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Introduction

In 2012, the ATLAS and CMS Collaborations at the CERN LHC discovered a new particle
with a mass of approximately 125 GeV [1-3]. According to all current measurements, it is
compatible with the standard model (SM) Higgs boson (H) [4-7]. An important pending test
of the electroweak symmetry breaking mechanism is the observation of Higgs boson pair (HH)

production. At the LHC, pairs of SM Higgs bosons are primarily produced via gluon-gluon



Figure 1. Leading-order Feynman diagrams of nonresonant Higgs boson pair production via gluon
fusion in the standard model.

Figure 2. Leading-order Feynman diagrams of Higgs boson pair nonresonant production via vector
boson fusion in the standard model.

fusion (ggF), with a cross section of 31.1f$:% tb at 13 TeV centre-of-mass energy [8—12]. At
leading order (LO), two destructively interfering Feynman diagrams contribute, the “triangle
diagram” and the “box diagram”, shown in figure 1. The triangle-diagram gives direct access
to the Higgs boson trilinear coupling Ay, which affects the shape of the Higgs field potential.
A secondary production mechanism for HH events is the vector boson fusion (VBF) shown in
figure 2. While the cross section of the VBF production is smaller, only 1.726+0.036 fb in the
SM at 13 TeV [13], it gives experimental access to the quartic HHVV coupling (where V is a
W or Z boson). The HH production is also sensitive to other Higgs boson couplings, such
as the HVV coupling. The Higgs boson couplings are described by their coupling modifiers,
the ratio between the measured coupling strength and the prediction in the SM, noted with
 [14]. For example k, is the coupling modifier corresponding to the Higgs boson trilinear
coupling and &, is the coupling modifier between a Higgs boson and a top quark. Beyond the
SM, there may be additional diagrams contributing to HH production that include couplings
not predicted in the SM. The anomalous couplings studied in the present paper are denoted
¢; and shown in figure 3. Here ¢y corresponds to the coupling between two top quarks and

two Higgs bosons, ¢, corresponds to the coupling between a Higgs boson and two gluons,

and cy, correspondsgto the coupling between two Higgs bosons and two gluons.

The HH production could also be enhanced by resonant contributions through the
production of a new heavy resonance (X) decaying to a pair of Higgs bosons. Examples
of such new resonances include a radion [15], a heavy CP-even scalar in two-Higgs-doublet
models [16] and a spin-2 graviton in the bulk Randall-Sundrum model [17, 18].

This paper describes a search for nonresonant and resonant HH production in the decay

channel to a pair of b quarks and a pair of W bosons. The search is carried out by analysing
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Figure 3. Leading-order Feynman diagrams of nonresonant Higgs boson pair production via gluon
fusion with anomalous Higgs boson couplings.

proton-proton (pp) collision data recorded by the CMS detector [19] from 2016 to 2018
at 13 TeV centre-of-mass energy with single- and double-lepton triggers. The data sample
corresponds to an integrated luminosity of 138 fb [20—22].

The HH — bbW W™ decay has the second-largest branching fraction, following the
HH — bbbb decay. We consider events with at least one W boson decaying to an electron
or a muon. Higgs boson decays to a pair of tau leptons with subsequent decay of both tau
leptons to electrons or muons, as well as Higgs boson decays to a pair of Z bosons resulting in
a final state with two electrons or muons, are also considered as signal. From here on in this
paper, the term leptons is used for electrons and muons unless explicitly stated otherwise.
The main backgrounds contributing to this final state are the top quark pair production
(tt+jets), followed by the Drell-Yan (DY) or W+jets processes depending on whether the
second W boson decays leptonically or hadronically, respectively. In the latter case, events
with misidentified leptons represent a sizeable contribution. Other SM processes contribute
to a lesser extent, for example single top quark and multiboson (VV and VVV) productions.

The combination of HH nonresonant searches by the CMS Collaboration [5] sets an
upper limit on the inclusive HH production cross section observed (expected) at 3.4 (2.5)
times the theoretical cross section predicted by the SM, at 95% confidence level (CL). The
coupling modifier for the trilinear Higgs boson self-coupling, &,, is excluded outside the
range —1.25 and 6.85, at 95% CL, using the modified frequentist CLg method [23, 24]. The
coupling modifier for the quartic interaction between two Higgs bosons and two W or Z
bosons, Koy, is excluded outside the range 0.67 and 1.38, at 95% CL, which corresponds to
an exclusion of the kyy = 0 hypothesis by 6.6 standard deviations, when all other couplings
are assumed to be SM-like. These results include several HH decays but not bbW W™,
namely yybb, bbbb, 77bb, ZZbb and final states with leptons. The ATLAS Collaboration
published a combination of HH results, including yybb, bbbb and 77bb decays, constraining
the observed (expected) HH production to 2.4 (2.9) times the SM value, at 95% CL [25].
The ATLAS Collaboration has also published a result on the HH — bbW W~ channel in
final states with two leptons [26]. This search constrained the observed (expected) inclusive
HH production cross section to be lower than 9.7 (16.2) times the SM cross section, at
95% CL. The most recent result on HH — bbW "W by the CMS Collaboration [27] used
only the data collected in 2016, corresponding to an integrated luminosity of 35.9 fb ! and
reported an observed (expected) exclusion limit at 79 (89) times the value predicted by the
SM. The analysis presented in this paper improves this result by up to a factor 5. Besides



the additional data from 2017-2018 used in this paper, the previous analysis considered
only the fully leptonic H — W W™ decays while here the semileptonic decay is considered
as well. The case of a highly Lorentz-boosted H — bb decay is also considered for the
first time in this decay channel. The sensitivity is further improved by the use of a better
algorithm [28] for identifying jets originating from b quarks and a different machine learning
strategy for signal extraction.

This paper is structured as follows: the apparatus and the simulated samples are
described in section 2 and section 3. Section 4 summarises the physics object reconstruction
and identification. Event selection and analysis strategy are discussed in section 5 and
section 6. We then discuss the background estimation and the systematic uncertainties in
section 7 and section 8. Finally, section 9 presents the results, and section 10 the summary.
A HEPData record is provided for the results [29].

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal
diameter, providing a magnetic field of 3.8 T. Within the solenoid volume, there is a silicon
pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and
a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two
endcap sections. Forward calorimeters extend the pseudorapidity (n) coverage provided by
the barrel and endcap detectors. Muons are measured in gas-ionisation detectors embedded
in the steel flux-return yoke outside the solenoid.

A more detailed description of the CMS detector, together with a definition of the
coordinate system used and the relevant kinematic variables, can be found in ref. [19].

Events of interest are selected using a two-tiered trigger system. The first level, composed
of custom hardware processors, uses information from the calorimeters and muon detectors
to select events at a rate of around 100kHz within a time interval of less than 4 us [30].
The second level, known as the high-level trigger, consists of a farm of processors running a
version of the full event reconstruction software optimised for fast processing, and reduces
the event rate to around 1kHz before data storage [31].

3 Simulated samples

The parton showering, hadronisation processes, and decays of T leptons, including polarisation
effects, are modelled using the generator PYTHIA 8.230 [32] with the tune CUETP8M1 [33] for
the 2016 data-taking period, and with the tune CP5 [34] for the 2017-2018 data-taking periods.
The simulated samples produced by PYTHIA with the CUETP8M1 tune use the NNPDF3.0
parton distribution functions (PDFs), whereas the samples produced with the CP5 tune
use the NNPDF3.1 set [35-37]. Finally, the samples produced by MADGRAPH5__aMC@NLO
2.2.2 [38-40] and POWHEG v2 [41-43], use the NNPDF3.1 set.

The response of the CMS detector is modelled using the GEANT4 toolkit [44]. Additional
pp interactions in the same or nearby bunch crossings, referred to as pileup, are simulated using
PYTHIA and overlaid on the simulated events using event weights so that the distribution
of the number of collisions matches the data.



3.1 HH signal modelling

The HH signal samples for nonresonant ggF production are generated using next-to-leading-
order (NLO) matrix elements implemented in the POWHEG program. These samples are
produced in four benchmark hypotheses with varying values of the k) modifier (k) = 0, k)
= 245, ky, = 5.0, and k) = 1 (SM)), while the others are kept to their SM expected values.
The dependence of the ggF HH cross section on k) and k; can be obtained from three terms
corresponding to the diagrams involving ky, k¢, and the interference [45]. Therefore we can
model any kinematic distribution of the ggF production over a large range of k), and k;
values using a weighted sum of three of the four generated samples. Each weighted sum of
samples is then normalised to the corresponding next-to-NLO (NNLO) cross section [12].

In order to study further modified values for the SM couplings as well as couplings not
present in the SM we use an event-based reweighting method. The reweighting is based on
a parameterisation of the differential cross section on the generator-level invariant mass of
the HH system and the angular distance between the two Higgs bosons in the azimuthal
plane, which are sufficient to characterize the hard scattering that only has two degrees of
freedom. It allows to access any combination of coupling modifiers (ky, k¢, 2, g, Coq), €ven
for values that were not used in the sample generation.

The modelling of the VBF process follows the same principle. In this case, the samples
are generated at LO with MADGRAPHS_ aMC@NLO. Seven benchmark samples are generated
with varying values of coupling modifiers k,, kv and kqy. The cross section depends on six
terms that are combinations of these three coupling modifiers. Accordingly, six of the seven
generated samples are used in the weighted combination.

The simulated samples for resonant HH production are produced using LO matrix
elements implemented in the MADGRAPH5__aMC@NLO. The resonances are assumed to be in
the mass range 250-900 GeV, have narrow width compared to the experimental resolution,
and have spin 0 or 2.

3.2 Background simulation

Simulated samples for the tt+jets, single top quark production and WW processes are
generated by POWHEG at NLO. The simulated transverse momentum (pr) spectrum of the
top quarks is harder than the one observed in data. Therefore, we compute a correction
which is then applied to the tt+jets Monte Carlo samples. The top quark pp is weighted
by the ratio of the NNLO theoretical cross section over the cross section obtained from
simulation [46]. Single Higgs boson and ZZ backgrounds are simulated either by POWHEG
or MADGRAPH5__aMC@NLO at NLO depending on the production mechanism and the
subsequent decay. The DY, W+jets, ttW/Z and WZ and all VV'V processes are generated
at NLO with MADGRAPH5__aMC@NLO. The DY and W+jets backgrounds are modelled
using “inclusive” samples, covering the whole phase space, and complementary DY and
W +jets samples binned in the multiplicity of jets at generator level. The “stitching” of
the different DY and W+jets samples is documented in ref. [47]. Additional DY samples
produced using LO matrix elements implemented in MADGRAPHS_aMCQNLO are used when
training the machine learning algorithms implemented in this analysis in order to reduce the
statistical uncertainty. The DY, W+jets, and tt+jets samples are normalised to cross sections



computed at NNLO accuracy [48-50]. The Wy+jets, ty+jets and other rare processes are
simulated at LO with MADGRAPH5 aMC@NLO.

4 Physics object reconstruction and identification

4.1 Particle-flow algorithm

The particle-flow (PF) algorithm [51] aims to reconstruct and identify each particle (PF
candidate) in an event, with an optimised combination of information from the various
elements of the CMS detector. These reconstructed particles are the so-called PF candidates
and are classified as electrons, muons, photons, and charged or neutral hadrons. The energy
of electrons is determined from a combination of the track momentum at the primary vertex,
the corresponding ECAL cluster energy, and the energy sum of all bremsstrahlung photons
attached to the track. The momentum of muons is obtained from the curvature of the
corresponding track. The energy of charged hadrons is determined from a combination of
their momentum measured in the tracker and the matching ECAL and HCAL energy deposits,
corrected for the response function of the calorimeters to hadronic showers. Finally, the
energy of neutral hadrons is obtained from the corresponding corrected ECAL and HCAL
energies. The PF candidates are the starting point for further object identification and
are used to build more complex objects like jets, and missing transverse momentum. The
primary vertex is taken to be the vertex corresponding to the hardest scattering in the event,
evaluated using tracking information alone, as described in section 9.4.1 of ref. [52].

4.2 Small-radius jets

Small-radius jets are reconstructed from PF candidates, using the anti-kt clustering algo-
rithm [53, 54] with a distance parameter of R = 0.4. Charged particles not originating from
the primary vertex are excluded from the jet clustering. The energy of reconstructed jets is
calibrated as a function of jet pp and 7 [55, 56]. Corrections based on the area and energy
density of the jet are applied in order to compensate for effects from pileup. The jets selected
in this analysis are required to satisfy the conditions pt > 25GeV and || < 2.4, as well as
selection criteria to remove jets adversely affected by instrumentation or reconstruction failure.
In order to reduce the number of jets originating from pileup among the jets with pp < 50 GeV,
a set of criteria is applied to the compatibility of the tracks associated with the jet with the
primary vertex, the topology of the jet shape, and the track multiplicity [57]. All selected jets
are required not to overlap with electrons or muons passing the medium selection defined in
section 4.4.3 within AR = /(An)?+(A¢)? < 0.4. We refer to these jets as “small-radius jets”.

A deep neural network (DNN) based algorithm, DEEPJET [28], is applied to identify
small-radius jets originating from the hadronisation of b quarks (“b tagging”). The medium
working point that yields an efficiency of 75% for identifying jets from b quarks (b jets), with
a 1% (10%) misidentification rate for jets from light-flavour (charm) quarks and gluons, is
used throughout this analysis [58]. This DNN-based algorithm exploits observables related
to the long lifetime of b hadrons and the high charged particle multiplicity and mass of b
jets compared to light quark and gluon jets. Corrections are derived from data enriched in b
jets, in order to account for the difference in data and simulation efficiencies, as a function



of the jet pr, || and the algorithm output score. They are applied to simulated events to
improve the agreement with the data in the whole range of algorithm output scores [58]. The
estimation of the b jet energy can be biased by the presence of neutrinos in semileptonic
decays within the jet and by the detector response. To correct for this, a DNN regression
algorithm is trained on jet composition and shape information and applied to b-tagged jets,
improving the energy resolution by 12-15% [59].

To improve the sensitivity to the VBF production with its forward jets, an additional
category of jets (referred to as VBF jets) is considered with similar selections except for
pr > 30GeV and |n| < 4.7. During the 2017 data-taking period, jets and unclustered PF
candidates with 2.650 < |n| < 3.139 and pt < 60 GeV are rejected to reduce the effect of
the noise in the ECAL endcap at high |n)|.

4.3 Large-radius jets

Decays of high-pr Higgs bosons into a pair of b quarks result in final states with large Lorentz
boost and as a result, the b jets can be overlapping, forming one jet with large R (“large-radius
jet”) and substructure (i.e. the two overlapping jets are “subjets” of the large-radius jet).
These jets are reconstructed using the anti-kp algorithm with a distance parameter R = 0.8.
Contributions from pileup are reduced by weighting the PF particles used as input to the
reconstruction of large-radius jets with the “pileup-per-particle identification” algorithm [60].

The large-radius jets are required to not be within AR < 0.8 from leptons passing the
medium selection defined in section 4.4.3, and to have pt > 200 GeV and |n| < 2.4. The two
subjets are required to have pp > 20 GeV. At least one of the subjets is required to have
pr > 30GeV and pass the medium b tagging working point of the DEEPCSV algorithm [61],
with a b jet efficiency of 68% and misidentification rate of 1% for light-flavour and gluon jets.
Similarly to the small radius jets, a correction derived from data is applied to simulated events
to account for the differences in selection efficiencies associated with the medium working
point. The soft-drop mass (mgp) of the large-radius jet is reconstructed using the modified
mass drop tagger (also known as the “soft-drop” (SD)) algorithm [62, 63], with an angular
exponent 5 = 0, soft-cutoff threshold z., < 0.1, and characteristic radius Ry = 0.8. This
quantity is designed to remove soft and wide-angle radiation from the large-radius jet and is
required to be within the range 30 < mgp < 210 GeV. The N-subjettiness [64] 7y denotes a
quantity that measures the alignment of the jet energy along the axes of candidate subjets
and is interpreted as the compatibility of a jet to have N subjets. The ratio /7 < 0.75
quantifies the compatibility of the large-radius jet with the two-prong structure expected from
the decay of a W, Z or Higgs boson into two quarks. This ratio is used in this analysis in the
discrimination of H — bb decays of a Lorentz-boosted Higgs boson from quark and gluon jets.

4.4 Electrons and muons

The electron and muon selection is performed in two stages. The first stage is the identification
and isolation of genuine electron and muon candidates. The second stage is the selection
of leptons specifically for the different aspects of this analysis, namely signal selection and
background estimation or rejection.



4.4.1 Electron and muon identification

The first step of the electron identification is performed by a multivariate analysis (MVA)
algorithm [65, 66] based on a boosted decision tree [67] which is trained to discriminate
electrons against jets. In this analysis, we use the selection threshold with 90% efficiency for
prompt electrons originating from the primary vertex. Electron candidates arising from photon
conversions are suppressed by requiring that the track is missing no more than one hit in the
innermost layers of the silicon tracker and is not matched to a reconstructed conversion vertex.

The first step of the muon identification consists of linking track segments reconstructed
in the silicon tracking detector with those in the muon system [68]. Quality requirements
are applied on the multiplicity of hits, the number of matched segments and the quality of
the global muon track fit, quantified by its normalized XQ. The muon candidates used in the
analysis are required to pass the “loose” PF muon identification criteria [69], which guarantee
more than 99% efficiency over the entire n range. The probability of pions or kaons to be
misidentified as “loose” muons is about 0.2% and 0.5% respectively.

4.4.2 Electron and muon isolation

Electrons and muons in signal events are expected to be isolated. Lepton isolation is defined
as scalar pp sum of all charged particles, neutral hadrons, and photons reconstructed within a
narrow cone centred on the lepton direction. The size R of the cone is inversely proportional
to the pp of the lepton, causing increased efficiency for passing the isolation criteria for
leptons reconstructed in events with overlapping jets due to high Lorentz boost or high
hadronic activity. R varies from 0.05 for leptons with pr > 200 GeV to 0.20 for leptons
with pp < 50 GeV. Only charged particles originating from the lepton production vertex are
considered in the isolation sum. Residual contributions of pileup to the neutral component of
the isolation of the lepton are taken into account using effective-area corrections:

2
ler _ Z P + max (O, Z pr—pA <OR3> ), (4.1)

charged neutral

where p represents the energy density of neutral particles reconstructed within the geometric
acceptance of the tracking detectors, computed as described in refs. [70, 71]. The leptons
considered are required to have I'°P /plTep < 0.4. The effective area A is obtained from

lep

simulation by studying the correlation between I+ and p. It is determined separately for

electrons and muons in bins of 7.

4.4.3 Signal lepton selection

The analysis utilises three different levels of lepton selection criteria with increasing tightness
for electrons and muons, to which we refer to as the loose, medium and tight lepton selections.

The loose selection is used to remove lepton pair resonances. Requirements are the
following: pp > 5GeV (7GeV) and |n| < 2.5 (2.4) for electrons (muons); isolation I'?/piP <
0.4; impact parameters of the lepton track with respect to the primary vertex, transverse
|dzy| < 0.05cm and longitudinal |d,| < 0.1 cm; significance of the impact parameter d/oy < 8
in three dimensions (3D).



The medium lepton selection is used for removing the overlap between different types of
objects, for certain variables in the event preselection and the misidentified-lepton background

estimate based on control samples in data. The pp of medium leptons is set to the p7 °, as

this has been found to describe better the pp of misidentified leptons. The p7 "¢ is defined as
0.9 times the pp of the nearest jet if they are within AR < 0.4, otherwise as 0.9(p1§p—|—llep),
where I'P is the lepton isolation given by eq. (4.1). The pT"¢ in general exceeds the pr
of the lepton as determined by the electron and muon reconstruction algorithms. Medium
leptons are required to have plj‘fp’cone > 10 GeV and the jet nearest to the lepton should fail
the medium b tagging working point. Medium electrons are further required to satisfy criteria
similar to the ones applied at the trigger level. The requirements are: the width of the
electron cluster in 7-direction ;,;, < 0.011(0.030) when || < 1.479 (|n| > 1.479); the ratio of
energy associated to the electron in the HCAL to the energy in the ECAL H/E < 0.10; the
difference between the reciprocal of the electron cluster energy and the reciprocal of its track
momentum (1/E —1/p) > —0.04; medium electron tracks are not allowed to miss any hits in
inner pixel detector and to not originate from a photon conversion. Finally, only medium
electrons not overlapping with medium muons within AR < 0.4 are considered.

The tight lepton selection is used to select events in the signal region (SR). For this purpose,
a lepton identification algorithm based on boosted decision trees is used, discriminating the
prompt leptons from nonprompt and misidentified ones. Thereafter this will be referred to
as the prompt-lepton MVA. The MVA is trained separately for electrons and muons [72].

Several observables related to the lepton are used as input variables such as the plTep, ',

relative isolation I'°P/ pl%ep, |dyy|, and |d,|. The jet reconstruction and b tagging algorithms
are applied to the charged and neutral particles reconstructed in a cone around the lepton
direction. The ratio of the lepton pr to the reconstructed jet pp and the component of the
lepton momentum in a direction perpendicular to the jet direction are also used as inputs
to the MVA. Tight leptons are required to have prompt-lepton MVA score greater than 0.5
(0.3) for muons (electrons). Muons are additionally required to pass the medium PF muon
identification criteria as described in ref. [69]. Contrary to medium leptons, the pt of tight

cone

leptons is not replaced by the pt  as these leptons are likely to be prompt.

4.5 Missing transverse momentum

The missing transverse momentum vector pp > is computed as the negative vector sum of

the transverse momenta of all the PF candidates in an event and its magnitude is denoted
as p [73]. The p™ is modified to account for corrections to the energy scale of the
reconstructed jets in the event.

The variable Hy' 55 is defined in the same way as p?iss, but considering only jets that
fulfill the criteria described in sections 4.2 and 4.3, as well as electrons and muons passing
the medium selection criteria, when evaluating the pp sum. The observable Hp' 55 has the
advantage of being less sensitive to pileup, as soft hadrons that predominantly originate
from pileup do not enter its computation, and can therefore be used as a complement to
PP in a MVA algorithm.

This analysis also uses a linear combination, also referred to as a linear discriminant
(LD), of p1 and HA™* defined as p%lst = 0.6p ™ +0.4H2" [72]. The two observables are



less correlated for events in which the p't™™* arises from artificial effects compared to events

with genuine p'. The jet energy corrections are propagated to H™* and p?liSD

5 Event selection

The signature of the bbW W ™ signal is characterised by the decay of each of the Higgs
bosons, H — bb and H - WTW ™. The H — bb decay can be identified by the two jets
originating from the hadronisation of each of the b quarks. In order to identify H — bb
candidates, events are required to have at least one b-tagged small-radius jet, accounting this
way for inefficiencies in b tagging. In case the Higgs boson is highly Lorentz-boosted, the two b
jets from the H — bb decay are merged and they are reconstructed one single large-radius jet.
Events are selected when they have one large-radius jet with least one of the subjets b-tagged.

The VBF jet candidates must not overlap with the H — bb candidates, either the
small-radius jets within AR < 0.8, or the large-radius jet within AR < 1.2. Additionally,
only pairs of jets with invariant mass m;; > 500 GeV and separation An;; > 3 are considered.
The leading pair in invariant mass determines the two VBF jets considered.

The two channels of this analysis are characterised by the decay products of the H —
WHTW™ decay. The “single-lepton” channel targets events where only one W boson decays
leptonically, while the “dilepton channel” targets events where both W bosons do.

The first two steps of the event selection are the event preselection and trigger selection.
The selected events are then evaluated using DNNs and categorised as described in section 6.

5.1 Event preselection

Events containing a pair of leptons passing the loose selection and with an invariant mass less
than 12 GeV are rejected as they are likely to originate from quarkonia decays. Events with a
pair of loose-selection leptons, with opposite electric charge but same flavour, within 10 GeV
of the mass of the Z boson (of 91.2 GeV [74]), are vetoed to remove DY and ttZ backgrounds.
To suppress effects related to beam halo, detector noise, etc., the primary vertex in all events
is required to have longitudinal distance from the collision point |z, less than 24 cm, radial
distance |r| less than 2cm, and at least four associated tracks.

5.2 Trigger selection

The events selected in the single-lepton channel are required to pass either the single-electron
or the single-muon trigger, based on the offline-reconstructed lepton flavour, selected as
described in section 4.4. The pt requirements applied in this analysis (section 5.3) are
chosen to be close to the trigger threshold (22-35GeV) to reduce turn-on effects in the
trigger selection efficiency. Residual turn-on effects are corrected for the simulated events
using scale factors and corresponding systematic uncertainties. In the dilepton channel,
the acceptance for the HH signal is increased by using a combination of single-lepton and
dilepton triggers. The dilepton triggers have a lower pt threshold for the leading-pt lepton
(1723 GeV) compared to the single-lepton triggers, which allows lowering the pr thresholds
for the electrons and muons reconstructed offline.

~10 -



5.3 Single-lepton channel

Events in the single-lepton channel are required to contain a lepton satisfying tight selection
criteria with pp > 32 GeV for an electron and 25 GeV for a muon. Events containing a second
lepton passing the tight selection criteria are vetoed to avoid overlap with the dilepton channel.

Events selected in the single-lepton channel are required to contain either at least three
small-radius jets (section 4.2) or at least one large-radius jet (section 4.3) and at least one
small-radius jet, which is separated from the large-radius jet by AR > 1.2. At least one
of the three small-radius jets, or in the latter case the large-radius jet, is required to be
b-tagged. Overlap with the events selected by the HH — 77bb search is removed by vetoing
events containing at least one hadronically decaying tau lepton, identified by the DEEPTAU
algorithm [75] as described in ref. [76].

5.4 Dilepton channel

Events selected in the dilepton channel must contain two leptons that pass the tight selection
criteria and have opposite electric charges. The leading lepton is required to have pr > 25 GeV
and the subleading one pp > 15GeV. Events containing a third lepton passing the tight
selection criteria are vetoed, to avoid overlap with the search for HH — ZZbb with four
charged leptons in the final state. The events are further required to contain at least either
one b-tagged large-radius jet or one b-tagged small-radius jet.

6 Analysis strategy

Events passing the single-lepton and dilepton selections are separated in different categories
based on the signal purity, utilizing the H — bb signal topology and fully connected DNN
multiclassifiers, as described later in this section. The event categorisation is summarised
in tables 1 and 2. To extract the HH signal we perform a maximum likelihood fit in the
asymptotic approximation [77] on the distribution of the DNN score, using the modified
frequentist CLg method [23, 24], simultaneously on the signal and background event categories.
To account for the effects of the systematic uncertainties, we include them as nuisance
parameters (section 8) in the maximum likelihood fit.

Four DNNs are trained separately for the single-lepton and dilepton channels, and for the
resonant and nonresonant signals. The DNNs for the nonresonant signal are trained on all
available simulated signal events representing different coupling scenarios. For the resonant
signal the DNNs are trained on all signal samples and the networks are parametrised [78]
according to the mass of the resonance decaying to the two Higgs bosons, which is provided
in the training inputs for signal events and random values for background events in the
same proportions. The background events are drawn from the simulated samples described
in section 3.2.

The DNN architecture is complemented by a Lorentz Boost Network [79] acting as input
preprocessor. This network takes as input the four-vectors of the reconstructed particles
and creates additional observables (such as a two-particle invariant mass or angle difference
in their centre-of-mass), which are then given as input to the DNN together with other
variables related to the HH signal topology. The combined Lorentz Boost Network and
following dense networks are trained all together.
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Single-lepton channel

Categories Subcategories
HH (ggF) Resolved 1b  Resolved 2b  Boosted
HH (VBF) Resolved 1b  Resolved 2b  Boosted
Top + Higgs Resolved Boosted
W +jets + Other Inclusive

Table 1. Summary of the categories of events according to the DNN-based multiclassification
and H — bb topology for the single-lepton channel. The VBF category is considered only in the
nonresonant search.

Two of the variables used as input to the DNN for each channel are shown in figure 4.
The distributions are shown after performing a maximum likelihood fit on the data in the
distribution of the variable displayed, using the same set of nuisance parameters (section 8) as
in the likelihood fit used to extract the signal. The variables are from upper left to lower right:
the Ht variable, defined as the scalar sum of all selected small-radius jets pt; the invariant
mass of the two b-tagged jets after the regression correction (section 4.2); the invariant mass
of the two leptons; the p?lisD as defined in section 4.5. The highest ranking variable in terms
of discrimination power is the Hy for both single-lepton and dilepton channels. The invariant
mass of the two b-tagged jets and the invariant mass of the two leptons are the second highest
ranking variables for the two channels, respectively. The p%HESD ranks fifth for the dilepton
channel, after the information about the flavour of the two leptons.

The DNNs are trained as multiclassifiers, which means that they learn each physics
process (tt, DY, etc.) separately, which in the machine learning context are referred to as
“classes”. The multiclassifier assigns a score between [0, 1] for each class to each event. This
score is related to the probability of an event belonging to the corresponding class. The event
categorisation into background and signal categories is based on the DNN output scores;
each event is assigned to the class with the highest probability. In the SM nonresonant case
there are two signal categories as defined by the DNN, ggF and VBF. In the resonant search
and the anomalous couplings interpretation only the ggF process is considered, therefore
there is only one signal category. To form the background categories, the DNN classes for
minor background processes are grouped together with a major background with a similar
topology, in order to simplify the fitting process and reduce the statistical uncertainties.
In the dilepton channel, multiboson events are categorised together with the DY events to
form the “DY + Multiboson” category, while single top quark, ttZ, SM single Higgs boson
processes and others are included in the same category as the dominant tt background
forming the “Top 4+ Other” category. In the single-lepton channel, single top quark and
SM single Higgs boson processes are included in the same event category as the dominant
tt background, “Top + Higgs” category, while all other processes are included in the same
category as the W-jets background, “W+jets + Other”.

The signal categories are further divided into subcategories according to the b jet topology
and multiplicity. Events with one large-radius jet, as defined in section 4.3, are considered in
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Dilepton channel

Categories Subcategories
HH (ggF) Resolved 1b  Resolved 2b  Boosted
HH (VBF) Resolved 1b  Resolved 2b  Boosted
Top + Other Resolved Boosted
DY + Multiboson Inclusive

Table 2. Summary of the categories of events according to the DNN-based multiclassification and H —
bb topology for the dilepton channel. The VBF category is considered only in the nonresonant search.

the boosted category if they are b-tagged. If there are large-radius jets that are not b-tagged
or if there is no large-radius jet at all, the events are divided according to the number of
small-radius jets into events with exactly 1 b-tagged jet and events with at least 2 b-tagged
jets. Remaining events without any b-tagged jet will be considered for the data-driven
estimation of the DY background, as described in section 7.2. The categories for each decay
channel are summarised in tables 1 and 2. The total number of categories in both dilepton
and single-lepton channels is nine for the nonresonant interpretations and six for the resonant,
as we only consider ggF for the latter.

The discriminants used in the maximum likelihood fit for signal extraction are the DNN
output scores for each category and channel, combined into a single likelihood function,
and are shown in figures 5, 6, 7, and 8. The binning for the signal categories is performed
using quantile binning such that the signal response is flat, while the reverse is done for
the background categories. The optimisation of the binning was done separately for each
data taking year, while the figures contain all the data. Therefore for illustration purposes
the binning shown might have slight differences to what was used in the signal extraction
and the signal response may not appear flat. One exception is the resonant search in the
dilepton channel in which the DNN score of the signal categories is split in bins of the Heavy
Mass Estimator (HME) [80] as shown in figure 8. This variable estimates the most likely
invariant mass of the heavy resonance, considering the two neutrinos from the W bosons
leptonic decays in the final state. In this case, the maximum likelihood fit is performed on
the two-dimensional (2D) distribution of the DNN output score and the HME.

7 Background estimation

The shape of the tt contribution for both channels is estimated using simulated events. The
tt and single top quark normalisations are determined by the maximum likelihood fit, and
they are constrained by the “Top+Higgs” or “Top+Other” event category, depending on
the channel. The same procedure is used for the W-jets background in the single-lepton
channel. To estimate the background contribution of jets misidentified as leptons and, in the
dilepton channel, the DY background contribution, control samples in data are used. The
rest of the backgrounds are estimated using simulated events.
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Figure 4. The distributions of some of the discriminants included in the DNN training for the
single-lepton channel (upper) and the dilepton channel (lower). The distributions are shown after
performing a maximum likelihood fit on the data for the variable pictured, using the same set of
nuisance parameters (section 8) as in the likelihood fit used to extract signal. The variables are
from upper left to lower right: the Hr variable, defined as the scalar sum of all selected jets pr; the
invariant mass of the two b-tagged jets; the invariant mass of the two leptons; the p%iiSD, as defined in
section 4.5. The signal shown is scaled to the observed upper limit on its cross section.

7.1 Estimation of the misidentified-lepton background

The background arising from events with misidentified leptons is estimated using the “fake-
factor” method in refs. [72] and [81]. A sample of events is selected by requiring that all
lepton criteria of section 5 must be satisfied, with the exception that at least one electron
or muon passes the medium and fails the tight selection (with p requirements replaced by
the same ones on py *), preventing overlap with the signal region.

An estimate of the misidentified-lepton background in the signal region is obtained by
applying suitably chosen weights to these events. The weights, denoted by the symbol w,
are given by the expression:

w= (1" ] (7.1)
i L= i

where f; denotes the probability for an electron or a muon that passes the medium selection
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Figure 5. The distributions of the DNN discriminants of the nonresonant search for each event category
for the single-lepton channel, after performing a maximum likelihood fit to the same distributions in
data. The DNN discriminant for the HH (ggF) category is shown on the upper left, HH (VBF) on the
upper right, Top+Higgs on the lower left and W+jets 4+ Other on the lower right. The event categories
are summarised in table 1. The signal shown is scaled to the observed upper limit on its cross section.

to also satisfy the tight selection. The probabilities f; are measured separately for electrons
and muons, as described in ref. [72] in a control region dominated by the multijet background.

The product extends over the number of electrons and muons that pass the medium
and fail the tight selection (n). In case an event of the single-lepton (dilepton) channel
contains more than one (two) medium leptons, only the leading (and subleading) lepton
in pT"¢ is considered when computing the weights according to eq. (7.1), and thus n = 1
(n =1 or 2) in the single-lepton (dilepton) channel. For n = 2 the weights become negative
to avoid double counting. The contributions of other backgrounds are subtracted based

on the expectation from simulation.

7.2 Estimation of the Drell-Yan background

The DY background in the dilepton channel is estimated using data events that pass the
nominal event selection but have no reconstructed b-tagged jets. This “0 b tag region” is
found to be dominated by DY events. We create additional DY enriched regions by inverting
the selection requirement on the dilepton mass targeting DY events. This inverse selection
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Figure 6. The distributions of the DNN discriminants of the nonresonant search for each event
category for the dilepton channel, after performing a maximum likelihood fit to the same distributions in
data. The DNN discriminant for the HH (ggF) category is shown on the upper left, HH (VBF) on the
upper right, Top+Other on the lower left and DY +Multiboson on the lower right. The event categories
are summarised in table 2. The signal shown is scaled to the observed upper limit on its cross section.

is applied for events with 0, 1 and 2 b-tagged jets. Using events with dilepton mass within
10 GeV from the Z boson mass, we calculate transfer weights from the 0 b tag region to the 1
and 2 b tag categories. In the signal region, these weights are applied to the 0 b tag region
using two orthogonal sets of events to estimate the DY in the 1 and 2 b tag regions, in order
to avoid bias from using the same events twice. The same process is applied to the boosted
categories. The weights are found to be independent of the lepton flavour, and the proportion
of DY events in the el channel from tau lepton decays to e or | is insignificant. Therefore we
calculate the weights in ee and P events simultaneously and apply them to the ee, pp and
el events. When extracting the shape of the DY distribution in the 0 b tag region from the
data, the contribution from other background sources is estimated using simulated events.

8 Systematic uncertainties

Systematic uncertainties are introduced as nuisance parameters in the maximum likelihood

fit used to extract the signal.
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Figure 7. The distributions of the DNN discriminants of the resonant search for each event category
for the single-lepton channel, after performing a maximum likelihood fit to the same distributions in
data. The DNN shown corresponds to a scalar resonance with mass 400 GeV. The DNN discriminant
for the HH (ggF) category is shown on the upper left, Top+Higgs on the upper right and W-jets +
Other on the lower. The event categories are summarised in table 1. The signal shown is scaled to a

cross section of 1 pb.

A number of systematic uncertainties are considered that affect the yield and the shapes
of the HH signal and the background processes. Theoretical uncertainties in the strong
interaction coupling «, and parton distribution function shapes that affect the cross section

of all the simulated processes are included.

Theoretical uncertainties in the nonresonant HH cross section via ggF are applied as a
function of k, and include renormalisation and factorisation scale uncertainties, including
the mass scale of the top quark [10]. In the SM this uncertainty amounts to +6%/—26%.
An additional factor of £3.0% is applied to account for PDF+a, uncertainties. The uncer-
tainties on the VBF production cross section include a +0.03/—0.04% (scale) and a £2.1%
(PDF+qy) [82, 83] uncertainties. All uncertainties on the signal cross section are only applied
when quoting limits relative to the theoretically predicted cross section. An additional 10%
normalisation uncertainty is applied to the VBF, related to the colour correlated recoil
scheme [84] used in PYTHIA. It is estimated by comparing the nominal simulated samples pro-
duced with the default global recoil scheme to samples simulated with the dipole-recoil scheme.
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Figure 8. The distributions of the DNN discriminants of the resonant search for each event category
for the dilepton channel, after performing a maximum likelihood fit to the same distributions in data.
The DNN shown corresponds to a scalar resonance with mass 400 GeV. The DNN discriminant for
the HH (ggF) category divided in bins of HME is shown on the upper left, Top+Other upper right
and DY +Multiboson on the lower. The event categories are summarised in table 2. The signal shown

is scaled to a cross section of 1 pb.

The uncertainty in the top quark mass value assumed in the simulations of the tt
background is derived by varying the mass value by —2.7/+2.8%[85]. Theoretical uncertainties
on the branching fractions [86] of H decays are applied to HH signal and single Higgs
boson background (H — bb, H = WW and H — 77 branching fractions, +1.24/—1.26%,
+1.53/-1.52%, and +1.65/—1.63% respectively).

Other theory uncertainties include electroweak corrections for the ttZ (+0.0/—0.2%)
and ttW (+0.0/—3.2%) processes as well as PDF weights (£4.2% for tt, £1.2% for single
top quark, +4.6% for VV, +£2.8% for ttZ, and +2% for ttW). Parton shower acceptance
uncertainties are applied as shape variations for all background processes.

A shape uncertainty that corresponds to the NNLO correction of the top quark pr is
applied to the tt simulated samples. The relative uncertainty is 100%, i.e. an uncertainty
as large as the correction is applied to the simulated tt events.

The integrated luminosities for the 2016-2018 data taking years separately have 1.2-2.5%
individual uncertainties [20-22], while the overall uncertainty for the 2016-2018 period is 1.6%.
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During the 2016-2017 data taking, a gradual shift in the timing of the inputs of the
ECAL Level-1 trigger in the region at |n| > 2.0 caused a specific trigger inefficiency. For
events containing an electron or a jet with pp > 50 GeV or 100 GeV respectively, in the region
2.5 < |n| < 3.0 the efficiency loss is 10-20%, depending on pr, 1, and data taking period.
Correction factors are computed from data and applied to the acceptance evaluated from
simulation. In addition, a normalisation uncertainty is included in the statistical fit.

A shape uncertainty related to the pileup in simulation and its 5% [87] inelastic pp cross
section uncertainty is applied to all simulated samples.

The trigger selection efficiency is corrected to account for differences between data and
simulation. The uncertainties in these corrections applied to simulated samples constitute
a shape uncertainty. Similarly, the muon and electron identification efficiencies are also
corrected and corresponding shape uncertainties are introduced.

An uncertainty in the efficiency of the selection rejecting jets originating from pileup,
as well as uncertainties on jet energy scale and resolution, are used as shape uncertainties
for all simulated samples.

Corrections based on the area and energy density of the jet are applied in order to
compensate for pileup effects. Nuisance parameters that affect the shape related to the
identification of the jet flavour are also included. Different types of jet flavour contamination
are treated with separate parameters.

A set of systematic uncertainties is included in the fit regarding the estimation of the
misidentified-lepton background from control samples in data, as well as the DY background.
The uncertainties regarding the backgrounds derived from data are assigned and validated
using simulated events through closure tests on the DNN distributions entering the fit to ensure
that they cover the observed amount of nonclosure. For the misidentified-lepton background
estimation, they are shape uncertainties in the single-lepton channel and normalisation
uncertainties in the dilepton channel. The DY estimation closure uncertainty, applicable
only to the dilepton channel, is a shape uncertainty for all background categories and a
normalisation uncertainty for the HH signal categories.

9 Results

For each signal model considered, a profile binned likelihood fit [23, 24, 88] is performed to the
distributions of the DNN discriminants for each event category (figures 5 to 8) simultaneously.
For the SM-like signal search the fit includes 18 categories while 12 categories are used for
the resonant search and the anomalous couplings interpretation. The categories dominated
by background events allow for in-situ constraints on the main background processes. There
are three background-dominated categories for the single-lepton channel and three for the
dilepton channel. No significant excess over the background-only hypothesis is observed.
Upper limits are set on nonresonant and resonant Higgs boson pair production at 95% CL
using the modified frequentist CLg method in the asymptotic approximation.

The observed (expected) upper limit on the inclusive pp — HH cross section is 14 (18)
times the value expected by the SM (figure 9). The observed (expected) limit on the HH
production via VBF is 277 (301) times the SM value and is shown in figure 10. In this case
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Figure 9. Observed and expected 95% CL upper limits on the inclusive nonresonant HH production
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and from their combination. The green and yellow bands show the 1 and 20 confidence intervals,
corresponding to 68 and 95% CL, while the red line shows the SM prediction.
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Figure 10. Observed and expected 95% CL upper limits on the nonresonant HH production via
vector boson fusion cross section divided by the SM prediction obtained for both single-lepton and
dilepton channels, and from their combination. The green and yellow bands show the 1 and 2¢
confidence intervals, corresponding to 68 and 95% CL, while the red line shows the SM prediction.

the SM value is assumed for the ggF HH process. Figures 9 and 10 show the contributions
from individual channels as well.

Figures 11 and 12 show the limits on the inclusive and the VBF production cross section
as a function of k) and kqy modifiers, respectively, assuming standard model values for all
other couplings. The x, modifier is constrained between [—7.2,13.8] (expected [—8.7,15.2]).
The koy modifier is constrained between [—1.1,3.2] (expected [—1.4,3.5]). The latter result
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predicted HH production cross section.

has similar sensitivity to the yybb channel which constrained the koy modifier in the range
[—1.3,3.5] (expected [—0.9,3.1]) [89].

The exclusion contours on the s, and kyy, Ky and Koy, &, and k, are shown in fig-
ures 13, 14, and 15, respectively, while all other Higgs boson couplings are set to the values
predicted by the SM.

As explained in section 3.1, we can study modified HH couplings as well as anomalous
couplings which are not predicted in the SM. The set of coupling modifiers studied is k), &,
¢, g and ¢y, (figures 1 and 3), based on an effective field theory parameterisation. Two sets
of benchmarks referred to as “JHEP04(2016)01” [90] and “JHEP03(2020)91” [91] have been
proposed, which are different combinations of (k,, k¢, ¢g, Co ng)~ The results are interpreted
as limits on the ggF production cross section for each of the benchmarks considered, shown
in figure 16. In addition, a limit scan for the ¢, coupling is shown in figure 17. The ¢,
coupling is constrained between [—0.8, 1.3] (expected [—1.0,1.4]) at 95% CL. Exclusion
limits contours are drawn in the x,-c, plane, shown in figure 18. All other Higgs boson
couplings are set to the values predicted by the SM.

The results of the resonant search are extracted using the same strategy and similar
categories to the nonresonant one. The limits are presented as a function of the heavy
resonance mass hypothesis in the range between 250 and 900 GeV, since 250 GeV is the
threshold for on-shell HH production. Beyond 900 GeV the topology of the Higgs boson
decays becomes predominantly highly boosted and the analysis presented in this paper is not
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Figure 12. Observed and expected 95% CL upper limits on the nonresonant HH production via
VBF cross section as a function of the effective coupling xsy. The green and yellow bands show the 1
and 20 confidence intervals, corresponding to 68 and 95% CL. The ggF contribution in this case is
set to the SM expectation. All other Higgs boson couplings are set to the values predicted by the SM.
Overlaid in red is the curve representing the predicted HH production cross section.

optimal. A previously published CMS search covers this phase-space [92]. The resonances are
assumed to have a narrow width, i.e. width smaller than the experimental resolution for the
reconstructed Higgs boson mass which is 10-15%. Figure 19 shows the limits for the spin-0
and spin-2 signal hypotheses. For the spin-0 (2) scenario the limits on the cross section vary
between 5540 (6368) and 20 (15) fb corresponding to the 250 GeV and 900 GeV mass points,
respectively. For resonant mass above 700 GeV the limits set by the bbW W~ search are
comparable to those by the yybb search [93]. Theoretical predictions for the spin-0 radion and
the spin-2 graviton are shown against the respective exclusion limits. The parameters A and
£ = k/Mp correspond to the energy scale and warp factor of the so-called “bulk” benchmark
of the warped extra dimensions scenarios [94, 95], where Mpy is the Planck mass. The values of
these parameters have been chosen based on the current constraints from other measurements.
While these are representative models for this type of search, the search is performed in a

model-independent way, only depending on the resonance mass, width, and spin.
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Figure 13. Observed and expected 95% CL exclusion limits on the nonresonant HH production
cross section as a function of the effective couplings xy and xqy. The blue area is excluded by the
observation. The 1 and 20 confidence intervals around the expected median exclusion contour are
shown as dark and light-grey areas corresponding to 68 and 95% respectively. The red diamond shows
the SM expectation while the fine dashed lines show the theoretical cross section contours. All other
Higgs boson couplings are set to the values predicted by the SM.
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Figure 14. Observed and expected 95% CL exclusion limits on the nonresonant HH production via
VBF cross section as a function of the effective couplings kv and k9y. The blue area is excluded by
the observation. The 1 and 20 confidence intervals around the expected median exclusion contour are
shown as dark and light-grey areas corresponding to 68 and 95% respectively. The red diamond shows
the SM expectation while the fine dashed lines show the theoretical cross section contours. The ggF
contribution in this case is set to the SM expectation. All other Higgs boson couplings are set to the
values predicted by the SM.
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Figure 15. Observed and expected 95% CL exclusion limits on the nonresonant HH production
cross section as a function of the effective couplings x, and k;. The blue area is excluded by the
observation. The 1 and 20 confidence intervals around the expected median exclusion contour are
shown as dark and light-grey areas corresponding to 68 and 95% respectively. The red diamond shows
the SM expectation while the fine dashed lines show the theoretical cross section contours. All other
Higgs boson couplings are set to the values predicted by the SM.
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Figure 16. Observed and expected 95% CL upper limits on the nonresonant HH production
cross section for two different benchmark scenarios “JHEP04(2016)01" and “JHEP03(2020)91” from
refs. [90, 91]. The green and yellow bands show the 1 and 20 confidence intervals, corresponding to 68
and 95% CL.
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Figure 17. Observed and expected 95% CL upper limits on the nonresonant HH production cross
section as a function of the effective coupling c¢,. The green and yellow bands show the 1 and 20
confidence intervals, corresponding to 68 and 95% CL. All other Higgs boson couplings are set to
the values predicted in the SM. Overlaid in red (upper) is the curve representing the predicted HH
production cross section.
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Figure 18. Observed and expected 95% CL exclusion limits on the nonresonant HH production
cross section as a function of the effective couplings x, and c¢y. The blue area is excluded by the
observation. The 1 and 20 confidence intervals around the expected median exclusion contour are
shown as dark and light-grey areas corresponding to 68 and 95% respectively. The red diamond shows
the SM expectation while the fine dashed lines show the theoretical cross section contours. All other
Higgs boson couplings are set to the values predicted in the SM.
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10 Summary

In this paper, a search for Higgs boson pair production (HH) in the HH — bbWTW ™ decay
channel with at least one electron or muon in the final state is presented. The nonresonant and
the resonant production mechanisms are studied. No significant deviation from the standard
model (SM) background is found. Upper limits are set on the HH production cross section.

The cross section for the inclusive nonresonant HH — bbW W™ production is excluded
up to a minimum of 14 (expected 18) times the value predicted by the SM at 95% confidence
level. Compared to previous results on the same process by the CMS Collaboration, this
search represents a significant improvement with a gain in sensitivity by up to a factor of
five. The vector boson fusion production is excluded up to 277 (expected 301) times the
value predicted by the SM at 95% confidence level.

The limits on the cross sections are also shown as a function of various Higgs boson
coupling modifiers and anomalous Higgs boson couplings. The Higgs boson trilinear coupling
Apun is constrained between [—7.2,13.8] (expected [—8.7,15.2]) times the value expected in
the SM at 95% confidence level. The coupling modifier for the quartic interaction between
two Higgs bosons and two W or Z bosons, kqy, is constrained between [—1.1,3.2] (expected
[—1.4,3.5]) at 95% confidence level. The coupling between two top quarks and two Higgs
bosons, which is predicted to be zero in the SM, is constrained between [—0.8, 1.3] (expected
[—1.0,1.4]) at 95% confidence level. The exclusion contours are drawn as a function of the
Higgs boson coupling modifiers.

The HH production via a heavy resonance is studied in the mass range from 250 to
900 GeV. Spin-0 and spin-2 scenarios for the resonance are tested and compared to the
common theoretical benchmarks of a heavy C'P-even scalar radion and a graviton. The limits
on the resonance production cross section in the spin-0 (2) scenario vary between 5540 (6368)
and 20 (15) fb corresponding to the 250 and 900 GeV mass points, respectively. These limits
are comparable to those set by the yybb resonant HH search.
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