 19. R. Roussel, A. Edelen, A. Bartnik, C. Mayes, Xopt: A simplified framework for optimization 

of accelerator problems using advanced algorithms, in 14th International Particle 

Accelerator Conference (JACoW Publishing, 2023), pp. 4796–4799.

 20. A. L. Edelen, C. Mayes, D. Bowring, D. Ratner, A. Adelmann, R. Ischebeck, J. Snuverink,  

I. Agapov, R. Kammering, J. Edelen, I. Bazarov, G. Valentino, J. Wenninger, Opportunities in 

machine learning for particle accelerators. arXiv:1811.03172 [physics.acc- ph] (2018).

 21. T. Boltz, M. Brosi, E. Bründermann, B. Haerer, P. Kaiser, C. Pohl, P. Schreiber, M. Yan,  

T. Asfour, A.- S. Müller, Feedback design for control of the micro- bunching instability 

based on reinforcement learning, in CERN Yellow Reports: Conference Proceedings (CERN, 

2020), vol. 9, p. 227.

objective= ∣μx−μx′∣+ ∣μy−μy′∣+ ∣σx−σx′∣+ ∣σy−σy′∣ (1) D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://w
w

w
.scien

ce.o
rg

 o
n
 Jan

u
ary

 0
3
, 2

0
2
5



Kaiser et al., Sci. Adv. 11, eadr4173 (2025)     1 January 2025

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

12 of 13

 22. J. St. John, C. Herwig, D. Kafkes, J. Mitrevski, W. A. Pellico, G. N. Perdue, A. Quintero- Parra, 

B. A. Schupbach, K. Seiya, N. Tran, M. Schram, J. M. Duarte, Y. Huang, R. Keller, Real- time 

artificial intelligence for accelerator control: A study at the Fermilab Booster. Phys. Rev. 

Accel. Beams 24, 104601 (2021).

 23. M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul, B. Shillingford,  

N. de Freitas, Learning to learn by gradient descent by gradient descent, in Proceedings of 

the 30th Conference on Neural Information Processing Systems (NIPS 2016) (Curran Associates 

Inc., 2016).

 24. K. Li, J. Malik, Learning to optimize. arXiv:1606.01885 [cs.LG] (2016).

 25. K. Li, J. Malik, Learning to optimize neural nets. arXiv:1703.00441 [cs.LG] (2017).

 26. T. Chen, X. Chen, W. Chen, Z. Wang, H. Heaton, J. Liu, W. Yin, Learning to optimize: A 

primer and a benchmark. J. Mach. Learn. Res. 23, 1–59 (2022).

 27. V. Kain, S. Hirlander, B. Goddard, F. M. Velotti, G. Z. D. Porta, N. Bruchon, G. Valentino, 

Sample- efficient reinforcement learning for CERN accelerator control. Phys. Rev. Accel. 

Beams 23, 124801 (2020).

 28. X. Pang, S. Thulasidasan, L. Rybarcyk, Autonomous control of a particle accelerator using 

deep reinforcement learning. arXiv:2010.08141 [cs.AI] (2020).

 29. F. M. Velotti, B. Goddard, V. Kain, R. Ramjiawan, G. Z. D. Porta, S. Hirlaender, Towards 

automatic setup of 18 MeV electron beamline using machine learning. Mach. Learn. Sci. 

Technol. 4, 025016 (2023).

 30. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,  

I. Polosukhin, Attention is all you need. arXiv:1706.03762 [cs.CL] (2017).

 31. Gemini Team, R. Anil, S. Borgeaud, Y. Wu, J.- B. Alayrac, J. Yu, R. Soricut, J. Schalkwyk,  

A. M. Dai, A. Hauth, K. Millican, D. Silver, M. Johnson, I. Antonoglou, J. Schrittwieser,  

A. Glaese, J. Chen, E. Pitler, T. Lillicrap, A. Lazaridou, O. Firat, J. Molloy, M. Isard,  

P. R. Barham, T. Hennigan, B. Lee, F. Viola, M. Reynolds, Y. Xu, R. Doherty, E. Collins,  

C. Meyer, E. Rutherford, E. Moreira, K. Ayoub, M. Goel, J. Krawczyk, C. Du, E. Chi, H.- T. Cheng, 

E. Ni, P. Shah, P. Kane, B. Chan, M. Faruqui, A. Severyn, H. Lin, Y. Li, Y. Cheng, A. Ittycheriah, 

M. Mahdieh, M. Chen, P. Sun, D. Tran, S. Bagri, B. Lakshminarayanan, J. Liu, A. Orban, F. Güra, 

H. Zhou, X. Song, A. Boffy, H. Ganapathy, S. Zheng, H. Choe, A. Weisz, T. Zhu, Y. Lu, S. Gopal, 

J. Kahn, M. Kula, J. Pitman, R. Shah, E. Taropa, M. Al Merey, M. Baeuml, Z. Chen, L. El Shafey, 

Y. Zhang, O. Sercinoglu, G. Tucker, E. Piqueras, M. Krikun, I. Barr, N. Savinov, I. Danihelka,  

B. Roelofs, A. White, A. Andreassen, T. von Glehn, L. Yagati, M. Kazemi, L. Gonzalez,  

M. Khalman, J. Sygnowski, A. Frechette, C. Smith, L. Culp, L. Proleev, Y. Luan, X. Chen,  

J. Lottes, N. Schucher, F. Lebron, A. Rrustemi, N. Clay, P. Crone, T. Kocisky, J. Zhao, B. Perz, 

D. Yu, H. Howard, A. Bloniarz, J. W. Rae, H. Lu, L. Sifre, M. Maggioni, F. Alcober, D. Garrette, 

M. Barnes, S. Thakoor, J. Austin, G. Barth- Maron, W. Wong, R. Joshi, R. Chaabouni, D. Fatiha, 

A. Ahuja, G. S. Tomar, E. Senter, M. Chadwick, I. Kornakov, N. Attaluri, I. n. Iturrate, R. Liu,  

Y. Li, S. Cogan, J. Chen, C. Jia, C. Gu, Q. Zhang, J. Grimstad, A. J. Hartman, X. Garcia,  

T. S. Pillai, J. Devlin, M. Laskin, D. de Las Casas, D. Valter, C. Tao, L. Blanco, A. Puigdomènech 

Badia, D. Reitter, M. Chen, J. Brennan, C. Rivera, S. Brin, S. Iqbal, G. Surita, J. Labanowski,  

A. Rao, S. Winkler, E. Parisotto, Y. Gu, K. Olszewska, R. Addanki, A. Miech, A. Louis,  

D. Teplyashin, G. Brown, E. Catt, J. Balaguer, J. Xiang, P. Wang, Z. Ashwood, A. Briukhov,  

A. Webson, S. Ganapathy, S. Sanghavi, A. Kannan, M.- W. Chang, A. Stjerngren, J. Djolonga, 

Y. Sun, A. Bapna, M. Aitchison, P. Pejman, H. Michalewski, T. Yu, C. Wang, J. Love, J. Ahn,  

D. Bloxwich, K. Han, P. Humphreys, T. Sellam, J. Bradbury, V. Godbole, S. Samangooei,  

B. Damoc, A. Kaskasoli, S. M. R. Arnold, V. Vasudevan, S. Agrawal, J. Riesa, D. Lepikhin,  

R. Tanburn, S. Srinivasan, H. Lim, S. Hodkinson, P. Shyam, J. Ferret, S. Hand, A. Garg, T. Le 

Paine, J. Li, Y. Li, M. Giang, A. Neitz, Z. Abbas, S. York, M. Reid, E. Cole, A. Chowdhery,  

D. Das, D. Rogozińska, V. Nikolaev, P. Sprechmann, Z. Nado, L. Zilka, F. Prost, L. He,  

M. Monteiro, G. Mishra, C. Welty, J. Newlan, D. Jia, M. Allamanis, C. H. Hu, R. de Liedekerke, 

J. Gilmer, C. Saroufim, S. Rijhwani, S. Hou, D. Shrivastava, A. Baddepudi, A. Goldin,  

A. Ozturel, A. Cassirer, Y. Xu, D. Sohn, D. Sachan, R. K. Amplayo, C. Swanson, D. Petrova,  

S. Narayan, A. Guez, S. Brahma, J. Landon, M. Patel, R. Zhao, K. Villela, L. Wang, W. Jia,  

M. Rahtz, M. Giménez, L. Yeung, J. Keeling, P. Georgiev, D. Mincu, B. Wu, S. Haykal,  

R. Saputro, K. Vodrahalli, J. Qin, Z. Cankara, A. Sharma, N. Fernando, W. Hawkins,  

B. Neyshabur, S. Kim, A. Hutter, P. Agrawal, A. Castro- Ros, G. van den Driessche, T. Wang,  

F. Yang, S.- y. Chang, P. Komarek, R. McIlroy, M. Lučić, G. Zhang, W. Farhan, M. Sharman,  

P. Natsev, P. Michel, Y. Bansal, S. Qiao, K. Cao, S. Shakeri, C. Butterfield, J. Chung,  

P. K. Rubenstein, S. Agrawal, A. Mensch, K. Soparkar, K. Lenc, T. Chung, A. Pope, L. Maggiore, 

J. Kay, P. Jhakra, S. Wang, J. Maynez, M. Phuong, T. Tobin, A. Tacchetti, M. Trebacz,  

K. Robinson, Y. Katariya, S. Riedel, P. Bailey, K. Xiao, N. Ghelani, L. Aroyo, A. Slone, N. Houlsby, 

X. Xiong, Z. Yang, E. Gribovskaya, J. Adler, M. Wirth, L. Lee, M. Li, T. Kagohara, J. Pavagadhi, 

S. Bridgers, A. Bortsova, S. Ghemawat, Z. Ahmed, T. Liu, R. Powell, V. Bolina, M. Iinuma,  

P. Zablotskaia, J. Besley, D.- W. Chung, T. Dozat, R. Comanescu, X. Si, J. Greer, G. Su,  

M. Polacek, R. Lopez Kaufman, S. Tokumine, H. Hu, E. Buchatskaya, Y. Miao, M. Elhawaty,  

A. Siddhant, N. Tomasev, J. Xing, C. Greer, H. Miller, S. Ashraf, A. Roy, Z. Zhang, A. Ma,  

A. Filos, M. Besta, R. Blevins, T. Klimenko, C.- K. Yeh, S. Changpinyo, J. Mu, O. Chang,  

M. Pajarskas, C. Muir, V. Cohen, C. Le Lan, K. Haridasan, A. Marathe, S. Hansen, S. Douglas, 

R. Samuel, M. Wang, S. Austin, C. Lan, J. Jiang, J. Chiu, J. Alonso Lorenzo, L. Lowe Sjösund, 

S. Cevey, Z. Gleicher, T. Avrahami, A. Boral, H. Srinivasan, V. Selo, R. May, K. Aisopos,  

L. Hussenot, L. Baldini Soares, K. Baumli, M. B. Chang, A. Recasens, B. Caine, A. Pritzel,  

F. Pavetic, F. Pardo, A. Gergely, J. Frye, V. Ramasesh, D. Horgan, K. Badola, N. Kassner, S. Roy, 

E. Dyer, V. Campos Campos, A. Tomala, Y. Tang, D. El Badawy, E. White, B. Mustafa, O. Lang, 

A. Jindal, S. Vikram, Z. Gong, S. Caelles, R. Hemsley, G. Thornton, F. Feng, W. Stokowiec,  

C. Zheng, P. Thacker, c. Ünlü, Z. Zhang, M. Saleh, J. Svensson, M. Bileschi, P. Patil, A. Anand, 

R, Gemini: A family of highly capable multimodal models. arXiv:2312.11805 [cs.CL] (2024).

 32. Anthropic, Claude \ Anthropic, Web Page; https://www.anthropic.com/claude [accessed 

14 April 2024].

 33. S. Mukherjee, A. Mitra, G. Jawahar, S. Agarwal, H. Palangi, A. Awadallah, Orca: Progressive 

learning from complex explanation traces of GPT- 4. arXiv:2306.02707 [cs.CL] (2023).

 34. A. Mitra, L. Del Corro, S. Mahajan, A. Codas, C. Simoes, S. Agarwal, X. Chen, A. Razdaibiedina, 

E. Jones, K. Aggarwal, H. Palangi, G. Zheng, C. Rosset, H. Khanpour, A. Awadallah, Orca 2: 

Teaching small language models how to reason. arXiv:2311.11045 [cs.AI] (2023).

 35. B. Zhu, E. Frick, T. Wu, H. Zhu, J. Jiao, Starling- 7B: Improving LLM helpfulness & 

harmlessness with RLAIF (2023).

 36. A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. de las Casas,  

F. Bressand, G. Lengyel, G. Lample, L. Saulnier, L. Renard Lavaud, M.- A. Lachaux, P. Stock,  

T. Le Scao, T. Lavril, T. Wang, T. Lacroix, W. El Sayed, Mistral 7B. arXiv:2310.06825 [cs.CL] 

(2023).

 37. A. Q. Jiang, A. Sablayrolles, A. Roux, A. Mensch, B. Savary, C. Bamford, D. S. Chaplot,  

D. de las Casas, E. Bou Hanna, F. Bressand, G. Lengyel, G. Bour, G. Lample, L. Renard 

Lavaud, L. Saulnier, M.- A. Lachaux, P. Stock, S. Subramanian, S. Yang, S. Antoniak,  

T. Le Scao, T. Gervet, T. Lavril, T. Wang, T. Lacroix, W. El Sayed, Mixtral of experts. 

arXiv:2401.04088 [cs.LG] (2024).

 38. C. Yang, X. Wang, Y. Lu, H. Liu, Q. V. Le, D. Zhou, X. Chen, Large language models as 

optimizers. arXiv:2309.03409 [cs.LG] (2023).

 39. B. Romera- Paredes, M. Barekatain, A. Novikov, M. Balog, M. P. Kumar, E. Dupont,  

F. J. R. Ruiz, J. S. Ellenberg, P. Wang, O. Fawzi, P. Kohli, A. Fawzi, Mathematical 

discoveries from program search with large language models. Nature 625, 468–475 

(2024).

 40. A. Sulc, R. Kammering, A. Eichler, T. Wilksen, PACuna: Automated fine-tuning of language 

models for particle accelerators. arXiv:2310.19106 [cs.CL] (2023).

 41. F. Mayet, Building an intelligent accelerator operations assistant (2024); https://indico.

desy.de/event/38849/contributions/162131/.

 42. F. Mayet, GAIA: A general AI assistant for intelligent accelerator operations. 

arXiv:2405.01359 [cs.CL] (2024).

 43. S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, Y. Cao, ReAct: Synergizing reasoning 

and acting in language models. arXiv:2210.03629 [cs.CL] (2023).

 44. Gemma Team, T. Mesnard, C. Hardin, R. Dadashi, S. Bhupatiraju, S. Pathak, L. Sifre,  

M. Rivière, M. S. Kale, J. Love, P. Tafti, L. Hussenot, P. G. Sessa, A. Chowdhery, A. Roberts,  

A. Barua, A. Botev, A. Castro- Ros, A. Slone, A. Héliou, A. Tacchetti, A. Bulanova, A. Paterson, 

B. Tsai, B. Shahriari, C. Le Lan, C. A. Choquette- Choo, C. Crepy, D. Cer, D. Ippolito, D. Reid,  

E. Buchatskaya, E. Ni, E. Noland, G. Yan, G. Tucker, G.- C. Muraru, G. Rozhdestvenskiy,  

H. Michalewski, I. Tenney, I. Grishchenko, J. Austin, J. Keeling, J. Labanowski, J.- B. Lespiau, 

J. Stanway, J. Brennan, J. Chen, J. Ferret, J. Chiu, J. Mao- Jones, K. Lee, K. Yu, K. Millican,  

L. Lowe Sjoesund, L. Lee, L. Dixon, M. Reid, M. Mikuła, M. Wirth, M. Sharman, N. Chinaev, 

N. Thain, O. Bachem, O. Chang, O. Wahltinez, P. Bailey, P. Michel, P. Yotov, R. Chaabouni,  

R. Comanescu, R. Jana, R. Anil, R. McIlroy, R. Liu, R. Mullins, S. L. Smith, S. Borgeaud,  

S. Girgin, S. Douglas, S. Pandya, S. Shakeri, S. De, T. Klimenko, T. Hennigan, V. Feinberg,  

W. Stokowiec, Y.- h. Chen, Z. Ahmed, Z. Gong, T. Warkentin, L. Peran, M. Giang, C. Farabet, 

O. Vinyals, J. Dean, K. Kavukcuoglu, D. Hassabis, Z. Ghahramani, D. Eck, J. Barral, F. Pereira, 

E. Collins, A. Joulin, N. Fiedel, E. Senter, A. Andreev, K. Kenealy, Gemma: Open models 

based on Gemini research and technology. arXiv:2403.08295 [cs.CL] (2024).

 45. OpenAI, GPT- 3.5 turbo model documentation; https://platform.openai.com/docs/

models/gpt- 3- 5- turbo [accessed 15 April 2024].

 46. OpenAI, New models and developer products announced at DevDay; https://openai.com/

blog/new- models- and- developer- products- announced- at- devday [accessed 15 April 2024].

 47. L. Zheng, W.- L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li, E. P. Xing, 

H. Zhang, J. E. Gonzalez, I. Stoica, Judging LLM- as- a- judge with MT- bench and  

chatbot arena, in Advances in Neural Information Processing Systems 36 (NeurIPS 2023) 

(Curran Associates, 2023).

 48. M. Sclar, Y. Choi, Y. Tsvetkov, A. Suhr, Quantifying language models’ sensitivity to spurious 

features in prompt design or: How I learned to start worrying about prompt formatting. 

arXiv:2310.11324 [cs.CL] (2023).

 49. H. Chase, LangChain (2022); https://github.com/langchain- ai/langchain.

 50. Ollama Team, Ollama; https://ollama.com [accessed 15 April 2024].

 51. Farama Foundation, Gymnasium (2022); https://gymnasium.farama.org.

 52. O. Stein, J. Kaiser, A. Eichler, Accelerating linear beam dynamics simulations for machine 

learning applications, in Proceedings of the 13th International Particle Accelerator 

Conference (JACoW, 2022).

 53. J. Kaiser, C. Xu, A. Eichler, A. S. Garcia, Bridging the gap between machine learning and 

particle accelerator physics with high- speed, differentiable simulations. Phys. Rev. Accel. 

Beams 27, 054601 (2024).

D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://w
w

w
.scien

ce.o
rg

 o
n
 Jan

u
ary

 0
3
, 2

0
2
5



Kaiser et al., Sci. Adv. 11, eadr4173 (2025)     1 January 2025

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

13 of 13

 54. J. Kaiser, C. Xu, A. Eichler, A. S. Garcia, O. Stein, E. Bründermann, W. Kuropka, H. Dinter,  

F. Mayet, T. Vinatier, F. Burkart, H. Schlarb, Reinforcement learning- trained optimisers 

and Bayesian optimisation for online particle accelerator tuning. Sci. Rep. 14, 15733 

(2024).

 55. D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, J. Steinhardt, Measuring 

massive multitask language understanding. arXiv:2009.03300 [cs.CY] (2021).

 56. R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, Y. Choi, HellaSwag: Can a machine really finish 

your sentence? arXiv:1905.07830 [cs.CL] (2019).

 57. P. Li, J. Yang, M. A. Islam, S. Ren, Making AI less “thirsty”: Uncovering and addressing the 

secret water footprint of AI models. arXiv:2304.03271 [cs.LG] (2023).

 58. NVIDIA, NVIDIA A100 Data Sheet (2020); https://www.nvidia.com/content/dam/en- zz/

Solutions/Data- Center/a100/pdf/nvidia- a100- datasheet.pdf.

 59. Bosch, KIR31AD40 EU Data Sheet (2021); https://media3.bosch- home.com/Documents/

eudatasheet/de- DE/KIR31AD40.pdf.

 60. BMW, BMW 5 Series Price List; https://www.bmw.de/content/dam/bmw/marketDE/

bmw_de/new- vehicles/pricelists/preisliste- bmw5er- new.pdf.coredownload.inline.pdf 

[accessed 24 April 2024].

 61. Umweltbundesamt, Entwicklung der spezifischen Treibhausgas- Emissionen des deutschen 

Strommix in den Jahren 1990–2022, Technical Report Climate Change 20/2023, 

Umweltbundesamt (2023); https://www.umweltbundesamt.de/sites/default/files/

medien/1410/publikationen/2023_05_23_climate_change_20- 2023_strommix_bf.pdf.

 62. Deutsches Elektronen- Synchrotron DESY, Accelerators 2022 (2023); https://www.desy.

de/sites2009/site_www- desy/content/e410/e84441/e337777/Accelerators2022final_

eng.pdf.

 63. European XFEL, Annual Report 2023 (2024); https://www.xfel.eu/sites/sites_custom/

site_xfel/content/e35178/e56171/e56388/xfel_file272332/XFEL_Report- 2023_

A4_20240605_digital_compressed_eng.pdf.

 64. Deutsches Elektronen- Synchrotron DESY, Energy Consumption at DESY; https://

nachhaltigkeit.desy.de/energy_management/energy_consumption_at_desy/index_eng.

html [accessed 12 October 2024].

 65. Statistisches Bundesamt (Destatis), Stromverbrauch der privaten Haushalte nach 

Haushaltsgrößenklassen; https://www.destatis.de/DE/Themen/Gesellschaft- Umwelt/

Umwelt/UGR/private- haushalte/Tabellen/stromverbrauch- haushalte.html [accessed 12 

October 2024].

 66. Kraftfahrt- Bundesamt, CO2 emission and fuel consumption type test values of passenger 

vehicles with a maximum of nine seats and caravans (SV 2.2.2) (2024); https://www.kba.

de/SharedDocs/Downloads/DE/SV/sv222_m1_kraft_pdf.pdf?__

blob=publicationFile&v=16, considered vehicle 2013 Audi A6 Avant 3.0 TDI quattro 

(HSN: 0588, TSN: ARO000428), Status: 15 September 2024.

 67. M. Wang, A. Pang, Y. Kan, M.- O. Pun, C. S. Chen, B. Huang, LLM- assisted light: Leveraging 

large language model capabilities for human- mimetic traffic signal control in complex 

urban environments. arXiv:2403.08337 [eess.SY] (2024).

 68. A. Pang, M. Wan, M.- O. Pun, C. S. Chen, Human- like assessment of RL actions: Leveraging 

large language models for RL actions in traffic signal control systems (2023); https://

github.com/Traffic- Alpha/TSC- HARLA.

 69. E. Panofski, R. Assmann, F. Burkart, U. Dorda, L. Genovese, F. Jafarinia, S. Jaster- Merz,  

M. Kellermeier, W. Kuropka, F. Lemery, B. Marchetti, D. Marx, F. Mayet, T. Vinatier, S. Yamin, 

Commissioning results and electron beam characterization with the S- band 

photoinjector at SINBAD- ARES. Instruments 5, 28 (2021).

 70. F. Burkart, R. Aßmann, H. Dinter, S. Jaster- Merz, W. Kuropka, F. Mayet, T. Vinatier, The ARES 

Linac at DESY, in Proceedings of the 31st International Linear Accelerator Conference 

(LINAC’22) (JACoW Publishing, 2022), pp. 691–694.

 71. J. Kaiser, C. Xu, Cheetah (2023); https://github.com/desy- ml/cheetah.

 72. C. Xu, J. Kaiser, E. Bründermann, A. Eichler, A.- S. Müller, A. Santamaria Garcia, Beam 

trajectory control with lattice- agnostic reinforcement learning, in Proc. IPAC’23 (JACoW, 

2023).

Acknowledgments: We acknowledge support from DESY (Hamburg, Germany), a member of 

the Helmholtz Association HGF, as well as support through the Maxwell computational 

resources operated at DESY. We also thank F. Mayet and A. Sulc for the helpful knowledge 

exchange on LLMs and the software ecosystem surrounding them. All figures and pictures by 

the authors are published under a CC- BY 4.0 licence. Funding: The work of A.E. and J.K. has in 

part been funded by the IVF project InternLabs- 0011 (HIR3X). The work of A.L. is funded under 

the Excellence Strategy of the German Federal Government and the Federal States. Author 

contributions: J.K., A.E., and A.L. conceptualized the study. J.K. developed the LLM tuning 

scheme and performed experiments. A.E. and A.L. provided guidance during the development 

of the method. J.K. wrote the manuscript. All authors edited and reviewed the manuscript. 

Competing interests: The authors declare that they have no competing interests. Data and 

materials availability: The code used to produce the results presented in this paper is 

available at https://doi.org/10.5281/zenodo.13926598. The data underlying the results 

presented in this paper are available from https://doi.org/10.5281/zenodo.11386493. All data 

needed to evaluate the conclusions in the paper are present in the paper and/or the 

Supplementary Materials.

Submitted 1 July 2024 

Accepted 15 November 2024 

Published 1 January 2025 

10.1126/sciadv.adr4173

D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://w
w

w
.scien

ce.o
rg

 o
n
 Jan

u
ary

 0
3
, 2

0
2
5


