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Abstract Computing demands for large scientific experi-
ments, such as the CMS experiment at the CERN LHC, will
increase dramatically in the next decades. To complement the
future performance increases of software running on central
processing units (CPUs), explorations of coprocessor usage
in data processing hold great potential and interest. Copro-
cessors are a class of computer processors that supplement
CPUs, often improving the execution of certain functions
due to architectural design choices. We explore the approach
of Services for Optimized Network Inference on Coproces-
sors (SONIC) and study the deployment of this as-a-service
approach in large-scale data processing. In the studies, we
take a data processing workflow of the CMS experiment and
run the main workflow on CPUs, while offloading several
machine learning (ML) inference tasks onto either remote
or local coprocessors, specifically graphics processing units
(GPUs). With experiments performed at Google Cloud, the
Purdue Tier-2 computing center, and combinations of the
two, we demonstrate the acceleration of these ML algorithms
individually on coprocessors and the corresponding through-
put improvement for the entire workflow. This approach can
be easily generalized to different types of coprocessors and
deployed on local CPUs without decreasing the through-
put performance. We emphasize that the SONIC approach
enables high coprocessor usage and enables the portability
to run workflows on different types of coprocessors.

Keywords CMS · Offline and computing · Machine
learning

1 Introduction

During the first two runs of the CERN LHC [1], the ATLAS
[2] and CMS [3] Collaborations have analyzed trillions of
high-energy proton–proton or lead–lead collisions and pro-
duced an extensive suite of physics results. Among these are
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the discovery of the Higgs boson [4–6] in the standard model
(SM) and stringent constraints on various beyond the SM
physics scenarios, such as supersymmetry [7–14] and exotic
heavy-particle or dark matter candidate production [15–21].
In order to measure the SM with higher precision and search
for new processes with lower cross-sections, the amount of
data that is delivered by the LHC and processed by the exper-
iments is expected to increase dramatically in ongoing and
future physics runs [22,23].

The high data-taking rates and increasing event complex-
ity of the ATLAS and CMS experiments present a signifi-
cant computational challenge for data processing [24,25]. A
two-level trigger system is employed to run fast algorithms
and reduce the data rate from 40 TB/s to about 10 GB/s [26–
28]. While this is a significantly smaller rate, it is still very
challenging for subsequent processing steps. As discussed
in Refs. [29–31], even with optimistic expectations for com-
puting research and development, the projected computing
needs for CMS will be only narrowly satisfied.

At present, data processing is mainly carried out using cen-
tral processing units (CPUs) but their expected performance
increase is limited [32]. Nevertheless, data processing can
be supported with a variety of modern architectures, such
as graphics processing units (GPUs), field-programmable
gate arrays (FPGAs), application-specific integrated circuits
(ASICs), or Graphcore intelligence processing units (IPUs)
[33,34], which can collectively be referred to as coproces-
sors. These architectures are becoming increasingly popular
because of their large numbers of processing units, inher-
ent parallelization designs, and more energy-efficient and
environmentally friendly computing, especially suited for
machine learning (ML) algorithm computations.

Within high-energy physics (HEP), deep-learning (DL)
algorithms are already widely used for regression and clas-
sification tasks, and their popularity is growing rapidly [35–
39]. Because of this growth, inference execution for these
algorithms consumes increasingly large fractions of the over-
all processing load. However, the processing load can be
shared and accelerated by using heterogeneous computing
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architectures. Therefore, developing a framework to enable
and optimize the deployment and portability of coprocessors
is of considerable interest to HEP experiments [40,41]. As a
proof of concept, this paper focuses on accelerating the infer-
ence for ML algorithms in one of the CMS data processing
stages, explained in “The CMS Data Tiers“ section. These
algorithms collectively take about 10% of the total process-
ing time of that stage. For this approach to resolve the future
computing challenge, ML algorithms would need to be used
for larger portions of CMS data processing. Utilizing ML for
tasks such as tracking [42–45], clustering [46–48], particle
reconstruction [49–53], and particle identification [54–60] is
an active area of research.

One of the approaches for the coprocessor deployment is
to equip every CPU machine with coprocessors, referred to as
directly connected. In this scenario, every CPU thread within
the machine can communicate with the coprocessor. How-
ever, since the coprocessor-to-CPU ratio must be determined
before deployment, the coprocessor resources are unlikely
to be optimally utilized, leading to either unused resources
when undersaturating, or decreased performance when over-
saturating. In addition, it is difficult to utilize additional or
more advanced coprocessor resources after deployment.

An alternative approach is inference as a service (IaaS),
where coprocessor resources are separated from CPU machines.
As illustrated in Fig. 1, in this scheme CPU-based clients can
send the computing request with the necessary information
to coprocessor-based servers via network calls. The servers
running on coprocessor resources can perform computing
tasks upon request. This removes the restriction of a copro-
cessor only being used by the CPUs directly connected to
it, allowing it to accept processing requests from any CPUs
(local or remote), as long as network communications are
available. Certain types of coprocessors can be allocated for
specific tasks, and the coprocessor-to-CPU ratio is flexible.
Resource utilization can, therefore, be optimized based on
specific tasks, as the number of client-side jobs using a sin-
gle server can be varied depending on the computational
demands of a given task. Furthermore, at the software level,
since the support for coprocessors and CPU workflows is
separated, it is easier to support different types of coproces-
sors. This ensures algorithm portability with minimal main-
tenance burden. The implementation of IaaS in experimental
software frameworks can be accomplished using the Services
for Optimized Network Inference on Coprocessors (SONIC)
approach [61], as described in “ The SONIC Approach“ sec-
tion.

The SONIC approach has previously been demonstrated
using FPGAs [61,62] and GPUs [63–66] with a variety of
ML algorithms. These studies demonstrated that offload-
ing ML algorithms with the SONIC approach adds little
additional computational overhead from the client–server
communications and other operations. Therefore, a corre-

Fig. 1 An example inference as a service setup with multiple coproces-
sor servers. Clients usually run on CPUs, shown on the left side; servers
hosting different models run on coprocessors, shown on the right side

sponding increase in the throughput has been observed when
offloading algorithms to these faster coprocessors.

Heterogeneous computing frameworks using GPUs have
appeared recently in multiple non-IaaS contexts in HEP as
well. One of the first significant real-time applications was
in the ALICE high-level trigger (HLT) system [67], where
GPUs were used to accelerate track reconstruction. Similarly,
a fully GPU-based first-level trigger has been implemented in
LHCb [68], which runs on 200 GPUs [69]. In CMS, a GPU-
specific version of the pixel tracking domain (non-ML) algo-
rithm called Patatrack was developed, along with several
other reconstruction algorithms, which are now employed in
the HLT for Run 3 to reduce the processing time per event
[70,71]. Further review of GPU usage in real-time applica-
tions for HEP can be found in Ref. [72].

In this paper, we take one data production workflow, called
the Mini-AOD production workflow [73], as an example,
and study the performance gains of applying the IaaS frame-
work to this workflow. The abbreviation “AOD” comes from
a lower-level data format called Analysis Object Data (AOD)
discussed in The CMS Detector, Software, and Comput-
ing“ section. In the current Mini-AOD production workflow,
which is a data refinement and slimming step, about 10% of
the computing time is consumed by ML algorithm inference,
which can be easily accelerated on GPUs. We first summa-
rize studies of the optimization and acceleration of the infer-
ence of each ML algorithm on GPUs. Then we show that
the IaaS scheme, which is implemented in the CMS soft-
ware framework cmssw [74,75] via the SONIC approach,
not only decreases processing time but can also be applied in
large-scale production to optimize GPU utilization. Finally,
we show that the SONIC approach can be easily ported to dif-
ferent types of coprocessors such as IPUs, and it can also run
on local CPUs without decreasing the throughput. The study
of power, power savings, and sustainability is also important,
but is beyond the scope of this paper.
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The paper is organized as follows. “The CMS Detector,
Software, and Computing“ section provides a brief overview
of the CMS computing architecture and different data tiers
for production. “The SONIC Approach“ section discusses
the SONIC approach in detail, including the technical imple-
mentation in cmssw, the current inference servers, and fea-
tures of the approach. “ Physics Data Sets, Algorithms, and
Benchmark Setup“ section includes the data set used for
the studies and the algorithms that can currently use the
SONIC approach for inference. “Performance“ and “Porta-
bility“sections provide detailed studies evaluating the com-
putational performance of this approach in the Mini-AOD
production workflow. Finally, Summary summarizes the
studies and discusses future plans.

2 The CMS Detector, Software, And Computing

2.1 Introduction to the CMS Experiment

The LHC provides countercirculating beams of high-energy
protons or heavy ions, such that bunches of particles in these
beams can interact with each other in the center of the CMS
detector [3] nearly every 25 ns. When particles from the coun-
tercirculating beams collide, a large variety of physical pro-
cesses can occur, which lead to the creation of either funda-
mental or composite particles. These particles, or their decay
products, can then propagate into the CMS detector, which
is designed to measure their energy and momentum. In the
context of this paper, we will refer to a readout cycle of the
detector as an event. The detector itself comprises multiple
layers including silicon pixels and strips, crystal electromag-
netic calorimeters, sampling hadron calorimeters, and muon
spectrometers. Each component of the detector has active
elements that create electrical signals when particles interact
with the detector. Each discrete signal is called a hit.

Events of interest are selected using a two-tiered trigger
system. The first level (L1), composed of custom hardware
processors, uses information from the calorimeters and muon
detectors to select events at a rate of around 100 kHz within
a fixed latency of 4µs [76]. The second level, known as the
HLT, consists of a farm of processors running a version of the
full event reconstruction software optimized for fast process-
ing, and reduces the event rate to around 1 kHz before data
storage [28]. Processing in the trigger system is referred to
as online computing, while subsequent processing is known
as offline computing.

2.2 The cmssw Framework

The cmssw framework is an open-source software frame-
work that is used in triggering, data formatting and process-
ing, simulation, and offline analysis [74,75]. Components of

the framework are used in combination to extract high-level
physics information for each event from detector hits. The
cmssw framework processes each event with a sequence of
algorithms, converting hits from electrical signals to posi-
tion and energy measurements, linking these measurements
into clusters [77] and trajectories [78], combining trajectories
and clusters into single-particle representations or jets corre-
sponding to hadronic showers [79]. Additional algorithms in
cmssw, e.g., ML-based reconstruction algorithms, can be run
to determine quantities such as an overall imbalance of the
momentum in the direction perpendicular to the beam or to
tag jets as containing or being produced by certain particles.

The cmssw framework uses Intel Threading Build-
ing Blocks [80] to enable task-based multithreading. As
explained in Ref. [81], this multithreading implementa-
tion allows for asynchronous nonblocking calls to external
resources, such as a GPU, via ExternalWork. This setup
optimizes CPU resource utilization by minimizing down-
time; the CPU is allowed to continue executing algorithms
that do not require a coprocessor or depend on the results of
the coprocessor-dependent algorithm while waiting for the
external call to return.

2.3 The CMS Data Tiers

The cmssw framework is used both in online and offline con-
texts within CMS. While the L1 trigger is hardware-based,
the HLT is composed of algorithms in cmssw. The frame-
work also contains the algorithms that are used to process the
raw data after they have been stored, deriving the higher-level
information useful for a wide range of data analyses based
on reconstructed objects. The centralized CMS offline data
processing flow involves three steps, which are performed
both for raw data and simulated data sets. In the first step, an
AOD format for every event is derived. This contains high-
level information, such as reconstructed particles and jets, but
the data size is large. In the second step, a slimmed, higher
level Mini-AOD derivation is created [73]. Mini-AOD files
are designed to be relatively small and accessible, serving
as an intermediate step and the standard foundation for a
variety of CMS physics analyses. Finally, in the third step,
a further slimmed Nano-AOD format is created that con-
tains only very high-level physics observables [82]. This for-
mat is commonly used directly for physics analyses. Data
sets are reprocessed regularly to incorporate the latest Monte
Carlo event generator tunes [83], calibrations, and algorithm
improvements. Table 1 summarizes the average event size of
these different data tiers with 2016–2018 (Run 2) data-taking
conditions [84].

In the scope of the studies in this paper, we choose Mini-
AOD production as our test case. Mini-AOD files are derived
from the AOD data format, reducing the size per event by an
order of magnitude. Mini-AOD processing involves a wide

123



   17 Page 4 of 36 Comput Softw Big Sci             (2024) 8:17 

Table 1 Average event size of different CMS data tiers with Run 2
data-taking conditions [73,82,85]

Data tier Event size [kB/event]

Raw 1000

AOD 480

Mini-AOD 35–60

Nano-AOD 1–2

variety of algorithms that propagate, filter, and reanalyze the
AOD input objects.

3 The SONIC Approach

This section describes the implementation of the SONIC
approach in cmssw and the server technology currently used,
which is the NVIDIA Triton Inference Server (Triton)
[86]. The benefits of running inference with the SONIC
approach along with additional complexity and other impli-
cations are also discussed in this section.

3.1 Implementation in cmssw

The SONIC approach is implemented in cmssw through the
ExternalWork framework component [81] and accesses
coprocessor resources on remote servers via gRPC Remote
Procedure Calls (gRPCs), which is a cross-platform open-
source high-performance remote procedure call framework
originally developed by Google [87]. An illustration of this
procedure, where client jobs make asynchronous, nonblock-
ing gRPC calls to remote servers, is shown in Fig. 2. Mul-
tiple servers can run on multiple coprocessors, with load
balancers in between. Asynchronous communication allows
client CPUs to process other tasks in parallel while data are
transferred between the client and the server and the infer-
ence task is processed on the server. An important aspect of
this scheme is that the client-side code does not need to be
able to run any particular inference packages or frameworks;
it simply has to collect the relevant input data for a trained
model, communicate that information to the server in the
expected format, and handle the output from the server.

The client-side framework code for the SONIC approach
is split into two packages: a core package [89] containing
class templates and other common infrastructure for the IaaS
approach, and a dedicated package [90] to interact specif-
ically with the Triton server. SONIC modules provide a
similar interface to standard cmssw modules. The partition-
ing into two packages reflects that the SONIC approach can
be implemented for multiple server backends. For example,
the first implementation [61,91] used the Microsoft Brain-
wave service [92], which provides FPGA resources. Another

potential backend service is the TensorFlow as a Service
framework, which can provide access to TensorFlow-based
ML models via the HTTP protocol [93]. This framework
was introduced along with the Machine Learning as a Ser-
vice pipeline for HEP (MLaaS4HEP), which is a streamlined
mechanism for training and deploying models from data in
ROOT data format files [94]. In practice, given the gener-
ality and openness of the protocols used by Triton, which
are themselves an extension of the KServe standard [95], we
expect that future development of the SONIC approach will
continue to use these protocols, even if the backends or copro-
cessors change. Further discussion of different backends and
coprocessors can be found in “Portability“ section.

A central TritonService is provided to keep track of
all available servers and which models each of them serves.
By default, each client-side module only needs to specify
the model it needs, and the TritonService will automati-
cally find a server hosting that model. A client-side module
can optionally specify a preferred server, which the Triton-

Service will use if the server is found and confirmed to serve
the required model.

Within cmssw, a mechanism has been implemented to
account for the possibility that a client job cannot access a
specified server for whatever reason. In this case, a “fall-
back” server is automatically created using either local GPU
resources if they are available or the CPU resources allocated
to the client job in question. The client then makes gRPC
calls to that local fallback server, which introduces negligi-
ble latency. Detailed studies related to these fallback servers
are discussed later in “The CPU Fallback Server“ section. In
general, the server overhead consumes very little of the CPU
resources beyond what would be used for conventional infer-
ence, such that the per-event processing time is not strongly
affected by the SONIC approach relative to running without
it. Fallback servers are automatically shut down when the job
finishes.

3.2 The NVIDIA Triton Inference Server

As shown in Fig. 2, the server-side implementation of the
SONIC approach in cmssw currently uses Triton for infer-
ence on coprocessors [86,96]. Triton is an open-source
solution whose protocols are public and extensible, as noted
above. It supports inference of ML algorithms, called mod-
els, in most modern formats, including PyTorch [97], Ten-

sorRT (TRT) [98], ONNX Runtime (ONNX) [99], Ten-

sorFlow [100], and XGBoost [101]. It also supports cus-
tom backends for alternative tasks, such as classical rule-
based domain algorithms and inference on different types
of coprocessors. Several features of Triton are worth high-
lighting:
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Fig. 2 The SONIC implementation of IaaS in cmssw. The figure also
shows the possibility of an additional load-balancing layer in the SONIC
scheme. For example, if multiple coprocessor-enabled machines are

used to host servers, a Kubernetes engine can be set up to distribute
inference calls across the machines [88]. Image adapted from Ref. [64]

• Multiple model instances: A single server can host multi-
ple models at the same time or even multiple instances of
the same model to allow concurrent inference requests.

• Dynamic batching: Usually coprocessors have many pro-
cessing units and the number of operations from one
inference call is not enough to fully utilize the coproces-
sors. With dynamic batching, if multiple inference calls
are made within a window of time, the server can con-
catenate the inputs of all calls into a single batch, which
improves the GPU utilization and therefore increases the
overall throughput. In practice, the time window is typi-
cally chosen to be about the client-side CPU processing
time per event, such that the inference can be processed
in time without delay.

• Model analyzer: Parameters like the number of model
instances on a single server, the length of a batching win-
dow, and the optimal batch size are tunable and can be
optimized on a case-by-case basis. Triton provides a
model analyzer tool to aid in this optimization [102].
It can mimic the clients and send randomized inputs or
some pre-saved data to the server. The server perfor-
mance is measured, and the optimal deployment con-
figuration can be determined by scanning the parameter
space.

• Ragged batching: Traditionally, inference can be per-
formed on a batch of multiple inputs as long as each input
is of the same size. In HEP data, the size of the input for
inference can vary from one instance to another, making
it harder to batch them together. For example, if an algo-
rithm uses information from every particle in an event
as input, it is difficult to batch inference requests from
multiple events because events can have a wide range
of numbers of particles. Ragged batching allows infer-
ence requests with different sizes to be batched together,
thereby improving the performance. This feature is rela-
tively new and not yet fully studied in this paper.

Triton servers can use one or multiple GPUs on the same
machine with a built-in load balancer. They can also run
purely on CPU resources when there are no GPU resources
available. For other types of coprocessors, Triton servers
can also be used with the help of custom backends. A server
requires a trained model file and a configuration file specify-
ing input and output variable names, shapes, types, and model
versions, along with the preferred batch size and other details
that can be acquired through the inference optimizations.
These model and configuration files are currently accessi-
ble through the CernVM-File System (CVMFS) [103], and
are tracked by the cmssw release management system.

3.3 Advantages of the SONIC Approach

Inference as a service, as implemented in the SONIC
approach, provides several advantages and benefits, which
are summarized here. Many of these features arise from the
differences between the IaaS approach and the more tradi-
tional approach of HEP software frameworks to use only
local computing resources. These features include:

• Containerization: The SONIC approach factorizes ML
frameworks out of the client software stack, i.e., cmssw,
reducing the workload to support a wide variety of ML
models. With the SONIC approach, one can use any
framework supported by Triton, including custom back-
ends, without needing to modify the cmssw software
stack to resolve library dependencies and ensure com-
patibility between all external packages. This allows us
to pick the best inference backend for one algorithm, with
less concern for the implementation details.

• Simplicity: Because of the containerization discussed
above, SONIC client-side code is simpler and more gen-
eral than the corresponding direct inference code. SONIC
modules need only implement the conversion of input
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data into the server’s desired format and the reverse oper-
ation for output data.

• Flexibility: In the SONIC paradigm, the connections
between client CPUs and server coprocessors are not
fixed. The servers can be physically located nearby or
far from clients. Clients from many machines can access
a single server running on either one or multiple copro-
cessors. Similarly, a single client can access multiple dif-
ferent servers running on multiple different machines.

• Efficiency: The SONIC approach enables balanced uti-
lization of coprocessor resources. By optimizing the
coprocessor-to-CPU ratio for different tasks, it is easier
to fully utilize coprocessor resources without oversatu-
rating them.

• Portability: Through the use of the SONIC approach,
client-side code does not have to be modified to take
advantage of different types of coprocessors. Only a con-
sistent protocol for communicating with the inference
server is required, regardless of the underlying hardware:
CPU, GPU, FPGA, IPU, or any other architecture.

• Accessibility: If GPUs or other coprocessors are not avail-
able locally, the only way to accelerate workflows is to
access those resources remotely, as a service. The SONIC
architecture implements this use case for CMS, allowing
the use of remote coprocessors.

3.4 Limitations and Production Requirements

However, with these advantages come additional complexity
and changes in resource usage. Production jobs using the
SONIC approach rely on a separate server running different
software, compared to the existing scheme in which jobs
only execute cmssw on local hardware. This implies several
additional considerations:

• Server failures: Inference servers, remote or local, may
experience software or hardware failures that prevent
them from running. These new failure modes are mostly
independent from existing known sources of failures,
potentially leading to an overall increase in the rate of
job failures. However, these failures can be mitigated
with server-side technology, such as the load balancer
Kubernetes [88], and client-side protocols, like the local
fallback server.

• Network usage: The use of remote inference servers nec-
essarily implies an increase in network traffic, as input
and output data must be communicated over the network.
Typically, input data are much larger than output data; the
total usage depends on the algorithm. For the Mini-AOD
production workflow tests presented here, the network
usage is discussed in “Large-Scale Tests“ section. High
network usage can be mitigated using compression, with
some tradeoff in throughput from the additional opera-

tions to compress and decompress the data. In the studies
done here, we have not observed significant issues with
network usage, and as a result, analysis of the tradeoff
between compression and network usage is not included.

• Memory usage: The use of remote inference servers
reduces the local memory usage of production jobs, com-
pared to the direct inference approach. However, the
use of local fallback servers, whether to mitigate remote
server failures or take advantage of the containerization
and portability of the SONIC approach, implies increased
memory usage. Running the server process locally is gen-
erally expected to use more memory than the correspond-
ing direct inference libraries. Measurements of memory
usage are presented in “The CPU Fallback Server“ sec-
tion.

These potential drawbacks, especially uncorrelated failures
and network usage, are similar to those from other dis-
tributed services used in CMS production, such as the condi-
tions database or XRootD [104,105]. These can potentially
impact the processing performance and should be studied
more intensively.

Handling this additional complexity requires new com-
ponents to be deployed in the CMS workflow management
system. We provide below several examples of such opera-
tional concerns.

• Server discovery: The SONIC approach allows the use of
remote coprocessor resources, which requires the infor-
mation of servers running on these resources, e.g., IP
addresses, port numbers, served models, and number of
GPUs, etc. to be available to the client jobs. Such infor-
mation can be collected in the site configurations and
provided by the job submission system or a central ser-
vice. For the studies presented in this paper, servers are
launched manually, and their addresses are written into
the cmssw configuration files.

• Load balancing: Different production jobs running on
different data sets have different coprocessor resource
demands. A load balancer, such as Kubernetes, can be
set up to dynamically load and unload models on dif-
ferent servers and distribute client inference requests to
these servers. The load balancing for large-scale infer-
ence requests is tested and discussed in “Large-Scale
Tests“ section.

• Versioning: CMS production requires the versions of
cmssw, servers, ML models, and ML backends to be
controlled and recorded for proper provenance tracking.
The ML model versions are already tracked by the cmssw

release management system; the server and backend ver-
sioning should be included in the same system for consis-
tency. For the studies presented in this paper, the prebuilt
Triton server provided by NVIDIA was used.
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• Optimization procedure: While the SONIC approach
enables the benefits described in “Advantages of the
SONIC Approach“ section, it does not necessarily make
them trivially attainable. Some use-case-specific opti-
mizations are required before large-scale deployment, as
explained in more detail in “Performance“ section. For
example, each model should be analyzed individually to
find a preferred batch size. Similarly, while the flexible
coprocessor-to-CPU ratio permits more efficient utiliza-
tion of resources, one must first determine an appropriate
coprocessor-to-CPU ratio. This is further complicated by
the fact that the ratio can depend on the hardware used,
such as CPU or GPU type, and on the physics content of
the data set being processed.

4 Physics Data Sets, Algorithms, and Benchmark Setup

This section describes the physics data set, the ML algorithms
in cmssw that can currently use the SONIC approach for
inference, and the computing resources used in the studies.

4.1 Data Set and Software Versions

In the studies, we chose to process a simulated Run 2 data set
of events with one top quark and one anti-top quark (tt̄), as
it includes many types of physics objects, including leptons,
heavy-flavor jets, and missing transverse momentum. Here,
a heavy-flavor jet is one that originates from a charm or bot-
tom quark, and missing transverse momentum, or �p miss

T , is
defined as the negative vector sum of the transverse momenta
of all of the reconstructed particles in an event, and its mag-
nitude is denoted as pmiss

T [106]. The data set was copied
to local disk to factor out the effects of remote input–output
(I/O) limitations for the benchmarks. The cmssw version
CMSSW_12_0_0_pre5 and Triton server version 21.06 were
used for the studies.

4.2 Algorithms Supported by the SONIC Approach

Adapting an ML algorithm to work with the SONIC approach
requires a small effort to write code to prepare the network
inputs and save the network outputs within cmssw. A com-
parison of the producers used for direct inference and for
the SONIC approach can be found in Refs. [107] and [108],
respectively. Most of the pre- and post-processing steps are
the same, while the operations that send inference requests
to the ML backends directly or to the servers are different.

In these studies, we tested three independent and computing-
intensive ML-based algorithms in the Mini-AOD workflow.
These algorithms were chosen to illustrate the performance
of the SONIC approach for models with differing input and

output sizes, physics applications, and backends, as detailed
below.

4.2.1 The ParticleNet Algorithm

Graph neural networks (GNNs) have been demonstrated
to achieve state-of-the-art performance for identifying jets
as arising from specific particles, a task known as jet tag-
ging [54–56]. ParticleNet [55] is a GNN-based algorithm for
jet tagging and regression that represents jets as “particle
clouds.” This algorithm was trained in PyTorch [97] and
exported to the ONNX format. With the SONIC approach,
it is possible to perform inference with ParticleNet in the
following formats: ONNX; PyTorch; and PyTorch with
TRT [98], which optimizes model performance on NVIDIA
devices.

There are four different trained versions of ParticleNet
currently running in the Mini-AOD workflow for different
purposes:

1. tagging anti-kT jets [109], clustered with the FastJet

package [110], with a radius parameter of 0.4 (AK4 jets),
abbreviated PN-AK4 [111],

2. tagging anti-kT jets with a radius parameter of 0.8 (AK8
jets) [112],

3. mass-decorrelated tagging for AK8 jets [112], and
4. mass regression for AK8 jets [113].

The three AK8 ParticleNet algorithms are abbreviated PN-
AK8 in the following sections. All ParticleNet variations can
be hosted on Triton servers.

The inputs to ParticleNet are the kinematic and flavor
properties of the particle constituents of each jet and the sec-
ondary vertices associated with the jet, including 20 features
for one particle and 11 features for one vertex. Up to 100
particles and 10 vertices are used in the inputs for AK8 jets;
if there are more than 100 particles in a jet, the 100 parti-
cles with the highest transverse momenta are used, and if
there are more than 10 vertices, then the 10 with the highest
displacement from the beamline are used. For AK4 jets, the
maximum numbers of particles and vertices are 50 and 5,
respectively. For the three tagging versions of ParticleNet,
the outputs of each inference are category probabilities for a
variety of predefined jet categories, such as the presence of
a Higgs boson or the presence of a top quark. For the mass
regression, the output is a single value: the predicted jet mass.

In Mini-AOD processing, inference is performed sepa-
rately for each jet in a given event, so the number of Parti-
cleNet inferences depends on the specific physics processes
and can vary substantially from event to event. When run-
ning the standard cmssw version of ParticleNet, no inference
batching is performed, so each inference is truly performed
separately. In this context, each inference can have a variable
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number of inputs with no padding involved. When using the
SONIC approach for ParticleNet, it is simplest to batch all
jets in an event into a single inference request, such that input
particle and secondary vertex information for each jet in an
event is sent to the server in a single request. Because ragged
batching is not yet fully implemented in the inference server,
the different inference requests must have the same number of
inputs per batch. Therefore, in subsequent performance stud-
ies, we adopt a maximally padded approach, where zeros are
added to the vectors of particles and vertices for AK8 (AK4)
jets such that they have consistent lengths of 100 (50) and 10
(5), respectively.

An illustration of the jet content of the Run 2 simulated
tt̄ data set is given in Fig. 3. The distributions of the number
of jets per event and particles per jet are provided for both
AK4 and AK8 jets. As shown in the figure, the number of
jets can vary dramatically from event to event, indicating the
importance of dynamic batching.

In the configuration where all AK4 jets are padded to 50
particles and 5 vertices and all AK8 jets are padded to 100
particles and 10 vertices, a single four-threaded job process-
ing a Run 2 tt̄ event will generate about 140 kB/s of server
input for AK4 jets and about 10 kB/s of server input for each
of the AK8 jet versions of ParticleNet. At a processing rate of
about 4 events per second, with about 16 AK4 jets per event,
this corresponds to about 2 kB of information per jet, which
is consistent with the number of float inputs per jet.

4.2.2 The DeepMET Algorithm

DeepMET [114] is a TensorFlow-based deep neural net-
work model that estimates the �p miss

T in an event. The vector
�p miss

T is associated with either the production of neutrinos
or potential beyond the SM particles that could propagate
through the detector interacting only weakly. The inputs to
DeepMET are 11 features from each particle [79] in an event,
with zero-padding up to 4 500 particle candidates for a given
event. This zero padding is used for both the standard version
of DeepMET and its SONIC implementation. In both cases,
only one inference is made per event. DeepMET outputs two
values for each event: the �p miss

T components in the transverse
plane. Because every event necessarily has the same number
of inputs, dynamic batching is automatically available via the
SONIC approach, aiding inference efficiency in cases where
many client jobs make concurrent requests within a certain
time window (each client thread will make a request about
once per second). A single four-threaded job processing a
Run 2 tt̄ event will generate about 1.3 MB/s of server input
for DeepMET.
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Fig. 3 The jet information in the Run 2 simulated tt̄ data set used in
subsequent studies. Distributions of the number of jets per event (left)
and the number of particles per jet (right) are shown for AK4 jets (upper)
and AK8 jets (lower). For the distributions of the number of particles,
the rightmost bin is an overflow bin
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4.2.3 The DeepTau Algorithm

The DeepTau algorithm [115] is a TensorFlow-based deep
neural network model to identify hadronically decaying τ

leptons from the jet collections. The inputs to the net-
work include low-level particle features of electrons/photons,
muons, and hadrons, and high-level features such as the τ

lepton candidate kinematic information. The algorithm splits
nearby cones into grid cells, and loops over the cells to col-
lect the particle features. The low-level particle features are
then processed by a convolutional neural network (CNN) to
extract the particle-level information. The high-level features
are processed by a fully connected neural network (FCNN) to
extract the τ lepton candidate-level information. The outputs
of the CNN and FCNN are combined and processed by a final
FCNN to produce a four-dimensional vector that represents
the probability that the candidate originates from a genuine
τ lepton, a muon, an electron, or a quark or gluon jet. In the
implementation of direct inference in cmssw, the network is
split into three sub-models. The first two networks process
the lower-level input information separately, and the third
network combines the information from the first two models
with the high-level information and outputs the discrimina-
tor values. In the SONIC implementation, we use a combined
model with zero-padded inputs, so that dynamic batching can
be used and GPUs can be utilized more efficiently. A single
four-threaded job processing a Run 2 tt̄ event will generate
about 4.7 MB/s of server input for DeepTau, making it the
most demanding algorithm explored in this study in terms of
server input.

4.3 Average Processing Time

The processing time is defined as the real-world time spent
between starting and finishing processing one event. The pro-
cessing time breakdown for the three algorithms highlighted
above in the Run 2 tt̄ events is presented in Table 2, mea-
sured with 1-thread jobs using one single CPU core. The
per-event per-thread average processing time is about 1 s;
PN-AK4 consumes about 4.3% of this time and PN-AK8
about 1.1%, while DeepMET and DeepTau take about 1.3
and 2.1%, respectively. Thus, for this collection of events,
the algorithms supported by the SONIC approach account for
about 9% of the total processing time. This fraction is depen-
dent on the type of events. For example, if there are fewer
jets per event, ParticleNet will consume a smaller fraction
of the total processing time. While the fraction of the total
workflow accelerated with the SONIC approach in this paper
is less than 10%, an increasing number of ML algorithms are
being integrated into CMS data processing. Because of this,
it will be possible to accelerate a larger fraction of the total
processing time with the SONIC approach in the future.

4.4 Computing Resources

Fermilab, via the LHC Physics Center, provides CPU-only
batch resources and a set of interactive machines with
NVIDIA Tesla T4 GPUs [116]. Through Fermilab, we were
also able to steer the allocation of cloud resources (see below)
using the HEPCloud [117] framework. These resources are
physically located in Illinois.

The Google Cloud Platform (GCP) provides virtual
machines (VMs) that are either CPU-only or enabled with
NVIDIA Tesla T4 GPUs. By default, the CPUs are a mix of
Skylake, Broadwell, Haswell, Sandy Bridge, and Ivy Bridge
architectures [118]. In GCP, we created customized machines
with specified numbers of CPU threads or different ratios of
CPU threads to numbers of GPUs. Similarly, a customized,
dynamic SLURM [119] cluster was created that could instan-
tiate and deplete four-thread VMs on demand for medium-
scale tests that ran jobs across O(1000) CPUs. The cluster’s
four-thread configuration was chosen so that four-threaded
cmssw jobs would saturate the node’s resources, improving
the reproducibility of timing tests. CPU-only VMs could also
be instantiated through HEPCloud. In GCP, we also main-
tained GPU-enabled VMs running Triton servers that both
the SLURM and HEPCloud client nodes could access. These
resources are physically located in Iowa.

At the Purdue CMS Tier-2 computing cluster, tests
were performed with reserved CPU-only and GPU-enabled
machines. The CPU-only machines are 20-core Intel E5-
2660 v3 machines, and the GPU-enabled machines each
have two AMD EPYC-7702 CPUs [120] with an NVIDIA
Tesla T4 GPU. Reserving these nodes allowed for controlled
resource utilization, leading to more reproducible timing
tests. These resources are physically located in Indiana.

The diversity of resource locations used in these studies
demonstrates one of this approach’s key features, namely
that it enables the use of nonlocal resources. We were able
to start a server in one location and have client jobs running
at another site. One such study is presented in “Cross-site
Tests“ section.

Within a GCP project, VMs do not have ingress band-
width limits other than machine limits. These are above
10 GB/s, which, based on the scans in “Per-Algorithm Infer-
ence Optimization“ section and Table 2, is far above the
amount of information that can be sent from client VMs to
a server-hosting machine without saturating GPU resources.
For example, in GCP, if a single GPU is used to host all model
types, then in a typical running scenario, it can service about
33 simultaneous four-threaded client jobs, or 132 client cores.
A single client core generates about 1.55 MB/s of traffic, so
a total of 200 MB/s of ingress is expected per GPU at the sat-
uration point, which is reached when the GPU is running at
the maximum throughput and cannot handle any additional
incoming requests. Similarly, the ingress bandwidth from the
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Table 2 The average time of the Mini-AOD processing (without the SONIC approach) with one thread on one single CPU core.

Algorithm Time [ms] Fraction [%] Input [MB]

PN-AK4 42 4.3 0.04

PN-AK8 11 1.2 0.01

DeepMET 13 1.3 0.33

DeepTau 21 2.1 1.18

PN-AK4+PN-AK8+DeepMET+DeepTau 88 8.9 1.55

Full workflow 990 100.0 —

The average processing times of the algorithms supported by the SONIC approach are listed in the column labeled “Time.” The column labeled
“Fraction” refers to the fraction of the full workflow’s processing time that the algorithm in question consumes. Together, the algorithms currently
supported by the SONIC approach consume about 9% of the total processing time. This table also contains the expected server input for each model
type created per event in Run 2 tt̄ events in the column labeled “Input”

server into the client VMs will be very small, as inference
results are no more thanO(10)float values per algorithm. The
GCP does impose VM egress bandwidth limits, which is typ-
ically 0.25 GB/s per CPU for a VM to an internal IP address.
However, given that a single client-side core will generate
about 1.55 MB/s of network traffic, this is also well within the
allowed limit. There are slightly more stringent restrictions
for GCP bandwidth to external IP addresses. However, when
we performed such tests as in “Cross-site Tests“ section, typ-
ically only one external machine was involved, with levels of
network traffic well within that allowed by the restrictions.

5 Performance

In this section, we discuss the performance of running the
Mini-AOD production workflow with the SONIC approach.
We compare to direct inference, which refers to the standard
approach where the inference is performed using the ML
backends integrated into cmssw on CPUs.

As mentioned in “ The NVIDIA Triton Inference Server“
section, we first optimize the per-algorithm workflows to find
the optimal configurations for the full production workflow.
Next we check the impact of deploying servers on different
sites. Finally, we mimic the real production jobs by running
scale-up tests and evaluating the performance.

5.1 Per-Algorithm Inference Optimization

To maximize the resource efficiency and throughput benefits
of the SONIC approach, we first perform single-model char-
acterization studies independent of cmssw. For example, to
maximize GPU usage without oversaturation, we need to find
the optimal ratio of client-side CPUs to server-side GPUs,
batch size for inference in the Triton server, and model
configuration that will provide the highest throughput.

The latter two optimizations can be performed with the
Triton Model Analyzer tool [102]. This tool feeds inputs

in the correct tensor format (either randomized numbers or
real data) to a loaded model hosted on a server, allowing
for robust characterization of processing time per inference
or exploration of the impact of batch size. As an example,
we measure the processing time and throughput of the Parti-
cleNet algorithm for AK4 jet tagging on one NVIDIA Tesla
T4 GPU, with different inference backends supported in Tri-

ton: ONNX, ONNX with TRT, and PyTorch [97] (labeled
PT in the figures). The results are shown in Fig. 4.

For smaller batch sizes, the TRT version of the ParticleNet
algorithm leads to the highest throughput in total inferences
per second, while at higher batch sizes, the PyTorch ver-
sion gives higher throughput. In the version of ParticleNet
supported by SONIC in cmssw, all the jets in a single event
are batched together, and there are on average 16 AK4 jets
per event in our tt̄ data set. To achieve higher batch sizes in
a production scenario, multiple cmssw clients would need
to make an inference request to the same server within a
relatively narrow time window. Triton allows us to specify
a preferred batch size, such that if many inference requests
are queued within the time window, the server will perform
inference with batches of approximately the specified size.
For example, the peak throughput seems to plateau around a
batch size of 100 for the PyTorch version of ParticleNet.

Similar studies can be performed on other models as well.
Figures 5, 6, and 7 show the processing time and throughput
scans of PN-AK8 jet tagging, DeepMET, and DeepTau mod-
els, respectively. Some backend tests are skipped due to the
model availability.

The model analyzer can also determine approximately
how many inferences per second a single GPU can perform
before saturation. For example, for the PyTorch version of
ParticleNet for AK4 jets, a single Tesla T4 GPU can perform
about 5500 inferences per second without saturating. This
corresponds to about 350 events per second, given the typical
number of jets per event. Based on this, we can estimate how
many CPU clients one GPU can support in parallel. A typical
production configuration runs four-threaded Mini-AOD jobs,
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Fig. 4 Average processing time
(left) and throughput (right) of
the PN-AK4 algorithm served
by a Triton server running on
one NVIDIA Tesla T4 GPU,
presented as a function of the
batch size. Values are shown for
different inference backends:
ONNX (orange), ONNX with
TRT (green), and PyTorch

(red). Performance values for
these backends when running on
a CPU-based Triton server are
given in dashed lines, with the
same color-to-backend
correspondence

Fig. 5 Average processing time
(left) and throughput (right) of
one of the AK8 ParticleNet
algorithms served by a Triton

server running on one NVIDIA
Tesla T4 GPU, presented as a
function of the batch size.
Values are shown for different
inference backends: ONNX

(orange), ONNX with TRT

(green), and PyTorch (red).
Performance values for these
backends when running on a
CPU-based Triton server are
given in dashed lines, with the
same color-to-backend
correspondence

each of which processes about 3.9 events per second. There-
fore, a single GPU should be able to handle about 90 four-
threaded jobs in parallel running asynchronously, assuming
it is being used exclusively for a single server hosting the
PyTorch PN-AK4 model.

This expected saturation point can be tested directly by
running the Mini-AOD workflow in cmssw and scanning the
throughput as a function of the number of cmssw CPU clients
pinging one GPU server. Figure 8 shows such tests for the PN-
AK4, PN-AK8 jet tagging, DeepMET, and DeepTau models,
which were performed in GCP using a custom SLURM clus-
ter. For each model, a single server running on one NVIDIA
T4 GPU was started on one cloud VM, and client-side jobs
were executed in VMs that had 4 CPU threads. The tests
for each model class were performed separately, and as one
model class was being tested, the direct-inference versions
of the other models were used.

The accelerated versions of the workflow can be com-
pared with the dashed black line, which represents the aver-
age throughput of the workflow when the direct-inference
versions of all the models were used. In this case, jobs were
also started in the VMs with 4 CPU threads, but there was

no communication with an external server. As there were no
shared resources between jobs, there is no expected depen-
dence on the number of synchronized jobs. The average pro-
cessing time for this setup was determined very accurately
by simply running a large number of jobs, so no associated
error is shown in Fig. 8.

When offloading PN-AK4 inference to the GPU, we
expect an improvement in the overall throughput of about 4%
compared with direct inference, corresponding to the frac-
tion of time taken by the total PN-AK4 processing shown in
Table 2. Such an improvement is observed before saturation,
where the throughput is stable as a function of the num-
ber of simultaneous CPU clients. The throughput decreases
as the GPU starts to saturate because individual client-side
jobs have to wait longer for inference requests to complete
and return. The throughput becomes lower than CPU-only
inference slightly above 160 four-threaded parallel jobs, i.e.,,
equivalent to 640 single-threaded jobs, comparable with the
expected saturation point from the model analyzer.

Similar analyses were performed for the other models.
When all three variants of ParticleNet for AK8 jets are hosted
on a single GPU, that GPU can serve about 190 simultaneous
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Fig. 6 Average processing time
(left) and throughput (right) of
the DeepMET algorithm served
by a Triton server running on
one NVIDIA Tesla T4 GPU,
presented as a function of the
batch size. Similar performance
when running on a CPU-based
Triton server is given in dashed
lines

Fig. 7 Average processing time
(left) and throughput (right) of
the DeepTau algorithm served
by a Triton server running on
one NVIDIA Tesla T4 GPU,
presented as a function of the
batch size. Values are shown for
different inference backends:
TensorFlow (TF) (orange),
and TensorFlow with TRT

(blue). Performance values for
these backends when running on
a CPU-based Triton server are
given in dashed lines, with the
same color-to-backend
correspondence
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Fig. 8 The GPU saturation scan performed in GCP, where the per-
event throughput is shown as a function of the number of parallel CPU
clients for the PyTorch version of PN-AK4 (black), DeepMET (blue),
DeepTau optimized with TRT (red), and all PyTorch versions of PN-
AK8 on a single GPU (green). Each of the parallel jobs was run in a
four-threaded configuration. The CPU tasks ran in four-threaded GCP
VMs, and the Triton servers were hosted on separate single GPU VMs
also in GCP. The line for direct-inference jobs represents the baseline
configuration measured by running all algorithms without the use of the
SONIC approach or any GPUs. Each solid line represents running one
of the specified models on GPU via the SONIC approach

four-threaded client jobs. For DeepTau and DeepMET, a sin-
gle GPU hosting only one of the algorithms could serve about
64 and 520 client jobs, respectively. The differences between
these saturation points are primarily due to different model
sizes and numbers of objects per event. From these satura-
tion values, it is possible to determine the number of GPUs
needed to serve a production job that uses many client-side
CPUs, and thus to determine the ratio of the number of GPUs
hosting different models. For ParticleNet and DeepTau, the
saturation points will depend on the number of jets and tau
leptons in the processed events, such that the ratio of GPUs
hosting different models and the required ratio of GPUs to
CPUs is dependent on the type of events. If dynamic batching
is enabled, the number of GPUs required for a model scales
approximately linearly with the number of objects per event
that require an ML inference. For example, if there are half as
many jets per event, it would require about half as many GPUs
to serve ParticleNet, while the number of GPUs required for
DeepMET should not change, as that model makes one infer-
ence per event.

A single GPU can host multiple models such as DeepTau
and DeepMET. In practice, it was found that loading only a
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single model on each GPU (split-model) led to about a 3–5%
increase in the overall performance relative to loading every
model on each GPU (all-on-one). If a 10% improvement in
throughput is observed in the split-model configuration, one
would expect better than a 9.5% improvement in the all-
on-one configuration. Because of this slight improvement,
the split-model configuration was used in subsequent large-
scale tests. However, in scenarios where different physics
processes are combined into a single data set, using the all-on-
one configuration may be the most straightforward deploy-
ment option. Preparatory model profiling should still be per-
formed to ensure that enough GPUs and model instances
will be available, but the difference in performance between
model partitioning schemes is small.

5.2 Cross-site Tests

A potential bottleneck in the SONIC paradigm is the
increased inference latency caused by the physical distance
between client and server and other network traffic. While
a previous study observed that the average processing time
difference between remote and on-premises servers is neg-
ligible [63], we tested this observation explicitly with the
Mini-AOD workflow, with results presented in Fig. 9. In
this test, client-side jobs were executed at Purdue’s Tier-
2 computing cluster in Indiana. All the models are loaded
into one server running on a single GPU for simplicity. The
blue points and lines show the throughput improvement in
the Mini-AOD workflow when the client jobs communicate
with Triton servers hosting all the models at the same time,
running on a single GPU also physically located at Purdue.
The improvement is shown as a function of the number of
simultaneous four-threaded client-side jobs running at once.
The single GPU server begins to saturate when about 10
client-side jobs are sending requests at once and the Mini-
AOD workflow running with the SONIC approach becomes
slower than the CPU-only workflow if more than about 17
four-threaded client-side jobs are running at once. The direct-
inference line in Fig. 9 was made in the same way discussed
in “Per-Algorithm Inference Optimization for Fig. 8, though
the CPU-only jobs were run at Purdue rather than GCP in
Iowa.

These cross-site tests were performed before model con-
figuration optimization as discussed in the preceding sec-
tion. The exact model configuration is less important for
this test, as long as the near and far servers have the same
type of GPUs and host the same models. Here, the non-TRT

version of DeepTau was used, which saturated close to 40
synchronized four-threaded jobs. When all the models are
loaded on a single GPU server, the approximate saturation
point can be found with reciprocal addition. With the sat-
uration points of 90 (AK4 jet ParticleNet), 190 (AK8 jet
ParticleNet, 3 models), 40 (DeepTau), and 520 (DeepMET,
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Fig. 9 Production tests across different sites. The CPU tasks always
run at Purdue, while the servers with GPU inference tasks for all the
models run at Purdue (blue) and at GCP in Iowa (red). The throughput
values are higher than those shown in Fig. 8 because the CPUs at Purdue
are more powerful than those comprising the GCP VMs

2 models), the expected saturation point is around 18 syn-
chronized four-threaded jobs, when running all the models
together on one GPU. As noted in the previous section, this
estimate is often about 5% high. The saturation point seen in
Fig. 9 is lower than expected from the above analysis due to
the different configurations of the CPU machines in each sce-
nario. Twenty-threaded, hyperthreading-disabled Intel Xeon
Processor E5-2660 v3 units were used at Purdue, which are
more powerful processors than those used in the GCP-based
tests. The faster the client-side resources process events, the
lower the saturation point is for a given type of GPU.

The blue points and line in Fig. 9 show the throughput
improvement when the client-side jobs are once again run at
Purdue, while the Triton server hosting all the models on a
single GPU is run on GCP resources, which were physically
located in Iowa for this test. Both the observed throughput
increase and observed GPU saturation point are about the
same for both server locations, so we conclude that the client-
to-server distance has little impact on performance up to a
few hundred kilometers. In the future, it will be important
to monitor the impact of distance, especially beyond a few
hundred kilometers.

5.3 Large-Scale Tests

Finally, we perform large-scale tests to emulate realistic
Mini-AOD production scenarios. These tests were performed
exclusively using GCP resources. Here, 24 NVIDIA Tesla T4
GPUs were used to host the PyTorch version of ParticleNet
for AK4 jets, 20 GPUs were used to host the PyTorch ver-
sion of all three ParticleNet models for AK8 jets, 48 GPUs
were used to host DeepTau, and 10 GPUs were used to host
DeepMET. The ratios of the number of GPUs hosting each
model do not exactly match those expected from “Per-Al-
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gorithm Inference Optimization“ section; this was done for
multiple reasons. First, a larger number of GPUs than strictly
necessary were used in the tests to ensure that the perfor-
mance would meet the expectations described in “Per-Algo-
rithm Inference Optimization“section, and thereby avoid the
cost of repeating the test multiple times. For instance, based
on a single-GPU saturation point of 150 four-threaded jobs,
one would expect that only about 17 GPUs would be needed
to serve the AK4 jet ParticleNet model. It is worth noting that
while the demonstration illustrated here uses a CPU-to-GPU
ratio of 9820:102 (about 1 GPU per 96 CPU cores), achiev-
ing a higher ratio is likely possible as we could have safely
decreased the number of GPUs used. Second, it was more
practical to instantiate VMs with factors of 4 GPUs. This
had the added benefit of maximizing the allowed I/O band-
width for VMs, which in GCP is restricted for VMs with
fewer CPU cores. A maximal CPU-to-GPU ratio for VMs in
GCP is achieved for machines with 4 GPUs. While I/O band-
width was not expected to create problems for this large test, a
conservative approach was taken to mitigate the risk of need-
ing repeated trials. Thus, the GPU allocation approach was to
find the minimum number of GPUs expected based on single
saturation scans (17 for the AK4 jet ParticleNet model, 14 for
the AK8 jet ParticleNet models, 42 for DeepTau, and 5 for
DeepMET), find the next largest number divisible by 4, then
add one extra server corresponding to 4 additional GPUs. For
DeepMET, two 4-GPU VMs were used along with one 2-
GPU machine, as DeepMET is a relatively lightweight algo-
rithm, and the approach used for the other algorithms would
have more than doubled the number of GPUs allocated for
the algorithm.

A separate Kubernetes load-balancer was used for each
model type to distribute inference requests evenly among
server-hosting, GPU-enabled VMs. Thus, client VMs used
separate IP addresses for each model type, and each inference
for a particular model type was passed through a single load-
balancing machine, allowing for network monitoring for each
model separately.

Client-side jobs also ran on CPU-only GCP resources,
using HEPCloud to dynamically allocate preemptible resources
and assign jobs to the client-side VMs. Each client job was
run in a four-threaded configuration, with input data files
stored locally, and each VM created in this HEPCloud setup
had 32 cores and 160 GB of memory, meaning up to 8 simul-
taneous jobs could run in a single VM.

The largest test had 2500 simultaneous client-side jobs,
which amounts to 10 000 CPU cores. Because these jobs were
run on preemptible resources, Google reserves the right to
reallocate any VM to higher priority requests from other GCP
users. Of the 2500 jobs, 2455 jobs completed successfully
without preemption, so in total 9820 client-side CPUs were
used.

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

Per-job throughput [evt/s]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

N
o
rm

a
liz

e
d
 n

u
m

. 
o
f 
e
v
e
n
ts

SONIC jobs

CPU "direct-inference" jobs

(13 TeV)CMS Simulation

Fig. 10 Scale-out test results on Google Cloud. The average through-
put of the workflow with the SONIC approach is 4.0 events/s (solid
blue), while the average throughput of the direct-inference workflow is
3.5 events/s (dashed red)

The results of this large-scale test are shown in Fig. 10. The
jobs running with the SONIC approach achieved an average
throughput of 4.0 events/s, while CPU-only benchmarking
jobs had a throughput of 3.5 events/s. This 13% increase in
throughput matches the expectation of completely removing
the ParticleNet, DeepTau, and DeepMET inference from the
total Mini-AOD per-event processing time within the uncer-
tainty, which is typically around 3% from small-scale tests.
The throughput values for this test are slightly different from
those shown in Figs. 8 and 9. As noted previously, this is due
to the difference in the CPUs used in the tests.

As mentioned before, server-side VMs were optimized to
allow maximal input and output bandwidth. No bottlenecks
due to bandwidth were observed in this scale-out test. We
noted that the maximum data input rate received by one of
the Kubernetes load balancers was 11.5 GB/s, which was for
DeepTau. The next-highest data input rate was 3.3 GB/s for
DeepMET, and less than 500 MB/s of input was needed for
all ParticleNet models combined. These values are consistent
with expectations from Table 2, as there were roughly 10 000
CPU cores running simultaneously, each processing about 1
event per second. The output rate was significantly smaller
for each model, as most return only one or a few floating-
point values as the inference result. In the future, more algo-
rithms will be able to be run on coprocessors. These could
have larger I/O sizes than the algorithms considered here, so
continuing to monitor the network usage will be important.

6 Portability

While the inference servers discussed so far have exclu-
sively utilized GPU resources, servers are easily portable and
can run on other processing platforms. Previous uses of the
SONIC approach with FPGAs are reported in detail in Refs.
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[61,62], where the portability was demonstrated by changing
the coprocessor technology and server backend without mod-
ifying the client-side software. In the new studies reported
here, we have additionally run the Mini-AOD workflow with
servers using both CPUs and Graphcore IPUs [33,34].

6.1 The CPU Fallback Server

When running with remote servers, one potentially com-
mon and important failure mode is communication errors
between clients and servers. To support automatic local CPU
inference as a backup option when communication fail-
ures occur with remote servers, the SONIC implementation
includes a service that can launch a Triton server using local
CPU resources for any SONIC approach-compatible models,
referred to as a fallback server. Fallback servers can also be
used for inference when third-party ML frameworks are not
supported for direct inference in cmssw.

Ideally, the use of fallback servers should have minimal
impact on per-event throughput relative to running direct-
inference jobs without the SONIC approach. This is contin-
gent on two factors. First, the latency introduced by sending
data to or from local servers must be negligible. Second,
servers should introduce minimal overhead to maximize the
CPU resources used to perform inference. The first concern
can be resolved using the shared-memory option, which skips
the gRPC communication and directly passes the data in cer-
tain memory chunks between the server and client. The gRPC
overhead in most cases is found to be negligible. Regarding
the second concern, local servers are running on the same
CPUs as the other modules in the workflow, so scheduling
efforts must be made to avoid CPU thread contention between
the two. This implies that the synchronous server mode is pre-
ferred for local CPU fallback servers. Additionally, inference
tasks should not create extra threads to avoid contention. In
our experiments, we found that using more inference threads
in the server than the number of threads allocated for the
cmssw job will slow processing down dramatically.

Having thus explored potential configurations, for the
local CPU inference, we run our servers in synchronous
mode, with the number of model instances set to the num-
ber of threads per job, and the number of inference threads
always set to one. This configuration mimics direct infer-
ence and avoids thread over-subscription as much as possi-
ble. We compare the throughput between direct inference and
the SONIC approach with local CPU fallback servers using
this configuration. Tests were performed using resources at
the Purdue Tier-2 cluster with the CPU-only nodes. There
are nCPU = 20 Intel E5-2660 CPU cores on one node,
and hyperthreading is disabled to ensure more stable results.
For all tests, we always saturate the CPU nodes by requir-
ing the product of the number of jobs (nj) and number of
threads per job (nT) to be equal to the number of CPU cores:
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SONIC approach and direct inference in the local CPU tests at the
Purdue Tier-2 cluster. To ensure the CPUs are always saturated, the
number of threads per job multiplied by the number of jobs is set to 20

njnT = nCPU = 20. For example, to test a configuration
where a single job occupies four threads (nT = 4), we would
run five synchronized jobs (nj = 5), while a two-threaded
configuration would require 10 synchronized jobs. We scan
the throughput as a function of the number of threads, as
shown in Fig. 11. The throughput of running with local CPU
fallback servers is similar to direct inference. The higher
throughput in some cases is a result of optimizations in more
recent versions of ONNX Runtime installed on the server,
which can be controlled in real production jobs.

Memory usage was also monitored with the top com-
mand during the studies and provided in Table 3. As the
number of threads per job increases, the number of model
instances increases as well, leading to higher memory usage
in the SONIC approach compared with direct inference. On
the other hand, if the number of model instances is fixed to
one, the server memory usage is always around 300 MB, so
the total memory usage is similar to direct inference, but the
throughput decreases by 5–10%, depending on the tasks. Fur-
ther simultaneous optimization of the throughput and mem-
ory usage will be explored in the future.

6.2 Studies with Graphcore IPUs

As discussed in Sects. 3.2 and 3.3, NVIDIA Triton infer-
ence servers support custom backends to run with different
coprocessors and different (e.g.,, ML) backends. Since the
SONIC approach’s client code only depends on the Tri-

ton protocols, algorithms implemented in this way can eas-
ily be ported to different types of coprocessors. One of the
Mini-AOD production tests was run together with the Graph-
core IPU team, where a custom backend was prepared by the
developer team to support running ML inference with IPUs.
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Table 3 Memory usage with
direct inference and the SONIC
approach in the local CPU tests
at the Purdue Tier-2 cluster. The
last column is calculated as the
sum of client and server
memory usage divided by the
direct inference memory usage.
To ensure the CPUs are always
saturated, the number of threads
nT per job multiplied by the
number of jobs is set to 20

nT cmssw with cmssw with SONIC SONIC app SONIC/direct
per job direct inference [MB] app. (client) [MB] server [MB]

1 1850 1700 200 103%

2 2000 1800 400 110%

5 2200 1950 800 125%

10 2500 2200 1200 136%

20 2900 2500 2000 155%

The supported ML frameworks on IPUs when the tests were
performed included TensorFlow, ONNX, and PyTorch.
PyTorch- Geometric support was in development at that
time and is now available. With TensorFlow custom back-
end available for the server, we can easily run DeepMET and
DeepTau inference with the SONIC approach in cmssw on
IPUs.

First, a per-algorithm throughput scan was carried out.
Comparing running inference on MK2 GC200 IPUs with
NVIDIA Tesla V100s, a chip-to-chip factor of 3 through-
put improvement was found, with larger gains expected for
more computing-intensive models. Running the entire Mini-
AOD workflow was also tested. We adapted the workflow
configuration to point the cmssw clients running at the Pur-
due Tier-2 cluster to IPU servers on the Graphcloud cloud.
Without any other modifications on the client side, the work-
flow ran successfully, performing inference of the DeepMET
and DeepTau models on the cloud and the other parts of the
workflow on the client local CPUs. Outputs were checked
and found to be consistent with direct inference, within 10−6

differences for floats due to precision limits.

7 Summary

Within the next decade, the data-taking rate at the LHC
will increase dramatically, straining the expected computing
resources of the LHC experiments. At the same time, more
algorithms that run on these resources will be converted into
either machine learning or domain algorithms that are easily
accelerated with the use of coprocessors, such as graphics
processing units (GPUs). By pursuing heterogeneous archi-
tectures, it is possible to alleviate potential shortcomings of
available central processing unit (CPU) resources.

Inference as a service (IaaS) is a promising scheme to inte-
grate coprocessors into CMS computing workflows. In IaaS,
client code simply assembles the input data for an algorithm,
sends that input to an inference server running either locally
or remotely, and retrieves output from the server. The imple-
mentation of IaaS discussed throughout this paper is called
the Services for Optimized Network Inference on Copro-

cessors (SONIC) approach, which employs NVIDIA Tri-

ton Inference Servers to host models on coprocessors, as
demonstrated here in studies on GPUs, CPUs, and Graph-
core Intelligence Processing Units (IPUs).

In this paper, the SONIC approach in the CMS software
framework (cmssw) is demonstrated in a sample Mini-AOD
workflow, where algorithms for jet tagging, tau lepton iden-
tification, and missing transverse momentum regression are
ported to run on inference servers. These algorithms account
for nearly 10% of the total processing time per event in a
simulated data set of top quark-antiquark events. After model
profiling, which is used to optimize server performance and
determine the needed number of GPUs for a given number
of client jobs, the expected 10% decrease in per-event pro-
cessing time was achieved in a large-scale test of Mini-AOD
production with the SONIC approach that used about 10 000
CPU cores and 100 GPUs. The network bandwidth is large
enough to support high input–output model inference for the
workflow tested, and it will be monitored as the fraction of
algorithms using remote GPUs increases.

In addition to meeting performance expectations, we
demonstrated that the throughput results are not highly sen-
sitive to the physical client-to-server distance, at least up
to distances of hundreds of kilometers. Running inference
through Triton servers on local CPU resources does not
affect the throughput compared with the standard approach
of running inference directly on CPUs in the job thread. We
also performed a test using GraphCore IPUs to demonstrate
the flexibility of the SONIC approach.

The SONIC approach for IaaS represents a flexible
method to accelerate algorithms, which is increasingly valu-
able for LHC experiments. Using a realistic workflow, we
highlighted many of the benefits of the SONIC approach,
including the use of remote resources, workflow accelera-
tion, and portability to different processor technologies. To
make it a viable and robust paradigm for CMS computing
in the future, additional studies are ongoing or planned for
monitoring and mitigating potential issues such as excessive
network and memory usage or server failures.
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